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Quasiballistic heat conduction from nanoscale heat sources of size comparable to phonon mean free

paths has recently become of intense interest both scientifically and for its applications. Prior work has

established that, in the quasiballistic regime, the apparent thermal properties of materials depend both on

intrinsic mechanisms and the characteristics of the applied thermal gradient. However, many aspects of

this regime remain poorly understood. Here, we experimentally study the thermal response of crystals to

large thermal gradients generated by optical heating of nanoline arrays. Our experiments reveal the key

role of the spatial frequencies and Fourier series amplitudes of the heating profile for thermal transport in

the quasiballistic regime, in contrast to the conventional picture that focuses on the geometric dimensions

of the individual heaters. Our work provides the insight needed to rationally mitigate local hot spots in

modern applications by manipulating the spatial frequencies of the heater patterns.
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I. INTRODUCTION

Heat conduction by phonons is of both fundamental and

practical importance, playing a key role in modern appli-

cations ranging from thermoelectrics [1–5] to electronic

devices [6–10]. The limiting regimes of heat conduction

are well understood. If thermal gradients occur over length

scales much longer than mean free paths (MFPs), heat

conduction occurs by diffusion as described by Fourier’s

law. In the opposite limit of an extreme thermal gradient

over which no scattering occurs, heat conduction occurs by

phonon radiation in an exact analogy to blackbody radia-

tion [11]. The intermediate quasiballistic regime, in which

some phonons are ballistic but some undergo scattering

events, has recently become of intense interest [12–23].

This regime occurs in practice much more frequently than

the completely ballistic regime because phonons possess a

very broad MFP spectrum [24] and often not all phonons

are ballistic for experimentally achievable heating length

scales.

Koh and Cahill first reported variations of thermal con-

ductivity with modulation frequency in time-domain ther-

moreflectance (TDTR) experiments that they attributed to
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quasiballistic transport [13]. Subsequently, a number of

works reported observations of quasiballistic effects in sys-

tems including lithographically patterned nanoline arrays

on sapphire [14], silicon at cryogenic temperatures [15] as

well as at room temperature [18,19], and thin silicon mem-

branes at room temperature [25]. A recent work reported

the existence of a collective-diffusive regime [20], again

involving nanolines with variable periods. These effects

have been used to map the spectral thermal conductiv-

ity of crystals [16,17]. Meanwhile, numerous models have

been proposed to explain the various observations, includ-

ing two-channel models with ballistic and diffusive modes

[26,27], approximate solutions of the Boltzmann trans-

port equation (BTE) [23,28], a superdiffusive formalism

[21,22], and numerical methods [29].

Despite these prior studies, many aspects of the qua-

siballistic regime remain poorly understood, with prior

works drawing contradictory conclusions. For example,

Hu et al. [16] and Zeng et al. [17] report large and mono-

tonic increases in thermal resistance as the dimensions

of individual heaters in patterned arrays become smaller

than MFPs. However, other works suggest that size effects

should not play a role in closely spaced patterned heaters

due to the lack of in-plane thermal gradient [30]. Overall,

a comprehensive understanding of the thermal response of

solids to large temperature gradients is lacking, impacting
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efforts to enhance heat dissipation in modern devices that

possess nanoscale heat sources.

Here, we experimentally study quasiballistic transport in

crystals generated by optically heating metallic nanoline

arrays. Our experiments reveal the key role of the spatial

frequencies and Fourier series amplitudes of the heating

profile for thermal transport in the quasiballistic regime, in

contrast to the conventional picture in which the character-

istic dimensions of the individual heaters play the central

role. In addition, our work provides the insight needed

to rationally mitigate local hot spots in modern applica-

tions by manipulating the spatial frequencies of the heater

patterns.

II. METHODS

A. TDTR measurements and fitting model

We use two-tint TDTR [31] to study heat conduction

in c-sapphire with patterned aluminum line arrays as trans-

ducer. Briefly, the pump pulse train, at a 76-MHz repetition

rate and wavelength of 785 nm, is amplitude-modulated at

η0 and directed to the sample to provide a heat impulse.

The change in reflectance of the aluminum lines due to the

temperature change is detected by a reflected probe beam

with wavelength near 785 nm but spectrally distinct from

the pump using sharp-edged optical filters. Sapphire is cho-

sen as the substrate as it is transparent to the 785-nm laser

used in the experiments so that only the aluminum lines

absorb the incident pump light, as shown in Fig. 1(a). The

pump and probe beams are fixed with 1/e2 diameters of

30 and 10 µm, respectively. Both beam sizes are measured

using a home-built two-axis knife-edge beam profiler. We

use a mechanical delay line with up to 14 ns of total delay

time. All the measurements are performed in an optical

cryostat (JANIS ST-500) under high vacuum of 10−6 Torr.

