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ABSTRACT. Let D be a proper subdomain of R" and k, the quasihyperbolic metric
defined by the conformal metric tensor 5% = dist(x, 3D)~2ds?. The geodesics for
this and related metrics are shown, by purely geometric methods, to exist and have
Lipschitz continuous first derivatives. This is sharp for k,: we also obtain sharp
estimates for the euclidean curvature of such geodesics. We then use these results to
prove a general decomposition theorem for uniform domains in R”, in terms of
embeddings of bi-Lipschitz balls. We also construct a counterexample to the higher
dimensional analogue of the decomposition theorem of Gehring and Osgood.

1. Introduction. We shall assume throughout that D is a proper subdomain of
euclidean n-space, n > 2. For such a domain we define the quasihyperbolic metric k
by

(1.1) kp(x;, x,) = inf f dist(x,dD) " ds,
C Jc

where the infimum is taken over all rectifiable arcs C joining x; to x, in D. Many of
the basic properties of this metric can be found in [4]. In particular geodesic curves
exist for this complete metric. This does not follow from standard results in
differential geometry, since even in domains with smooth boundary one can see that
the defining density dist(x, 0D)~! need not be differentiable.

We primarily are interested in studying the geometry of the quasihyperbolic meric
and its geodesics. We show that the geodesics of this metric are C'', ie. the
arclength parametrisation has Lipschitz continuous derivatives. We show that this is
best possible and obtain a sharp result on the euclidean curvature of such geodesics.
These results are proved for a more general class of metrics, in particular metrics
defined by locally Lipschitz densities. We then use these results to prove a gener-
alisation of the decomposition theorem of Gehring and Osgood for uniform domains
in n-space.

I wish to express my sincere thanks to F. W. Gehring for suggesting many of these
problems, for many helpful ideas and simplifications throughout and for allowing
me to present his proof of Theorem 3.7. I also wish to thank him and D. Herron for
carefully reading the manuscript.
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170 G. J. MARTIN

1.1 NotATION. We denote euclidean n-space by R”. B"(x, r) will be the euclidean
ball at x of radius r, B"(x, r) will be its closure and S"~Y(x, r) its boundary. The
euclidean distance from x in D to the boundary of D is denoted dist(x, D). We let
e, = (1,0,...,0) € R".

2. Convexity.

2.1 DEFINITION. We say that an arc C in D is c-convex with respect to balls, or
simply c-convex, if for each x in D and r < ¢ dist(x, D), C N B"(x, r) is connected.

It is clear that each line segment and subarc of any circle of sufficiently large
radius will be c-convex. These are the geodesics of the hyperbolic metric in a
half-space and analogously we have

2.2 THEOREM. Each quasihyperbolic geodesic of D is 1-convex with respect to balls in
D.

PROOF. Let C be a quasihyperbolic geodesic of D, x, € D and r < dist(x,, 3D).
We suppose for contradiction that C N B"(x,, r) is not connected. We assume by
translation that x, = 0. Let C’ be a component of C\ B"(0, r) such that the
endpoints of C’ lie on S$" !(0, r). Since C’ is a subarc of a geodesic it also is a
quasihyperbolic geodesic; we use this fact extensively throughout this paper. We get
a contradiction by finding a quasihyperbolically shorter arc between the endpoints
of C’. Let g: R" — R” be the Mobius inversion in $”~ (0, r) and set C” = g(C"). It
is clear that C” has the same endpoints as C’ and lies in D. We claim that for each x
in D
dist(g(x),dD)

(2.1) 1800l < =g 2D)
so that
(2.2) fC“dist(x,aD)'lds =fc/dist(g(x),aD)_llg’(x)[ds

< f dist(x,dD) " ds
o
and C” is shorter than C’. Since g is a Mobius inversion,

-2
(2.3) lg"(x)| = r?lx| .
For x € C’ let x” = g(x) and choose z € 3D such that |z — x’| = dist(x’, D). Then
1z|? = r? = |x||x’| and, by the lemma below,
dist(x, 0D X~z A\ x r\T? et
dist( ) <',_|<(]—,|) <H=(—) =lg'(x)| ",
dist(g(x),aD) ~ |x" —z| = \|x/| x|

x|
as required.

2.3 LEMMA. Suppose that 0, x and x’ are collinear points in R" with 0 < |x'| < |x|
and that z € R" with |z|? > |x||x’|. Then
1/2
x =z 1€\
Ix = 2| S\ |x]
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use




QUASICONFORMAL AND BI-LIPSCHITZ HOMEOMORPHISMS 171

PROOF. Set |x’| =a, |x| =b and |z| = ¢, so ¢* > ab. Let § denote the angle
between the line segments joining x and z to 0. Now,

Ix —z| \>  b*+c?—2bccos§ b (b>+c? a’+c* -
| = == — cos @ — cos 6

x" = z| a? + ¢ — 2bccos§ a\ 2bc 2ac
b a_bl, B4
—;(B—cosﬂ)(A—cosH) —a(l+A—cosﬁ)’
where A = 4(a/c + ¢/a)and B = %(b/c + ¢/b). Since
1(b ¢ a ¢ 1 2\
Boa=g(trg-t-g)=g0-afi- G <o

the result follows.
We now prove that locally, quasihyperbolic geodesics are convex with respect to
cones; this will later give a sharp curvature estimate. For x € D and

i dist(x,0D) < r < dist(x, D)

we define an r-cone at x, Q(x,r), as follows. Let y € D such that |x — y| =
dist(x, 9D) and let z = S""}(x, r) N [x, y]. Then set d = dist(x, 3D) and Q(x, r) =
convex span of {z, B"(x, ¥(d — r)) N S" " Y(z, r)}.

2.4 PROPOSITION. Let C be a quasihyperbolic geodesic of D. Then each subarc C’
and C with endpoints on B"(x,, 5(d — r)) N S"~Y(z, r) lies entirely within Q(x,, r).

PROOF. Since C’ is a geodesic, it is 1-convex and so C’ € B"(xq, 5(d — r)). Let g
be Mobius inversion in " }(z, r) and C” = g(C’) € Q(xq, r) € D. For x € C’ let
x’ = g(x) and p € 9D such that |x’ — p| = dist(x’, 9D). Then, by the lemma below,

dist(x,dD)  |x—p| _ |x—z| RN
< ’ < ’ = -
dist(x’,dD) ~ |x"—p| |x" — 2 8]

This gives a contradiction, as C” will be quasihyperbolically shorter than C’ by (2.2).

2.5 LEMMA. Let r < d, x € B"(0,3%(d — r)) and z € S" 10, r). Then for any
x" €(x,z)andp € R"\ B"(0, d)

x —pl _ |x— 2]
Ix"=pl X — 2|

PROOF. B"(3(x + z), 3|x — z|) © B"(0, d) so that for all p € R"\ B"(0, d)
(2.4) Ax',p,z)y<x,p,z)<7/2.
If ¢ is the angle £( p, z, x), then

lx —pl _ _ |x—2] x"—pl _ x|
sin ¢ sinz(x, p, z) sin ¢ sin£(x’, p,z)

The result now follows from (2.4).

