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QUASI-COHERENT SHEAVES
OVER AFFINE HENSEL SCHEMES

BY
SILVIO GRECO AND ROSARIO STRANO

Abstract. The following two theorems concerning affine Hensel schemes are
proved.

Theorem A. Every quasi-coherent sheaf over an affine Hensel scheme is generated
by its global sections.

Theorem B. Hp(X, F) = 0 for all positive p and all quasi-coherent sheaves F over
an affine Hensel scheme X.

Introduction. The first one to consider the "Henselian structure" of an algebraic
variety along a closed subvariety was Hironaka [17], but the theory of Henselian
schemes was developed systematically a few years later by Kurke in his doctoral
thesis, now included in the book [18] by Kurke, Pfister and Roczen. Some results
were obtained independently in [11] and [12], while morphisms and fiber products
were studied by Mora [19].

Henselian schemes are similar to formal schemes ([22], [7]) and provide a good
notion of "algebraic tubular neighborhood" of a subvariety, which has the ad-
vantage, with respect to the widely used formal neighborhoods, to be "closer" to
the algebraic situation; this idea, included in the above paper by Hironaka, was
developed by Cox [3], [4].

In this paper we show that quasi-coherent sheaves over an affine Hensel scheme
behave as they are expected to; namely, they are generated by global sections
(Theorem A, see 1.11) and their cohomology is trivial (Theorem B, see 1.12). These
results were announced in [14]; applications are given by Roczen [21].

The paper is divided into 4 sections. In the first one we recall some facts from
the theory of Hensel couples, and we give the main results, along with some
obvious corollaries. We give also, as a consequence of Theorem A, a particular case
of the fundamental theorem of affine morphisms (see 1.22).

§2 contains some technical results. We study the canonical homomorphism <f>:
hAf ®A hAg -+hAfg, where h denotes Henselization, and (/, g) = (1). The main facts
are Theorem 2.4 (<b is a suitable localization), Theorem 2.5 (</> is surjective). Our
proofs are based on some nice properties of the absolutely integrally closed rings
(already used by M. Artin [1]), and on a result of Gruson [13] concerning etale
coverings over Hensel couples.
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In §3 we study Ker <j>. This allows us to prove Theorem A. Note that by [12, §6,
Theorem 1], Theorem A implies Gruson's Theorem [13].

The proof of Theorem B is given in §4, as a consequence of Theorem A.
The authors wish to thank M. Hochster and D. Buchsbaum for some helpful

discussions on the subject of this paper.

1. Preliminaries and main results. We recall some known facts concerning
Henselian couples and Henselian schemes, and we state the main results of this
paper, along with some corollaries.

A. Hensel couples and Henselization.
1.1. A couple (A, a) consists of a ring A (commutative with 1) and of an ideal

a a A. A morphism of couples /: (A,a) —>(B, b) is a ring homomorphism /:
A -» B such that fia) c b.

1.2. An N-polynomial over the couple (A, a) is a monic polynomial a0 + axX
+ ' • • + X" G A[X] such that a0 G a, and a, is a unit modulo a.

The couple (A, a) is said to be a Hensel couple (shortly //-couple) if (i)
a c rad A, (ii) every A/-polynomial has a root in a.

A local ring A with maximal ideal m is Henselian if and only if (A, m) is a
Hensel couple [20, p. 76, Proposition 3].

For more details on Hensel couples we refer to [10], [20], [18]. Here we list some
properties we shall use freely throughout this paper. See [10] for indications on the
proofs.

1.3. (A, a) is an //-couple if and only if a c red A, and for any finite A -algebra
B the canonical map B —> B/aB induces a bijection between the sets of idempo-
tents.

1.4. If (A, a) is an //-couple and B is an A -algebra integral over A, then (B, q_B)
is an //-couple.

1.5. Let (A, a) be a couple and let b c a be an ideal. Then (A, a) is an //-couple
if and only if (A/b, a/b) and (A, b) are //-couples. It follows that (A, a) is an
//-couple if and only if (A, Va ) is such, if and only if (Ated, gAted) is such.

1.6. To every couple (A, a) one can attach an //-couple (B, b) along with a
morphism (A, a) —> (B, b) such that for any //-couple (B', b') the canonical map

Hom[(B, b), (B', b')] -* Hom[(^, a), (B', b')]

is bijective. This couple is called the Henselization of (A, a) and is denoted by
h(A, a). We often write hA in place of B, and we call it the Henselization of A with
respect to a. If C is an A -algebra we often write hC for the Henselization of C with
respect to aC.

We summarize some properties of the Henselization we shall need later:
1.7. Let (A, a) be a couple. Then:
(i) h(A, a) exists and is unique up to canonical isomorphism.
(ii) hA/ahA = A/a and the a-adic completions of A and hA coincide.
(iii) h(A, a) is the direct limit of the set of all local etale (L.E.) neighborhoods of

(A, a) (see [20, Theorem 2, Chapter XI]). In particular hA is a direct limit of etale
A -algebras, and depends only on Va .
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(iv) hA is y4-flat, and is faithfully flat if and only if a c rad A.
(v) hA =h(Ax+a). Hence the kernel of the canonical map A -^>hA coincides with

the kernel of A -* A, +a. Thus if a ¥= A and A is a domain, then A -^>hA is injective.
(vi) If A is noetheriah (resp. normal, regular, excellent) the same holds for hA.
(vii) If (A, a) = lim (A,., qj, then h(A,q)= limA(v4,., qj.

(viii) If B is an /I-algebra, integral over B, then hB = B <8>AhA. In particular
h(A/I) = (hA)/IhA for every ideal / c A.

B. Henselian schemes.
1.8. Let (A, a) be a Hensel couple and put X = Spec^4/a. For each/ G /I put

Xj = D(f) n X, and S^(A^) =^4/- This defines a presheaf of rings over X, which is
actually a sheaf (whence T(X, 6X) = A).

More generally to any A -module M one can associate the presheaf M defined by
M(Xf) =hAj ®A M. It turns out that Af is a sheaf over X (the above claims are
proved in [18, 7.1.3]; another proof is sketched in [11]).

1.9. The ringed space (X, 6X) is called the Henselian spectrum of (A, a) and is
denoted by Sph(v4, a) or Sph A if a is understood. An affine Henselian scheme is a
ringed space isomorphic to Sph(A,a) for some //"-couple (A, a). A Henselian
scheme is defined accordingly, in the obvious way.

An important example of Hensehan scheme is the Henselization of a scheme
along a closed subscheme (see [17], [11], [18]).

1.10. Let X = Sph(A, a) be an affine Henselian scheme. Then:
(i) If x G X corresponds top G Spec A, then 6Xx =hAp (see 1.7(vii)).
(ii) Sph(/1, a) depends only on Va (see 1.7(iii)).
(iii) The functor M h» M, from (A-modules) to (0^-modules), is exact and fully

faithful, and commutes with direct limits. Hence M is always quasi-coherent, and is
coherent if A is noetherian and M is finitely generated (apply 1.7(iv) and (vi)).