The experimental data consist of in-phase and out-of-phase

signal versus delay time as measured by a rf lock-in ampli-

fier (Zurich Instruments HF2LI). The signal is converted

into amplitude and phase for fitting and presentation, as

shown in Figs. 1(e) and 1(f).

To fit the nanoline data, we assume that both the pump

and probe spot sizes are much larger than the linewidth and

period, allowing us to consider the nanoline heating profile

as spatially periodic along the x axis, as shown in Figs. 1(a)

and 1(b). The y-axis direction is considered as infinite. As a

result, the heat transport can be described using a 2D model

in Cartesian coordinates. The square wave profile of the

lines is described mathematically by imposing a square-

wave heating at the Al transducer layer surface and setting

the in-plane thermal conductivity of the transducer layer

κr = 0. The solution then follows exactly the same deriva-

tion as given in Refs. [32] and [33]. Further details of the

fitting model are available in Ref. [17]. The only differ-

ence between the present model and this prior model is

that we allow some of the frequency components of the

TDTR signal to have different thermal properties rather

than forcing all frequency components to have the same

value of the fitting parameter as in the traditional model.

B. Sample fabrication and characterization

The sample consists of aluminum nanoline arrays with

an area of 60 × 60 µm2 fabricated on c-sapphire substrates

as shown schematically in Fig. 1(a), using a standard

electron-beam lithography and lift-off process. The width

of the lines w varies between 50 nm and 1.5 µm, while the

period of line array L ranges from around 1.5 to 4.5 times

the corresponding linewidth; the duty cycle is defined

as w/L. Owing to the spatial periodicity of the heating

pattern, it can be represented as a Fourier series with

discrete spatial-frequency components of a square wave

as shown in Fig. 1(b). Single-side polished c-sapphire

substrates from University Wafers are first cleaned in

Nanostrip, followed by sonication in acetone and isopropyl

alcohol (IPA), and then rinsed with IPA and dried with

dry N2. Approximately 100-nm poly(methyl methacrylate)

(PMMA) is spun on the substrate, followed by baking

at 180◦C for 5 min. After cooling, a conductive layer of

AquaSave (Mitsubishi Rayon Co. Ltd.) is spun on the resist

as an anticharging layer for e-beam lithography. The resist

is exposed to the electron beam in a Leica/Vistec EBPG

5000+ electron beam writer operating at 100-kV acceler-

ating voltage and a 5-nm spot size. After patterning, the

AquaSave is removed with a rinse of DI water and then the

sample is dried with N2. Development is performed at 4 ◦C

in a 1:3 mixture of methyl isobutyl ketone (MIBK) and IPA

for 65 s and terminated in IPA for 1 min. The patterns are

subjected to a brief dose of oxygen plasma to clean the

PMMA residues after development. Al film 42 nm thick

is deposited with a Lesker LAB Line E-beam evapora-

tor at a pressure of 7 × 10−7 Torr. Lift-off is performed

in dichloromethane at room temperature for 15 min.

The dimensions of aluminum line arrays, including the

linewidth, period, and height, are characterized by atomic

force microscopy (AFM) (Bruker Dimension ICON) and

scanning electron microscopy (SEM). For smaller lines,

the cross section is also characterized by transmission elec-

tron microscopy (TEM) (FEI Tecnai TF-20). The TEM

samples are prepared with a standard focused ion beam

(FIB) lift-out technique and FIB milling for thinning to

<100 nm after TDTR measurements are performed. AFM

and cross-section TEM images of the fabricated lines are

presented in Figs. 1(c) and 1(d). The linewidth is computed

using AFM measurements corrected for the tip radius and

these measurements are confirmed with the cross-section

TEM measurements for select lines. Accurate determina-

tion of linewidths is essential as the TDTR measurements

are exceedingly sensitive to this parameter; see Sec. 4 and

Fig. S8 in the Supplemental Material [34]
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(a) (b)

(c) (d)

(e) (f)

FIG. 1. Schematic of experimental geometry and example data from nanoline arrays. (a) Schematic of sample geometry. (b) Spatial

heating profile on the substrate in real space (top) and versus spatial frequency (bottom). In the experiment, the probe beam that

measures the thermal response has an identical geometry. (c) Representative AFM topography of 627-nm line arrays with a period of

