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Abstract. We study the problem of atomic scale fracture using the recently developed

quasicontinuum method in which there is a systematic thinning of the atomic-level degrees

of freedom in regions where they are not needed. Fracture is considered in two distinct settings.

First, a study is made of cracks in single crystals, and second, we consider a crack advancing

towards a grain boundary (GB) in its path. In the investigation of single crystal fracture,

we evaluate the competition between simple cleavage and crack-tip dislocation emission. In

addition, we examine the ability of analytic models to correctly predict fracture behaviour, and

find that the existing analytical treatments are too restrictive in their treatment of nonlinearity

near the crack tip. In the study of GB–crack interactions, we have found a number of interesting

deformation mechanisms which attend the advance of the crack. These include the migration of

the GB, the emission of dislocations from the GB, and deflection of the crack front along the

GB itself. In each case, these mechanisms are rationalized on the basis of continuum mechanics

arguments.

1. Introduction

The mechanisms that control fracture in materials are complex and diverse, and span length

scales from the angstrom to the millimetre. At the most fundamental level, fracture is simply

the breaking of atomic bonds at the advancing crack front. However, the interactions

between such a crack and the myriad of possible material microstructures and defects

imply that fracture mechanics in general may admit of no simple unifying description.

Consider, for example, even the simplest case of a crack advancing through a homogeneous,

amorphous solid. Even this example is not simple to understand, as dynamic instabilities

lead to different behaviour at different stages of crack propagation (Sharon et al 1996). This

is seen in the so-called ‘mirror-mist-hackle’ fracture regimes (Lawn 1993). In heterogeneous

materials, a great many mechanisms may conspire to produce the macroscopically observed

fracture behaviour. Steels, in which there are hard second-phase particles, undergo fracture

by a complicated interaction between dislocation motion and multiplication, void formation

and growth, and cleavage on atomic planes. In ceramic polycrystals such as alumina, the

competition between crack propagation through the crystalline grains or along the grain

boundaries (GBs) can profoundly influence the toughness of the bulk material (Lawn 1993).

Composite materials such as fibreglass and wood illustrate a still larger set of length scales

that participate in fracture processes, as the bonding between the reinforcing structures and

matrix become important. Indeed, there are a great many considerations in the modelling of

fracture processes. In this work, we focus on the elementary mechanisms associated with

the specific example of fracture in single and polycrystalline metals.
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In polycrystalline and multiphase materials, the interactions between the advancing

crack, GBs, and dislocations are a central part of the fracture process, and correctly

describing the interactions between these constituents presents a unique challenge to any

modelling effort. On the one hand, atomic scale information is essential to this description,

as the energetics of dislocations and GBs are ultimately controlled by atomic interactions.

On the other hand, the modelling of systems with macroscopic dimensions and boundary

conditions is not possible within a fully atomistic framework. In this paper, we study

fracture at the atomic scale using the recently developed quasicontinuum (QC) method of

Tadmor et al (1996), a mixed atomistic and continuum approach. Specifically, we consider

fracture in single crystals of nickel, and then consider the interactions between cracks and

GBs in nickel bicrystals.

Until recently, most of the effort in fracture mechanics has focused on phenomenological

descriptions of material behaviour (see Freund (1990) for a review). In this setting,

dissipative deformation processes around a crack tip are treated using continuum plasticity

models, while fracture criteria are inserted into the model based either on the Griffith

analysis or via a Barenblatt type of model. While these continuum models have been

very successful in describing the fracture of materials, they are incapable of elucidating

the precise deformation mechanisms near the advancing crack tip. The perspective adopted

here is that through the inclusion of atomic scale information it is possible to understand the

mechanisms that ultimately conspire to produce the phenomena mimicked in the continuum

mechanics approach.

The importance of atomic scale effects in fracture has been recognized for some time,

and work to understand atomic scale fracture initially focused on analytic models that

included lattice discreteness in an approximate way (Thomson 1973). Early computer

simulations of fracture (see, for example, Sinclair and Lawn (1972)) were limited by the

available computational power, but led to significant insight into atomic configurations at

the crack tip and the effects of lattice trapping. Lately, advances in atomistic simulation of

materials and increases in computational resources have made it possible to simulate fracture

processes at the atomic scale for relatively large systems. Approaches to modelling fracture

at the atomic scale range from the conceptually simple but computationally challenging

fully atomistic approach, to a variety of mixed atomistic/continuum models that include

atomistic effects either through some approximate scheme or by embedding an atomistic

crack-tip region in a bulk continuum.

The first approach, that of full molecular dynamics or lattice statics simulations of

fracture, has been pursued by a number of groups (Zhou et al 1997, Abraham et al 1998,

Paskin et al 1985, Lomdahl et al 1993, Holian and Ravelo 1995, Daw et al 1986, Cleri et al

1998b, Cheung and Yip 1990). Atomistic simulations of fracture are carried out by building

a small crystal with an attendant crack tip and applying a strain rate to the crystal boundaries.

The number of atoms in such a simulation has steadily been increasing as computer power

allows, from a few thousand atoms in the earlier works to tens of millions of atoms most

recently. The challenges in such an approach come both from the huge computational

power and storage required to explicitly model millions of atoms, as well as from the need

to make sense of the vast quantities of information which result. Simulations of 108 atoms

are now fairly routine, but such calculations require the resources of massively parallel

supercomputers. While such calculations are an impressive demonstration of advances in

computation, the task of extracting an understanding of material behaviour which can be

used as a basis for higher-level models remains daunting.

Despite the challenges of explicitly treating millions of atomic degrees of freedom,

fully atomistic studies of fracture have played an important role in explicating the atomic-
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level mechanisms of fracture. First, molecular dynamics is a fertile setting within which to

document and classify the atomic-level mechanisms of fracture. They also provide a highly

controlled ‘experiment’ with which to test the validity of analytic models. In some cases,

such as in the work of Paskin et al (1985) and Cleri et al (1998b), atomistic simulation has

been used to determine the point at which continuum assumptions fail. In other cases, the

simulations have shed light on counter-intuitive results that may not have been otherwise

revealed. For example, Abraham et al (1998) showed that the cleavage planes in face-

centred cubic (fcc) crystals cannot be determined simply from a rank ordering of surface

energies.

Perhaps the most frustrating aspect of such large-scale atomistic calculations is that

only a small subset of the atomic degrees of freedom do anything especially interesting.