2.6 REMARKS. We will see later that it is immaterial whether we define convexity
with respect to open or closed balls. Also for convenience we have defined geodesics
to be length minimizing curves. We may, more generally, define a geodesic of a
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172 G. J. MARTIN

nonsmooth conformal metric to be a locally length minimizing curve. Thus there
may be more than one geodesic, in possibly more than one homotopy class,
connecting two distinct points. All the results of this paper will then apply to each
length minimal subarc of each geodesic. To see that not all geodesics in every
homotopy class are convex with respect to balls, one need only consider the annulus
in R?* with the quasihyperbolic metric. We can see that the notion of convexity of the
geodesics of the quasihyperbolic metric is an example of a more general phenomena.
The condition essentially says that euclidean balls of a suitable size are geodesically
convex in the metric being considered, i.e. for each pair of points in B"(x, r), with r
suitably small, any geodesic connecting this pair of points lies entirely within
B"(x, r). We now examine this phenomena for other metric densities. The results
will not be as sharp as those of Theorem 2.2 and Proposition 2.4, which we use later.
2.7 DEFINITION. Let ¢: D — R be a continuous function. For x, y € D let

dy(x, y) = inf f(‘q(Z)ds,

where the infimum is taken over all locally rectifiable arcs joining x to y in D. It is
clear that d,, defines a metric in D. We will call an arc for which the infimum is
obtained a d -geodesic.

d -geodesics need not exist in general. However we show the following,.

2.8 THEOREM. Let g: D — R, be a continuous density which defines a complete
metric d .. Then d -geodesics exist.

PRrOOF. Let x,;, x, € D and let C; be a sequence of locally rectifiable arcs for
which

d,(x,, x,) = lim f‘q(x)ds.

J—® UG,

Let E = {x € D: d (x;, x) < d(x, x3) + 1}. Since the metric d, is complete, E is
compactly contained in D. We can assume that for j > j,

1
/q(x) ds <d,(x,x;) + 5
G
Thus C; C E forj > j,, since if not let x; be a point of C; N JE; then
1

d,(x,x%,) +1=d(x. %) < /Cq(x) ds < d (%, %,) + 7

1
a contradiction. Now since E is compact and ¢ is continuous there is an a > 0 such
that g(x) > a for all x € E. Thus forj > j,,

d(x,x,) +12 qu(x) ds > a/cjds,

and so the C, have uniformly bounded arclength. From the Helly selection principle
we obtain a subsequence of the C, and a rectifiable arc C joining x; to x, in E ¢ D
such that

d(x),x,) = li{n f(/‘q(x)ds= /Cq(x)ds.
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Thus C is a d -geodesic and the result follows. We note that ¢ need only have been
locally bounded below.

We are interested in knowing when the geodesics of such metrics will be convex.
An obvious condition would be an analogue of (2.1) for then (2.2) would imply
convexity. A sufficient condition is easily seen to be:

For all y and r with B”(y, r) € D and g a Mobius

inversion in S" !( y, r),

(2.5) )

lg’(x)] < X forallx € D\ B"(y,r).
q(g(x))

Since |g’(x)| = r2/|x — y|?, setting x’ = g(x), (2.5) becomes

(2.6) rig(x’y < |x — y|*q(x).

This condition can be seen as a control on the rate of growth of ¢ along radial lines
emanating from y. Notice that if g is continuous, then the left-hand side of (2.6) is
bounded while the factor |x — y| on the right is increasing. This suggests that
convexity is a local condition. If we can establish (2.6) for sufficiently small », then
the metric will be c-convex for sufficiently small ¢. We will say that a metric is locally
convex if for each compact set E C D there is a positive constant ¢ = ¢(E, g) such
that d 7 is c-convex on E, i.e. for any x in E, r < cdist(x,0D) and C,a d q-geodesic,
C N B"(x, r) is connected.
The following corollaries are immediate from (2.6).

2.9 COROLLARY. If d , is a metric whose density satisfies (2.5), then d , is 1-convex.

2.10 COROLLARY. If q is a Mobius invariant density, i.e. g(x) = |g'(x)|q(g(x)) for
g as in (2.5), then d ,is 1-convex.

2.11 COROLLARY. If D is a bounded domain and d is the metric defined by the
density dist(x, dD)"?, then d has geodesics if p > 1 and d is 1-convex if 1 < p < 2.

PROOF. The metric is easily seen to be complete if p > 1 and so Theorem 2.8 gives
the existence of geodesics. These geodesics are 1-convex if 1 < p < 2 since we did
not use the inequality of Lemma 2.3 sharply in the proof of Theorem 2.2. The more
general result we are seeking is the following.

2.12 THEOREM. Let q: D — R, be a locally Lipschitz density defining a complete
metric d . Then d  is locally convex.

PrOOF. Let M > 0. For x € D let r(x, M) denote the largest number such that
B"(x,r(x,M))C B}(x,M)={yeD:d(x,y)<M}.

Since E:(x, 2 M) is compactly contained in D we let ¢(x, M) and L(x, M) denote
respectively the largest and smallest numbers for which

(1) g(x) = c(x, M)on BJ(x,2M),

(2) g(x) is L(x, M) Lipschitz on BJ(x,2M).
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On any compact set contained in D it is clear that ¢(x, M) and r(x, M) are
bounded below whilst L(x, M) is bounded above. By Theorem 2.8, d -geodesics
exist. Let x € D and r < min{r(x, M), c¢(x, M)/L(x, M)}. Suppose that C is a
d -geodesic and that C N B"(x,r) is not connected. Let C’ be a subarc of
C\ B"(x, r) with endpoints on S""!(x, r), g be a Mobius inversion in $" (x, r)
and C” = g(C"). Let ¢ = ¢(x, M) and L = L(x, M). We now show that (2.6) holds
along C’ to get the desired contradiction from (2.2). Lety € C"and y’ = g(y) € C".
Since C’ is a subarc of a geodesic it also is a d -geodesic. The endpoints of C’ lie on
S Yx,r)c BJ(x, M) and so C’ C B/(x,2M), since it is a shortest geodesic. We
may assume that g( ") > ¢(y) for otherwise (2.6) is trivial. Also

2
y=ri/lx =yl (y —x) + x
and since x, y and y’ are collinear, |y — y’| = |y — x| — |y’ — x|. ThussincerL/c > 1
and |x — y| > r, we have r3(L/c) < |x — y|,

rA(L/e)x = yl(1 = r2/lx =) <lx = p[{1 = r2/lx =50,
rLly =y 1< (Ix —yI* = r*)q(»),
r2(q(y) = q(»)) < (Ix = yI> = r*)q(»).
since g is L-Lipschitz on BJ(x,2M). This last inequality is precisely (2.6).

2.13 COROLLARY. If g is as in 2.12, bounded below by ¢ and is L-Lipschitz on D, then
d  is locally convex with bounds given by min{c/L, dist(x, 9D)}.

ProOF. We have Theorem 2.12 for arbitrary M. Letting M — oo we see that
L(x,My< L,c(x, M)> cand r(x, M) — dist(x, 9D).