1.2 µm. The dashed green line indicates the cross section used for the height profile shown in the inset. (d) TEM cross-section profile

of a 62-nm-width line. (e),(f) Representative TDTR amplitude and phase experimental data and best fit using a standard heat diffusion

model [16] on line arrays at (e) 5.3-MHz modulation frequency, w = 1 µm, and L = 2 µm at 294 K and (f) 3.1 MHz, w = 117 nm, and

L = 200 nm at 150 K. In (e), the best-fit curve matches the data and yields a fitted thermal conductivity and interface conductance of

38 W m−1 K−1 and 196 MW m−2 K−1, respectively. In (f), the phase fitting is poor. In this situation, fitting to amplitude [16] or phase

[17] will give different results.

C. Spectral BTE calculation

Thermal transport in the nanoline array system is

described by the two-dimensional spectral BTE under the

relaxation time approximation (RTA),

∂gω

∂t
+ vω,x

∂gω

∂x
+ vω,z

∂gω

∂z
= −

gω + f0(T0) − f0(T)

τω

+
Qω(x, z, t)

4π
, (1)

f0(T) =
1

4π
�ωD(ω)fBE(T) ≈ f0(T0) +

1

4π
Cω�T, (2)

where gω = �ωD(ω)[fω(x, t, µ) − f0(T0)] is the devia-

tional distribution function; f0 = f0(x, t) is the equilibrium

distribution function; µ = cos(θ) is the directional cosine;

vω,x and vω,z are the phonon group velocities in the x (in-

plane) and z (cross-plane) directions; and τω is the phonon

relaxation time. For a line array heating pattern, Qω(x, z, t),
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the spectral volumetric heat generation, is formulated as

follows

Qω(x, z, t) = Qω(z, t)rect(x), (3)

where rect(x) represents a square wave.

Assuming a small temperature rise, �T = T − T0, rela-

tive to a reference temperature, T0, the equilibrium distri-

bution is proportional to �T, as shown in Eq. (2). Here,

� is the reduced Planck constant, ω is the phonon fre-

quency, D(ω) is the phonon density of states, fBE is the

Bose-Einstein distribution, and Cω = �ωD(ω)(∂fBE/∂T)

is the mode specific heat. The volumetric heat capacity

is then given by C =
∫ ωm

0
Cωdω and the Fourier thermal

conductivity κ =
∫ ωm

0
κωdω, where κω = 1

3
Cωvω
ω and


ω = τωvω is the phonon MFP. To close the problem,

energy conservation is used to relate gω to �T, given by

∫ ∫ ωm

0

[

gω(x, t)

τω

−
1

4π

Cω

τω

�T(x, t)

]

dωd� = 0, (4)

where � is the solid angle and ωm is the cutoff fre-

quency. Note that summation over phonon branches is

implied without an explicit summation sign whenever an

integration over phonon frequency or MFP is performed.

Since a typical laser spot size is much larger (at least

10–100 times larger) than the linewidth/period of the line

array, the in-plane direction parallel to the lines (the y-axis

direction) is assumed to be infinite. As a result, heat trans-

port in the line array is reduced to a two-dimensional heat

transfer problem as shown in Fig. 1(a). The in-plane direc-

tion perpendicular to the lines is also assumed to be infinite

and we neglect any effect of the finite pump size. There-

fore, a Fourier transform can be applied to the in-plane

direction perpendicular to the lines and Eq. (1) becomes

∂ g̃ω

∂t
+ iξxg̃ωvω,x + vω,z

∂ g̃ω

∂z
= −

g̃ω

τω

+
1

4π
Cω�T̃(ξx, z, t)

+
Qω(z, t)

4π

+∞
∑

n=−∞

2 sin(πnw/L)

n
, (5)

where
∑+∞

n=−∞[2 sin(πnw/L)/n] is the Fourier transform

of a square wave and ξx is the Fourier variable in the

x direction. ξx is discrete and takes the value of 2πn/L,

where L is the period length and n is an integer.

The calculation can be divided into three parts: the

transducer layer, substrate, and interface. In the transducer

layer, the transport is considered only in the cross-plane

direction. Therefore, ξx = 0. The BTE in the transducer

layer can be reformulated as a Fredholm integral equation

of the second kind and solved using the method of Ref.

[35]. The solution in the substrate can be obtained using the

multidimensional Green’s function to the BTE [36]. The

solutions in the two layers depend on each other through

the interface conditions that enforce conservation of heat

flux. The detailed discussion and derivation exactly follow

those given in Ref. [37] excepting the use of the multidi-

mensional Green’s function in this work. The dispersion

and relaxation times for sapphire are approximated from

first-principles calculations by Lucas Lindsay for Si [38];

the relaxation times are divided by 4 to more closely match

the thermal conductivity of sapphire.