A great many of the atoms respond in a way that could be described by elasticity theory,

and yet the storage and book-keeping associated with their degrees of freedom—necessary

if a purely atomistic approach is used—consumes a large proportion of the computational

time. The motivation for a number of researchers has been this realization that despite the

need for full atomic detail near the crack tip, the majority of atoms behave in an elastic

fashion. As a result, there are now several modelling approaches which aim to reduce

the number of degrees of freedom in atomic scale systems. Some of these models, like

that of Kohlhoff et al (1991) and Gumbsch (1995), effect this reduction by dividing the

problem into two distinct zones, one which is fully atomistic and the other which is modelled

using conventional finite elements. Another example is the approach of Zhou et al (1993,

1994) and Schiotz et al (1997). In this instance, the actual number of atomic degrees of

freedom is not changed, but rather a large proportion of the atoms are treated using a linear

approximation to their response. These linear atoms, while they are still explicitly modelled,

demand considerably less computational overhead than fully nonlinear atoms, and hence the

approach greatly reduces the calculation time. A third method, and that which will be used

here, is the QC method. In this approach, the machinery of finite elements is combined with

an atomistic constitutive model to significantly reduce the number of atoms whose degrees

of freedom must be explicitly considered. One of the advantages of the QC approach is that

it is adaptive, meaning that the subset of the atomic degrees of freedom which are explicitly

included in the model can change in response to an evolving deformation. In this way, the

initial design of the model does not restrict the deformation of the body to predetermined

pathways. Currently, the QC method is limited to static energy minimization, and thus

fracture calculations must be carried out in a quasistatic framework. In this way, the QC

method is an alternative to lattice statics calculations of fracture processes.

These mixed approaches can be used to investigate fracture in much the same way as full

atomistics, with the advantage of reduced computational demand. For example, Gumbsch

(1995) studied brittle cracks in fcc crystals under mixed loading, and was able to compute

critical loads to failure for sharp cracks and for cracks with atomic scale blunting at the tip.

Zhou et al (1993, 1994) used their simulations to test analytic models of fracture. They

determined that the analytic models were ignoring an important contribution to the energetics

of crack-tip deformation—namely, the energy of the ledge which forms when a crack tip

emits a dislocation. Finally, Schiotz et al (1997) showed how atomic scale crack blunting

can lead to increased resistance to cleavage along atomic planes and possibly enhanced

ductility.

The mixed atomistic/continuum strategies just outlined, like full atomistics, still suffer

from a heavy reliance on numerical simulation. More to the point, analytical progress

within such models is difficult. Continuum-based models of fracture which include discrete

lattice effects in a minimalistic way have been proposed which have lead to important
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insights and the ability to make predictions about how the atomic scale will effect the

fracture behaviour of materials. The most commonly advanced viewpoint in such models

is that crack-tip deformation is a competition between cleavage of atomic planes and the

emission of dislocations from the crack tip (see, for example, Armstrong (1966), Kelly

et al (1967), and Rice and Thomson (1974)). A recent attempt to model this competition

between dislocation emission and brittle cleavage is the model of Rice (1992), where the

effects of the discrete lattice are included by introducing a single slip plane at the tip of

the crack and treating slip on that plane via a Peierls–Nabarro dislocation model. This

model has generated considerable interest due to its tractable formulation and ability to

make quantitative predictions about material behaviour. The Rice framework has also

been extended to a fully three-dimensional (3D) model by Xu et al (1995), revealing the

clear need for proper treatment of the third dimension in fracture modelling. A number

of authors have studied the agreement between the Rice model and atomistic simulation,

and have subsequently sought refinements to the model (Thomson and Carlsson 1994, Juan

and Kaxiras 1996, Gumbsch and Beltz 1995, Sun et al 1993, Zhou et al 1994). Thus, an

important role for numerical studies of atomic scale fracture is to assess the accuracy of

these continuum models.

In all of the models discussed to this point, the focus has been on a crack in an otherwise

perfect single crystal. While understanding that this simplified problem is clearly important

to the larger story of material fracture, it does not begin to probe the complex interactions

between cracks and microstructure so often observed in experiment (Lawn 1993, Wang

and Anderson 1991). The presence of GBs in a sample immediately presents additional

mechanisms for permanent deformation, which are absent from a single crystal. These

include, for instance, the migration of the GBs themselves (Babcock and Balluffi 1989,

Würschum and Balluffi 1993), the possibility for GBs to act as sources for new dislocations

(Li 1981), and the transmission of dislocations between grains (Shen et al 1988). It is

hoped that through atomistic simulation, specific questions about these mechanisms may

be answered. For instance, atomistic calculation may lead to a better understanding of the

kinetics of GB migration, or of the conditions under which slip transmission may or may

not occur. Cleri et al (1998a) have studied the problem of fracture when a pre-existing

crack lies in the plane of a GB both from the point of view of atomistic simulation and

by using a continuum model based on the Rice analysis discussed above. In this paper,

we pursue a slightly different problem, and consider the case when a crack, propagating

through a perfect crystal, impinges on a GB in its path. We present two different GBs

that demonstrate two very different deformation mechanisms, to be described later. The

results show the importance of GBs as dislocation sources, and reveal the mechanisms of

GB migration due to the stresses ahead of the crack tip. At the same time, the calculations

reveal limitations in these sorts of analyses which must be overcome. Namely, the results

highlight the need for fully 3D calculations, as well as the need to understand the dynamics

of GB migration and dislocation motion.

This work represents a more detailed, complete analysis of an earlier preliminary set

of results dealing with the same set problems (Miller et al 1998). After a brief review of

the QC method in section 2 (for a full description, see Shenoy et al (1998)), we present

our study of fracture at the atomic scale. The problems investigated in this paper will be

divided into the following two sections.

Semi-infinite cracks in single crystals . In this section, our aim will be to use the QC

method to compute the critical stress intensity factor to failure for two cracks oriented

along different crystal axes. One of these cracks is observed to fail in a brittle manner,

by cleavage of atomic planes, while the other is observed to emit a dislocation from the
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crack tip. We compute critical stress intensity values by applying boundary conditions to

our model according to the linear elastic solution for the singular portion of the crack-tip

fields, and then check that result using a numerical reckoning of the J -integral around the

crack tip. The resulting critical stress intensity factors are compared with the predictions of

two continuum models, and the need for corrections to the continuum models is discussed.

Finally, in an effort to shed light on the reasons for the discrepancy between the continuum

and atomistic results, we quantify the extent of the nonlinear region around the crack tip.

This is achieved both by examining the atomic-level stresses near the crack tip, as well as

by comparing the strain fields to those predicted by linear elasticity. We find the nonlinear

region to be small (of the order of only a few lattice spacings), but important in light of the

error in the continuum approaches. It is also demonstrated that the nonlinear region cannot

be well described by a single plane of nonlinearity, which is an assumption often made in

continuum models of crack-tip processes.

