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■ Abstract Computation is one of the centerpieces of both the physical and bi-
ological sciences. A key thrust in computational science is the explicit mechanistic
simulation of the spatiotemporal evolution of materials ranging from macromolecules
to intermetallic alloys. However, our ability to simulate such systems is in the end
always limited in both the spatial extent of the systems that are considered, as well as
the duration of the time that can be simulated. As a result, a variety of efforts have
been put forth that aim to finesse these challenges in both space and time through
new techniques in which constraint is exploited to reduce the overall computational
burden. The aim of this review is to describe in general terms some of the key ideas
that have been set forth in both the materials and biological setting and to speculate on
future developments along these lines. We begin by developing general ideas on the
exploitation of constraint as a systematic tool for degree of freedom thinning. These
ideas are then applied to case studies ranging from the plastic deformation of solids to
the interactions of proteins and DNA.

UNIVERSALITY, SPECIFICITY, AND THE
ROLE OF COMPUTATION

The Tension Between Universality and Specificity

One of the key threads running through much of modern physics is the search

for those features of the world around us that are universal. Indeed, the notion of

universality is one of the central tenets of statistical physics and posits that in certain

cases only a minimum of information about the system (i.e., the dimensionality

of space and the order parameter) must be in hand in order to characterize that

system. The study of phase transitions has exploited such universality at every

turn. However, the notion of universality can be construed more broadly to reflect

our ability to construct scaling descriptions of material response. This thread will

be elaborated below, but as an example to set ideas we note that the scaling of
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220 PHILLIPS ¥ DITTRICH ¥ SCHULTEN

the radius of gyration of a polymer blob with the number of monomers can be

thought of as a universal feature emerging from entropic elasticity. Similar results

are commonplace in materials science as well.

By way of contrast, there are a number of settings within which we search

for features of a system that are system specific. Such questions range from the

relatively mundane issue of what makes one system elastically different from

another to the full complexity of the structure-function relationship of certain pro-

teins. As is described below, one important example of such specificity concerns

the detailed mechanisms that give rise to dislocation nucleation in solids. From

the biological setting, a second case study is that of DNA-protein interactions

in which special sequences within the overall DNA sequence serve as ports for

the docking of proteins. Part of the argument to be made in our review is that

despite the difference in outlook between the search for universal and specific

insights, multiscale methods have begun to serve as the basis of linking these

viewpoints.

Universality and Specificity in Materials Science

The tension between universality and specificity transcends any particular field of

analysis. In the context of materials science, there are a number of scaling laws

that reflect the existence of universal features of materials. For example, the famed

Hall-Petch laws posit a relation between the strength of a material, σy , and the

mean grain size, d, of the form σy ∝ d−1/2. In this instance, the fundamental scaling

structure is independent of material particulars. A second example arises in the

consideration of diffusion for those cases in which a particular microscopic mech-

anism dominates. In this case, the robust result of interest is the assertion that the

temperature dependence of the diffusion rate scales as

diffusion rate ∝ exp(−Ea/kB T ), 1.

where Ea is the activation energy for the process of interest and kB is Boltzmann’s

constant. A final example is the existence of elasticity, with the key understanding

embodied in the existence of an equation of the form

Estrain =
1

2

∫
Ä

Ci jklǫi j (x)ǫkl(x)d3x, 2.

which describes the energy stored in a strained solid. We have introduced the tensor

ǫi j (x), which describes the strain at point x and the elastic modulus tensor Ci jkl .

Although we are using the notion of universality in a sense that is more general

than the standard nomenclature, it suits our purposes to note that certain features

of materials transcend the particulars of any one material.

In fact, each of the examples cited above has a complementary feature that

strikes to the heart of what we mean by specificity. For example, in the case of

diffusion, it is well known that from one case to the next the overall rate will depend

in a detailed way on the particulars of the diffusion pathway, a fact that is embodied

in the activation energy, Ea. Similarly, although materials as diverse as rubber and
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QUASICONTINUUM REPRESENTATIONS 221

steel both exhibit elasticity, the particular characteristics of rubber and steel are

widely different and are reflected in their quite different values for the elastic

moduli, as implied by the elastic modulus tensor, Ci jkl . This type of specificity

has been elegantly expressed in graphical form in the work of Ashby & Jones (1)

who depict the huge diversity in material parameters for quantities such as the

elastic moduli, the thermal conductivity, the diffusion constant, the yield strength,

and fracture toughness. From the standpoint of computational materials science,

one of the most compelling challenges is to first understand such specificity, with

the ultimate goal being the more ambitious task of tailoring such specificity for

particular applications.