C. Main results of this paper and corollaries.

1.11. Theorem (Theorem A). Let X be an affine Hensel scheme, and let ^ be a
quasi-coherent &x-module. Then

(i) ?F = M where M = T(X, f), or equivalently
(ii) ?F is generated by its global sections.

1.12. Theorem (Theorem B). Let X, <5 be as in 1.11. Then HP(X, <») = Ofor all
/? > 0.

The proofs of 1.11 and 1.12 will be given in §§3 and 4 respectively. Here we give
some corollaries.

1.13. Corollary. If X = Sph(A,a) is an affine Henselian scheme, then the
functor M h> M is an equivalence between the categories of A-modules and of
quasi-coherent 6x-modules. If A is noetherian it induces an equivalence between the
categories of finitely generated A-modules and of coherent 6x-modules.

Proof. Immediate from 1.11 and 1.10(iii).
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1.14. Corollary. Let X = Sph(A,a) be an affine Henselian scheme, with A
noetherian. Then any quasi-coherent 6x-module is the direct limit of the family of its
coherent submodules.

Proof. Apply 1.13 and l.lO(iii).

1.15. Corollary. Let X be a Hensel scheme, and let 0 -»<% -» § —» % -> 0 be an
exact sequence of 6x-modules. If any two of them are quasi-coherent, so is the third.

Proof. It follows from 1.11, by the same argument used for ordinary schemes
(see [7, 1.4.7]).

1.16. Corollary. Let X be a Henselian scheme, and let % be a quasi-coherent
6x-module. Let % be an affine covering of X. Then for allp > Owe have.

Hp(X, W) = //'(%, f) = Hp(X, f)
Proof. It follows from 1.12, by general facts on cohomology (see e.g. [6]).

1.17. Remark. Theorems 1.11 and 1.12 are well known for ordinary schemes (see
[7], [9]). Moreover they are true for coherent sheaves over a noetherian affine
formal scheme ([7, 10.10.2] for 1.11; [15, Proposition 4.1] for 1.12). A general theory
of quasi-coherent sheaves over a formal scheme is not known, and very likely it
cannot be as well behaved as in the Henselian case.

Application of "Theorem B" to the equivalence of singularities is given by
Roczen [21].

D. Application to integral morphisms. An important fact in the theory of ordinary
or formal schemes is that if X —» Y is an affine morphism, and Y is affine, then X is
also affine. We shall prove this fact for a class of morphisms of Henselian schemes;
so far we are not able to prove the general case.

We recall first some facts on morphisms of Henselian schemes. For details see
[19].

1.18. Let A"bea Henselian scheme. An ideal of definition of A' is a quasi-coherent
ideal j cfl^ with the following property: there is an affine open covering
Uj = Sph(.4,, a,) of X such that the ideals T(Ut, $) and a, of At have the same
radical for all /. If $ is an ideal of definition of X then (X, &x/$) is an ordinary
scheme having X as underlying topological space.

One can show that there is a unique maximal ideal of definition of X, char-
acterized by the property that 0x/$ is a reduced sheaf of rings. If this is the case
we say that § is the canonical ideal of X.

1.19. Let X, Y be two Hensel schemes. A morphism f: X —» Y is a morphism of
ringed spaces such that for all x G X the induced homomorphism fx: ®Y,Ax) ~> ®x,x
is local.

A morphism of couples (A, a) -* (B, b) induces a morphism of the corresponding
Henselian schemes, and conversely if A/a and B/b are reduced.

1.20. A morphism /: X —» Y of Henselian schemes is said to be adic if for any
ideal of definition 5 of Y, § • &x is an ideal of definition of X. One can show that
it is sufficient to check this property for one arbitrarily chosen ideal of definition of
X, e.g. the canonical ideal.
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1.21. Definition. A morphism/: X —* Y of Henselian schemes is said to be
(i) affine, if there is an open affine covering { Uj] of Y such that /"'(£/) is affine

for all i,
(ii) integral (resp. finite) if it is adic and affine, and if moreover the covering of (i)

can be chosen so that T(f'x(Uj), Qx) is integral (resp. finite) over T(Uj, 0V) for all
i.

1.22. Proposition. Let f: X —» Y be an integral morphism of Henselian schemes.
Then

(i)fm®x is a quasi-coherent 0 Y-module,
(ii) if U c X is affine, then f~x(U) is affine.

Proof, (i) The question being local, we may assume X = Sph(B, b), Y =
Sph(^4, a) where B is integral over A and b = qB. Then if g G A we have
hBg = B ®A hAg (by 1.7(viii)) and hence fj&x = B.

(ii) It is sufficient to show that if Y = Sph(/1, a) then X is affine. Now by (i) and
1.11 we have that/^0^- = B, where B = T(Y,f^6x). We can assume that the open
cover given in 1.21(h) is of the form Ut= Yp i = 1, . . ., n, where/,, ...,/„ G A
are such that (/,, . . . ,fn) = A, and f~x(Yf) = Sph(5,, bj for suitable //-couples
(Bj, bj), with Bj integral over hAj. Hence we have

% ®AB = T{ YfiJ,Bx) = T(f-x(Yf), ex) = Bj   for each i.

Put C = © hAf. Then C is f.flat over A by 1.7(iv), and by the above we have that
B ®A C is integral over C, and hence B is integral over A. It follows that (B, aB) is
an //-couple (see 1.4) and a direct computation shows that Sph(5, aB) = X. This
completes the proof.

1.23. Remarks, (i) By the same proof as in 1.22(f) one can show that if /: X -» Y
is a finite morphism of Henselian schemes and Y is locally noetherian, thenf^6x is
coherent.

(ii) One is tempted to make the following three conjectures, which are probably
equivalent to each other:

Conjecture A. Let /: X -» Y be an affine morphism of Hensehan schemes. Then
for any affine U c X,f~x(U) is affine.

This is true for ordinary schemes [7, 9.1.10] and for locally noetherian formal
schemes [7, 10.16.4]. Our method used in 1.22 does not apply, because fm6x is not
quasi-coherent in general.

Conjecture B. Let A" be a Henselian scheme, and let 5 be an ideal of definition of
X. If the usual scheme (X, 0^/5) is affine, then X is affine.

This conjecture is true for locally noetherian formal schemes (see [7, 10.6.3 and
2.3.5]).

Conjecture C (Serre's criterion). A Hensel scheme X is affine if (and only if by
1.12) HX(X, <%) = 0 for every quasi-coherent sheaf of 0^--modules 9r.

When X is a locally noetherian formal scheme this follows from Conjecture B
and Serre's criterion for ordinary schemes [8, 5.2.1].
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2. The homomorphism hAf ®A hAf —*HAjg. In this section we prove some technical
results which will be essential later. The most important are Theorems 2.4 and 2.5
below.

A. Flatness of the homomorphism hAs ®A hAT -*hAST. Let (A, a) be a couple. If B
is an A -algebra, we denote by BZar the Zariskification of B with respect to aB, that
is ^zar = Bi+aB- If ^Zar = B, B is said to be a Zariski ring. Moreover, if B is an
A -algebra, we denote simply by hB the Henselization of B with respect to aB.