Interactions between cracks and grain boundaries . Here, we present two simulations

of cracks impinging on GBs. In the first case, a 6 = 21(421) boundary is shown to

migrate towards the approaching crack, in addition to emitting dislocations into the bulk

crystal regions. The motion of the emitted dislocations is discussed in terms of the elastic

interactions between the crack and the dislocations. The motion of the GB can be understood

in terms of a continuum model of the configurational force on the GB. We will compute

this force and show that its variation along the interface is consistent with the observed

GB motion. Finally, we will show that the mechanism of GB motion can be described

by the collective motion of the individual dislocations which make up the GB structure.

In the second example, a 6 = 5(1̄20) boundary proves to be sessile and unable to emit

dislocations, and instead the bicrystal fails by intergranular fracture when the crack meets

the GB.

2. Methodology

In earlier work (Tadmor et al 1996), the QC method was shown to be a viable candidate

as an alternative to lattice statics for the treatment of the structure and energetics of defects

such as dislocations. The basic idea of this initial treatment was the notion that one can

think of an inhomogeneously deformed (and possibly defected) body as a continuum for

which the kinematics can be described entirely in terms of displacement fields. Then, rather

than supplementing this viewpoint with traditional continuum constitutive models, atomistic

analysis is exploited as the basis for determining the total energy of the body. One of the

key advantages that emerges from adopting this scheme is the existence of a multiple-well

structure to the total energy surface which allows for the stable presence of dislocations.

In a more recent paper, Shenoy et al (1998) presented an amended formulation of the

QC method which allowed for the treatment of multiple grains and the correct description

of GBs, while remaining essentially equivalent to the original model. Here, we present an

outline of this amended logic, while the details of the model can be found in the references

mentioned above.

Rather than commencing with a traditional continuum outlook, we adopt the view that

a body is composed of some huge number of atoms N , and hence that we must at the outset

manage 3N degrees of freedom. The goal of the model will be a systematic reduction in

these degrees of freedom to reduce the computational demand of the calculations, while

retaining the important features of the deformation which arise due to the discrete atomic
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lattice. From the atomistic perspective the total energy can be written as

Etot = Eexact(x1,x2, . . . ,xN ) = Eexact({xi}) (1)

where xi are the atomic coordinates. We see that the total energy depends explicitly on the

entirety of the atomistic degrees of freedom that are present.

In order to facilitate a reduction in the number of degrees of freedom, we adopt, as

a reference configuration, a purely crystallographic description of the body. The body is

assumed to be made up of any number of grains which are defined as non-overlapping

polygons. The reference position of each atom within grain number µ is defined by the

triplet of integers l = (l1, l2, l3) and the expression

X(l) =
3

∑

a=1

laB
µ
a +Rµ (2)

where B
µ
a is the ath Bravais lattice vector of the µth grain and Rµ is the position of one of

the atoms in the grain, taken to be its origin atom. The reference and current configurations

are related through a set of displacements defined for the entire body as x = X + ψ(X).
Here capital letters are used to denote measures associated with the undeformed reference

configuration and small letters refer to the current configuration. The degrees of freedom

are reduced by choosing a set of R representative atoms from the set of N atoms in the

body, with R ≪ N . The positions of these representative atoms remain as the only degrees

of freedom in the model, with the positions of the remaining atoms in the body obtained

by interpolation. With this in mind, we also define the representative atoms to coincide

with the nodes of a finite-element mesh, and thus the interpolated position of any atom is

obtained from

xint
i =

R
∑

α=1

Nα(Xi)xα (3)

where Nα(Xi) is the finite-element shape function centred on the representative atom α and

evaluated at the position of atom i. This allows us to write the total energy of the body in

terms of the interpolated atomic sites as

Etot = Eexact(x
int
1 ,x

int
2 , . . . ,x

int
N ) = Eexact({xint

i }) (4)

where the superscript int refers to the positions of any atom which is not explicitly a

node in the mesh, obtained via interpolation. It is worth noting at this point that while

the formulation presented in this section is general enough to treat a 3D problem, the

implementation used is not fully 3D. The finite-element mesh is 2D, lying in a single

crystallographic plane (the x–y plane). Atomic displacements are allowed in the x, y, and z

directions, but variations in these quantities are only permitted in x and y. With reference

to traditional lattice statics calculations, this is exactly equivalent to periodic boundary

conditions in the z-direction, with the minimum periodic length necessary to describe the

crystal structure of interest. Fully 3D calculations within the QC framework have been

developed elsewhere (Rodney 1998).

The constraint that many of the atoms in the body must obey the interpolated

displacement fields succeeds in reducing the degrees of freedom of the problem, but it does

nothing to simplify the calculation of the total energy in the body. In order to facilitate

the total energy calculation, the additional assumption is made that the total energy of the
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collection of atoms can be decomposed into a sum of well defined site energies associated

with each atom. In other words, we assume that

Eexact =
N

∑

i=1

Ei (5)

where Ei is the site energy of atom i. Most atomistic models such as the embedded atom

method (EAM) of Foiles et al (1986), and more sophisticated many-body potentials admit of

such a decomposition. Note that this assumption is not valid for density functional theory.

Because we are modelling crystals of pure nickel, we make use of the EAM site energy for

a homonuclear material, which can be written as

Ei =
1

2

∑

j (6=i)
V (rij )+ F(ρ̄) (6)

where V is a pair potential, rij is the distance between atoms i and j , F is the embedding

energy, and ρ̄ is the electron density at the site of atom i given by

ρ̄ =
∑

j (6=i)
ρ(rij ) (7)

where ρ(rij ) is the spherically symmetric electron density around an isolated nucleus. The

sums in these equations run over all atoms which neighbour atom i, to within some cut-off

radius rcut.

The calculation of the sum in (5) is analogous to an integral over the entire body

in standard finite-element formulations. In order to compute this sum exactly, we are

still required to visit each atom i = 1, N in the body. The reduction of this sum to an

approximate sum over the reduced set of representative atoms is achieved through numerical

quadrature, according to which we write

Eexact ≈
R

∑

α=1

nαEα (8)

where the nα are appropriate weights for each representative atom. Physically, these weights

can be thought of as the number of atoms in some spatial region around the representative

atom which are all assumed to have approximately the same energy. The rules for selecting

the nα are such that in the limit for which every atom in a spatial region is chosen as a

representative atom (a limit which we refer to as the ‘fully refined’ limit), then all of these

atoms represent only themselves and nα will be unity. On the other hand, in regions where

the deformation gradients are slowly varying, the density of representative atoms required to

accurately interpolate the displacement fields will be significantly smaller, and consequently

the weights for these atoms will be proportionally larger.