Universality and Specificity in Biology

As noted in our description of materials, there are two levels of understanding,

both of which are indispensable. On the one hand, the physics approach is often

built around searching for those features of systems that are universal. For exam-

ple, in the context of macromolecules, the way in which the radius of gyration

depends upon the number of monomers would constitute a universal result. Sim-

ilarly, the existence of allosteric reactions is a kind of universal insight. On the

other hand, biological specificity is a well known precept and often requires the

use of atomic-level arguments in order to determine the precise relation between

structure and function. Indeed, both in the materials setting and in the biological

setting this insight has been elevated to the status of a central dogma. One of our

main arguments is that much of the work of explicating the relationship between

structure and function must be carried out at the atomic scale.

One area in which the relationship between structure and function described

above is especially evident is in the context of the emerging field of single-molecule

biomechanics. The basic point is that as a result of the tremendous experimental ad-

vances that have followed on the heels of such tools as the atomic-force microscope

and laser tweezers, it is now possible to pull on macromolecules in a controlled

way. For examples, see the papers of Bustamante et al. (5), Essevaz-Roulet et al. (6),

Marszalek et al. (11) and Strick et al. (20). One of the conclusions to emerge from

this analysis is the existence of what could be called mechanical spectroscopy, in

which each molecule exhibits its own unique force-displacement curve, with the

detailed features of this curve emerging in turn from the underlying macromole-

cular structure. A key challenge at the level of molecular specificity is to determine

the way in which structure dictates the specific details of such force-displacement

curves.

An example of the type of specific understanding that can be gleaned in the

macromolecular setting is that associated with the force-induced unfolding of

immunoglobulin domains in titin. With the emergence of experimental methods

for exerting force on single macromolecules, a new era in mechanical manipulation

has been ushered in in which it is possible to measure the force-displacement curves

of large molecules, as shown, for example, in Marszalek et al. (11). The quantitative

assessment of these measurements requires a precise atomic-level description of

the structural specifics of the molecule of interest. The direct numerical simulation
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222 PHILLIPS ¥ DITTRICH ¥ SCHULTEN

of this process in the case of titin has been undertaken in Lu et al. (9) and Lu and

Schulten (10), in which it was found that the key unfolding event corresponds to

the collective breaking of hydrogen bonds between different strands.

Degree of Freedom Thinning and
Effective Theory Construction

The central thesis of this review is now spelled out as follows. First, we argue that

in many circumstances, it is detailed, material-specific understanding that is the

objective. In these cases, we are inevitably led to mechanistic investigations aimed

at ferreting out the precise atomic or molecular events that correspond to the

phenomenon of interest. We argue that despite the clear importance of such atomic-

level investigations, it is necessary to construct a computational formalism in which

only those atomic-level degrees of freedom that are really of interest are kept. We

imagine the creation of a new suite of atomic-level simulation tools in which the

tandem challenges of multiple scales in both space and time have been successfully

hurdled. However, for our purposes here, we concentrate on the question of spatial

degree of freedom thinning and refer the reader to the works of Voter (22) for a

taste of some of the innovative thinking that is being done in the context of the

time scale problem.

THE PHYSICS OF CONSTRAINT

The Geometry of Constraint

It is clear that the computational challenges of the type mentioned above will

continue to stretch molecular simulations to their very limits. As a result, the key

point of this section and the culmination of this article is the argument that we must

continue to actively seek alternatives to brute force atomic simulation. All of the

methods that one might wish to bring to bear on problems of the type described

above involve in one way or another the notion of constraint. For example, if we

are to invoke a continuum description, there is an inherent assumption that nearby

molecular sites suffer identical deformations. From the perspective of atomic-level

simulation in thinking about the spatial domain, the key idea involves in some form

or another trying to eliminate some subset of degrees of freedom, keeping only

those that are relevant. Another example is those cases in which density functional

calculations are used to examine macromolecules such as enzymes (15). In these

cases, only atoms in the vicinity of the active site are resolved explicitly and the

remaining atoms are either frozen or ignored altogether. Similarly, in the temporal

domain, the search for constraint involves fixing certain bonds in the hope that

the resulting dynamics will respect the processes of real interest. A particularly

provocative recent idea has involved the use of artificially high temperatures with

an associated extrapolation scheme for backing out the nature of the diffusive

processes that will occur at lower temperatures (19).
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QUASICONTINUUM REPRESENTATIONS 223

