
transactions of the
american mathematical society
Volume 158, Number 2, August 1971

QUASICONFORMAL MAPPINGS
AND ROYDEN ALGEBRAS IN SPACEO)

BY

LAWRENCE G. LEWIS

Abstract. On every open connected set G in Euclidean «-space R" and for every

index p > 1, we define the Royden /»-algebra Mr(G). We use results by F. W. Gehring

and W. P. Ziemer to prove that two such sets G and G' are quasiconformally

equivalent if and only if their Royden «-algebras are isomorphic as Banach algebras.

Moreover, every such algebra isomorphism is given by composition with a quasi-

conformal homeomorphism between G and G'. This generalizes a theorem by M.

Nakai concerning Riemann surfaces. In case p^n, the only homeomorphisms which

induce an isomorphism of the /»-algebras are the locally bi-Lipschitz mappings, and

for 1 <p < n, every such isomorphism arises this way. Under certain restrictions on the

domains, these results extend to the Sobolev space Hp(G) and characterize those

homeomorphisms which preserve the Hp classes.

Introduction. In 1960 Nakai proved [12] that two Riemann surfaces are

quasiconformally equivalent if and only if their Royden algebras are isomorphic.

In this paper we characterize a class of homeomorphisms and a family of Banach

algebras which extend this result to higher dimensions.

On each finite subset G of Euclidean «-space Rn we define the Royden /»-algebra

MP(G) for arbitrary p>l. MP(G) is a commutative semisimple Banach algebra

with identity. We then form the Gelfand compactification of G with respect to the

Royden/»-algebra and call it the Royden/»-compactification of G [15].

We also define 2p_maPPmgs of G onto G' and characterize them to be exactly

those homeomorphisms which induce by composition an isomorphism between the

respective Royden/»-algebras. Using the Gelfand theory we prove that for 1 </»5=«

every such isomorphism is obtained by composition with a gp-mapping.

If G has finite measure we may consider MP(G) to be a subset of the Sobolev

space HP(G). With certain restrictions on the domains, we also prove that the Qp-

mappings are exactly those homeomorphisms which leave the Hp classes invariant.

Recently F. W. Gehring has shown that all gp-mappings are quasiconformal

mappings. In fact for every /» ̂  « they are precisely the class of all bi-Lipschitz
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mappings. Thus the case p = n is distinguished when studying either the Royden

algebras or the Sobolev spaces under composition. This special case was introduced

by C. Loewner [8] as "conformai capacity" and studied by F. W. Gehring [4].

H. M. Reimann [14] has recently considered a class of homeomorphisms similar

to the ßp-mappings.

The author wishes to express appreciation to Professor George Springer for his

inspiration as thesis advisor and to Professors Frederick Gehring and William

Ziemer for their many helpful suggestions.

1. Preliminaries. The following notation is used: mn is «-dimensional Lebesgue

measure, mn-x is (n— l)-dimensional Hausdorff measure, LP(G) is the usual space

of equivalence classes of functions / for which |/|p is mn-integrable, with norm

||/||p, and Cq(G) is the space of infinitely differentiable functions with compact

support contained in G. Unless otherwise indicated, all functions are complex-

valued and all integrals are taken over G (or G'). x = (xx,..., xn) denotes an arbi-

trary point in Rn, B(x, r) and S(x, r) are the usual ball and sphere, abbreviated Bn

and 5""1 in case x = 0 and r=l, and con = mn-x(Sn~1).

Denote by ACL (G) the collection of all functions which are absolutely con-

tinuous along the intersection of every compact «-interval with «?„_ ̂ almost every

line parallel to the coordinate axes. Note that every fe ACL (G) has a gradient.

More generally, a function/has a (weak) gradient

V/=(r\...,r")

if there exist distributional derivatives f satisfying

(1.1) jwridmn= -jf~dmn,       weC£(G),

for /= 1,..., «. Then the Dirichlet p-integral of/is

c c r -^     ~ip'2
DP[f] = J |V/|* dmn = J |^2 \r'\2 I     dmn.

In case/has locally integrable partial derivatives, they are equal mn-a.e. to the r\

and hence satisfy (1.1). Thus, for/e ACL (G) with Dp[f] <oo, V/as defined above

is the usual gradient.