At this stage, the calculation of the energy and equilibrium structure of a body composed

of N atoms has been reduced to the explicit calculation of the energy of the subset of R

representative atoms, with the only unconstrained degrees of freedom in the problem being

the positions of these representative atoms. In addition, a final approximation is made in

order to speed up the energy calculation of some of the representative atoms. In regions

where the deformation gradient is slowly varying, energy calculations can be made more

efficiently by assuming that the deformation gradient F is approximately constant. Thus,

in these regions a representative atom’s site energy is computed by deforming the atomic

environment according to the local deformation gradient at the representative atom’s site.

The Bravais lattice vectors of the deformed configuration, ba are obtained from the reference

Bravais lattice via ba = FBa , and the uniformly deformed environment of the representative
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atom is uniquely determined. We refer to such atoms, for which the energy is computed

from the local deformation gradient, as local representative atoms . On the other hand, in

regions where the deformation gradient is rapidly varying on the atomic scale, an atom’s

site energy must be computed from the fully non-local deformation environment. Non-local

representative atoms , then, are atoms for which the local approximation cannot be made.

The determination of local or non-local status is made automatically, based on a criterion

that examines the variation of the deformation gradient in the vicinity of each representative

atom.

The introduction of ‘local’ atoms into the formulation leads to small spurious forces in

the regions where there is a local to non-local transition. These forces, which we refer to

as ghost forces, can be corrected in an approximate way, and their effect on final solutions

can be made acceptably small. Details about these ghost forces can be found in Shenoy

et al (1998).

Once the approximate expression for the total energy is determined through the

procedure just outlined, the problem remains only to find minimum energy configurations

of the atoms. The procedure used in this paper to minimize the energy is the standard

method of conjugate gradients (Press et al 1992), for which we require expressions for the

derivatives of the total energy. These details are also explained in Shenoy et al (1998).

Finally, an important aspect of the model is the existence of an adaptive capability by

which certain regions of a model are targeted for refinement as deformation fields change

in response to changes in loading. In the context of fracture calculations like the ones

presented here, this adaption may be triggered due to dislocation activity in the vicinity of a

crack tip, or crack propagation due to brittle fracture. The model will allow us to fully refine

the region near a crack tip, thus introducing all the atomistic nonlinearity and non-locality

necessary in this critical region. Far away from the crack tip, a coarse mesh and local

representative atoms will allow for a significant degree of freedom reduction as compared

to a fully atomistic model. This will ensure that the crack tip is properly embedded in a

bulk elastic crystal whose constitutive behaviour is dictated by the same atomistic model

as is used in the crack-tip region. The coarse mesh and local assumption will allow us to

model systems which are ‘large’ on the atomic scale, and at the same time will permit us to

employ realistic remote boundary conditions. Furthermore, right at the crack tip, the fully

atomistic formulation in this region will permit dislocation activity or crystal cleavage as is

dictated by the underlying atomic interactions.

3. Semi-infinite cracks in single crystals

In this section, we study the mechanisms of fracture in single crystal, fcc nickel. The

vehicle of study is a semi-infinite crack loaded in mode I, which we embed in two different

crystal orientations to observe both cleavage and crack-tip dislocation emission. It should be

recognized that fcc nickel is not experimentally observed to fracture via cleavage. The fact

that we observe this behaviour in our simulations may be attributed to the EAM potentials

used to describe this material. For the purposes of our discussion, this material can simply

be thought of as a generic fcc metal, for which brittle fracture can be observed at low

temperatures.

The crack modelled here is semi-infinite in the sense that the dimension of crack length

does not enter into the analysis, but the numerical simulation is of course effected using a

finite-sized model. The boundary conditions on this model, as will be described below, are

such that the entire mesh can be thought of as only the crack-tip region, embedded in an

infinite continuum.
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The goal of these simulations is twofold. First, it is of interest to observe the atomic

scale deformation mechanisms which occur at the crack tip when the crack is loaded in

mode I. Second, it is possible to use the method to compute critical quantities associated

with the deformation processes, and compare them to the predictions of analytic models.

We will compute the critical stress intensity factor for either fracture or dislocation emission

to occur. This will allow for comparison with models such as Rice’s Peierls framework for

dislocation emission (Rice 1992), the Griffith energy release rate concept, and the Barenblatt

crack, in order to assess the accuracy of these continuum based models.

In addition, we will compute the atomic-level stresses near the crack tip just prior to the

critical event with the aim of using these stresses to determine criteria for either cleavage

or dislocation emission. We make use of the commonly known virial definition of these

stresses (see, for example, Egami and Srolovitz (1982) or Vitek and Egami (1987)), which

for the EAM description of a material can be shown to be

σ IJi =
1

�i

∑

j 6=i
[V ′(rij )+ F ′(ρ̄i)ρ

′(rij )+ F ′(ρ̄j )ρ
′(rij )]

rIij r
J
ij

rij
(9)

where the superscripts I and J refer to Cartesian components, σ IJi refers to the stress tensor

at atom i, rIij is the I th component of the relative position vector between atoms i and j ,

and rij is its magnitude. �i is the atomic volume at site i, and the remaining quantities

are as previously defined for EAM (a prime denotes differentiation). This definition of the

stresses will only agree with the continuum definition in the case of uniform strains in a

bulk crystal, and it has been recognized (Cheung and Yip 1991) that the virial definition can

be significantly different from the continuum stress near free surfaces. In light of this fact,

we must exercise caution in making any direct comparisons between the continuum and

atomic-level definitions of stress. We will examine the agreement between the atomic-level

stresses near the crack tip and the crack-tip fields of linear elasticity. Later, we will compare

the critical atomic-level stresses to simple estimates of the theoretical strength of crystals.

3.1. Cracks in single crystals: geometry and loading

A schematic of the geometry used in these simulations is shown in figure 1. The two

crystallographic orientations and accompanying mesh dimensions are presented in table 1,

as defined by the labels in the figure. For reasons that will become apparent later, we will

refer to these as the brittle and ductile crystallographic orientations. Note that the cracks

we model are not ideally sharp, but have a finite opening corresponding to the removal

of one plane of atoms prior to loading. All cracks will be remotely loaded in mode I. In

this section, we are interested only in studying a single critical event at a crack tip—either

the emission of a dislocation or the propagation of a crack. Hence, the simulations in this

section do not make use of mesh adaption. The initial mesh is chosen to be fully refined

near the crack tip, and gradually becomes more coarse away from the fracture process zone.

Table 1. Details of single crystal crack models. All dimensions are in angstroms and refer to

figure 1.

Crack x-axis y-axis a h w d

Brittle (110) (001) 1912 3604 3823 3.52

Ductile (111) (11̄0) 2601 5735 5203 2.489
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Figure 1. A schematic diagram of the crack geometry considered, indicating the important

dimensions.