Thus far, we have argued that the traditional tools for carrying out atomic-level

simulation in computational materials science and computational biology suffer

from a variety of limitations including the inability to handle sufficiently large

systems or long times. Indeed, such simulations are usually restricted to spatial

scales much smaller than microns and times shorter than nanoseconds. One of the

thrusts of this article centers on the idea of exploiting certain geometric regularities

found in both crystals and certain macromolecules that might allow uniting atomic-

level simulation and the machinery of the finite element method. The basic idea

is to resolve the following question: Given a potential energy 5(R1, R2, . . . RN),

which depends upon all of the atomic coordinates, how can we find a surrogate

energy function that features only a subset (or a linear combination) of the full set

of original degrees of freedom?

One example of this type is the quasicontinuum method in which the tools

of atomistic simulation are united with those of structural and fluid mechanics

(12, 16). The key kinematic idea behind this method is the systematic use of con-

straint such that a large fraction of the atomic-level degrees of freedom is relegated

to a form of kinematic slavery in which the motions of a small subset of master

atoms dictate the positions of all the others. These kinematic constraints then al-

low for a replacement of the full, total energy function, 5(R1, R2, . . . RN), which

depends on the coordinates {Ri} of all N atoms with an approximate surrogate,

5(X1, X2, . . . XM), which depends only upon the coordinates {Xi} of the M master

atoms. From a computational point of view the key advantage arises from the fact

that M < N and usually, M ≪ N.

In order to effect the type of degree of freedom reduction advocated above,

we have invoked the existence of an underlying template. For example, in the

context of crystalline solids, the atomic positions of the unaccounted for degrees

of freedom are determined (if and when they are needed) by displacing them from

their reference (template) positions according to the prescription

u(X) =

∑
i

ui Ni (X), 3.

where u(X) is the displacement of the atom at position X, the ui’s are the dis-

placements of the nodes surrounding the atom of interest and Ni(X) is the shape

function (see Figure 1) associated with the ith such node. The basic idea is that

the displacement at a position within a given element is computed as a weighted

average of the displacements on the three nodes surrounding the point of interest.

As is revealed below, we propose that the same sort of geometric thinking can be

brought to bear on macromolecules, where the underlying template is provided

by the various structural motifs (e.g., proteins are built up of a sequence of amino

acids, DNA is built up of a sequence of nucleotides) that make up such molecules.

Constrained Energy Minimization and Constrained Dynamics

Our characterization of the physical foundations of degree of freedom thinning

has been to divide such analyses into two parts, the first of which is kinematic and
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Figure 1 Illustration of the shape functions used in conjunction with two-dimensional

finite elements. N1(X) is given in the leftmost schematic, N2(X) is shown in the middle

figure and N3(X) is shown in the right figure.

was described above and the second of which considers the motions of the thinned

degrees of freedom. This separation is to some extent artificial, although it suits

the pedagogical purposes of the present discussion.

Given the set of reduced degrees of freedom {Xi} and the associated energy

function 5(X1, X2, . . . XM), our next question is how do we determine the energy

minimizing configurations (statics) or the dynamical trajectories of the effective

degrees of freedom. We begin by noting that a number of different variants of

the question of how to find either the energy minimizing configurations or an ef-

fective dynamics for constrained kinematic representations have already been in-

vestigated. The most conceptually transparent scheme is that of zero-temperature

energy minimization in which the effective energy function is relaxed with re-

spect to the unknown nodal coordinates {Xi} using methods such as the conjugate

gradient method or the Newton-Raphson method.

As the aim of this review is to highlight both successes and challenges, we

note that in addition to the ability to carry out static energy minimization, qua-

sicontinuum calculations have also been carried out dynamically (but in the ab-

sence of thermal effects) and using free energy minimization in which an ef-

fective free energy function associated with the master degrees of freedom is

minimized (17). However, critical challenges remain surrounding the use of these

methods as a full-fledged alternative to molecular dynamics because the dynam-

ics of the master degrees of freedom at finite temperatures continues to pose

challenges.