III. RESULTS AND DISCUSSION

A. Observing quasiballistic heat conduction

Experimental amplitude and phase data from the lock-in

amplifier for 1-µm lines with 50% duty cycle at room tem-

perature are given in Fig. 1(e). We fit these data using a

traditional multilayer heat diffusion model [16,32,33] with

the substrate thermal conductivity and interface conduc-

tance between the lines and substrate as fitting parameters.

We see in Fig. 1(e) that the fitting quality is excellent and

yields a thermal conductivity of 38 W m−1 K−1, which is in

good agreement with the literature value for sapphire [39,

40]. In contrast, Fig. 1(f) presents the amplitude and phase

data for 117-nm lines at 150 K. Although the fitted ampli-

tude reasonably matches the experimental data, the phase

fit is quite poor. This discrepancy indicates that heat diffu-

sion theory is failing to describe key aspects of the trans-

port dynamics, complicating the interpretation of the data.

B. Interpreting the TDTR measurement

The Boltzmann transport equation is the most rigorous

formalism to analyze the measured data, but a simplified

model can provide insight into the experimental data with-

out requiring extensive microscopic input. To identify this

model, we examine the TDTR signal more closely. The

transfer function Z(t) that relates the measured amplitude

and phase of the surface temperature to a spatially periodic

input surface heat flux is given by

Z(t) =

−∞
∑

m=−∞

−∞
∑

n=−∞

H(η0 + mηs, ξx,n)e
imηstQ(ξx,n) (6)

where ξx,n = 2πn/L are the in-plane spatial frequencies of

the periodic heating pattern with period L, η0 is the mod-

ulation frequency, ηs is the laser pulse repetition rate, and

t is the time delay of the probe relative to the pump. Here,

n and m are integers. Equation (6) represents the time-

domain TDTR signal as a double Fourier series, allowing

us to observe that the transfer function is composed of a

frequency response function, H(η, ξ), evaluated at discrete

temporal and spatial frequencies weighted by the Fourier

series amplitudes of the heat source, Q(ξx,n). The weights

Q(ξx,n) are given by the Fourier series components of the

square wave, as shown in Fig. 1(b).

The inadequacy of the traditional model to explain the

experiments implies that the surface-temperature response
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of the sample versus spatial and temporal frequency differs

from that predicted by Fourier’s law. To gain insight

into this discrepancy, we calculate the surface-temperature

response H(η, ξ) as a function of temporal and in-plane

spatial frequency of the applied surface heat flux for a

thin film on substrate geometry with multidimensional

heat conduction using the spectral BTE (see Sec. II C).

The amplitude and phase of the surface thermal response

versus temporal frequency at different spatial frequencies

computed from Fourier’s law and the BTE are shown

in Figs. 2(a) and 2(b). The calculations demonstrate that

the BTE response agrees with the Fourier law calcula-

tion at smaller spatial frequencies but does not agree for

larger spatial frequencies. As the poor fitting of Fig. 1(f)

shows, the two fitting parameters of substrate thermal

conductivity and interface conductance in the traditional

model cannot explain these various differences at all of

the temporal and spatial frequencies present in the TDTR

signal. Therefore, a new model is needed to interpret the

experiments.

We introduce such a model by making several

observations. In the weak quasiballistic regime where

relevant timescales are far longer than phonon relaxation

times, we have previously shown that apparent thermal

properties can be rigorously defined [41], but these prop-

erties may not be constant with variations in spatial fre-

quencies of the heater pattern. For instance, our analytical

solution of the BTE for a semi-infinite domain shows

that the thermal conductivity depends primarily on the

magnitude of the spatial frequencies ξ of the heating pat-

tern rather than the temporal frequency [36], where ξ =
√

ξ 2
x + ξ 2

y + ξ 2
z . In the line array pattern Fig. 1(a), ξx cor-

responds to the in-plane direction. For the square-wave

heater, ξx = 2πn/L, where L is the period and n is an inte-

ger, as shown in Fig. 1(b). ξy = 0 due to the uniformity

along the y direction. The cross-plane spatial frequency

ξz is determined by the temporal heating frequencies in

the modulated heating beam. For a given modulation

frequency, the ξz are fixed and, hence, our experiment

(a) (b)

(c) (d)