The most natural way to quantify the critical load for brittle or ductile response is

by making use of the fracture toughness concept of linear fracture mechanics. As we

shall explain later, our loading conditions are such that the boundaries are held fixed to

displacements corresponding to the anisotropic, linear elastic solution for a sharp crack.

Thus, for each load, the displacements at the boundaries correspond to a certain value of

KI . On the basis of these remotely applied displacement fields, we can compute the critical

value of KI at which either dislocation emission (Kd
IC) or crack advance (Kc

IC) occurs. The

former can be compared to the continuum-based model of dislocation emission put forth by

Rice (1992), while the latter corresponds to the Griffith fracture toughness of the material

for the crystal orientation being considered.

In order to accurately compute Kd
IC or Kc

IC for a certain geometry, the following strategy

is devised. Based on the large model size (see table 1), it is assumed that the fields at the

boundaries can be well approximated by those from linear elasticity, and for each load step

the boundary node displacements are fixed to these fields. Even for a crack of small but

finite bluntness (of the order of a few angstroms), we will assume that the crack is ideally

sharp as far as the model boundaries are concerned. Note also that while the dimension a

has been included in table 1, it enters the analysis only insofar as we have assumed that this

distance is far enough from the crack tip for the edges of the model to obey linear elasticity

exactly. All of the boundaries except the crack faces themselves will be held fixed to the

crack-tip displacement fields of linear elasticity, and thus it is as though our mesh were

embedded in an infinite body containing a semi-infinite crack.

The critical value of KIC at which inelastic deformation (i.e. either crack advance or

dislocation activity) occurs can be computed by gradually increasing the displacements at

the boundaries according to the linear elastic fields, and allowing the internal nodes of the

model to relax at each load step. Problems arise, however, due to the non-convex nature

of the potential energy surface that dictates the crystal behaviour. Taking load steps which

are too large, or relaxing from an initial configuration that is very far removed from the

minimum energy configuration can lead to different solutions. This can be avoided by

quasistatic loading, i.e. by taking small load steps. However, this is still not practical since
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the number of steps required and the resulting computational time quickly become large.

We have devised the following method for obtaining accurate minimum energy

configurations within realistic computational time. We define u(X,KI ) to be the

displacement fields which correspond to a sharp crack in an anisotropic linear elastic material

loaded in mode I (see, for example, Sih and Liebowitz (1968)). The fields u(X,KI ) are

functions of the position X and the strength of the field, given by the stress intensity factor,

KI . We can then use this field for the initial condition of our simulation. We expect that

far from the crack tip, this will be the minimum energy solution, while nodes close to

the crack tip will want to rearrange as atomic effects become more important. The initial

displacements of the mesh for the first load step, denoted by ψinit
0 (X,KI,0), are given by

ψinit
0 (X,KI,0) = u(X,KI,0) (10)

where X is any point in the model and KI,0 is some initial stress intensity factor, chosen to

be small enough to ensure that even those atoms close to the crack tip will have positions

that are similar to those dictated by the elastic solution. We then freeze the boundary

nodes at these displacements, and allow the internal nodes to relax via a conjugate gradient

minimization of the total potential energy. The resulting displacement field ψ0(X,KI,0) is

the minimum energy configuration for the current boundary loading. For subsequent load

steps, rather than start from the linear elastic field each time, we instead add the additional

linear elastic displacements that correspond to increasing the stress intensity factor by an

amount 1KI . By the linearity of the elastic fields, the additional displacement is just

u(X,1KI ), and hence the initial conditions for each subsequent load step is given by

ψinit
n (X,KI,n) = ψn−1(X,KI,n−1)+ u(X,1KI ) (11)

where KI,n = KI,0 + n1KI . We then allow this field to relax to the minimum energy

displacement field, ψn(X,KI,n). This method allows us to take larger steps than could

be taken by simply displacing the boundaries nodes, but provides a substantially better

initial guess than linear elasticity near the crack tip. Our solution procedure amounts to

the assumption that if the increment in the stress intensity factor between two load steps

is small, then the change in the nonlinear part of the displacement field will also be small,

and the initial guess will therefore be a good approximation to the final solution. Note that

because the boundary nodes are always held fixed during relaxation, their displacements

will correspond to the KI fields exactly, and thus the model will behave as though it were

embedded in a larger continuous body subjected to remote loading. In addition, since a given

boundary displacement corresponds to a known value of KI , it can be used to determine

the critical stress intensity factor.

The algorithm just described would still require a large number of load steps in order

to obtain KIC to any reasonable accuracy. We further improve our solution algorithm by

taking advantage of the unstable nature of crack-tip deformation processes and vary the

size of our load steps, 1KI . During the minimization process for a given load step, we

periodically monitor the deformation within each element in the fully refined region near

the crack tip. These elements have three atoms as their nodes, any two of which define an

atomic plane with the third residing on a neighbouring plane. By comparing the reference

and current configurations of these atoms, we can compute a local value of the slip and

opening which has taken place between these two atomic planes. For example, the fully

refined region near a crack tip is shown in figure 2 in both the reference and deformed

configurations. By comparing the two configurations for the highlighted element, we can

estimate the slip between the (111) planes in the [1̄10] direction. By our knowledge of the

expected slip and decohesion processes in fcc crystals, we can identify critical values for
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slip and opening which signify that a dislocation has been emitted or that the crack has

advanced (for example, we know the length of the Shockley partial Burgers vector to be

b = 1.437 Å in fcc nickel). Thus, if we find that slip or opening has occurred, we know that

the current value of KI is above the critical value. The current load step is then aborted,

the deformation field of the last successful KI value is restored, and a smaller load step is

taken. By taking large load steps until the critical load is approached, and then by taking

smaller and smaller load steps until the current load is within some tolerance of the critical

load, the critical value KIC can be found quickly and accurately.

Figure 2. Computing elemental values of crystalline slip. By comparing the reference and

deformed configuration in the fully refined region near a crack tip, the local value of slip along

the [1̄10] direction between the (111) planes is computed.

As pointed out by Gumbsch (1995), the anisotropic solution used to determine the

boundary condition in this simulation is only exact for the brittle crystal orientation. In the

ductile orientation, the solution is only approximate because the x–y plane of the model is

not a plane of elastic symmetry. In an effort to quantify the level of this error, and check the

self-consistency of our approach, we will take advantage of the finite-element underpinnings

of the model to numerically evaluate the path independent J -integral (Rice 1968) associated

with each of the crack tips in these models. The J -integral yields the energy release rate,

G, associated with a given crack geometry. We will make this calculation using the area

integral method of DeLorenzi (1982), the implementation of which is discussed by Shih

and Moran (1987).