CASE STUDIES IN DEGREE OF FREEDOM THINNING

Case Studies from Conventional Materials Science

The development of systematic techniques for degree of freedom thinning is both

a conceptual and computational necessity. Recent success in the conventional ma-

terials setting has been especially revealing in the context of defects in crystalline

solids. Indeed, significant progress has been made in elucidating the structure, ener-

getics, and interactions of dislocations, grain boundaries, and cracks. As a concrete

incarnation of these methods, we describe the application of the quasicontinuum

method to the nucleation dislocations.
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NUCLEATION OF DISLOCATIONS The general program of constructing first-princi-

ples models of plasticity in which plastic deformation is transmitted directly on

the basis of dislocation motions remains one of the holy grails of computational

materials science. Indeed, much progress has been made in this quest with the

construction of a host of dislocation dynamics codes in which the dislocation

population within a material responds to externally applied stresses. Nonetheless,

one of the many difficulties with such analyses is the fact that they rely on a variety

of mechanisms that are not within the direct purview of the linear elastic theory

of dislocations. In particular, the treatment of dislocation nucleation, cross slip

and dislocation interactions within dislocation dynamics codes is usually put in by

hand in the form of various rules. The determination of the appropriate rules for

these processes is one of the insights that can come from atomic-level analysis.

The conceptual underpinning for the development of dislocation dynamics has

been the idea that rather than appealing to an uncertain phenomenology concerning

plasticity, it would be more appealing to build up plasticity directly on the basis

of the nucleation, motion, and interaction of dislocations. Unfortunately, just as

there are uncertainties that attend the use of constitutive models of single-crystal

plasticity, so too do models of dislocation dynamics call for insights external to

the theory itself. One of the most damning uncertainties is that of the ways in

which dislocations are nucleated at free surfaces, crack tips, and grain bound-

aries. An attractive experimental system within which such questions can be ad-

dressed is that of nanoindentation in which the surface of a material is deformed

by a tip with a small (≈60 nm) radius of curvature. As the force associated with

this tip is increased, the deformation of the underlying material passes from in-

nocent elastic deformation to permanent deformation in the form of dislocation

nucleation.

An intriguing set of dislocation dynamics simulations of this phenomenon has

been undertaken by Robertson & Fivel (14). An example of the type of experi-

mental results it is the aim of these simulations to explore is shown in Figure 2.

Figure 2 Experimental results revealing the nucleation of dislocations beneath an indenter

(courtesy of M. Fivel & C. Robertson).
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Figure 3 Simulation results revealing the nucleation of dislocations beneath an

indenter (courtesy of M. Fivel & C. Robertson).

These results can be complemented using simulations of dislocation dynamics,

as shown in Figure 3. These methods are used to examine the size and shape

of the plastic zone beneath an indenter directly on the basis of dislocation dy-

namics. However, the dynamics is founded upon a series of ad hoc rules that

determine when and where new dislocation loops are to be formed beneath the

indenter.

What atomic-level analyses of the quasicontinuum type have to offer is the

possibility of converting such ad hoc rules into well-formulated nucleation cri-

teria. To that end, a series of calculations were performed by Tadmor et al. (21)

and Shenoy et al. (18) in which a pseudo-two-dimensional indenter geometry

was examined from the standpoint of the quasicontinuum method. In addition to

examining the limits and validity of various analytic approaches to dislocation nu-

cleation, these quasicontinuum results permitted the formulation of a nucleation

criterion in which new dislocations are nucleated when the resolved shear stress

on the slip plane admitting dislocation nucleation reaches a critical value. Two

examples of the indented sample are given in Figure 4, which shows the way in

which the plastic deformation which takes place beneath the indenter depends

upon the relevant crystal orientation. The key insight to emerge from these simu-

lations is a prescription for incorporating dislocation nucleation into higher level

dislocation dynamics models directly on the basis of atomic-level understanding

of the nucleation process.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Figure 4 Application of the quasicontinuum method to the nucleation of dislocations

beneath an indenter. This figure reveals the type of dislocation geometries induced by

the presence of the indenter, which is represented by the white rectangle on the crystal

surface (from Reference 21).
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Case Studies from Computational Biology

Although models like those described above have already revealed their useful-

ness in the context of traditional materials, the most intriguing possibilities for

such methods lie in the biological setting. Several examples of the application of

multiscale analysis to problems of biological significance are discussed below.