A real-valued function u is of class Hp on G if u e LP(G) and if u has a gradient

and satisfies Dp[u]<oo. A homeomorphism is of class Hp on G if each of its

coordinate functions is. H\(G) is the space of all such functions with the norm

= {J[|"l2+|VM|T2^n}1,P.

As is customary with LP(G) we write u e Hl(G) and mean that u is of class 77¿ on

G. HP(G) is complete in this norm, and each of its equivalence classes contains a
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1971] QUASICONFORMAL MAPPINGS AND ROYDEN ALGEBRAS 483

representative in ACL (G) [10, p. 66]. This fact together with Fubini's theorem

implies the following.

Lemma 1.1. A continuous real-valued function u which is locally of class Hp on G

is in ACL (G).

A ring Risa connected open set in /?" whose complement consists of a bounded

component C0 and an unbounded one Gx. For 1 </» < oo, the p-capacity of R is

cappR = infíí \Vu\pdmn\>

where the infimum is taken over all continuous functions u e ACL (R) with constant

boundary values 0 and 1. As in [3, p. 358] each such function may be extended to

Rn and the integral taken over Rn without affecting capp R. Such an extended

function is admissible for R.

In case R is the spherical ring {x : a< \x — xQ\ <b}, then

p = n,cap, R = œj f z«"1 dtV " = o,n(log b/a)1-»,
(1.2) U« J

= œn((b*-a«)lqy->,      p*n,

where q = (p — n)l(p—l). Note that this gives easily the existence of a unique

extremal function for capp R whenever R is a spherical ring; for /» = « this is well

known and for/» # « it is the function |x\" with proper normalization. The uniqueness

follows from Clarkson's inequality as in [11, pp. 74, 77].

2. The Royden /»-algebra.    Denote by MP(G) the collection of all continuous

functions/such that

(i)/GACL(G),

(ii) ||/|«=supo|/|<oo,

(iii) 7>p[/]<co.

Since Minkowski's inequality implies

(2.1) />p[/g]1,p = ll/IU/>p[g]1/p+||g||oo/>p[/]1"',

it follows that MP(G) is an algebra under pointwise multiplication with the constant

function 1 as identity.

Theorem 2.1. With the norm

(2.2) l/ll = I/|U + Z>P[/]1/P,

MP(G) is a complex commutative Banach algebra with identity.

Proof. We conclude from (2.1) that \\fig || ̂  ||/|| || g ||, and since || 11| = 1 we only

need to show that MP(G) is complete in the norm (2.2) to finish the proof.

Let {/} be a Cauchy sequence in MP(G). Then {/} converges uniformly on G to a

bounded continuous function/ and the derivatives {/}} form a Cauchy sequence in
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LP(G), z'=l,..., «. There exist fonctions r1,.. .,rn eLp(G) suchthat ||r} —r'||p-> 0,

and an easy calculation shows that /and r' satisfy (1.1). Thus/has a gradient

satisfying Dp[f]< co, and/is locally of class Hp on G. Finally Lemma 1.1 implies

that/e ATp(G), proving the theorem.

A sequence {/} of functions in MP(G) converges in the BDp-topology to/if

(0   ||/-/||œ^A/<oo,

(ii) / —»/uniformly on compact subsets of G,

(iii)   Dp[/_/]^0.

Corollary 2.2. MP(G) is complete in the BDp-topology.

Proof. Any Cauchy sequence in the BDp-topology converges uniformly on

compact subsets to a bounded continuous function, and the proof is similar to the

above proof.

3. Induced isomorphisms. Let F be a homeomorphism of G onto G'. Denote

Te QP(K)=QP(K; G) if for some K<ao

cappF(F) ^ ATcappT?

for every spherical ring R satisfying R<=G. Fis called a Qp-mapping if Te QP(K; G)

and T~x e QP(K; G') for some A". F is a quasiconformal mapping if for some

l^FJ<oo

TC"1 capn R ^ cap„ T(R) ^ TCcapn R

for every ring R satisfying R<=G.

The restriction to spherical rings in the definition of QP(K) is necessary for the

additivity of the /^-capacity in (4.3).

Remark 3.1. It is well known that a ßn-mapping is a quasiconformal mapping

(see [3], [11] or [19]). Thus every ßp-mapping is a quasiconformal mapping [5,

Theorem 1] and is in fact a bi-Lipschitz mapping for p^n [5, Theorem 2]. It

follows easily (see Corollary 3.3) that the class of ßp-mappings for all p^n is

precisely the class of all homeomorphisms F which together with their inverses

satisfy the following Lipschitz condition: There exists an AT<oo such that

(3.1) limsup^f-^^M,       xeG.