3.2. Cracks in single crystals: failure mechanisms and comparison to theoretical models

Figure 3 shows the failure mechanisms for the two orientations. Contours in the figure are

of elemental slip, as described in figure 2. For each element, the three slip planes defined by

each pair of nodes are considered, and the maximum of the slip on these planes is plotted.

The results in figure 3 show the crack tip for a load just below the critical load, as well as

for a load just above the critical value. In the brittle orientation, we see the crack fails by
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Figure 3. Two different failure mechanisms in nickel. (a) is the brittle crack orientation, just

before cleavage occurs, while (b) is the next load step. (c) and (d) show the ductile orientation,

before and after the emission of two Shockley partials. Contours between atoms are of elemental

slip, as described in the text, and are shown to draw attention to the slip traces in (d).

advancing into the crystal. On the other hand, the ductile orientation fails when the crack tip

is blunted by the emission of two Shockley partial dislocations normal to the crack plane.

Using the procedure outlined in the previous section, the KIC values for the two semi-

infinite cracks were computed. The results are summarized in table 2, where they have also

been converted to the equivalent values of the energy release rate G (see Sih and Liebowitz

1968), which are compared to the numerically computed J -integrals around the crack tips.

In the following discussion of the results in table 2, we will focus on the values of G and

J , keeping in mind that KIC and G are obtained from the analytic solution corresponding

to the model boundary displacements, and are essentially two representations of the same

quantity. The agreement between G and J for the brittle simulation where the elastic

solution is rigorously correct is about 6%. This lack of exact agreement between the

analytic and numerical values is typical of numerical computations of the J -integral in
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Table 2. Results of single crystal semi-infinite crack models. Units of KIC are MPa m1/2, G

and J are in units of J m−2. The values of KIC and G are obtained from the analytic solution

in accordance with the prescribed boundary displacements, while J is computed numerically

from the relaxed solutions.

Orientation KIC ⇐⇒ G J

Brittle 0.4898 ⇐⇒ 3.337 3.536

Ductile 0.3954 ⇐⇒ 2.326 2.592

which the mesh is not optimally designed for this purpose (Shih and Moran 1987). Because

the calculation of G is essentially exact in the brittle orientation, the 6% error between G

and J may be thought of as providing error bars on the J -integral calculation. Perhaps it is

more important to simply note that despite the approximations, the discrepancies between the

two calculations are only a few per cent—which is reasonable for the qualitative discussion

which we will present later. For the remainder of this section, we will take G as the best

estimate of the energy release rate experienced by the crack tips.

The calculation of atomic-level stresses according to equation (9) was performed for

each crack just prior to the critical event, and is plotted in figure 4. Figure 4(a) is taken

from the brittle orientation, and shows σ yy , along the x-direction directly ahead of the crack

tip. Figure 4(b) is for the ductile orientation, and shows the resolved shear stress τ tending

to form a Shockley partial dislocation, along the positive y-direction starting from the crack

tip. For comparison, the elastic 1/
√
r curve is also presented in each figure. This elastic

curve is simply a best fit to the actual stresses beyond the first three lattice spacings from

the crack tip. The same curve can be generated from the actual applied KI field, but the

atomically blunt crack makes the location of the origin ambiguous. Note that away from

the crack tip, the 1/
√
r form is closely matched, but both plots deviate significantly in the

region immediately around the crack tip where nonlinear effects become important. The

fact that the shear stress in figure 4(b) shows a more marked deviation from the elastic curve

than the tensile stress of figure 4(a) is due to the existence of an incipient slip distribution

along the line for which the stress is being plotted. The maximum value of the tensile stress

at the tip in figure 4(a) corresponds to the critical stress required to break the first atomic

bond at this point, and thus initiate the propagation of the crack. This maximum value is

approximately σ
yy
c = 32.0 GPa. The maximum shear stress in figure 4(b), right at the crack

tip, is approximately τc = 5.6 GPa. For comparison, we note that C11 = 233.0 GPa for this

material.

These results make possible comparisons to analytic models that seek to predict the same

critical values. Here, we examine two such approaches. The first is the model proposed by

Rice (1992), in which brittle or ductile behaviour is viewed as a competition between Griffith

fracture and dislocation emission at the crack tip. For Griffith fracture, the critical quantity

is an energy release rate Gc equal to twice the surface energy associated with the newly

created surfaces. For the emission of a dislocation, on the other hand, the critical quantity is

the unstable stacking fault energy, which is the maximum of the interfacial energy when two

halves of a crystal are rigidly displaced with respect to one another along the slip direction.

By taking into account the orientation of the slip direction with respect to the crack plane,

this emission criterion can also be stated in terms of an energy release rate, Gd, and thus

the lower of Gc and Gd will determine the predicted behaviour. Second, we will compare

the critical values of the atomic-level stress from the simulation with those obtained from

the calculation of the ideal strength of a perfect crystal. The ideal shear strength is defined,
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Figure 4. Atomic-level stresses for two different orientations of the semi-infinite crack.

(a) shows the stress prior to crack propagation in the brittle orientation, while (b) is prior

to the emission of a Shockley partial in the ductile orientation. The full curve is extracted from

the simulation, while the dashed curve is the elastically predicted 1/
√
r curve. Stresses are

normalized by the elastic constants C11 = 233.0 GPa and C44 = 128.0 GPa.

for our purposes, as the maximum stress required to rigidly shear two halves of a crystal

with respect to one another, while the ideal tensile strength is the maximum stress required

to pull those two rigid half crystals apart. Each of these quantities can be obtained from a

simple atomistic calculation as the maximum derivatives of the γ -surface (Vitek 1968) and

universal binding energy relation (UBER) (Rose et al 1981) for the crystallographic plane

of interest.

In table 3, we compare the theoretical predictions for the material response with the

results of our simulations. In the first two columns, the critical values of Gc and Gd for

crack advance and dislocation emission from the Rice model are shown. These are compared

with column three, where the actual value of G from the simulation is presented. All of the

theoretical values in this table were obtained by performing separate atomistic calculations.

Where appropriate, relaxations of the atomistic unit cell were permitted perpendicular to

the slip plane. A Poisson’s ratio of ν = 0.33 was used in the Rice analysis.

Table 3. Comparison between the simulations and the theoretical predications. The values of

G are in units of J m−2. The strength values are in units of GPa, and refer to different stress

components, as appropriate to the observed failure mechanism. We present σ yy for the brittle

orientation and τc for the ductile orientation.