MECHANICS OF DNA-PROTEIN INTERACTIONS Coarse-graining methods can clear-

ly have an impact in the context of DNA-protein interactions. The importance of

such interactions as a central element in genetic control is spelled out eloquently by

Ptashne (13). For example, the regulation of gene expression associated with the

enzyme used to digest lactose is carried out by a protein known as the lac repressor.

The lac repressor binds to two spatially distinct sites on the DNA molecule thus

inducing a loop in the region between these two sites and excluding this part of

the DNA from further transcriptional action. An elegant set of experiments aimed

at examining the kinetics of loop formation under the action of lac repressor was

carried out by Finzi & Gelles (7) who attached one end of a DNA molecule to a

glass slide and had the other end tagged by an optical bead. The fluctuations of the

tethered DNA as a result of Brownian motion were monitored with the insight that

when a loop had formed, the length of the tethered molecule would be effectively

shortened resulting in a different dynamics than in the absence of looping.

Despite the impressive progress in deducing both the existence and action of the

lac repressor, as well as the resulting DNA dynamics, a wide variety of mechanistic

questions remain concerning this system that range from the precise structure of

the DNA-protein binding complex, to the energetics of this binding, to the kinetic

processes that govern the life history of the lac repressor. All of these problems call

for atomic-level understanding. On the other hand, the computational demands that

attend attacking these problems are exorbitant and have led to the development of

mixed atomistic-continuum formulations much like those discussed above in the

context of defects in solids. One way in which degree of freedom thinning can be

brought to bear on this problem is to examine the DNA-protein complex without

having to pay the full atomistic price for the treatment of the looped DNA region.

To that end, Balaeff et al. (2) have constructed an elastic rod model of the looped

DNA that is solved for boundary conditions of the DNA-protein complex. The

representation of the looped DNA is shown in Figure 5, with Figure 5a illustrating

the kinematic description of the DNA in terms of a local set of vectors d1(s), d2(s)

and d3(s), where s parametrizes the position along the DNA molecule; Figure 5b

is a schematic of the way in which the elastic solution can be fed back to the

full atomistic simulation, adding loop-induced forces to the latter. In particular,

the idea is that the loop above the actual simulation box is present only in terms

of the forces it imposes on the parts of the molecules that are subject to direct

atomistic investigation. Although our discussion does not spell out the details of

how these calculations were done, our main intent is to show that the results of such

calculations can be used as a boundary condition for the purposes of traditional

atomic-scale analysis.
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A CALCULUS OF STRUCTURAL MOTIFS The central theme of this article is the con-

cept of a systematic elimination of degrees of freedom on the basis of constraint.

It provides a powerful tool not only for the reduction of the computational bur-

den but also as a measure to help judge which features are particularly important

in determining a macromolecule’s biological function. One venue within which

we believe that such techniques will be especially useful is in the construction

of mesoscopic models of biophysical significance. Herein we provide an outline

of a strategy to devise coarse-grained models of biopolymers and biopolymeric

complexes in their natural environments. We also present preliminary progress in

our recent efforts to build a coarse-grained description for proteins.

Almost all approaches to simulate protein structure and protein dynamics, using

e.g., molecular dynamics (MD) simulation techniques, tackle the problem from an

all-atom point of view. However, consideration of a generic enzyme reveals that

often there is an underlying separation of spatial scales. To make this idea more

concrete consider an enzyme embedded in a membrane and performing hydroly-

sis of some compound in a living cell. Clearly, the active site where the chemical

transformation of the substrate takes place may require a fully atomistic descrip-

tion. Upon receding from this site, however, one often encounters regions in the

protein that solely serve a structural role, constituting a polypeptide framework to

hold the active site in its correct shape. The same kind of arguments can be applied

to the lipid bilayer membrane surrounding the protein. In order to achieve realistic

simulations of membrane proteins, it is necessary to include membrane patches

of considerable size as part of the MD simulations, often more than doubling

the number of atoms to be considered. The membrane’s purpose, on the other

hand, is mostly that of a scaffold for the protein core, providing the necessary

hydrophobic environment for intra-membrane parts of the enzyme. Treating the

membrane in an all-atom fashion is probably overkill, and an approach similar to

the one used for dislocations in solids seems far more appropriate; namely a more

refined treatment of lipid molecules close to the protein core and increased coarse

graining using a finite element interpolation scheme in regions farther away. The

underlying theme for both the protein and its surroundings is the use of adaption,

meaning that the description should be as coarse-grained as necessary to retain

and capture the functionally relevant pieces, with superfluous degrees of freedom

discarded.