Our interest in these results stems from the fact, as we shall see later, that locally
convex metrics have C!'! geodesics. In fact, we can get bounds on the euclidean
curvature of the geodesics in terms of the convexity constants. In view of this,
Theorem 2.12 can be seen as a sharp regularity result for such densities as Example
4.11 shows. These results also tend to indicate that the quasihyperbolic metric is the
canonical metric for a domain in R”. We complete this section by stating a trivial
corollary to Theorem 2.12 which recovers some standard results in differential
geometry.

2.14 COROLLARY. If q is a C? density defining a complete metric and p > 1, then d,
is locally convex.

3. Decomposition.

3.1 DErFINITION. A domain D C R" is said to be uniform if there exist constants a
and b such that each pair of points x;, x, € D can be joined by a rectifiable arc
C C D for which

(3.1) I(C) < alx; — x,, milnzl(C(xj, x)) < bdist(x, D).
J=1,

Here /(C) denotes the length of C and /(C(x, x)) is the length of the subarc of C
fromx;tox,j =12
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We refer to [11] for the definition of a K-quasiconformal homeomorphism of a
domain D C R" and many of the basic facts regarding quasiconformal mappings.

3.2 DEFINITION. A K-quasidisk is the image of B*(0,1) under a K-quasiconformal
homeomorphism of R2.

3.3 REMARKS. For » > 2 Martio and Sarvas have shown that the image of B"(0, 1)
under a quasiconformal homeomorphism of R” is a uniform domain [8]. Recently
uniform domains have been found to have many interesting applications in function
theory, particularly in the theory of BMO functions (e.g. [7]) and in the injectivity of
local quasi-isometries (e.g. [3]). In n = 2 there is a strong interplay between the
notions of a uniform domain and that of a quasidisk. In particular, simply connected
uniform domains are quasidisks and we have the following decomposition theorem
of Gehring and Osgood [4, Theorem 5].

3.4 THEOREM. A domain D C R? is uniform if and only if it is quasiconformally
decomposable, i.e. for each pair of points x|, x, € D there is a K-quasidisk G C D,
such that x|, x, € G and K depends only on a and b, the coefficients of uniformity.

This situation is very different in R". We show the above theorem is false if n = 3,
even for simply connected uniform domains. This is because the problems of
topological flatness do not occur when n = 2.

3.5 DEFINITION. A homeomorphism f: D — D’ is said to be L-bi-Lipschitz if for
every x, y € D we have

(3.2) T =y < 1/(x) = /()] < Lix — y}.

3.6 REMARKS. It is not difficult to show that if D is a uniform domain and
f: D — D’ is L-bi-Lipschitz, then D’ is a uniform domain. In fact if D is a, b
uniform, then D’ is aL, bL? uniform. Also it is easy to see that B"(0, 1) is a uniform
domain. Gehring and Osgood have shown that a domain is uniform if and only if
(3.1) holds for each quasihyperbolic geodesic [4, Corollary 2]. We shall use this fact
extensively later.

We base our counterexample to the 3-dimensional analogue of Theorem 3.4 on a
bi-Lipschitz version of the classical Fox-Artin ball. The existence of this bi-Lipschitz
ball was first recognized by Gehring; though it has often been cited there is no proof
in print. The outline given here is based on his ideas.

3.7 THEOREM. There is a bi-Lipschitz homeomorphism f: B> — R® such that f(B?) is
not topologically flat. In particular f cannot be extended to a homeomorphism of R3.

OUTLINE OF PROOF. Let C be the smooth arc in R? illustrated below. Let t > 0 and
let N(t) be a smooth regular neighborhood of C of radius ¢. Then it is clear by
compactness and smoothness that, after possibly restricting to a smaller ¢, there is an
L,-bi-Lipschitz homeomorphism g: [-1,0] X B%(t) = N(t); we may further assume
that g is the identity on {[-1,-7/8] U [-1/8,0]} X B?(z). One must imagine that
N(1) sits in three space in such a way that if N’ = {§(x + 1): x € N(t)}, then N
and N’ link in R’ and intersect only at the end {0} X B%(r). We iterate this
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construction to obtain an infinitely linked ball. Let
G = {(s %sx): (s.x) € [1.0] sz(t)},
G,={(s,x)€G:-27"<s< 27",
Identifying R® with R X R? we define h,: R —> R by
h((s,x))=2""(s,x) +e,.
Then £ ,(G,) € [-1,0] X B2(r) and
h (27" x B2 " ') ={j—1} xB*(t), j=0,1.

This later condition implies that the ends of G, are mapped to the ends of
[-1,0] X B2(?).

g
N(t) /\

[-1,0] xB%(¢)

N1
77777 2

Now define F: G — R? by Flg = h;‘gh,,|(;". Since g is the identity on {-1,0} X
B?(1) wesee that F is the identity on a neighbourhood of {-27"} x B%(2"""!t) for
each n. These sets are the ‘ends’ of the G, and so F is easily seen to be a well-defined
homeomorphism. We now outline why F is bi-Lipschitz. Similar techniques are used
in our proof of the decomposition theorem in R”, Theorem 5.1, and so we do not go
into too much detail. Since g is L,-bi-Lipschitz, F is L,-bi-Lipschitz on each G, for
the maps 4, are similarities and conjugation by similarities does not alter the
Lipschitz constants. Since F is the identity on a neighbourhood of G, N G, | it is

Licens€ or copyright restrictions may apply to redistribution; see https://www.ams-org/journ -
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easy to see that there is a constant L, such that F is L,-bi-Lipschitz on each
G,V G,_, for all n. Now the convexity of G yields the right inequality of (3.2) and
estimates using the triangle inequality yield the left inequality of (3.2). One can now
see that there is an L,-bi-Lipschitz homeomorphism 4: B* - G, we claim that the
desired map fis Fh: B> — R>. To see that f(B?) is not topologically flat we observe
that f(B?) is essentially the same as Example 2.4.6 in [10]. Alternatively one can see
that f( B*) is not one-locally coconnected at F(0), i.e. f( B*) is not locally homotopi-
cally trivial at F(0), and this is a necessary condition for flatness [2].

3.8 ExampLE. Theorem 3.4 does not hold in R°.

PrROOF. Let f be the bi-Lipschitz map of Theorem 3.7. Then by Remark 3.6
f(B3(0,1)) is uniform; we can assume by rotation that f(e,) is the wild point of
f(B?). Suppose for contradiction that 3.4 holds in R®. Then there would be a
constant K and, corresponding to the points 0 and (1 — 1/n)e,, a sequence of
K-quasiconformal homeomorphisms {g,} of R* such that g,(c0) = oo and f(0),
f((1 = 1/n)e)) € g,(B*(0,1)) C f(B>(0,1)). By the compactness of such families of
K-quasiconformal homeomorphisms we can find a subsequence of the { g,} which
converges, uniformly in the spherical metric, to a K-quasiconformal homeomorphism
g: R* = R3. Since g,(B?) c f(B?) for all n, we must have g(B>) C f(B?) and since
f(e;) € g(S"™ 1) we can assume by a rotation that f(e,) = g(e,). This together with
the above implies that g( B*) has the same wild behaviour as f(B?) at e,. This is a
contradiction for g is a homeomorphism of R® and hence tame.

We discuss the case n > 4 in §5. Next we prove a version of Theorem 3.4 for
arbitrary domains in R". By our example there can be no constant K independent of
the points, so we find a bound on K in terms of their quasihyperbolic distance.