Theorem 3.2. Every Qp-mapping T of G onto G' induces an algebra isomorphism

<pT of MP(G') onto Mp(G) defined by

(3.2) <Pr(f)=f°T,      feMp(G').

Proof. Since the composition <pT clearly preserves the algebraic operations, we

prove only <pr(ATp(G'))cATp(G). This will complete the proof since the opposite

inclusion follows similarly.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1971] QUASICONFORMAL MAPPINGS AND ROYDEN ALGEBRAS 485

Let/eMp(G') and set « = Re/and v = u°T. In case p + n it follows from (3.1)

and the Rademacher-Stepanoff theorem [17, p. 310] that 7and 7"1 are differentiable

w„-a.e. and that

(3.3) M~n á |77| á Mn       mn-a.e. in G,

for some M<oo. Again using (3.1), we get

(3.4) \Vv\^M\Vu\°T       mn-a.e.inG.

Then (3.3) and (3.4) yield

f \Wv\pdmn á Mp f \Vu\p°Tdmn
Jg Jo

^ Mp + n f |V«|P o T\JT\ dmn = Mp + n f   |Vh|p dmn.
Jg Jg

Forp = n let Q he any «-cube satisfying Q<=G and denote Q' = T(Q), u0 = u\Q'

and v0 = u0° T\Q. Then u0eHi(Q') and it follows from [20, Remark 4.2] that

v0 e Hl(Q) and

f  |Vi>0|"<*í!b Ú K i   |Vm0|"<ämb.
Jo Jo-

Exhausting G by a sequence of disjoint cubes gives

í \Vv\ndmn Ú k\   \Vu\ndmn.
Jg Jg'

We apply the above argument to Im/and see that for any 1 </»<co there exists a

constant K2 depending only on K, M, p and « such that

(3.5) Dp[g] Ï K2Dp[f],

where g=f° T,fe MP(G'). Lemma 1.1 then implies that g e MP(G), concluding the

proof.

Corollary 3.3. Every homeomorphism T of G onto G' such that 7 and T'1

satisfy (3.1) is a Qp-mapping for all p.

Proof. Such a 7satisfies (3.3) and (3.4). Let R' be a spherical ring in G', R^G',

and let u be the extremal function for capp /?'. Setting v = u ° 7, the above proof gives

capp/? ^  f IVi»!"^ ^ Mp + n {   \Vu\pdmn = Mp + ncappR',
Jg Jg'

where R = T~1(R'). Hence 7"1 e Qp(Mp + n) and the corollary follows by applying

the same argument to 7.

4. Characterization of (/-mappings. In this section we give a necessary and

sufficient condition for a given homeomorphism 7 of G onto G' to be a ßp-iriapping.
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Suppose that F has the property that u = v ° F_1 is admissible for T(R) whenever

v is the extremal function for capp R for any spherical ring satisfying R^G; i.e.,

suppose F"1 preserves ACL functions. Suppose further that there exists a constant

Kx<oo independent of R such that

(4.1) D,[ur> Ú Kx\\v\\

whenever u and v are as above.

Lemma 4.1. Te QP(K) for some K^Kf.

Proof. If the lemma were false there would exist a spherical ring R =

{x : a< \x — x0\ <b} with F<=G such that

(4.2) capp T(R) ^ dp capp R

for some d> Kx. We may assume that capp R is arbitrarily large because for any

positive integer m we may define

Rj = {x : rj_x < \x-x0\ < r,},      j = l,...,m,

where

r, = [am-jb']llm, p = «,

= [((m-j)a"+jb'l)lm]ll\       p * n,

and q = (p — ri)l(p—l). Then capp Rj = m"~1 capp R and

(4.3) 2 (caP" Ri)1K1-" = (capP R)lia-"\

which together with the /^-capacity version of [2, Lemma 2] gives

dp capp R S (f (capp It*,))1"1 "4

An easy calculation shows that for some l=k^m we must have

capp T(Rk) ^ mp-1d" capp F = d" capp T^,

and Ffc satisfies both (4.2) and capp Rk = mp~1 capp R. Thus we could use Rk

instead of R.