Four

FIG. 2. Model to interpret TDTR data. (a) Amplitude and (b) phase of the thermal response of a thin film on a substrate versus tem-

poral frequency for three spatial frequencies calculated using Fourier’s law (lines) and BTE (symbols). (c) Refit of experimental data

for the case in Fig. 1(f) with the four-parameter fitting model. The best fit gives an excellent fit to the data with κ0 = 142 W m−1 K−1,

κ1 = 4 W m−1 K−1, G0 = 137 MW m−2 K−1, G1 = 155 MW m−2 K−1, respectively. (d) Centerline temperature profile versus depth

into the sample for a line array at a single temporal frequency of 10 MHz calculated using the four-parameter model (dashed lines)

and the exact solution from the BTE (solid lines). The four-parameter model reasonably explains the spatial temperature profile into

the sample.
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primarily probes the effect of the in-plane spatial frequency

ξx on thermal conductivity set by the square-wave period.

Additionally, we expect that the interface conductance will

primarily depend on the cross-plane spatial frequencies ξz

that are, in turn, set by the temporal heating frequency (see

Sec. 2 in the Supplemental Material [34]).

Given these observations, we construct a four-parameter

model. Two parameters are thermal conductivities, one for

zero spatial frequency κ0 = κ(ξx,0), corresponding to spa-

tially uniform heating, and one for all higher-order spatial

frequencies κ1 = κ(ξx,|n|>0), where ξx,|n|>0 are integer mul-

tiples of the fundamental spatial frequency ξx,F = 2π/L.

The other two are interface conductances, one at the mod-

ulation frequency G0 = G(η0) and one for higher-order

temporal frequencies G1 = G(η0 + mηs)|m|>0. If the trans-

port occurs by diffusion, thermal properties are constant

for all spatial frequencies and κ0 = κ1 and G0 = G1. The

model is not a two-channel model as has been reported

in the past [26], but rather allows for the possibility that

the spatial frequency components of the TDTR thermal

response may be described by different thermal properties

due to quasiballistic effects.

As in the traditional procedure, these parameters are

obtained by fitting to the measured surface-temperature

response of the sample. Applying the four-parameter

model to the experimental data of Fig. 1(f) yields an

excellent fit, as in Fig. 2(c). Of course, adding additional

parameters to a model could lead to satisfactory fitting

even if the underlying model is not physical. We provide

support that our four-parameter model accurately describes

the thermal transport in the system by computing the exact

cross-plane spatial temperature profile in the sample using

the BTE and comparing it to that obtained from four-

parameter model with the best-fit parameters. The result

is shown in Fig. 2(d) and demonstrates that the four-

parameter model agrees nicely with the exact BTE result

despite its simplicity, supporting the physical validity of

our model. In the following discussion, we use these BTE

simulations to compute TDTR data sets as a comparison

with the experimental data; we term these simulations as

synthetic data and the same four-parameter model is used

to fit the synthetic data to obtain thermal conductivities and

interface conductances exactly as in experiment.

C. Results using four-parameter model

We now apply this model to our measurements on nano-

lines. As the apparent thermal conductivity of the substrate

is our primary interest, we defer discussion of interface

conduction to Sec. 2 of the Supplemental Material [34].

When we measure the thermal conductivities (κ0 and κ1)

versus modulation frequency from 0.5 to 15 MHz, little

dependence on modulation frequency is observed (see Sec.

3 and Fig. S3 in the Supplemental Material [34]), confirm-

ing our assumption that the measured thermal conductivity

primarily depends on in-plane spatial frequency. For the

measurements in all the figures below, the error bar indi-

cates the standard deviation from measurements taken at

multiple modulation frequencies between 1 and 10 MHz

and the uncertainty from fitting (see Secs. 4 and 5 in the

Supplemental Material [34]), unless otherwise stated.

We first examine the thermal conductivities versus

period with the duty cycle fixed at 50% at room temper-

ature and 150 K in Fig. 3(a). The thermal conductivity at

zero spatial frequency, κ0, is independent of period and

agrees with the bulk value of the thermal conductivity of

sapphire at the relevant temperatures [39]. The thermal

conductivity at higher spatial frequencies, κ1, decreases

with decreasing period for periods smaller than 2 µm at

room temperature. This observation indicates that phonon

MFPs are on the scale of hundreds of nanometers and that

the thermal resistance to heat flow at these spatial frequen-

cies is larger than predicted by Fourier’s law, in line with

prior work [16]. At 150 K, κ1 is less than κ0 as well as the

bulk thermal conductivity even at period 3 µm, the max-

imum period used in the experiments, indicating that the

mean free paths are longer than 3 µm at 150 K.