Orientation Gc Gd G Theoretical Actual

strength strength

Brittle 3.140 2.943 3.337 27.9 32

Ductile 3.461 1.252 2.326 2.4 5.6

Notice from table 3 that the Rice model yields Gd/Gc < 1 for both orientations, thus

predicting that both should exhibit a ductile response. In the ductile orientation, while this

prediction is qualitatively correct, the Rice model still underestimates the actual value of G

at emission by about 50%, which is consistent with observations made by a number of other
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authors (see, for example, Zhou et al (1993)). In the brittle orientation, the competition

between cleavage and dislocation emission is subtle (probably closer than the accuracy of

the models themselves). In this case, the Rice model is qualitatively incorrect and predicts

dislocation emission. At the same time, however, G and Gc are in very good agreement—

with G being about 6% greater than Gc. The fact that Gc slightly underpredicts the energy

release rate for brittle fracture is at first surprising, since the energy balance for perfectly

brittle fracture should be exact in this case. The error can be explained, however, by the

atomic scale bluntness of our crack tip. Recall that the cracks are produced by removing

a single atomic layer. The tendency for G to increase with crack-tip bluntness has been

observed by Gumbsch (1995), and studied in detail by Schiotz et al (1997). On the other

hand, the value of Gd in the brittle orientation is again too low. Indeed, if we use as a rule

of thumb the 50% error observed in the ductile orientation just discussed, we can compute

a corrected value for dislocation emission that restores the qualitative agreement with the

simulations.

It is worth noting that a number of authors have sought simple corrections to the Rice

framework that can improve the accuracy of the Gd prediction. For example, Zhou et al

(1994), Thomson and Carlsson (1994) and Juan and Kaxiras (1996) have all proposed ways

to include the effect of the atomic scale ledge which forms at the crack tip during blunting.

The sign of the corrections they obtain is consistent with our results, in that the ledge

effect increases the value of Gd. In another example, Gumbsch and Beltz (1995) have

examined the same crystallography and material as our brittle orientation, and found the

Rice model to correctly predict the brittle response. In this case their model included the

so-called shear–tension coupling effect in the dislocation emission process, rather than any

correction due to ledge energy. It is not clear, however, that any of these models include

all of the relevant effects near the crack tip. Indeed, we will show later that the extent of

the nonlinear zone prior to failure is greater than a single atomic plane. This is at odds

with the simplifying assumption of most continuum-based models, whereby all nonlinearity

is confined to a planar cohesive zone.

In the last two columns of table 3, we compare the maximum value of the appropriate

component of the atomic-level stress tensor with the theoretical strength as defined

previously. In the brittle orientation, the comparison is between the maximum value of

σ yy and the theoretical tensile strength. These values compare reasonably well, with an

error less than about 15%. For the orientation which leads to dislocation emission, the

appropriate comparison is between the critical resolved shear stress tending to produce

the first Shockley partial and the theoretical shear strength. In the case, the agreement is

considerably worse, with the theoretical shear strength being more than 50% lower than the

observed atomic-level stress. Given that the assumptions used in deriving the theoretical

strength values are closely related to those used in determining Gd and Gc in table 3, it is

perhaps not surprising that the case leading to cleavage is in fairly good agreement while

in the dislocation emission case the agreement is poor. This result further emphasizes the

need for some correction to the treatment of shear deformation and dislocation emission.

We have computed critical values of the energy release rate for brittle fracture and

dislocation emission from our atomic-level simulations. Using these values as benchmarks,

we have examined the ability of a number of continuum-based analyses to predict these

critical values. We have found that these models are unable to accurately predict critical

loads to failure. In the next section, we will provide evidence for what may be one of the

factors contributing to the error in the continuum framework. An essential feature of the

Rice model and its derivatives is the assumption of a cohesive zone. Essentially, the model

is linear elastic, but for a single mathematical plane between two layers of atoms that defines
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this zone. The tractability of the model arises from the assumption that all nonlinearity is

confined to the cohesive zone, and linear elasticity can be used for the remainder of the

body. In the next section, we examine this assumption by computing the extent of the region

in which nonlinear effects are substantial. We measure this nonlinearity by comparing the

strains near the crack tip to strains predicted from a purely linear model.

3.3. The degree of nonlinearity near the crack tip

In order to determine the degree of nonlinearity near the crack tip, we have modelled the

semi-infinite cracks with the same mesh of constant strain triangular elements as was used

in the QC solution, but now with an anisotropic linear elastic constitutive law. The goal of

this calculation is a direct comparison of the strain fields resulting from the two solutions.

The use of identical meshes and elements ensures that errors in the solution due to mesh

effects are the same for both the QC and linear elasticity result, and therefore will not

affect our comparison. The linear elastic solution is obtained using the generalized Hooke’s

law in order to include the full anisotropy of the fcc nickel, while the moduli used are

those obtained from the EAM potentials which underlie the QC model. The finite-element

formulation for both models is for finite strain, and thus the linear elasticity model is based

on the assumption that the strain energy density can be written as

E = 1
2
Cijklǫijǫkl (12)

where Cijkl are the moduli and ǫij are the components of the Lagrangian finite strain tensor.

In figure 5, we present the difference between the strain fields obtained using QC and those

using the linear elasticity model. The comparison is made by computing the fields for

the same value of boundary displacements, and allowing all interior nodes to move to their

minimum energy configuration. The plots are for boundary loads which correspond to values

of G just below the critical value in each orientation. Thus, we are examining the validity of

linear elastic analysis just before the onset of inelastic (i.e. fracture or dislocation motion)

deformation. Note that these plots are of, for example, ǫQC
xx − ǫLE

xx . This is the amount

by which the strain that occurs in the atomistic model differs from the strain of the linear

elasticity model, and can be thought of as the strain that is missed by using the linear elastic

constitutive model. Because the elements are constant strain triangles, nodal values of strain

are computed by averaging over all elements that a node touches. It is these nodal strains

that are compared in the figure. Directly on the figure, values shown indicate the location

and magnitude of the maximum and minimum strain differences. To put these levels into

proper context, we note that the linear elastic solution for the brittle orientation yields the

following maximum values of strain near the crack tip: ǫLE
xx |max = 0.083, ǫLE

yy |max = 0.213,

and ǫLE
xy |max = 0.063. Corresponding maxima in the ductile orientation are ǫLE

xx |max = 0.071,

ǫLE
yy |max = 0.181, and ǫLE

xy |max = 0.097.

The plots suggest that the linear elastic fields are actually quite representative of the QC

result, up to a small region near the crack tip of only about 10 Å in radius. An exception

to this is the effect of surface relaxation on the crack faces in the ductile orientation, which

can be seen in the plot of ǫyy . Surface relaxations aside, such good agreement between

atomistic and linear elasticity models suggests that the nonlinear zone surrounding an atomic

scale crack tip is surprisingly small, which agrees with similar observations made by other

authors (Cleri et al 1998b). Nonlinear effects become significant only very close to the tip

of the crack. However, it is clear that because the critical event occurs due to the breaking

of bonds at the crack tip, an accurate characterization of the nonlinear region is essential.