2.1. Proposition. Let (A, a) be an H-couple and let S,T <z A be multiplicative
sets; then HAST is the Henselization of hAs ®A hAT; in particular the homomorphism
hAs ®A hAT -+hAST is flat and (hAs ®A hAT)-Zax -*hAST is faithfully flat.

Before proving the above proposition we need the following.

2.2. Proposition. Let (A, a) be a couple and let A -» B —» C be ring homomor-
phisms. Then

(i) if B, C are local etale (L.E.for short) neighborhoods [10, Definition 8] of A, then
C is a L.E. neighborhood of B;

(ii) if B, C are direct limits of L.E. neighborhoods of A, then C is a direct limit of
L.E. neighborhoods of B.

Proof. Consider the commutative diagram

A C^"    i<t>    ~^> B®AC

it is easy to see that (B ®A C)Zar is a L.E. neighborhood of B. Now we show that
the canonical homomorphism o: C —> (B ®A C)Zar is an isomorphism; to this end
let t: B ®a C -* C be defined by r(b ® c) = <b(b) ■ c; r induces a homomorphism
p: (B ®A C)Zxc -» C since (C, aC) is a Zariski couple, i.e. aC c rad C. Let us
consider o ° p: (B ®A C)Zar -»(B ®A C)^ and p ° o: C —» C; both homomor-
phisms induce the identity mod a. In order to prove they are the identity, we need
the following lemma, after observing that C, (B ®A C)Zar are of the type Dx+aD,
with D etale over A and HomA(Dx+aD, E) = HomA(D, E) for every yl-algebra E
such that aE c rad E.

2.3. Lemma. Let D, E be A-algebras with D unramified over A and aE c rad E;
then the canonical map

HomA(D, E) -+ HomA/g(D/qD, E/aE)

is injective.

Proof. Let xp, xp': D ^ E be two homomorphisms such that xp = xp', where xp, xp'
are the compositions D =J E -» E/qE; we show that xp(a) = xp'(a) for every a£D,
In order to do that it is enough to show that for every /? G max(E) it is
xp(d) = \p'(a) in Ep; so we may assume E local; this follows from [20, Chapter VIII,
Lemma 2], since the two homomorphisms D =£ E/aE —> E/p are equal.
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Now we prove (ii) of 2.2. The proof is similar. In this case C (and (B ®A C)^
are of the form D = lim(/),),+aD with Z), etale o\er A. Moreover

HomA(D, D) = limHomy4((Z),),+aZ,i, D) = limHom^Z),, D).

The   hypotheses   of   2.3   are   satisfied,   so   that   the   map   Hom^(£>„ D) —»
HomA/a(Dj/aDj, D/aD) is injective; hence the map

HomA(D, D) -> HomA/s(D/qD, D/qD)

is injective. Proposition 2.2 is now completely proved.
Now we are able to prove Proposition 2.1. Put B = (hAs ®A hA1)7:ay, we want to

show that hB =hAST. B is a direct limit of L.E. neighborhoods of AST and the same
is true for hAST, so by Proposition 2.2 the homomorphism B -^>hAST is a limit of
L.E. neighborhoods.

By the definition of Henselization [20, Theorem 2, Chapter XI] hB is the limit of
all L.E. neighborhoods of B; hence we have a commutative diagram

hA
jr    ST

B^ </>

hB

On the other hand since hAST is Henselian, we have a commutative diagram

B xj,

From the commutative diagrams

*B "A

B <j>° ̂ ^ xp ° <*>

we get <#> ° xp = hB, xp ° 4> = UAst.
B. Statement of the main results and reduction to absolutely integrally closed rings.

Now we state the main results of this section.

2.4. Theorem. Let (A, a) be an H-couple and let fgE.A such that (f g) = (1).
Then there is a canonical isomorphism (hAf ®A hAg)7jiS —HAfg.

2.5. Theorem. Let (A, a) be an H-couple and let figGA such that (/, g) = (1).
Then the canonical homomorphism hAf ®A hAg -+hAjg is surjective.

In this subsection we study absolutely integrally closed rings (AIC for short) and
we reduce the proof of Theorems 2.4, 2.5 to the case when A is an AIC ring.
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2.6. Definition. A ring A is said to be absolutely integrally closed (AIC for short)
if every monk polynomial fiX) G A[X] splits into a product of linear factors.

The following facts are easily verified.
(i) If A is a domain with field of fractions K, then A is AIC if and only if A is

integrally closed and K is algebraically closed.
(ii) Every homomorphic image of an AIC ring is AIC.

2.7. Lemma. Let A be an AIC ring and let S be a multiplicative subset of A. Then
As is an AIC ring.

Proof. Let fiX) G AS[X] be a monic polynomial and write/(A') = a0/s + ax/s
X + • ■ • +X". Then we have

s"f(X) = tv"-1 + axs"-2(sX) + ■ ■ ■ + (sX)n

= (sX - bx)(sX - bj ■ ■ ■ (sX - bn)

whence f(X) = (X - bx/s)(X - b2/s) ■ ■ ■ (X - bjs).

2.8. Lemma. Let A be an AIC ring and qc A be an ideal such that A/a is
connected. Then HA = A^.

Proof. By 2.7 Aj^ is an AIC ring and then we may assume a c rad A. By 1.2, it
is sufficient to show that any AZ-polynomial F(X) has a root in a. For this it is
sufficient to show that if f(X) = (X — ax) • • • (X — an) is the reduction of
F mod a, then a, = 0 for some i.

We know that/(0) = 0 and hence II a, = 0. Moreover if s, = 11,^ a, we have that
2 Sj = f(0) is invertible. Lety0 be the first index such that sJa ¥= 0. Put e, = Sj and
e2 = sJo+x + • • • +s„. If e2 = 0 we have aJo = 0. Otherwise we have exe2 = 0 and
ex + e2 invertible which implies that A/a is disconnected, a contradiction.

2.9. Lemma. Let A be a ring. Then there is a faithfully flat A-algebra B, integral
over A, which is an AIC ring.

We will call such an A -algebra B a f.flat absolutely integral closure of A (f.flat
A.I.closure for short).

Proof. Let {/},e/ be the set of all monic polynomials in A[X] and let
Aj = A[X]/(f). Put Ax = (g), Aj. Then put An = (A„_x)x and let B = lim An. It is
easy to verify that B has the required properties.

2.10. Lemma. Let (A, a) be a couple and let B, C be A-algebras with B integral
over A. Then there is a canonical isomorphism (B ®A C)Zar^»5 ®A CZar.

Proof. Put R = B ®A CZai. There is a natural homomorphism t: R -»
(B ®A C)Zu. Since R is integral over C^, we have qR c rad(CZar)/? c rad R.
Thus 1 + a(B ®A C) maps to invertible elements of R, so that we get a homomor-
phism (B ®A C)^ —> R, which is easily seen to be the inverse of t.

2.11. Proposition. Assume that Theorem 2.4 is true when A is an AIC domain.
Then it is true for any ring.
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Proof. Let (A, a) be an //-couple, and let/, g G A such that (/ g) = (1). Put
R = (hAy ®A HAg). We want to show that RZai = hAfg provided this is true whenever
A is an AIC domain. We do this in three steps.