3.9 LEMMA. Let x € D, r = 3 dist(x,9D) and 0 <e <1, so B= B"(x,r)C D.

Then for all y satisfying |x — y| < er,
-2

(33) kB(x’ )’)<2(1 —E) kD(x’ y)

PROOF. Let C be a quasihyperbolic geodesic from x to y. By convexity with respect
to balls, C € B"(x, re). Now

kg(x, y) < / dist(z,9D) " ds,
c

for k 5 is found as the infimum over all such arcs. Next for z € C,

&MLS“%Lr»=r—p—ﬂ>rﬂ—e%=%O—EMMQﬁD)

1 dist(z,aD) 1

z2s(1-e)—— > =

2 { 8)(1-+e/2) 2

Putting this in the above integral and recognizing that C is a quasihyperbolic
geodesic yields the desired result.

(1 — ¢)’dist(z, aD).

3.10 LEMMA. Let x, y, z € D with kp(x, y) < a < § and log2 < k p(x, z). Then
there is a quasiconformal homeomorphism f: R" — R”" with the following properties:

M f(x)=y.f(z) ==

(2) f: R"\ D — R"\ D is the identity.

(3) log(K,(f)) < 4(3 — 2e“) 2k p(x, y).
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PROOF. Let d = dist(x, dD), r = ‘d and B = B"(x, r). Then by Lemma 3.1 of {5]
there is a quasiconformal homeomorphism f: R" — R” such that f(x)=y,
f: R"\ B — R"\ B is the identity and log(K,(f)) < hp(x, y). Here K,(f) is the
inner dilation of f and h is the hyperbolic metric of constant negative curvature -1
in B. By comparing densities one easily sees that Ag(x, y) < 2kz(x, y) and by
[4, Lemma 2.1],

log(1 + |x = y|/d) < kp(x.y) <a
implies
lx —y| < 2(e“ = 1)r = er, 0<e<l.

Thus by Lemma 3.9 we have

-2

log(K,(f)) <4(1 —2(e” = 1)) "kp(x, y).
To see f(z) =z we need only show z & B. Suppose that z € B. Then the line
segment joining x to z lies in D and

ko (x.z) < fof""‘"(dist(x,ap) — ) dr = logd — log(d — |x - z|)

< log(d/(d — r)) = log2,
a contradiction.
3.11 THEOREM. Let x, y € D. Then there is a quasiconformal homeomorphism
F: R" > R"such that x,y € F(B") C D andlog(K,(F)) < 4k ,(x. y).
PrOOF. We iterate Lemma 3.10. Let d = dist(x, dD). Now
log(1 + |x — y|/d) < kp(x, y) < log2

implies that |x — y| < 4 and x, y both lie in B"(x,d) and so we can assume that
k ,(x, y) > log2. Let C be a quasihyperbolic geodesic from x toy and fix 0 < a < i

Lety = y,, ¥.- - ..y, be a sequence of points on C such that
kp(y,oy)=a, j=1.2,....m,
and that
kp(x, yn)<log2 <kp(x,y, ). Jj=1....m—1
For j < m Lemma 3.10 yields a quasiconformal homeomorphism g; such that
g, (x)=x,8,(y,_)=yand
log( K, (g,)) < 4(3 = 2¢) *kp( ;. 3,-1).

Nextset G, = g,,* §n_1° - &. Then G,(y) =y, € B"(x, d). It is clear that G,
is a homeomorphism of R” and that G, is the identity on R"\ D. Also

n

-2 ar-2
log(K,(G,)) < 43 = 2¢*)” X kp(y,. 3,1) < 43 = 2¢*) Tkp(x, ).
j=1
Again by the compactness of such families of quasiconformal mappings, there is a
uniformly convergent subsequence of the {G,}, asa = 0, converging to a quasicon-
formal homeomorphism G: R" — R" and log(K,(G)) < 4k p(x, y). If we let g be
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the similarity mapping of R” mapping B"(0,1) onto B"(x, d), then it is clear that
F= G- g: R" > R"is the desired quasiconformal map.

3.12 ReMARKs. The bound on K, (F) in Theorem 3.11 is probably not sharp. To
obtain a lower bound when n = 3, consider the domain

D=R\{(x,y,2):x*+y?>1,2=0).
Letting z;, = (0,0, r) and z, = (0,0, —r) one can show, as in [6, Theorem 6.2}, that if
G is a K-quasidisk lying in D and containing z; and z,, then K > 7 'logr. The
quasihyperbolic geodesic between z, and z, is the line segment {(x, y, z): x = 0,
|y] < r}, whence
kp(zy, z,) = 210g(r +(r* + 1)1/2).
Thus
K,(F) 1

— — asr — oo.
kp(z,, z,) 27

This is probably the sharp order for K,(F) and this result is easily generalized to R".
We note that in a uniform domain [4, Theorem 1],

kp(x,y) < clog(l + |x — y|/dist(x,3D))(1 + |x — y|/dist(y,dD)),

where ¢ is a constant depending only on a, b and ». Thus, in a uniform domain, we
have the bound

K, (F) < (1+|x = yl/dist(x,3D)) (1 + |x — y|/dist(y,dD))".

The main feature of this bound is that is depends only on the distance between the
points, their respective distances to the boundary of D, and the constants of
uniformity.

4. The differentiability of convex curves.

4.1 DEFINITION. A set of n + 1 vectors x,, x,,...,x, is said to be in general
position if any n of them span R".

We denote by (x;, x,,-.. ,X; ) the convex span of x,, x, ... X I X, xp0 L ux,
are in general position, then (x,,... »X, ) is a nondegenerate p — 1 simplex and so
X,5-++»X,; arein general position.

4.2 LEMMA. Let xg, xy,...,x, be in general position and suppose that |x,| = r for all
i =1,...,n. Then for each x € (x,, x,...,x,),

(4.1) min|x, — x| < r
i

and we have equality if and only if x = 0.

PrROOF. If x = O the result and equality are clear, so we assume x # 0 and use
induction on n. The result is trivial if n = 1. Let 4 = (x,, x,,...,x,) be a nondegen-
erate n simplex, and A’ = (x,,...,X;_,, X;,1,...,x,) the ith face of A. Since 4 is
compact and x # 0, there is an a > 1 so that

ax € 34 = |J4'.

I
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Assume that ax € 4*. Since x,,...,X;_, X, 1.---,X, span R" they lie in a codimen-
sion one hyperplane T, not containing the origin. Now, for i # k, x, lies in
T N S" 10, r) = S and it is easy to see that S is a codimension two sphere of radius
ry < r. Identifying T with R"~! and S with S""%(0, r,) and using the induction
hypothesis we have min,,lax — x| < r,. Hence there is a j with |x; — ax| < r,.
Thus B"(x,, r) contains 0 and ax as interior points and hence the line segment
[0, ax]. Since a > 1, x lies on this segment and the proof is complete.
NoTE. Henceforth we assume, for convenience, that ¢ < 1.

4.3 THEOREM. Let C C D be a locally rectifiable arc which is c-convex with respect to
balls in D and parametrized by arclength. Then

(1) C has Lipschitz continuous derivatives.
(4.2) Q) Ifx,y e C,|x —y| < (¢/2) dist(x,9D) and if ¢ is the angle
between the normal hyperplanes to C at x and y, then
sin(¢) < 4|x — y|dist(x,dD) .