The remainder of the discussion focuses on the description of proteins. Adopting

a bottom-up point of view when considering the protein structural hierarchy, one

first encounters the proteins’ building blocks, namely, the 20 naturally occuring

amino acids arranged into polypeptide chains of different length. The structural

hallmark of amino acids is their identical backbone, their sole distinctive feature

being the 20 different amino acid side chains. Advancing one step up from the

linear arrangement of amino acids on the primary structure level, is the realm

of secondary structure. Here a wealth of structural motifs is encountered, and it

is a well-established fact that most proteins can be pictured as a collection of

such structural units (4); the most prominent ones are the α-helix and the β-sheet.

It is possible to judge a protein’s function or even its location in the cellular
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environment by its composition in terms of secondary structural elements, for

example, the seven α-helix bundle typical for membrane embedded G protein–

coupled receptors. The importance of structural motifs is also apparent in the fact

that whole protein databanks such as CATH or SCOP are organized around the

composition of proteins in terms of secondary structure elements. Based upon this,

we aim to establish a coarse-grained description on both the single amino acid as

well as the secondary structure level, thereby reducing the number of degrees of

freedom by a factor of at least ten.

In the remainder of this section, we describe our ideas for a constrained rep-

resentation of amino acids. To illustrate such a representation consider an amino

acid at position i in a polypeptide chain. We focus our attention on the backbone

consisting of an NH-group, a carbon Cα and a CO-group. The Cα atom is con-

nected to a side chain of one of the 20 amino acids in proteins. The carbon atoms

involved are labeled Cα, Cβ, etc. The scheme of constraint that we propose rests

on the notion of master atoms, which are being kept track of explicitly, and slave

atoms, which are constrained to follow the master atoms in their motion. To keep

track of the spatial location of residue i, we define by Ri
Cα

the position of the Cα

atom. The orientation of the peptide bond and the side chain are described by a

fixed set of vectors that connect Cα to the hydrogen HN (Ri
H ), to the oxygen (Ri

O )

and to Cβ (Ri
Cβ

). The vectors Ri
H , Ri

O and Ri
Cβ

are used to define the axes of

an affine coordinate system centered on the Cα; N, C and Hα are slave atoms the

positions of which are tied to Ri
Cα

as are the side chain atoms. The position vector

ri
S of a slave atoms S can then be obtained through the relation

ri
S = Ri

Cα
+ αi

S1Ri
H + β i

S1Ri
O + γ i

S1Ri
Cβ

, 4.

where 1Ri
γ = (Ri

γ − Ri
Cα

) are constant vectors and the quantities αi
S , β i

S and γ i
S

are defined below.

Three of the 20 amino acids require a slightly modified description: In the case

of glycine we invoke Hβ instead of Cβ; in the case of cysteine we keep track

of sulfur Sγ to model disulfide bridges as closely as possible, and in the case of

proline, we keep track of the ring hydrogen Hγ rather than Cβ. For the case of

alanine the representation outlined is shown in Figure 6. We also note that our

eventual objective is to decide on the level of refinement used in our constrained

calculations in an adaptive fashion, with the level of resolution changing during

the course of a simulation.

According to Equation 4, the positions of the slave atoms are defined through

their coordinates αi
S, β

i
S and γ i

S . These coordinates are chosen according to the

initial protein structure but subsequently are independent of protein conforma-

tional changes. Naturally one has to address the question of how to best choose

the coordinates. One can either select the coordinates to reproduce the initial PDB

structure (3) or choose them to reflect optimally average protein conformations.

The description as outlined in terms of master and slave atoms provides consid-

erable motional freedom to the backbone itself but limits the movement of side
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chains. Several remedies to provide more flexibility to side chains may be em-

ployed, e.g., separate affine coordinate systems for both backbone and side chains,

both centered on the Cα. One might also envision a description of the backbone

as explained but represent side chains through spherical or ellipsoidal shapes that

are tracked through their centers and orientation.