Step 1. Assume A is a domain. Let K be the field of fractions of A and let B be
the integral closure of A in K, the algebraic closure of K. Then B is an AIC domain
and by assumption the conclusion holds for B. Let Q be the cokernel of <b:
R -+hAfg. Since Henselization and Zariskification commute with integral base
change (1.7(viii) and 2.10) we have Q ®A A = 0. On the other hand <b is faithfully
flat by 2.6, so that Q is i?-flat [2, 1.3.5], and hence v4-flat. Thus Q -> Q ®A B is
injective and Q = 0.

Step 2. Assume A = C/I where C =h(Z[Xx, . . ., Xn], b) for some ideal b. Since
Henselization, Zariskification and surjectivity are preserved by passing to quotients
we may assume / = 0. Then A is noetherian and normal [10, Theorem 7]; hence
A = Ax X • •• xAn where each A, is a normal domain. By Step 1 the result is true
for each Aj and it is easy to see that it holds for A as well.

Step 3. General case. We have A = lim At where {v4,},e/ is the direct set of all
finitely generated Z-subalgebras of A. Put Bt =h(Aj, a n Aj); since Henselization
commutes with direct limits we have A = lim /?,. If a •/ + b • g = 1 we may
assume that a, b, f g come from all 5,'s and the conclusion follows from Step 2,
since everything involved commutes with direct limits.

2.12. Proposition. Assume that Theorem 2.5 is true when A is a fflat A.I. closure
of a normal domain A', with f, g G A'. Then it is true for any ring.

Proof. As in the proof of 2.11 Steps 2 and 3 we reduce to the case when A is a
normal domain. Let B be a f.flat A.I. closure of A and let Q be the cokernel of the
homomorphism hAf ®A hAg -^>hAfg. Since Q ®A B = 0 by f.flatness we have Q = 0.

C. Connected components of affine schemes. In this subsection we prove some
basic facts about connected components of affine schemes. The principal result is
Proposition 2.18 which will be used later to reduce the proof of 2.4 and 2.5 to
connected components.

2.13. Definition. Let X = Spec .4 be an affine scheme and let /? G X. The
connected component of X containing /? is the closed subscheme Y of X, defined by
Y = Spec A /c_ where c is the ideal of A generated by all the idempotents e G p.

2.14. Proposition. Let X = Spec A, p G X and Y be the connected component of
X containing p. Then

(i) Y is the largest connected closed subscheme of X containing p.
(ii) Y is the intersection of all the open-closed subschemes of X containing p, that is

Y = Spec As where S is the multiplicative set of A generated by all the idempotents
1 — e, e G /?.

Proof. First we show that Spec A /c_ is connected; in fact if e G A is such that
e2 - e G c c p then either e G /? or 1 — e G p. Hence either eGcorl — e G c.
Now let b c p C A be an ideal such that Spec A/b is connected and let e G /? be
an idempotent; since Spec A/b is connected we have either e G b or 1 — e G b,
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but this second case is impossible; hence e G b and c c b. Finally we have

A/c= UmA/eA = KmAl_e = As.
e e/> e ep

2.15. Remarks, (i) Proposition 2.14 asserts that the connected components of an
affine scheme coincide with its quasi-components. This is false for a general
topological space [5, p. 118, §3, Example 5].

(ii) Proposition 2.14(h) is trivial when the connected components of X are open.
But this is not the case in general (see e.g. [2, Chapter I, p. 173, Example 16]).

Now let (A, a) be an //-couple. Since there is a 1-1 correspondence between
idempotents in A and in A / q we have a 1-1 correspondence between connected
components of Spec A and of Spec A/q given by

Spec A/c_ = Spec As h> Spec A/q +c_ = Spec(A/q)s.
In the following we often identify affine schemes with the corresponding rings

and we will talk of a connected component as a ring.

2.16. Lemma. Let (A, a) be an H-couple, and let f G A. Then
(i) Any open-closed subset of Spec(hAJ is of the form Spec(hAg) for a suitable

g(EA.
(ii) Every decomposition of Speedy) into the disjoint union of two open subsets

comes from a decomposition hAf =hA^ X hA,, where fa, fp G A are such that fa + fp
=f mod a for some n, and conversely.

(iii) Every connected component of Spec(hAJ is of the form Specks) where S is a
suitable multiplicative subset of A.

Proof. By 1.3 the map U h-> U = U n Spec(A/a)f is a bijection between the
sets of open-closed subset of Spec(hAJ and of Spec(A/q)f respectively. Moreover if
U c Spec^^) is open-closed we have U = Spec(A/q)g for a suitable g G A and it
is easy to see that indeed one has U = Spec(hAg). This proves (i).

Clearly (i) implies (ii), and since Henselization commutes with direct limits, we
see that (i) and 2.14 imply (iii).

The following proposition is essential later.

2.17. Proposition. Let (A, a) be an H-couple with A an AIC ring. Let f g G A
with (/, g) = (1). Let C (resp. D) be a connected component of (A/q)j (resp. (A/q)g)
which, via 1.3 and 2.16(iii), corresponds to the connected component hAs (resp. hAT) of
hAf (resp. hA). Suppose moreover that the image of the homomorphism hAs ®A hAT

h +-* AST is A-flat. Then there is an A-algebra A^> B such that
(i) (B, aB) is an H-couple.
(ii) The induced morphism Spec(B/aB) -> Spec(A/a) is injective and its image is

C U D.
(iii) hBs, hBT are connected components of hBf, hBg respectively and <b induces

isomorphisms hAs ^hBs and hAT ̂ hBT.
(iv) If A is a domain and hAST =£ 0, then B is an AIC domain.

Before proving Proposition 2.17 we prove a lemma.
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2.18. Lemma. Let (A, a) be an H-couple, f, g G A such that (/, g) = (1). Suppose

Af = AL X Af.' Ag = Afy X  A&
with fa, f, gp, g'fi(EA such that fa + f'a =/" mod a and gp + g'p = gm mod a and
let Bap be the kernel

with o = <bx - <b2, <j>x, <j>2 being the canonical homomorphisms <j>x: hA^ -*hAfag/i, <t>2:
hAr ~*hAfl!. Then is A-flat. Then there is an A-algebra A ->* B such that

Proof. It is easy to prove that Bap is a commutative A -algebra with 1. Put
C =hAf xhA„, D = image of C in hA, „ under o. We note that D is an A -module

J a of} Jetof}

and f-d = 0 for every d G D since fa = 0 in  Af^g. From the exact sequence
0 -» Bap -» C -* D —> 0 we get the exact sequence

0 -> Bap/a_C n Bap -> (A/q)L X (A/q)g, -* D/qD -* 0.
We have aC n Bap c rad Bap; in fact an element of Bap of the form 1 + a,
a G aC, is invertible in C, hence in 5^.

Now we tensor with (A/q)f and note that (A/q)^ = 0 and (D/aD)^ = 0; in
fact for every d G (D/qD)f, we have

Hence we have

(B^/qC n Bap)f, s (A/a)^..