PrROOF. We first show that c-convexity implies that there is a well-defined normal
hyperplane to C at x. The Lipschitz condition follows from (2), for if we parametrize
C by arclength, then 2sin(3¢) = |C'(1) — C'(s)|, where C(¢) = x and C(s) = y, and
for ¢ near zero, 2sin(3¢) and sin(¢) are comparable; the details appear later. Let
x, € C, not an endpoint. Then by translation and reparametrisation, if necessary,
we can assume that x, =0 and that C: [-1,1] » D with C(0)=x,=0. Let
d = dist(x,,, 0D) and r = Ycd. For any x € "7 1(0, r), B"(x, r) contains the origin
as a boundary point and we have the following trichotomy:

(@B (x,ryn C= @,

(b) there 1s a t > 0 such that |C(¢) — x| < r,

(c) there is a ¢ < 0 such that |C(¢) — x| < r.

Then O & B"(x,r) € D and r < cdist(x, dD) so that B”(x,r) cannot contain points
C(t,) and C(z,) with ¢, < 0 < ¢, by the c-convexity of C. Also dist(z, S" " !(r)) < r
if z € B"(r)\ {0}, so the above situation is exhaustive. Let E,, E, and E_ be the
subsets of §”~1(r) satisfying (a), (b) or (c) respectively. We have shown

(43) ELUE,UE_=S8""Yr) and E,NE,=E,NE_=E.NE =0,

It is clear that E, and E_ are nonempty open subsets of S”" !(r) and so E, is a
closed nonempty separating set in S"!(r).

4.4 PROPOSITION. The set E, described above is a codimension two sphere of radius r
and thus is centred at x;, = 0.

PROOF. Let m be the rank of a maximal set of independent vectors in E,. Suppose
first that m < n — 2. Then E; lies in a hyperplane T of codimension two and so
E, C TN S" '(r) has codimension two in S”" !(r) and hence cannot separate.
Next suppose that m = n. Let y,,...,y, be such a maximal set of vectors. Set

r(yi+y+ )
|yl+y2+ +yn|
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Then it is easy to see that y,, y,,. .., ), are in general position. Let 4 = (y,, yy,..-,0,)-
Then v = n"*(y, + --- +y,) is the barycentre of A° and so interior to this face.
Since y, = —rv/|v|, the line segment (v, y,) lies inside 4 and so the origin, which lies
on this segment, is an interior point of A. By Lemma 4.2, for any x € 4, x # 0, (4.1)
holds with strict inequality, so we have |x — y| <r for some j. Thus A4 C

f=oB"(y;, r). But y, € E, for j =1, 2,...,n and y, lies in only one of E,, E or
E _. Thus A can contain points C(¢) with z < 0 or 0 < ¢ but not both. This is a
contradiction since 4 is a neighbourhood of x,, which is not an endpoint of C.
Finally we conclude that m = n — 1, so that E lies in a codimension one hyperplane
T containing the origin and since E, separates, E, = T N S" !(r). /

PROOF OF THEOREM 4.3 CONTINUED. Proposition 4.4 enables us to define a unique
“normal” hyperplane to C at x, as the unique codimension one hyperplane through
E,. For x € C we denote this choice by T,. To see that Tj, is indeed the normal
hyperplane to C, we need only show that near x, we can parametrise C so that
(d/dt)C # 0. We require the following geometric results to obtain this parametrisa-
tion.

4.5 LEMMA. If C is c-convex with respect to balls in D and if r < cdist(x, dD), then
C N S""Y(x, r) contains at most two points.

PROOF. Suppose not. We can assume by translation that x = 0. Let u, v and w be
an ordered triple of points of C with |u| = |v| = |w| = r, thus (u, v, w) is a nondegen-
erate triangle. Let 0 < ¢ < 1 be such that r(1 + ¢) < cdist(x,9D). Then y = — 3w
lies in D and

ly—ol=Q+4%t)r, |y—ul<(+%)r and |y —w| < (1+ Lt)r.

This trichotomy arises for either one of u or w equals —v, or the triangle inequality is
strict. Now,

(1 + 42)r < cdist(x,dD) — Ltr = cdist(x,9D) — |y — x| < cdist( y, dD).

This is a contradiction to the c-convexity of C for u, w € B"(y, (1 + 3t)r) and v,
which lies between v and w on C, does not lie in this ball.

4.6 LEMMA. Let u = (u,, u,) and v = (v,, v,) be points in R? such that
up =0y = 3(|uy| + v,)).
If w = (wy, w,) is the centre of the circle through u, v and 0, then |w| < max{|ul, |v|}.

PROOF. We may assume that |u,| > |v,]. Now w, = (u, + v,) and so |w,| < |u,|.
If w, > u; we have, since clearly w; > 0,

2 2 2 2
w—ul” = (w; — )" +(w, — u,) =(w1——u1)2+(%(vz—u2))
2 2 2
< (wy = u)” + (3ol + 14])" < (wy = )" + uf < |w).
This is a contradiction since « and 0 and equidistant from w. Thus u; > w, and so

the result follows.
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4.7 PROPOSITION. Let C C D be c-convex with respect to balls in D. Let y € C and
let T, be the unique hyperplane associated to y given in Proposition 44. Let N be a
codimension one hyperplane parallel to T, with

a=dist(7,, N) < Scdist(y,dD).
Then C N N contains at most one point of B"( y, e dist( y, 9D)).

PROOEF. By rotation and translation we can assume that y = 0 and that 7, = {x =
(x45...,x,) €ER" x, =0}, so that N is the {x, =a} hyperplané. Let r
= icdist(y, D) and suppose, for contradiction, that there are at least two such
points, say « and v. By the construction of T, foreachz € T, N S" " !(r)

(4.4) B'(z,r)NnC={y}.

We will say that any ball satisfying (4.4) osculates C at y. Now consider the
two-dimensional plane P through the points u, v and 0. Considering the intersection
of P with the osculating balls and identifying P with R?, it is clear that u and v lie in
the region

B*(0, r)\{B*((0, r), r) U B*((0.-r), r)}.

T, and N parallel imply that if w = (u,, u,) and v = (v, v,), then u; = v,. Since u
and v lie in the region described above it is easy to see that u; > 1(|u,| + |v,|). Thus
by Lemma 4.6 if w is the centre of the circle through u, v and 0, then |w| <
max{|ul, |v]} < r. Thus w € D and |w| < cdist(w, dD). But B"(w, |w]) contains u, v
and O in its boundary; these are all points of C, contradicting Lemma 4.5. The result
follows.

PROOF OF THEOREM 4.3 CONTINUED. By rotation and translation we may assume
that

To={y=0»....0) €R"y =0}
In these coordinates let C(¢) = (C,(¢), Cy(2),...,C,(1)) be the arclength parametri-
sation of C. Proposition 4.7 says that in a neighbourhood of x, = 0

C ﬁ{y = ()’1, yZ"“’yn) € R"y = a}
is at most one point for all ¢ < r. This precisely tells us that C,(z) is injective in this
neighbourhood, and so a homeomorphism onto its image. Thus we can parametrise
C as C(1) = (¢, f(1)) in a neighbourhood of x, where fis a continuous function on
some interval containing 0. With this parametrisation it suffices to show that
£(0) = 0 to see that C is differentiable at x,. Since C is osculated by balls of radius r
at x,, considering the equations of the osculating spheres easily yields

F()<h(t)=r—(r*- tz)l/z.
Thus
0< ]f|(zt|)| < ﬂ’% L) = 0 ast—0.