We present κ1 versus period normalized to κ0 at the

specified temperatures in Fig. 3(b). The trend of increasing

thermal conductivity with increasing period is reproduced

by the synthetic TDTR data. Both the experimental and

synthetic data show the physically intuitive result that the

departure from the bulk thermal conductivity is larger at

lower temperatures where phonon MFPs are longer than at

room temperature.

While Figs. 3(a) and 3(b) show the relationship between

κ1 and period L at a fixed duty cycle of 50%, Fig. 3(c)

shows how the κ1 varies with fixed linewidth w and chang-

ing period L. The figure shows that κ1 increases as the

period increases for a fixed linewidth of approximately 115

nm at different temperatures. Again, the synthetic TDTR

data show a similar trend. In Fig. 3(d), at 150 K, the

κ1 for different line array periods with a duty cycle of

67% are compared to those with a 50% duty cycle. For

the same period, the patterns with a smaller duty cycle

(smaller linewidth) have higher κ1. Generally, these two

figures indicate that κ1 decreases as the lines become closer

together.

D. Role of the spatial frequency

The observed trends of thermal conductivity κ1 with

geometrical properties of the heater pattern are difficult to

interpret using the conventional notion that characteristic

dimensions of the individual heaters are the key parameters

that govern thermal transport. Under this assumption, the

separation of the heater lines of a given width should have

no impact on the thermal properties, yet a clear dependence

is observed in Figs. 3(c) and 3(d).

054068-6



QUASIBALLISTIC THERMAL TRANSPORT... PHYS. REV. APPLIED 10, 054068 (2018)

(a) (b)

(c) (d)

150 K

FIG. 3. Thermal conductivities of nanoline arrays. (a) Thermal conductivity κ0 (open symbols) and κ1 (filled symbols) versus period

at 294 K (blue circles) and 150 K (red squares) for nanoline arrays with a 50% duty cycle. (b) κ1 normalized to κ0 versus period at

different temperatures from measurements (symbols) and synthetic TDTR data (dotted lines). (c) κ1 normalized to κ0 from measure-

ments (symbols) and synthetic TDTR data (dotted lines) versus period for nanoline arrays with w ≈ 115 nm at various temperatures.

(d) κ1 normalized to κ0 versus period for duty cycles of 50% and 67%, respectively. The temperature is 150 K. In (c), the linewidth is

fixed and the period changes, while in (d), the linewidth and period both change so as to keep the duty cycle fixed. In both (c) and (d),

the synthetic TDTR data show similar trends. The synthetic data are the TDTR data sets computed from the BTE and then fit with the

four-parameter model to obtain thermal conductivities and interface conductances.

These apparent inconsistencies can be eliminated by

instead considering the spatial frequencies of the heating

pattern as the key parameters. More precisely, we identify

the key dimensionless parameter as ξx,F
, where 
 is the

phonon MFP and ξx,F is the fundamental spatial frequency

[36]. This parameter is very analogous to the familiar

Knudsen number if the fundamental spatial frequency is

written as 2π/L.

Using this dimensionless parameter, the observed trends

can be explained simply by considering the spatial fre-

quencies of the heater pattern. For instance, the trend of

increasing κ1 with increasing period, with duty cycle held

constant at 50% as in Fig. 3(b), can be explained by recog-

nizing that an increasing period L implies a decreasing ξx,F

and thermal conductivity increases with decreasing spatial

frequency [36,42]. More subtle trends such as the increase

of κ1 with period for a fixed linewidth in Fig. 3(c) can also

be rationalized by the same explanation. The dependence

of κ1 on duty cycle in Fig. 3(d) reflects the dependence of

the overall thermal response on the relative weights of the

nonzero in-plane spatial frequencies in the heating pattern.

In this case, a duty cycle of 67% has larger weights on

higher spatial frequencies than the 50% duty cycle, result-

ing in a slightly lower thermal conductivity. However, our

measurements show that the primary parameter that gov-

erns κ1 is the fundamental spatial frequency set by the

period of the heating pattern.

To further demonstrate the importance of the fundamen-

tal spatial frequency, in Fig. 4, we plot all of our data on

nanoline arrays versus the fundamental spatial frequency

of the heating pattern. At each temperature, the data nicely

collapse onto a single curve that decreases monotonically

as the fundamental spatial frequency increases, exactly

as predicted by theory [36]. The trend is reproduced by

the synthetic TDTR data for line arrays with a 50% duty

cycle.
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IV. HEAT DISSIPATION FOR DIFFERENT

HEATER GEOMETRIES

The identification of the critical role of the spatial fre-

quency allows us to examine several subtle points regard-

ing quasiballistic thermal transport from nanoscale heat

sources. First, the conventional view holds that as an indi-

vidual heat source, either isolated or in a pattern, becomes

far smaller than mean free paths, a local hot spot will

form at the heater due to the ballistic thermal resistance.