Now choose some c, with Kx<c<d, and assume

cappF > cp(d-c)~p.

Let /j be the extremal function for capp R and set u = v o T~x. Then by hypothesis

-DpM^capp T(R), and it follows from (4.1) and (4.2) that

Kx\v\\ ^ Dp[u]llp ^ (cappT(R))llp ^ d(capp R)llp

= (d-c)(cappR)1'p + cDp[v]llp > c(l + Dp{vf'p) = c||i>||.

But this gives c<Kx, contradicting the choice of c>Kx and proving the lemma.
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Theorem 4.2. Every homeomorphism T of G onto G' for which <pT is an algebra

isomorphism of MP(G') onto MP(G) is a Qp-mapping.

Proof. Let R he a spherical ring, 7\CG, and let v he the extremal function for

capp R. Then <pf x(v) = v ° T'Y = u e MP(G'), and u is clearly admissible for T(R).

In §6 we apply some Banach algebra results (Lemma 6.1) to prove that 9>f1 is a

bounded operator. Setting A'1=||99f1|| satisfies (4.1) and by Lemma 4.1 we have

Te QP(K) for some K^ Kp. Applying the same argument to 7completes the proof.

Theorems 3.2 and 4.2 give the following characterization of a f2p-maPPmg-

Corollary 4.3. Let Tbe a homeomorphism of G onto G'. Then T is a Qp-mapping

if and only ifcpT is an algebra isomorphism of MP(G') onto MP(G).

Another corollary follows from Theorem 4.2 and Remark 3.1.

Corollary 4.4. Let T be a (¿„-mapping of G onto G', p^n. Then MP(G) and

MP-(G') are algebra isomorphic for every p'.

Corollary 4.5. <pT is an isometry if and only ifiT, 7_1 e ÖP(1).

Proof. If T,T~1e Qp(l) then it follows that the constant K2= 1 in (3.5). For

/? = « this is well known and for /»#« it follows from Remark 3.1 and the fact that

K0 = K2nlp in the proof of [5, Theorem I]. Then (3.5) applied to 7and 7"1 implies

that Dp[f] = Dp[cpT(f)], feMp(G'). But ||/||x = |M/)|U trivially, proving the

isometry.

Conversely, if cpT is an isometry then (4.1) holds with A'1=l and Lemma 4.1

implies Te ßp(l). The same is true for 7_1, concluding the proof.

5. Sobolev spaces. With certain geometrical restrictions on the domains G and

G' the techniques of the previous section may be used to characterize those homeo-

morphisms whose composition maps the Sobolev spaces //P(G) and HP(G') onto

each other.

Let Gx he a convex subdomain of G. G is star-shaped with respect to Gx if G

contains every cone whose vertex is in G and whose generators terminate on Gls

i.e., if G is star-shaped with respect to every point of Gx- We first give a Sobolev

imbedding lemma.

Lemma 5.1. Let G be a domain which is star-shaped with respect to some convex

subdomain and which satisfies mn(G) < oo. Then there exists a constant M, depending

only on p and G, such that every v e HP(G) satisfies

(5.1) H„ í M(Dp[v]1'p + mn(G)-1\\v\\x).

Proof. The cases 1 <p^n and /»>« are just special cases of Theorems 2 and 1,

respectively, of [18, pp. 56, 57]. Cf. also [7, pp. 369-380].

Remark 5.2. Actually (5.1) holds for more general domains than those con-

sidered in Lemma 5.1. For example [7, Remark 4 and Theorem 2, p. 376], if
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G=GX u G2, where (5.1) holds for Gx and G2, and if mn(Gx n G2)>0, then (5.1)

holds for G. See [10, Theorem 3.2.1 and pp. 72-74] for a still more general class of

domains for which (5.1) holds.

Theorem 5.3. Let G and G' be domains of finite measure for which (5.1) holds,

and let T be a homeomorphism of G onto G'. Then T is a Qp-mapping if and only if

<pT maps TTp-(G') onto HP(G).