So f’(0) = 0 and (d/dr)C|,_, = (1,0,...,0) # 0. Hence T, is the normal hyperplane
to C at x,, and since x,, was arbitrary it follows that T is the normal hyperplane to C
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at x. Next we show that for x € Candy € C N B"(x, $cdist(x, dD))
(4.5) dist(x, T, N T,) > fedist(x, D)

To see this we may assume that 7, N 7, # & and that z is a point of T, N T,
realizing this distance. If (4.5) is false, then |x — z| < cdist(x,dD) and so
dist(z, 0D) > 2d(x,0D). Thus|x — z| < cdist(z,3D) and

(4.6) ly —z| < |x — z| + |x — y| < 3cdist(x,3D) < cdist(z,3D).

Let r' = max{|x — z|, |y — z|}. Then either B"(z, r’) osculates one of x or y and
contains the other, or osculates both of x and y. Both of these conclusions are easily
seen to contradict the ¢-convexity of the curve C in much the same way as in the
proof of Lemma 4.6. Next let ¢ be the angle between the normal hyperplanes T, and
T,. To establish (4.2) we may assume that ¢ # 0. Let z be as above. Since y lies
within the ball B"(x, 5cdist(x, 9D)) and outside the balls osculating C at x, we see
immediately that £(x, z, y) € [¢, 7] and that |y — z| > |x — z|. Considering the
triangle (x, y, z) we see, from the above and from (4.5), that

1
4

x -yl _ _ ly—z
sin £(x, z, y) sin Z(y, x, z)

> |y — z] > —cdist(x,3D).

Thus
sing < sin £(x, z, y) < 4|x — y[dist(x, D).
The proof is now complete.

4.8 COROLLARY. The geodesics of the quasihyperbolic metric are C'! and satisfy
(4.2) withc = 1.

4.9 REMARK. The proof of Theorem 4.3 is entirely a local problem. It is clear that
if F is a compact set on which an arc C is ¢( F)-convex, then we obtain (4.2) for
some ¢ depending only on F. In particular we obtain the following result.

4.10 CoROLLARY. Let C be a rectifiable arc which is locally convex with respect to
balls. Then C has Lipschitz continuous derivatives. In particular, if q is a locally
Lipschitz density defining a complete metric d , then each d -geodesic has Lipschitz
continuous derivatives.

4.11 ExaMpiLE. There is a domain D € R” such that 3D is C*® and there are
infinitely many quasihyperbolic geodesics which are not C2. Furthermore there are
points in D for which geodesics are not locally unique.

PROOF. Let D = {x = (x|, x5,...,x,) € R": -1 < x, < 1}. We outline the case
n=21f z=(x, y) € D, then if y > 0 one can see that the quasihyperbolic density
and the hyperbolic density of the half-space {y < 1} agree. Thus locally the
geodesics must be the same, namely subarcs of circles orthogonal to the boundary. A
similar situation occurs when y < 0. It is clear that the line { y = 0} is a quasihyper-
bolic geodesic. We consider the geodesic between the points (2, 1) and (-2, —1).
Since subarcs of geodesics are geodesics, from the above remarks it must be that
CN {(x,y)€ D: y >0} is a subarc of a circle orthogonal to the line {y = 1}.
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Similarly C N {(x, y) € D: y <0} is a subarc of a circle orthogonal to the line
{y = -1}. Since the quasihyperbolic geodesic is C' it is not difficult to see that

C={(x,y):(x—1)2+(y—1)2=1and1<x<2}
U{(x,y):(x+1)2+(y+1)2=1and-2<x<—1}
U{(x,y):y=0and -1 <x<1}.

It is clear that C is not C? at the points (1,0) and (-1, 0). It is also clear that there
are infinitely many distinct geodesics through (0,0) in the direction (1,0). Notice
that on the { y = 0} line, the density is not differentiable, whilst elsewhere it is
smooth. The bifurcation of geodesics is a typical example of the behaviour of
geodesics at points where the density is not differentiable.

4.12 REMARKS ON CURVATURE. Since the quasihyperbolic geodesics need not be
C? we need a geometric characterisation of the euclidean curvature of C*! curves.
This can be obtained in terms of the radius of osculating balls, or tangent balls. Let

(4.7)  ry=sup{r: B"(y,r)osculates Catx forally € T, N S" }(x, r)},

where T, is the normal hyperplane to C at x. When the curve is C? the sphere of
curvature attains r, and so the euclidean curvature of C at x is K(C, x) = 1/r,. We
take this to be a definition when the curve is at least C'. If C is a c-convex curve we
obtain a lower bound on r,, namely r, > }cdist(x, dD). So that

2. -
(4.8) K(C,x) < dist(x,3D) g
Now the right-hand side of (4.8) is 2 /¢ times the quasihyperbolic density at x and so

we obtain the following bound on the total euclidean curvature of a c-convex curve:
(4.9) K. (C)= /K(C x)ds < 3[ dist(x, D) 'ds = 2y (C)
. tot c Y = ¢ c s ¢ q .

where L (C) denotes the quasihyperbolic length of C. However for quasihyperbolic
geodesics we can improve this by using Proposition 2.4 which says that the ‘cone’ at
x of radius r < dist(x, 0D) osculates C at x. This is easily seen to give the bound
ry > dist(x, D), since this is a local problem. Thus, let C be a quasihyperbolic
geodesic between the points x and y. We then have

(4.10) K(C, x) < dist(x,9D) ™",
(4.11) Ko (C) < L(C)=kp(x,y).

To see that (4.10) is sharp one need only consider the hyperbolic metric in the upper
half-space, this is the same as the quasihyperbolic metric. Then for any point there is
a geodesic through that point with euclidean curvature equal to dist(x, 3D)~!. Thus
(4.11) is infinitesimally sharp.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



QUASICONFORMAL AND BI-LIPSCHITZ HOMEOMORPHISMS 185

5. The decomposition of uniform domains. We state the main result and delay the
proof until a few necessary preliminaries have been developed.

5.1 THEOREM. Let D be a uniform domain. Then there is a constant L, depending
only on the constants of uniformity for D, such that for each pair of points x|, x, in D
there is an L-bi-Lipschitz embedding f: B"(0, |x, — x;|) = D with

{x1,x,} C f(E"(O’ |x; — x2|)).

For v € §"71, v + e, we define F: S""! - §"~! to be the unique rotation of
S~ such that

1) (1) Eer) = v
) (2) F, leaves everything orthogonal to e, and v fixed.

I wish to thank J. Vaisala for pointing out to me the explicit formula for F, in
[9, p. 77] and thus simplifying the proof of the following lemma.

5.2 LEMMA. Let u, v € S" ! and suppose that |e, — v| < |e; — u| < 22 Then
(5.2) sup|F,(x) — F,(x)] < 3'2jv — u|,
where the supremum is taken over all x € S" L.