The next crucial conceptual issue is the calculation of effective forces on the

master atoms. The potential energy of the protein as described in the constrained

scheme can be expressed as 5({ri
S({Ri

α})}, {R
j

β}) where ri
S({Ri

α}) denotes the posi-

tion of the slave atoms in residue i in terms of the coordinates of the master atoms.

The forces on the master atoms can be calculated via the chain rule

Fi
α = −

∂5

∂Ri
α

−
∑

j

∂5

∂r
j

S

∂r
j

S

∂Ri
α

. 5.

To compute these forces requires knowledge of the forces on all atoms as evidenced

by the second term on the right-hand side of the equation and, as a result, the

present scheme is crippled if one cannot find a way to find effective forces on

the master atoms without visiting every atom. Devising a scheme that requires

only force calculation for master atoms is of utmost importance. We have already

implemented the constrained kinematic representation outlined above and used

Equation 5 to determine the energy-minimized protein structures as a diagnostic

relative to the goodness of approximating protein structure on the basis of subsets

of the full set of atomic degrees of freedom. The current implementation of this

method is built around the suite of molecular modeling tools, known as TINKER,

from the Ponder group at Washington University. Calculations were performed

on oligopeptide chains as well as on bovine pancreatic trypsin inhibitor (BPTI).

The structures agree well with with all-atom calculations in the interior of the

protein with somewhat larger deviations for longer side chains at the periphery.

The calculated root mean square deviation is 1.17 Å. This deviation results mainly

from to a total of 16 residues having a root mean square deviation larger than

1.0 Å. With the exception of PHE4 and LEU29, all are charged or polar, and

most are oriented toward the outside of the protein. This is illustrated in Figure 7.

Further analysis shows that the root mean square deviation of 4 out of the 16

residues (ASP3, ARG39, ARG42, and GLU49) is due to a conformational change

of the side chains, namely folding back of their charged groups onto the main chain.

The root mean square deviation for the remaining 11 residues is caused by a rigid

shift or a rigid rotation of the whole amino acid. The potential energies obtained

from our calculations were generally found to be too high, the major deviation

being due to the 4 charged residues that change their side chain conformation.

Presently we seek to implement a dynamical implementation of the constrained

representation to evaluate its performance in the dynamic setting. We will also

devise and test routes toward calculating effective forces on nodes without the

need to know the forces on every atom explicitly.
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A VISION FOR COMPUTATIONAL SCIENCE:
COMPUTATIONAL EFFECTIVE THEORIES

We have argued that universality and specificity pose complementary demands

in the development of understanding in both the materials science and biological

settings. One of the key tools in effecting the analysis of specificity is atomic-level

simulation. Unfortunately, such simulations carry with them a huge computational

burden that makes the simulation of large systems and long times prohibitive. As

a result, one of the central challenges of computational science is the need to find

computational surrogates in which the choice of degrees of freedom is made such

that full atomic-scale resolution is used only where it is needed. Such ideas have

already shown their worth in the setting of traditional materials, and we contend that

a central challenge for the consideration of biological materials is the successful

development of tools for systematic coarse graining.
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Figure 5 DNA-protein interaction as described in a mixed atomistic-continuum

framework. (a) Continuum elastic rod model of DNA. Shown is (top) a molecular

model of DNA with its central axis depicted as a curved elastic rod and (bottom) the

coordinate systems used to calculate the minimum energy conformation of the rod.

(b) A twisted DNA loop (top) as described by elastic rod theory held by the lac re-

pressor (bottom), the latter being simulated in a bath of water molecules and ions by a

full atom molecular dynamics simulation that takes into account forces, computed by

elastic rod theory, that resist the looping of the DNA.
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Figure 6 Illustration of the constrained representation for amino acids. This figure

shows an alanine residue together with the affine basis vectors centered on the Cα atom.

All slave atoms are represented as linear combinations of the basis vectors in terms of

their coordinates αi
S, β i

S, and γ i
S according to Equation 4.
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Figure 7 Comparison of the relaxed structures obtained using all atom calculations

(red ) and the constrained scheme (green). The backbone is shown in tube representa-

tion together with a subset of the side chains. Ten side chains with a root mean square

deviation larger than 1.0 Å are shown in blue (all atom calculation) and yellow (con-

strained scheme). With the exception of PHE4, all are charged or polar and are located

at the periphery of the protein.
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