Hence, if w is a maximal ideal of Ba;8 containing/, and ga, then m£ = (Bap)fi since
g'p is invertible in (Bap/qC n A^)/' and aC n 5a/8 c w. It follows that f'a G w.
Since aBap c w, we get /" G m. In the same way, gm G m, which shows that
m = Bap, a contradiction. This proves the lemma.

Now we prove Proposition 2.17. Let B be the kernel

(2.1) 0 -* B -*hAs x hAT -+hAST.

According to the notation of 2.18 we have As = \vmAf ,AT= lim Ag (see 2.14 and
2.16) and hence B = lim Bap. Moreover by 2.18 we have (s, t)B = B whenever

s G S, t G T. Consider the map hAs X hAT^>hAs ®A hAT, where t = <bx - <b2 and
<j>x: hAs -^>hAs ®A hAT, <j>2: hAT^>hAs ®A hAT are the canonical homomorphisms.
We prove that t is surjective; in fact we know that hAs = (As)Zai = As+a, hAT =
(^r)zar = -^T+a- ^et s' = s + ax E. S + a, t' = t + a2 G T + a; since (s, t)B = B
and qB c rad B we can write 1 = as' + b • t' G B. Hence \/s' ■ t' = a/t' + b/s'
with a/t' G hAT, b/s' G hAs. It follows that if R = image of hAs X hAT in hAST, R
is also the image of hAs ®A hAT in hAST; hence R is ^4-flat by hypothesis.

From the exact sequence

(2.2) 0^B^hAs XhAT^R^>0

since R is A -flat, tensoring over A by A /a we get the exact sequence

0^B/qB-*(A/q)s X (A/q)T^> R/qR ->0.
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Now we show that R/qR ^ (A/q)ST. In fact from hAs ®A hAT -» R -+hAST we get
homomorphisms (A/q)ST-+R/qR-±(A/a)ST such that the composition is the
identity; on the other hand hAs ®A hAT^>R is surjective, so that (A/a)ST-*
R/qR is surjective, hence an isomorphism.

From the exact sequence

(2.3) 0->B/qB^>(A/q)s X (A/q)T^>(A/q)ST^>0
tensoring over A /a by (A/q)s we get the exact sequence

0^(B/qB)s-+(A/q)s X (A/q)ST^(A/q)ST^0.
Hence (B/qB)s ~ (A/a)s; likewise (B/aB)T ss (A/q)T.

From the exact sequence (2.2) we see that B is A -flat since both hAs X hAT and R
are. Hence hAs = As, —> Bs, -+hBs is flat where S' = S + a, and since
(A/a)s^>(B/qB)s, hAs -^hBs is faithfully flat.

From the commutative diagram

B

since B -+hBs X hBT, hAs X hAT -+hBs X hBT are both f.flat homomorphisms, B
-+hAs X hAT is also f.flat. Hence B -+hAs is flat and thus (Bg)^ ->nAs = (Ag)^ is
f.flat, hence injective. But this map is clearly surjective because B is an A -algebra.
Thus (Bg^^Ag and we get hAs ̂ hBs. Likewise hAT ̂hBT. It follows then by 2.1
1X13.1   A pt — ^ST*

The rest of the proposition is easy; in fact from the exact sequence (2.1), we see
that (B, q(hAs X hAT) n B) is an //-couple (this uses Lemma 2 of [10]), and then
(B, aB) is also an //-couple.

From the exact sequence (2.3), we see easily that Spec B/ aB is the union in
Spec A /q of Spec(A/q)s and Spec(A /a)T.

Finally if A is an AIC domain and hAST ̂  0 then both hAs and hAT are subrings
of hAST; indeed by 2.1 we have hAST =h(HAs ®A hAT); on the other hand hAs
®A hAT is a ring of fractions of A by 2.8 and hence it is a domain. Thus
hAs ®A hAT -^hAST is injective, and by flatness we have also that hAs -+hAs ®A hAT
is injective, hence hAs -+hAST is injective. Thus B =hAs n hAT, and using 2.7 and
2.8, we easily see that B is an AIC domain.

Before proving the next proposition we need a lemma.

2.19. Lemma. Let (A, a) be a couple with A a normal domain and let f,g G A. Let
B, C be N-existensions of Af, Ag respectively and let D be the image of B ®A C in
hAj under the homomorphism

B®AC^hAf®AhAg^hAfg.

Then D is a direct factor of B ®A C as an A-algebra. In particular D is A-flat and
passing to the direct limit the image of HAf ®A hAg in hAfg is A-flat.
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Proof. By 2.1 we see easily that h(B ®A C) —hAfg. Moreover B ®A C is an ind-
etale /1-algebra [10, Lemma 3]; hence it is normal [20, p. 75, Proposition 2].
Moreover it is easy to see that B ®A C is a localization of a finite .4-algebra, hence
has a finite number of minimal primes; thus B ®A C = Dx X • • • XDn where Z>,
is a normal domain. Suppose qDt ¥= Dj for 1 < i < r; then h(B ®A C) =hDx
X • • • xhDr and Z>, <^*£>,. for 1 < i < r because D, is a domain. Hence D = Dx
X • ■ ■  xDr.

2.20. Proposition. Let (A, a) be an H-couple with A an AIC ring. Let f, g G A,
and let hAs, hAT be connected components of hAp hAg respectively. Then the image of
the homomorphism hAs ®A hAT -^>hAST is A-flat in each of the following two cases:

(i) A is an AIC domain;
(ii) A is the f.flat A.I. closure of a normal domain A', with f, g G A'.

Proof. Since flatness and images are preserved by direct limits it is enough to
show that the image of hAf ®A hAg -^hAfg is A -flat. This follows from 2.19 in case
(i). In case (ii) by 2.19 the°image of hA'f ®A, hA'g -+hA'fg is ,4'-flat. By tensoring by A
over A' (using 1.7(viii)) and localizing by a suitable element in hAf ®A hAg, we get
that the image of hAL ®A hAgf ->hAfag/l is A -flat.

D. Simply connected schemes. In this subsection we give some facts on simply
connected schemes, which allow us to give a connectedness criterion (Proposition
2.23) which is essential later.

2.21. Definition. A connected scheme X is simply connected if every etale
covering Z —> A" with Z connected is an isomorphism. Recall that an etale covering
is a finite etale morphism.

2.22. Lemma. Let X = Spec A/a be a connected scheme, with A an AIC domain;
then X is simply connected.

Proof. Let A/a*-* C be a connected etale covering; by [13, Theorem 1] since
O^zar' ^zar) is an //-couple there exists an etale covering A2ja'^ C such that
C/qC ^ C. C is a normal ring [20, Proposition 2, p. 75] and since it has a finite
number of minimal primes we can write C = Cx X ■ ■ ■ XC, with C, normal
domains; but since C is connected, C is a normal domain. But C is integral over
AZ&T which is an AIC domain, so that A^ =: C, and hence A/q^ C.

The main result of this section is the following.

2.2.3. Proposition. Let X = Spec A be an affine scheme and let C, D be
connected components of U, V respectively, where X = U U V is an affine open
covering. Then

(i) if X = C U D and X is simply connected, then C n D is connected;
(ii) // A is a quotient of an AIC domain and U, V are basic, i.e. U = Spec Ap

V = Spec Ag, f, g G A, then C n D is connected.