PROOF. The result is trivial on S! and so we consider S” for n > 2. Then

(e +v)-x

(5.3) F(x)=x = {50

(ey +v) + 2(e, - x)v.

If u = e, then v = e, and the result follows. Let w € S” be perpendicular to both e,
and u. Then

v-w
Fu(w)—w and Fu(w)—w—m(el+v)
so that
_ (el+U) . (el+v) 1/2
|F,(w) Fv(w)|—u-w1+e1.v =|(v u)'w1+e1-v <22 — u|,

since |e, + v|?> = 2(1 + e, - v). Next suppose that x lies on the great circle through
e, and w. Then x = c,e, + c,w, where ¢} + ¢35 = 1, and thus

(54)  |F(x) ~ E(0)| <lal [E(e)) = E(ey)] +lesl [E,(w) = E(w)
< (e + 27e)lo — uf < 320 — uf.

Now consider the rotation F,"'F,. This leaves some great circle invariant and
|F,"'F,(x) — x| is constant and maximal on this circle. But since any two great circles
must intersect and since we have (5.2) on the great circle through e; and w, the
lemma follows.

5.3 RemMARKS. Lemma 5.2 tells us that we can take Lipschitz sections of the bundle
SO(n) = SO(n)/SO(n —~ 1). In particular, suppose that M " is a submanifold of R”
and that U C M is an open subset. Then for any locally Lipschitz f: U — S"~! with
f(U)+ S" ' wecanlift fto f: U — SO(n) as a locally Lipschitz map, which can be
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thought of as a Lipschitz frame on U. If M is a C'! manifold, then using a Lipschitz
varying orthonormal m-frame and composing with similar rotations we can find a
locally Lipschitz n-frame along U. This observation proves a Lipschitz tubular
neighbourhood theorem for immersed C'! submanifolds of R". Let "~ ! denote a
hemisphere of $”~!. We summarise the above in the following proposition.

5.4 PROPOSITION. Suppose that U is a coordinate patch of a C*' manifold and that
f: U — S" VYis a locally L-Lipschitz map. Then there is a locally 3'/? L-Lipschitz map
f: U — SO(n) such that the following diagram commutes:

SO(n)
l
U 7 SO(n)/SO0(n—1)=8""1

Further, inductively choosing f to be the orthonormal coordinate derivatives we can
choose the n-frame to be along U.

We now extend each rotation F, radially to be a rotation of R”. It is then clear
(5.5) |F,(x) = F,(x)| < 32| ju — v],

and that each F, is then a linear isometry of R".

PrROOF OF THEOREM 5.1. The above remarks are true for C!' arcs and since
quasihyperbolic geodesics are C!'! we construct a nice section of the frame bundle
along a quasihyperbolic geodesic to give a Lipschitz tubular neighbourhood and thus
the map f. Convexity with respect to balls will give the local results while the
uniform conditions, which hold along a quasihyperbolic geodesic, will give the global
results.

Let x; and x, be points of D and let C be a quasihyperbolic geodesic between
them, parametrised by arclength. Thus C: [0, S]— D, C(0) = x,, C(§) = x, and
S = [/(C). Let a and b be the constants of uniformity for D and set M = 100ab. Let
H =1[0,S]x B" (M '|x, — x,]). We then define our prototype doublecone do-
main, on which we base our construction, as

G={(t,tx/S): (t,x) € Hand 1 < 1S}

U{(e,(S—1)x/S): (r,x) € Handt > 35},
and for 0 < 1 < S let

G=Gn{y=(y,....n) ER"y, =1}.
Then by (3.1)

4 ) 4b .

= s x,jmin{s, S =1} < M—Slxl — x,|dist(C(z),3D).
It is clear that there is an L,-bi-Lipschitz homeomorphism h: B"(|x; — x,|) = G,
where L, depends only on @ and b, for by (3.1) S < a|x; — x,| Nextlet T, = { y =
(¥15----Y,): ¥y = t}, and let N, denote the normal hyperplane to C at C(7). Since
C(1) is a C'! arc parametrised by arclength, |C’(t)] =1 and C”: [0, S]—> S" ' is
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locally Lipschitz and hence not spacefilling. We may assume by a rotation of R” that
C’'(3S) = e,. We now define a locally Lipschitz collection of rotations of R” that will
map the hyperplane orthogonal to e, parallel to N,.

Let t;€[0,8),j=-m, -m—1,...,-1,0,1,...,n — 1, n, be a finite collection of
points such that

(5.7) (2) (C(t;) = C ;)| =2 for-m<j<n-1,

(3) IC(1) = C(1,_1)1 <2V fort;<t<t,,,andall;.

(1) ¢.,=0, t,=1S8, t,=38,
)

Suppose that |t — s| < § dist(C(¢),dD), t < r < s and ¢ is the angle between the
normal hyperplanes N, and N,. Then, by (4.2)
sin(¢) < 4/C(1) — C(r)|dist(C(r),dD) "
< 4)r — ridist(C(1),3D) ™" < 1.
Thus ¢ € [0, 7 /2] and so
|IC'(r) — C’'(r)| = 2sin(4¢) < 2"/%sin(¢) < 272,
Thus,
IC'(r) = C'(R)I<IC(1) = C(n)| +1C(1) = C(r)| < 2%, 1<r<n<s,

and so for no two points r, r, between ¢ and s is it true that C’(r,) is orthogonal to
C’(r,). From (5.7) there is a j so that

5.8 1. <t<s<t, or t,<t<t,, <S<t,, .
J Jj+1 J J+1 Jj+2

For ¢ € [0, S] we define a rotation of R” inductively as follows. Set F, = identity.
We suppose that r > t; the construction for ¢ < ¢, is similar. There is a j so that
1, <t <1, Let P, be the rotation in the great circle through C’( t;yand C'(¢) as in
(5.1) but mapping C’(¢;) to C'(z). Then set

(5.9) F,=P-F:8"'>s§"L

Essentially we are renormalizing the rotations at the points C '(¢;) in case that C’
does not lie in a hemisphere. If we extend each F, radially to a rotation of R”, then it
is clear that F,(e;) = C’(r) and that F, maps T, parallel to N,. We now show for ¢,
s € [0, S]with|s — | < % dist(C(¢),0D) and x € $”" 1, that

(5.10) |F,(x) = F(x)| < (96)%a )t — s,

. where d = min{dist(C(¢),dD), dist(C(s),dD)}. To see this we may assume by
symmetry that ¢+ <s and d = dist(C(s), D). By (5.8) there are two cases to
consider. We consider the latter, the other case being similar. Now,

|F(x) = F()I < |FE(x) = F_ (x)| +|F(x) = F, (x)I.
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Since F, and F are both rotations through great circles through C’(z,) we obtain
from Lemma 5.2 replacmg e, by C'(1)),

|F(x) = F,_ (x)|<37IFE(C(1) = F,_(C(+))]
= 321C"(1) = C(1,,,)| = 3'*2sin(49)
< 322" 2sin(¢) < (96) *|C(1) = C(t,.,)Mdist(C(z), D)™
< (96)"%1e = 1, |dist(C(¢), D)™

This follows from (4.2) and the above. A similar estimate holds for F, and F, , and,
since [t — ¢,,4| + |t;,, — s| = |t — 5], (5.10) easily follows. Thus the F, form a locally
(96)!/2-Lipschitz frame along C.