Proof. If F is a ßp-mapping we use Ziemer's theorem [20] to prove that com-

position with F preserves the Tip classes. In case p=£n we conclude from [5, Lemma

7] and Remark 3.1 that Fis bi-measurable. (3.1) implies that \\dT~1\\=M, hence

that F"1 is of class 77¿-. on G, where p'=p(n— 1 )/(p— 1). Then for any l<p<co it

follows from [20, Theorem 1.1], as in the proof of (3.5) for p = n, that Dp[v]¿

K2Dp[u]<co and v e H¡(G) whenever v = u°T, u e HP(G'). Thus ||ü||1<co and

Dp[t>]<oo, and (5.1) implies ||t>||p<co. Finally this means v e HP(G) and q>T(Hp(G'))

c7Tp(G). The opposite inclusion follows similarly, proving half of the theorem.

Conversely, if <pT maps HP(G') onto HP(G), then by Lemma 1.1 its restriction is

actually an isomorphism between the Royden p-algebras, and the other half follows

from Theorem 4.2.

Remark 5.4. The boundedness of the partial derivatives of both Fand F-1 is

known to be sufficient for F to preserve the Hp classes [10, Theorems 3.1.5 and

3.1.6]. Theorem 5.3 shows that this condition is also necessary for />/«. It is not

necessary for p = n, since the partial derivatives of a quasiconformal mapping

need not be bounded.

6. The Royden ^-compactification. We recall first some well-known facts about

Banach algebras. Let A be a normed algebra of continuous functions defined on G

which contains the constant functions. Suppose that A is regular, i.e., that for every

closed set W<=G and every xeG—W there exists somefe A such that/=0 on W

and/(x)#0.

Denote by G* = GA: the collection of all nonzero bounded complex linear

functionals x on A which satisfy

x(/g) = x(/)v(g)   and   x(f) = xW),      f.geA-

Then |[y|| = 1 for every y s G*, and G* is contained in the unit sphere of the dual

space of A, inheriting the relative weak* topology generated by A. That is, Xa -* X

in G* if and only if

um W/)-yC0I = 0,       feA.
a

In this topology G* is closed, and hence is a compact Hausdorff space by Alaoglu's

theorem [16, p. 202]. For each x e G define

x(f)=f(x),      feA.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1971] QUASICONFORMAL MAPPINGS AND ROYDEN ALGEBRAS 489

Then since A is regular, x-> x is a homeomorphism of G onto a subset G = GA

of G*.

Suppose in addition that A is selfadjoint and inverse-closed, i.e., that/e /I implies

feA and that/e^ and info|/|>0 imply l¡f=f~1 e A, respectively. For each

fe A define

Âx) - xifi),      x e G*.

Then /-»■/ is a homomorphism of A onto a subset Â of C(G*), which by the

Stone-Weierstrass theorem is dense. It follows [12, p. 163] that G is dense in G* and

that

(6.1) G*-G = {xeG*:v(/) = 0,/e^0},

where A0 denotes those functions in A with compact support in G. Since G* —G is

thus the intersection of a family of zero sets of continuous functions, G is open in

G* and A=AA = G* — G is called the A-ideal boundary of G. For every xeG,

f(x) = x(f)=f(x), and by identifying G with its homeomorphic image G we may

consider / to be a continuous extension of/to G*. Then G* = G* is the A-

compactification of G [I, Chapter 9] (which is unique up to a homeomorphism

which leaves G fixed).

Note that MP(G) is regular since it contains Cq(G). That MP(G) is selfadjoint is

trivial, and it is easy to verify that it is inverse-closed. Thus we may apply the above

theory to the Royden /»-algebra, in which case A and G* are called the Royden

p-ideal boundary and the Royden p-compactification, respectively, of G.

Since MP(G) separates points, it is semisimple, i.e.,/->/is one-to-one. Thus we

have the following result [9, p. 76] which has already been used in the proof of

Theorem 4.2.

Lemma 6.1. Let if> be an algebra homomorphism from a commutative Banach

algebra onto MP(G). Then </> is a bounded linear operator.

Lemma 6.2. For I <p^n, no point of the Royden p-ideal boundary A has a

countable neighborhood basis.

Proof. Assuming the contrary as in [13, p. 558], let {(/} be a countable neighbor-

hood basis for the topology at v e A and let V} = U¡ n G. Then {V,} is a sequence of

nonempty open subsets of G, and we may assume that ï^+ic V¡,j= 1,2,.... For

each y, V¡— Vj+1 contains some ball B(x¡, /»y). Define R, = B(xj, bj)-Cl (B(x„ a,)),

where
a, = bjexp-(2ioJn)1«n-1\ p = n,

= ¿»y[l-?/3y-«(2íaJn)1/(p~1)]1,<!,     P <n;

then cap„ Rj = 2~i,j=l, 2,....