Proof. In order to prove (i) we assume that C n D is not connected and we
construct an etale connected covering Z —»X of degree 2. If C D D = E is not
connected, there are open subsets Wj of X such that F,, = Wt> n E ^ 0 («' = 1, 2)
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and E = FXTLF2. We show first that we may assume the following
(a) wxnw2 = 0,
(b) wx u w2 - u n v.

Clearly we may assume Wt, c U n V. Now E is closed in U n V and hence is
compact. Thus we may assume that Wj is a finite union of open affine subsets of X.
Then also W = W7, n W^ is a finite union of open affines and hence it is compact.
Let now { c/} (resp. (Vj\) be the family of all the open-closed subsets of U (resp.
V) containing C (resp. D). By 2.14 we have E = D,/^ n VJ and hence
DU(W n (Uj n P,)) - 0 But Ut n ^ is closed in U n K and hence W nUtr\
Vj = 0 for suitable /,/ Thus after replacing U, Fby C,, P} we may assume (a).

By the same argument applied to T = U n V — Wx u W2 we see that we may
assume (b) as well. Now we can construct Z. For this let Ux, U2 be two disjoint
copies of U and Vx, V2 be two disjoint copies of V and glue them along the WjS as
follows:

Ux and Vx along the image of Wx,
Vx and U2 along the image of W2,
U2 and F2 along the image of Wx,
V2 and Ux along the image of W2.

This is possible because of (a) above. We obtain an Ar-scheme Z-»Ar. By (b) we
have/"'({/) = UXUU2 andf~x(V) = VX\1V2; thus/is an etale covering of degree
2. Finally we have/-'(C) = C,HC2 and/"'(£>) = DX\1D2 where/: C, -h> C and/:
Dj -» /) are homeomorphisms. Thus C, and /), are connected; moreover C, n />,
contains the image of Fx and then it is nonempty; likewise Dx n C2, D2 n C2 are
not empty. Finally since X = C u D we have Z = C, U C2 u Dx u /?2 whence Z
is connected. This proves (i).

To prove (ii) write A = R/I where R is an AIC domain. If C n D = 0 there is
nothing to prove; otherwise C u D is connected, and hence by 2.14 and 2.7 we
may assume that A is connected. Thus by 2.7 and 2.8 we may also assume that
(R, I) is an //-couple. Let /', g' G R be liftings of /, g such that (/', g')R = R.
Then C, D lift canonically to connected components of hRf, and hRg, (see 2.24
below). Now we can apply 2.17 and 2.20 to find an AIC domain R' such that (/?',
//?') is an //-couple, and Spec R'/IR' is canonically homeomorphic to C u D.
The conclusion follows then by (i) and 2.22.

Observe that Proposition 2.23 can be proved, as pointed out by the referee, by
using the Mayer-Vietoris sequence for the etale cohomology. This would replace
the explicit construction of the etale cover in the previous proof.

E. Proof of Theorem 2.4. We need two more lemmas.

2.24. Lemma. Let (A, q) be a couple. Then the following are equivalent:
(a) (A, a) is a Hensel couple.
(b) The following two conditions hold:

(i) if C = A/c is a connected component of A then (C, aC) is a Hensel couple;
(ii) the map C = A/c_\-+C = A/c + q induces a bijection between the set

Q(A) of connected components of A and the set Q(A/a) of connected components of
A/a.
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Proof. By [10, Corollary 2] (a)=>(b)(i); moreover if (A, a) is an //-couple the
map A —* A/a induces a 1-1 correspondence between the set of idempotents in A
and idempotents in A/a. Hence (a) => (b)(ii) by 2.14.

Conversely let (B, b) =h(A, a) and let <f>: A -> B be the canonical homomor-
phism. Since A/q= B/b by (b)(ii), <b: A -» B induces a bijection between &(A)
and 6(B) given by

C = A/c_ h> B/cB = C ®AB.
Now since (C, aC) is an //-couple we have C =AC = C cj)^ 5. But we have also
C = As (2.14); hence C ®A B = Bs = v4s. Hence for every /? G Spec A we have
/lp = Bp; then <£: /I -> B is an isomorphism and (A, a) is Hensel.

2.25. Lemma. Le? (^4, a) be an H-couple with A an AIC domain. Let /, g G A.
Then every connected component ofhAf ®A hAg is of the form hAs ®A hAT where hAs,
hAT are connected components ofhAp hAg respectively.

Proof. By 2.8 hAs ®A hAT is a domain, hence connected; the conclusion follows
easily.

2.26. Proof of Theorem 2.4 (concluded). By 2.11 we may assume A an AIC
domain. Put R = (hAf ®A */lg)Zar and we want to show that R =hAfg. By 2.1 it is
enough to show that (R, qR) is an //-couple. By 2.24 we have to prove that
G(R) = Q(Afg/aA/g) and that if C is a connected component of R, then (C, aC) is
Hensel. Let C be a connected component of R. Then C hes in a connected
component B of hAf ®A hAg. By 2.25 we can write B =hAs ®A hAT, with hAs, hAT
connected components of hAp hAg respectively. Then, using 2.8, we get

Bz* = ((^s)zar ®A  OMzJ&r = (AS ®A ^Zar = (ASt)^-
If we apply 2.23 to Spec(A/q)s, Spec(A / q)T, we see that (A/a)ST is connected.
Thus 5Zar is Hensel by 2.8. In particular, it is connected, and hence must be equal
to C. It remains to show that Q(R) = Q(R/qR) but by the above argument, if B7ja
is a connected component of R, B/ aB is connected. Since moreover qR c rad R it
is immediate to see that the map £(/?)-» Q(R/qR) is bijective. By 2.24 the
theorem is proved.

F. Proof of Theorem 2.5. First we prove a proposition.

2.27. Proposition. Let (A, a) be an H-couple and suppose that A is the f.flat A.I.
closure of a normal domain. Let f,ge.A with (/, g) = (1) and let C = Spec(hAg),
D = Spec^j.) be connected components ofhAp hAg respectively such that C n D =£
0. Then hAs ®A hAT is a Zariski ring.

Proof. Let B be the ^-algebra such that Spec(5/afi) = C u D (see 2.17 and
2.20). We have by 2.8

hAs ®AhAT = (Bg)^ ®A (B^ = BSiTi

where Sx = S + qB, Tx = T + aB.
It is enough to show that if /? c B is maximal with respect to the multiplicative

set Sx Tx then p D a. Suppose p + aB intersects ST; then putting B' = B/p + qB
we have B'ST = 0. Since (B/p, a(B/p)) is Hensel and B is connected, we have
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B' = B/p + aB connected; likewise B's, B'T are connected. Moreover since/? n Sx
= 0 and qBs c rad Bs we have (/? + qB)Bs ¥= Bs ; hence B's ¥= 0; likewise
B'T^0.

If B'ST = 0, we would have B'st = 0 for some s G S, t E.T; but Spec B' =
Spec B's u Spec B'T c Spec fi^'HSpec B\, a contradiction since B' is connected.