Next let H,(x) = F(x — (£,0,...,00) + C(¢) fort € [0, S], and let g: G —» D be
the map

(5.12) g(x)=H/(x) forxeG,.

Now each H, is an isometry and since G = U,G,, g is well defined and by (5.6),
g(G) C D. We have three things to establish:

(1) gisinjective,
(5.13) (2) gis locally bi-Lipschitz,
(3) gis globally bi-Lipschitz.

(1) It is clear that g is injective on each G,. By construction H,(G,) and H/(G,) lie
on the normal hyperplanes to C at C(¢) and C(s) respectively. Since C is a
quasihyperbolic geodesic, these hyperplanes cannot intersect within § dist(C(¢), 9D)
unless |C(1) — C(s)| > 1 dist(C(¢), 3D), by (4.5). By (5.6)

diam(H,(G,)) = diam(G,) < (254) 'dist(C(1), dD),

and similarly for diam( H,(G,)). Thus g is injective, since H,(G,) N H(G,) = &.
(2) Let r(z) = (8b) 'min{z, S — 1} < 871 dist(C(¢), D).
We show that if x € G,and y € G, with |1 — 5| < r(¢), then

(5.14) (3a)"1x =yl < 1g(x) — g(»)] < 3|x — y|.
By symmetry we may assume that dist(C(s), 0D) < dist(C(#), D). Let
xo =10, x3,...,x,), ¥ =1(0, ¥, 3)
so that x,, y, € T;,. Then,
lg(x) — g(»)|=|H,(x) - H(y)|
(5.15) =|F(x —(1,0,...,0)) — F.(y —(s,0,...,0)) + C(z) — C(s)|
= |F,(x0) - F(y) + Z!»
where z = C(t) — C(s). By (5.10)
IE(30) = F(3)1 < (96)" 1yl I = sldist(C(s),3D) ™

1l
\Sal S|
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for | y,| < § diam(G,) < (50a)'dist(C(s), 3D). Thus by the triangle inequality
18(x) = g(¥)I < |E(x0) = F(yo)l + [F:(y0) = F(y0)| + |21
< Pxo = yol +(5a) 7|t — 5|+ J = s} < 3x = yl.
Similarly,
(5:16)  1g(x) = 8(») > |z + E(xo) = E(30)l = (5a) Ix = yl.

Now F,(x, — y,) lies in the hyperplane through the origin parallel to N, and so
C(t) + F(xy — y,) liesin N,. Also C(s) lies on N, and

|IC(2) = C(s)| < |t — s| < r(r) < 4 dist(C(¢),dD),
so C(s) lies between the osculating balls to C at C(¢) of radius 3 dist(C(¢), 3D). One
can then sec that the angle between the line through C(z) and C(s), and N, is
between 7 /3 and 57/6. Considering the triangle (C(¢) + F,(xy — yy), C(¢), C(s))
by the law of cosines we see,

2 2 2
|z + F(xo = yo)| =1xo =yl +1C(s) = C(1)]
—2|xo = yol [C(s) — C(2)|cos(7/3)
2
> 3(Ix - yl/a)".
For |t — 5| < a|C(t) — C(s)|and |xq — yo|® + |t — s|* = |x — y|* This together with
(5.16) yields
18(x) — g(»)1= (3a)|x = yl.
This establishes (5.14) and so g is a locally 3a-bi-Lipschitz embedding.
(3) Since G is convex, if x, y € G then the line segment between x and y lies in G

and the image of this line segment has length no more than 3|x — y| for locally g is
3-Lipschitz, and g([x, y]) joins g(x) to g(y). Thus

g(x) — g(¥)I < 3lx - yl.
Next suppose that x € G, and y € G, with |s — | > max{r(¢), r(s)}, otherwise
(5.14) yields the result. Since g is an isometry on each G, we have

lg(x) — g(¥)| > 1g((z,0,...,0)) — g((x,0,...,0))| — 3 diam(G,) — ; diam(G,)
>1C(1) — C(s)| —(Ba) |t — s = (2a) |t — s
Then

diam(G,) = min{z, S — 1 }|x; — x,| < (3a) 'r(1) < Ba) 't — s},

4
MS
and similarly for diam(G,). Next,
|x — y| < |s — t| + 4 diam(G,) + 3 diam(G,) < 3|s — 1].
This together with the above yields
18(x) — g(»)1 > (3a)Ix — y.
Thus we have

(5.17) (3a) x — yI <lg(x) — g(»)] < 3|x — yl.
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It is now clear that f = g - h: B"(|x, — x,|) > R" is the desired bi-Lipschitz embed-
ding to establish Theorem 5.1.

5.4 REMARKS. (1) It is not difficult to explicitly construct the map 4 and estimate
the associated Lipschitz constant to be less than 200ab. Thus (5.17) yields

(600a%h) '|x — y| < |f(x) = f(¥)| < 600ab|x — y|.

The right estimate appears to have the correct order whilst the left does not.

(2) We recover Theorem 3.4 when n = 2, because each bi-Lipschitz map of a disk
extends to a quasiconformal homeomorphism of R2, and the dilatation of the
extension depends only on the Lipschitz constants [1].

(3) Since bi-Lipschitz balls are uniform domains it is clear that Theorem 5.1 holds
in a domain D if and only if D is uniform.

(4) Since the construction was based on a quasihyperbolic geodesic which is a
tame arc, it is clear that f( B"(]x, — x,|)) is tame and so has a topological extension.
Example 3.8 shows that there is a topological obstruction to this extension being
quasiconformal with dilatation depending only on the Lipschitz constants, when
n = 3. Theorem 3.7 is true in all dimensions greater than three. Indeed we can
suspend the map of 3.7 on the points (0,0,0, +1) in R*. Since the map of 3.7 was
not one locally coconnected neither will be the suspension [2, 4A]. It is easy to see
that the suspension will be bi-Lipschitz. We can now induct on this construction to
provide higher dimensional examples. However such examples do not provide
counterexamples to higher dimensional analogues to Theorem 3.4, since in our
construction each map g, has an extension and as in 3.8 the limit of such maps may
be forced to be wild at two points, this is the basis of 3.8. However when n > 4
wildness at a discrete set is not an obstruction to an extension [2, Corollary 3A.5].
Thus there i1s no topological obstruction to an extension which is quasiconformal
with dilatation depending only on the Lipschitz constant. One is led to conjecture
that higher dimensional analogues to 3.4 might be true.

(5) [ADDED IN PROOF] Recently I have found examples, for all # > 2, of topologi-
cally flat (n — 1)-spheres in R” which are locally K-quasiconformally flat except at
one point (for all K > 1) and not quasiconformally flat for any finite dilatation.
Thus bad behaviour (in a quasiconformal sense) at a discrete set is not necessarily a
removable condition in the quasiconformal category, see [12]. The main feature of
these examples is that the complementary domains of these (n — 1)-spheres are
uniform. It then seems that the higher dimensional analogues of Theorem 3.4 are
also false for n > 3.
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