Denote the extremal function for capp R¡ by vt and set

k oo

wk(x) = 2 vÂx)   and   w(x) = 2 «?/*)•
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Since we may choose vf = 0 on G — B(Xj, b,) and since {B(x¡, b,)} are all disjoint,

{wk} converges uniformly on compact subsets of G to w, and OsjiviH. Also

Dp[wk — w] = 2~k-> 0, and wk -> w in the BDp-topology. Then >veATp(G) by

Corollary 3.2, and w has a continuous extension to G*. Choosing y,?e S(x¿, b,) gives

yj-*X with w(yi) = Q- But xf-+x also and #(;£,) = 1, contradicting the continuity

of w and proving the lemma.

7. Induced homeomorphisms. Let ¡/> be an algebra isomorphism of MP(G') onto

ATp(G). Then the adjoint mapping F*, defined by

7**(x) = x ° </-,       X 6 G*,

is a homeomorphism of G* onto a closed subset of G'* [9, p. 76]. Since </i-1 satisfies

the same conditions it is clear that T*(G*) = G'*.

Suppose that T*(G) = G'. Then composition with x^x and its inverse would

induce a homeomorphism F of G onto G' satisfying

(7.1) T(x) = y,   where j) = T*(x).

Note that the isomorphism </< would be given by composition with F, for let

fe MP(G'). Then for any x e G

(7.2) 4-(f)(x) = x o Kf) = T*(x)(f) = y(f) = /<> F(x),

where y = F(x).

Theorem 7.1. For l<pfín, every isomorphism 4> of MP(G') onto MP(G) induces a

Qp-mapping T of G onto G' such that <p = <pT.

Proof. For l<p^n, Lemma 6.2 implies that T*(G)<=G' and that T*-\G')<=G.

Thus the above argument holds, and (7.2) gives <¡> = <Pt- Theorem 4.2 concludes the

proof.

Corollary 7.2. For 1 </>á« there is a one-to-one correspondence between Qp-

mappings of G onto G' and algebra isomorphisms of MP(G) onto MP(G') given by

F—» 9>r_1-

Corollary 7.3. G and G' are quasiconformally equivalent if and only if MP(G)

and ATp(G') are algebra isomorphic for some p satisfying l<piín.

Remark 7.4. Using [6, §10] we may now observe that AT3(G) and M3(B3) are not

isomorphic if the boundary of G has an inward directed spire or an outward

directed ridge.

8. The Royden /j-ideal boundary. We conclude with some remarks about the

behavior of A under ßp-mappings defined on G. The Royden p-harmonic boundary

T is defined by

r = {xeG*:xCO = 0,/6A/A(G)},
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where M&(G) denotes the closure in the BDp-topology of the functions in MP(G)

with compact support in G. It follows from Corollary 2.2 and (6.1) that T is a

closed subset of A.

Theorem 8.1. Every Qp-mapping T of G onto G' induces a homeomorphism of A

onto A' whose restriction to F is a homeomorphism onto P.

Proof. By Theorem 3.2, 7 induces an isomorphism cpT of MP(G') onto MP(G)

which in turn induces a homeomorphism 7* of G* onto G'* defined by

T*(x) = X°<Pt,       X e G*.

But for x e G

T*(x)(f) = Xocpr(f)

= x(foT)=f(y)=y(f)

for all/e MP(G'), where y=T(x). Thus 7*(G)<=G', and the opposite inclusion

implies that the restriction of 7* to A is the desired homeomorphism.

Now let y g T and let {/„} be a sequence of functions in MP(G) with compact

support which converges in the BDp-topology to/. We show that T*(x)(f) = 0.

Denote gn=fn ° 7 and g=/° 7. Then (3.5) implies that Dp[gn-g] -> 0, and {gn}

converges to g in the BDp-topology. But each gn has compact support and

T*(x)(f) = X ° fr(f) = X(g) = 0.

Thus 7*(r)cr", and the opposite inclusion completes the proof.

Added in proof. H. M. Reimann has recently made me aware of a simple example

which shows that Theorem 7.1 is false for /»>«.
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