2.28. Corollary. Under the hypotheses of 2.21 we have hAs ®A hAT =^hAST.

Proof. From 2.4 passing to the direct limit we get

{hAs®AhAT)2sii^hAgT

and by 2.27 hAs ®A hAT is a Zariski ring.
2.29. Proof of Theorem 2.5 (concluded). By 2.12 we may assume that A is the

f.flat A.I. closure of a normal domain. To prove the surjectivity of hAf ®A hAg
-^hAig it is sufficient to prove that, for connected components hAs of hAf and hAT of
hAg, the map hAs ®A hAT^>hAST is surjective, since every connected component of
hAj ®A hAg is a connected component of some hAs ®A hAT. But two cases are
possible: either hAST = 0 or hAST ̂  0 in which case by 2.28 is hAs ®A hAT =hAST.
Theorem 2.5 is completely proved.

2.30. Corollary. Let (A, a) be an H-couple with A an AIC ring. Let fgEA
with (fig) = (1) and let C = Spec(hAs), D = Spec^j-) be connected components of
hAp hAg respectively such that C C\ D =£ 0. Then hAs ®A hAT ̂ AST.

Proof. By 2.4 passing to the direct limit we have (hAs ®A hAJ)7ja —hAST; on the
other hand by 2.5 passing to the limit we have that hAs ®A hAT -*HAST is surjective.
So we can apply 2.17 and prove, as in 2.27, that hAs ®A hAT is a Zariski ring.

3. Proof of Theorem A. We need some preliminaries. Let (A, a) be an //-couple,
and put X = Sph(A, a); let /„ f2 G A, R =hAfi ®A hAfi, and R' -kAfJj. Let <b:
R —» R' be the canonical homomorphism. Our aim is to study Ker <j>. For this we
need:

3.1. Definition. An idempotent e G R is said to be admissible if there are:
(a) decompositions

rj

Xf = H X,    for i = 1, 2 and r, > 0,

(b) a subset I c {I,. ■ ■ , rx) X {I, . . . , r2) such that

Re =    II   hAf  ®A % .(J)e/    '" *
We say that e is represented by / and the fifs, and we write e ~ (/,, /). The proof
of the following two lemmas is straightforward.

3.2. Lemma. Let e — (/,, /) be an admissible idempotent of R. Then e G Ker <p if
and only if Xfu n A}2. = 0,for all (i,j) G /.

If e, e' G R are idempotents we put as usual e' < e if and only if e' = e' ■ e (that
is, if Re' is a direct factor of Re).
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3.3. Lemma. The situation being as above, we have:
(i) Any two admissible idempotents can be represented by the same fijs (with

different I's if they are different).
(ii) Ife~ (fj, I), e' ~ (fy, /') then e' < e if and only if I' c /.
(iii) The set of the admissible idempotents contained in Ker <b is directed with

respect to < .

3.4. Lemma. With the above notations, assume further that A is AIC and that either
(i)/i = fi> or OO (.fufi)A = A. Then <j> induces an isomorphism R/ER — /?', where
E is the set of admissible idempotents contained in Ker <b.

Proof. Observe first that </> is surjective: this is obvious in case (i) and follows
from 2.5 in case (ii). Next we see that R' = R^'. tms follows from 1.7(v), the
surjectivity of <b, and 2.1 in case (i), and by 2.4 in case (ii). The map <j> factors
through R/ER, and to show R/ER ~ /?' = /?Zar, we need only show that every
element of 1 + qR is invertible in R/ER. Thus it suffices to show that for any
p G Spec R such that /? D E we have pR' =£ R'. Let /?, be the contraction of p to
hAf, and let Y, be the connected component of Spec hAfi containing /?,.. Put
Xj = Yj n Xp and note that by 2.24 it is a connected component of X^. Since A is
AIC, by 2.8 and 2.16 there is a multiplicative subset S, c A such that (AS/, qSs) is
an //-couple, and A", = Spec(A / a)s.

Define «r: R^>ASS by m = mx ® ir2, where w,-: hAj-* As_ are the canonical
maps. Note thatptAs ¥= As, and hence if S = SXS2 we have

(1) P_AS*AS.

Now we claim that if Xf n X} ¥= 0, then
(2) A", n X2 # 0.
Indeed by 2.14(h) and 2.16 we have A, = fl, X, where Xf = Xf\lX„. Hence ifJ v   ' ' J      Jil Ji Ju gy
Xx n X2 = 0, by the compactness of Xfi n Xfi we have Xfi n Xf =0 for
suitable jx,j2. Put

Re=hA,   ®A % .

Then e is an admissible idempotent contained in Ker <b (see 3.1 and 3.2), whence
e G /?, and pRe = Re. This easily implies pAs = As, contrary to (1). Thus Xx n A'2
=/= 0 Now by 2.1 we have R' =hR and by (2) and 2.30 we have hAs = As; hence
there is a commutative diagram

R--—^rR'

As

where o comes from the universal property of Henselization. The conclusion
follows then from (1).

3.5. Corollary. Under the assumptions of 3.4 we have R' = limeg£ R/Re.

Proof. Apply 3.3, 3.4 and 2.5.
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Now we can prove Theorem 1.11. Recall that we are given an affine Hensel
scheme A" = Sph(y4, a), and a quasi-coherent sheaf ?F over X, and we want to
prove that ^ = M, where M = T(X, '3). We give the proof in several steps. By
assumptions there is a covering X = Ay (J • • • U Ay such that T(Xp ?F) generates
the sheaf ^/A}. for i = 1, . . . , n.

3.6. Step 1. 77ie* conclusion is true if n = 2 and A is AIC.
Proof. Put Af, = T(Xf, <?). We want to show that the canonical homomorphisms

hAfi ®A M -» Mj are surjective. Put/ = /, and g = f2. Let

r:hAfg®^Mx^hAJg®^M2

be the isomorphism of ^4yg-modules induced by the restriction of Af, and M2 to Xfg,
and let ux be the composition of t with the canonical homomorphism A/, -V"/4yg
0*^, A/,. Let u2: M2 —>hAjg ®*A M2 be the canonical homomorphism.

Then we have the exact sequence of A -modules

0^ M-UMX X M2^hAJg ®>At M2

where t is induced by the restrictions, and u(mx, mj = ux(mj — u2(mj.
Since hAf is A-f\at and A/, (resp. MJ is a module over hAj (resp. over hAg),

tensoring the above exact sequence with hAf gives the exact sequence:

0 -*hA} ®A M ->hAf ®A % ®% Mx X »Af ®A hAg ®>Ag M2 -*% ®A hAfg ®^ M2.

Put R =hAf®A hAg, S =hAf®A hAfg, T=hAf®A hAp and let <j>x: hAf^HA^, <b2:
hAg -^hAfg be the canonical homomorphisms. Define \p: R —> S, x'. T—>Sby

xp(x®y) = x®<b2(y),        X(x ® v) = x ® <f>,(v).