However, as qualitatively suggested previously [30], this

argument fails to account for the lack of in-plane gradient

if heat sources in a pattern are sufficiently close together.

In this situation, the thermal transport that occurs will be

identical to that from a continuous thin film heater.

We experimentally examine this prediction by consid-

ering a qualitative measure of the thermal resistance as

an apparent substrate thermal conductivity obtained by fit-

ting the amplitude component of the TDTR signal using

the model of Ref. [16]. We perform this fitting for nano-

line arrays of variable period in Fig. 5(a). We find that

the apparent thermal conductivity with the nanoline array

obtained experimentally has only weak dependence on

the period, indicating that the thermal resistance of the

substrate has little dependence on the in-plane thermal gra-

dient. This weak period dependence is also observed in the

synthetic TDTR data. Hence, the heater pattern conducts

heat nearly identically as would a continuous thin film.

Analysis of the spatial frequencies of the nanoline heater

pattern allows us to explain this observation. As shown

in Fig. 1(b), the nanoline heater pattern can be expressed

as a Fourier series of discrete spatial frequencies and

corresponding weights, and the overall thermal response

depends on these weights and the relative magnitudes of

the thermal responses at the discrete spatial frequencies.

Importantly, the thermal response at zero spatial frequency

makes the largest contribution to the overall thermal

response and, by definition, it is unaffected by the linewidth

of the heating pattern, no matter how small. At higher spa-

tial frequencies, the thermal response amplitude decreases

dramatically with increasing spatial frequency. Addition-

ally, the weights only depend on the duty cycle of the

pattern and also decrease with increasing spatial frequency.

The weak dependence of the nanoline apparent thermal

conductivity on period can thus be understood from the rel-

atively small contribution of thermal responses at higher

spatial frequencies compared to that at zero spatial fre-

quency (dc). Therefore, considering the superposition of

thermal responses shows that the overall thermal response

of the nanoline pattern will be only weakly affected by its

geometry, exactly as observed in experiment. This depen-

dence will weaken as the linewidth decreases and hence

the fundamental spatial frequency increases.

On the other hand, consider a Gaussian spot heater cre-

ated by a focused laser beam. As shown in Fig. 5(a), in this

FIG. 4. Normalized thermal conductivity versus spatial fre-

quency. κ1 normalized to κ0 at each temperature versus spatial

frequency at different temperatures from measurements (open

symbols) and synthetic TDTR data (dotted lines) for line arrays

with a 50% duty cycle. Measurements for line arrays with other

duty cycles are also shown with filled symbols. For all the mea-

surements, the thermal conductivity decreases monotonically as

the spatial frequency increases. At a given temperature, the duty

cycle has only a little effect on the thermal conductivity for a

given spatial frequency, indicating that spatial frequency is the

key parameter. The synthetic TDTR data show similar trends as

those observed experimentally.

situation, we observe an obvious decrease in apparent ther-

mal conductivity at characteristic length scales far larger

than those achieved in the nanoline arrays. Again, this

trend is reproduced by synthetic TDTR data. To understand

this observation, we must examine the overall thermal

response to the Gaussian heater, given as

Z(t) =

∫ ∞

0

∞
∑

m=−∞

H(η + mηs, ξr)e
imηstQ(ξr)ξrdξr, (7)

where ξ 2
r = ξ 2

x + ξ 2
y is the in-plane spatial Fourier variable

in polar coordinates and Q(ξr) = exp [−(r2
0 + r2

1)ξ
2
r /8],

where r0 and r1 are the 1/e2 radii of the pump and probe

beams, respectively. At a given ξr, the overall thermal

response, as shown in Fig. 5(b), is weighted by Q(ξr)ξr.

Because of the factor of ξr in the weights, the dc compo-

nent (ξr = 0) contributes nothing to the overall response

and the response peaks at a nonzero ξr, at which the

deviation from the Fourier response may be prominent.