Let <j>:  R—>R' =hAfg be the canonical homomorphism, and let e G R be an
admissible idempotent such that <p(e) = 1. This means that we have decompositions

A> = A>,U • • • HAy,       Xg = Xg II • • • HA-&
and a subset / c {1,..., r} X {1,..., s) such that

Re=    II   hAf®AhA      (see 3.1)

and A"y n A"g = 0  for (i, j) G /,  that is hAfigj = 0 for (/, j) G /.  Let  Te' =
ni->,..'.,rhAj,®AhA/,Thus

X(Te')=      II      hAf®AhAfig=    IT   "Afl®AhAu
/ = 1.r (ij)&l

C    II    "Af®AhAf   =Se"
(<>;)«'

where e" = xp(e). It follows that ux(Te' ®>.AfMx) c Se" ® *^ A/2 and hence we
have a commutative diagram with exact rows

0    -*    hAf ®A M    -^      T ® >A/ Af,       X      R ®>AgM2     A       S ® -^ M2

l*€ IP. 4y,
0    -* Ke ->     Te' ® >A/ Af,      X     Re® „Ag M2     A     Se" ® ^ Af2

where i7 is induced by u, and Ke is the kernel of ii.
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Now it is clear that the obvious inverse maps of Be and ye render the right-hand
square commutative, and an easy diagram chase shows that ae is surjective. Now it
is clear from 3.5 that as e varies the second rows of the above diagrams form a
direct system, whose limit is

0 -> K --> M, X hAfg ® >Af M2 -> (S/IS) ® ^ Af2

where / = Ker <b, and K = lim Ke. Since all the maps HAj ®A M —> Ke are surjec-
tive, we have that hAf ®A M —»K is also surjective. On the other hand the
homomorphism hAfg = R/I -» S/IS induced by xp has a left inverse xp': S/IS —>
R/I defined by xp'(a ® b) = <bx(a) • b. Hence the canonical map

hA/g®UsM2^(S/IS)®UgM2

is injective; this easily implies K = Af, and the proof is complete.
3.7. Step 2. The conclusion is true for n = 2 and arbitrary A.
Proof. By 2.9 we can embed A into a f.flat A -algebra B which is integral over A

and AIC, and the conclusion follows easily by 3.7 and 1.4.
3.8. Step 3. The conclusion is true in general.
Proof. Let / = {/ G A: f/A} is generated by r(A"y, <$)}. We want to prove that

1 G /, and for this it is sufficient to show that / is an ideal of A. The only problem
is to show that if /, g G / then / + g G /. Now by 3.7 the result is true for hAf+g
and *$/Xf+g and the conclusion follows.

4. Proof of Theorem B.

4.1. Lemma. Let X be a topological space and let <$ be an abelian sheaf over X. Let
% = { Uj},e/ be an open covering of X, and assume that H'(U^ p,, *$) = Ofor all
p and all i0, . . . , ip G /, where U^      , ■» Ut<) C\ • • • D U,. Then

//'(%, <W) = HX(X,<3).
Proof. The proof of 4.5 of [16, p. 222] applies, with the modification that one

need only assume that § is flasque in order to prove that //'(%, 'W) = HX(X, IF).

4.2. Proposition. Let X be an affine Hensel scheme, and let W be a quasi-coherent
sheaf on X. Then for any basic open covering % of X we have

//'(^, 3) = HX(X, <W) = 0.

Proof. From Theorem A it follows that HX(X, <F) = 0 (same proof as in the
usual case, see [7, Proposition 1.4.6]). Hence we have also H '(Ay, ^/XJ = 0 for
any open basic Ay c X. And since the intersection of basic opens is basic, the
conclusion follows from 4.1.

Now we give a lemma about coverings of affine schemes.
4.3. Definition. Let X = Spec B be an affine scheme and let % =

{Xfi, . . . , XjJ,f G B, a covering by basic open subsets. We say that % is special if
for every / = 1, . . . , n the open Ay. U Xfj+i u • • • U X/n is a basic open A^, A. G B.

4.4. Lemma. Let X = Spec B and let % = {Xfi, . . . , X}),/; G B, be a covering
by basic opens. Then there exists a refinement of Gll, T = {Xgi, . . . , A" }, g, G B,
such that g, = a, •/, a, G B, and T is special.
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Proof. Suppose, by induction, that {Xf,...,XfJ is a covering such that
Ay U • • • u Xf^ = X^ for i = \, . . . ,j. We must find a covering (A^, . . . , A^}
with g, = a, •/ and X& u • • • U A^ = A^ for / = 1, . . . ,j + 1. In fact from
Xh/= Xfju ■ ■ ■ L)XL 'we have hf = bj + ■ ■ ■ +bjn. Let hj+x = bj+xfj+l
+ ■ ■ ■ +bj„ and put g, =/„... , gy = fp gJ+x = hJ+xfJ+x, . . . , gn = hJ+xfn. We
claim that X& u ■ ■ ■ U A"& = A^ for i = 1, . . . ,j + 1.

For i = j + 1  this is easy  since h2+x = bJ+xgJ+x + ■ ■ ■ +bnfn and X     c
XhJ+,' ■ ■ ■ > X&.  C XhJ+1-

For i = 1, . . . ,y we have ^-^C^.1,-^C Jfv A^+i c *j+1 c
A"^, . . . , A"& c Ay c A"^. On the other hand if /? G Spec fi contains g„ . . ., g>;
g/+i> • • • ' Sn il contains hj+x, hence fy by hj = 6,g,. + fy+,. Thus

= A>( u • • ■ U^_, U Ay u • • • uA>n = A"v
The following proposition is essential in order to prove Theorem B.

4.5. Proposition. Let X be an affine Hensel scheme and let % = {U0, . . . , U„}
be a special open covering of X. Then HP(6IL, ty) = 0 for all p > 0 and all quasi-
coherent sheaves *$ on X.

Proof. If n = 1 the conclusion follows from 4.2. If n > 1 we proceed by
induction. For this let  Y = Ux U • • • U U„, and consider the coverings of Y:
T - {U0 n Y, Ux.   U„) and T' = {t/„ . . . , U„}. Define C" by the exact
sequence:

o _»c-» c-(% gy y) X c-(T', sy y) -> o
where 4> is the obvious map of Cech complexes. The induction hypothesis implies
that Hp(C) sa //*(% <Sy y) for/? > 1. However, for/? > 0,

c-     0    r((/ftj].  ni-.f).>i< • • • <>, *
Let T" be the covering {y n c/0 n £/„ . . . , Y n t/0 n £/„} of the affine Hensel
scheme Y n U0. Then we see that C = C-1(T", f/7n C/0) for/? > 0, so that
HP(C) sa Hp~x("{", <5/Y n c/0). By induction, this last group is zero for/? > 1.
Since C(<?L, <T) = C(CV", ̂ / Y) for/? > 0, we see that //*(%-, f) = 0 for/? > 1.
To complete the proof, apply 4.2 again.

Proof of Theorem B (Theorem 1.12). By 4.4 and 4.5 we have HP(X, *%) = 0 for
all/? > 0. But this applies also to Xf and ft/Xp for every basic open Ay c X, and
the conclusion follows from a theorem of Cartan (see [6, p. 227, 5.9.2]).
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