Therefore, for an isolated heater localized in more than

one spatial dimension, heat dissipation can be substan-

tially impeded compared to the predictions of Fourier’s

law, in line with prior work [15,19,30,43]. This ballistic

resistance can be mitigated by placing heaters sufficiently

close such that the dc component once again contributes to

the thermal response.
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FIG. 5. Heat dissipation for different heater patterns. (a) Apparent thermal conductivity of the nanoline array with a 50% duty cycle

and a Gaussian spot versus characteristic size from experiments and synthetic TDTR data normalized by κ0. The thermal conductivity

strongly decreases as the Gaussian diameter decreases, but only weak dependence is observed for the nanoline array. (b) Weighted

thermal response versus dimensionless spatial frequency, at 5-MHz heating frequency for a Gaussian spot (top) and the nanoline array

(bottom, red symbols). The grey lines show the continuous function from which the discrete points for the nanoline array are obtained.

The zero spatial frequency response dominates the overall response for the line array, while it is zero for the Gaussian heating pattern

due to the weighting factor of ξr. The absence of the dc response is the reason that quasiballistic effects are readily observed with a

Gaussian spot. Lc is the characteristic length used to normalize the spatial frequency, which is the period and root-mean square of the

pump and probe 1/e2 diameters for the nanoline array and Gaussian spot, respectively. Note that the x axis is the dimensionless spatial

frequency and that patterns with smaller Lc have larger fundamental spatial frequency.

These results show that measurements performed with

different heater patterns can yield qualitatively different

results, even if they are performed on the same material

with the same characteristic heater size. For instance, Hu et

al. [16] reported TDTR measurements on lithographically

patterned dot arrays, observing substantial deviations from

Fourier’s law. The difference between their observations

and ours could be due to their use of 2D heater dots rather

than 1D heater lines, leading to correspondingly lower dc

weights in the thermal response.

In addition to the importance of the spatial frequen-

cies of the heating pattern, our analysis also shows the

importance of the spatial frequencies in the probing pat-

tern. In our study, these two sets of spatial frequencies are

the same. However, in other experiments, the two may

differ. For instance, the measurements of Johnson et al.

[25], Siemens et al. [14], and Hoogeboom-Pot et al. [20]

measure diffraction from the heating pattern and, hence,

select only the first harmonic of the spatial frequency to

measure. In our terminology, these measurements closely

correspond to obtaining κ1 only. Hence, measurements

that employ diffraction for probing may observe large size

effects for nanoline heater patterns [14,20], while ther-

moreflectance experiments such as those reported here

observe only weak size effects. The importance of the

probing pattern has been previously recognized [19,44];

our work allows these effects to be explained simply in

terms of the spatial frequencies and weights of the probing

pattern.

We finally note that, although obtaining physical infor-

mation about phonons from these data, such as their mean

free paths, is highly desirable, doing so is not so simple.

As we have shown previously [37], the TDTR signal

also depends on the spectrum of injected phonons. In

this work, we mainly focus on understanding trends in

thermal conductivity as cross-plane effects are fixed and in-

plane spatial frequencies are systematically varied. A full

description of the transport requires a full BTE solution

that we will address in a future work.

Finally, we discuss the impacts of our study on applica-

tions. Our work has demonstrated that the effective ther-

mal resistance of a substrate in the quasiballistic regime

depends on the spatial frequencies of the heating pat-

tern rather than the geometrical properties of individual

heaters. This result has an important impact on strategies

to enhance thermal dissipation in microelectronic devices

[9], for example. While the traditional assumption has been

that nanoscale devices experience increased local heating

due to their small size, our work shows that if these indi-

vidual devices are arranged periodically with sufficiently

high density, the thermal resistance decreases toward the

bulk limit. In other words, closely packing individual

devices can actually lead to decreased thermal resistance

even if the devices’ dimensions are much smaller than

phonon mean free paths. Our work provides a means to

quantitatively determine the effective thermal resistance of

a substrate for an arbitrary heater pattern on a surface sim-

ply by considering the spatial frequencies of the heating

pattern.

In summary, we have investigated quasiballistic ther-

mal transport from nanoline array heaters. Our work

experimentally establishes the central role of the spatial
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frequency content of the heater pattern in understand-

ing and manipulating heat transport in the quasiballistic

regime. Unintuitive trends of apparent thermal conduc-

tivity with heater pattern geometry are easily interpreted

by examining the spatial frequencies of the heater pat-

tern. Our work also demonstrates that different heater

and probing geometries may have very different thermal

responses, even if the spatial frequencies are comparable,

due to the different weights of spatial frequencies in the

overall thermal response and those selected for measure-

ment. Our work provides the insight needed to rationally

enhance thermal dissipation in applications such as thermal

management of microelectronics.
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