Furthermore, it is evident from the figure that nonlinearity is not confined to a single atomic
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Figure 5. Plots of the difference in strains between the linear elastic and QC models, shown in

the reference configurations. The most lightly shaded regions show excess tensile strains greater

than 2%, while the darkest regions show excess compressive strains less than −2%.

plane at the tip of the crack, as postulated in the cohesive zone approach. This observation

points to the need for more extensive nonlinear zones in continuum modelling of crack-tip

deformation.

Finally, it is worth discussing in somewhat more detail the case of the ǫyy strains in

the brittle orientation. Here, we note that there is a significant nonlinear region, and the

effect of the nonlinearity is to increase the magnitude of ǫyy compared to the linear elastic

prediction. This observation is consistent with the ideas of Abraham et al (1998), who



Quasicontinuum simulation of fracture at the atomic scale 625

proposed that the uniaxially expanded lattice is a more accurate description of the local

atomic environment ahead of the crack then the simple Griffith picture of rigid separation

of two atomic planes. The snapshot of the strain field just prior to failure that we present

in figure 5 indeed supports this notion.

4. Interactions between cracks and grain boundaries

We now turn to the problem of interactions between cracks and grain boundaries.

Mechanistic understanding of the role of GBs in fracture of polygranular materials requires

a correct atomic-level description of both the advancing crack tip, and the structure of

the GB itself. The QC formulation was extended to treat polycrystals by Shenoy et al

(1998), and in the same work it was demonstrated that the method predicts GB structures

in excellent agreement with fully atomistic models. Thus, in this section, we couple the

accurate modelling of GB structure with the ability to model fracture processes demonstrated

in the previous section. This is a problem whose size scale is well suited to the QC method,

as multiple length scales are clearly at work. These length scales range from those needed to

capture the elastic differences between the two grains to the detailed atomistic mechanisms

of fracture, dislocation generation, and GB migration.

4.1. Grain boundary migration due to the approach of a crack

The first nickel bicrystal we consider contains a 6 = 21(421) symmetric tilt boundary,

which has a [112̄] tilt axis and a tilt angle of 44.41◦. A crack is initiated in the model

by removing a single (111) plane from one of the grains. The crystallography of this GB

dictates that such a (111) plane is oriented at an angle of 67.8◦ to the GB, and we orient

the two crystals such that the crack plane lies on the x-axis and the GB extends obliquely

through the model. The initial mesh is shown in figure 6, with a close-up of the fully

refined crack-tip region in the inset. This fully refined region is entirely non-local but for

a thin pad of local nodes around its exterior. A load is applied using the method outlined

in section 3, except that the isotropic linear elastic crack-tip fields are used. The use of the

isotropic solution is necessary because the analytic solution for the crack-tip fields near an

oblique plane of moduli discontinuity is not known. Since our model is neither isotropic

nor homogeneous, this approach will not provide any quantitative information about stress

intensities or energy release rates. The scheme is merely an efficient method of loading

the model. Ten load steps were computed, the first of which has zero external load. This

first step was necessary to allow the GB to relax to its equilibrium configuration before the

approach of the crack.

Adaptive meshing is included in this run in a limited way, due to two complicating

factors. First, the existence of a GB in the model means that there will be some point

where the full, atomistic detail of the GB structure is truncated. If we do not truncate the

GB in this way, it will be necessary to include a fully refined mesh along the entire length

of the GB in the model, and our ability to significantly reduce the degrees of freedom of

the problem will be reduced. In addition, far from the crack tip it is expected that the GB

will behave in an elastic fashion, making this atomic scale information unimportant. Thus,

we are left to contend with an abrupt end to the atomic-level resolution of the GB. This

point will normally trigger adaption due to the jump in the deformation that arises from

the truncation, and hence a wave of adaption will tend to move along the GB. A second

complicating factor is that there is the potential for a great deal of dislocation activity in the

vicinity of the crack tip. To achieve a true equilibrium, these dislocations will want to run
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Figure 6. Mesh used in the QC model of the interaction between a crack and a GB. Approximate

dimension is shown, and the inset shows a close-up of the fully refined region near the crack tip.

The regions in the mesh where adaption is not allowed to take place are shown schematically

by the shaded grey boxes.

far from the crack-tip region, thus requiring a very long simulation time and a high level

of adaption to follow these advancing dislocations. As we shall see later, the equilibrium

distance for these dislocations is of the order of thousands of angstroms. The first of these

problems is avoided by defining regions where adaption is not allowed to take place—in this

case these regions are two narrow bands extended along the GB beyond the fully refined

region, as shown schematically in figure 6. The second problem is dealt with by adapting

only three times for each load step, re-establishing equilibrium between each adaption. The

assumption here is that this will allow dislocations to travel far enough that their influence

on further deformation near the GB is negligible.

Figure 7 focuses on the atoms in the fully refined region for various load steps (with

some atoms in the surrounding coarsened region also visible). The loading is quasistatic,

and the time parameter in each frame is merely used to indicate the relative magnitude of

the loads, as each load step corresponds to the same increment in boundary displacements.

Contours between the atoms are contours of elemental slip in the plane of the figure, as

described previously, and help us to trace the paths of dislocations as they move through

the crystal. Figure 7(a), at t = 1, shows the initial positions of the crack and GB. At this

point, the GB has rearranged to its minimum energy configuration, while the bulk crystals
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Figure 7. Simulation of a crack running up to a 6 = 21(421) GB. The width of view in each

frame is approximately 100 Å. See the text for details.

are still only subject to small strains.

Figure 7(b) depicts the solution after the third time increment, where we see that a

number of dislocations have been emitted from the GB above the plane of the crack.

The slip traces of these dislocations appear as dark bands between atomic planes. The



628 R Miller et al

dislocation line lies out of the plane of the figure, while the core of the dislocation is the

region where each slip trace dies out. Two prominent dislocations are labeled d1 and d2,

and a third dislocation has travelled out of the field of view in the upper right corner of

the figure where the attending mesh refinement is clearly visible. To clarify the meaning

of the contours in this figure, a close-up of dislocation d2 is shown in figure 8. The plot

accompanying this close-up is a plot of the edge component of interplanar slip, 1, due to

the dislocation. The points labelled A, B, and C indicate a point of no slip, a point near

the centre of the dislocation core, and a point where slip of a full (a0/6)〈112〉 Burgers

vector have taken place, respectively. Referring back to figure 7(b), we point out a final

noteworthy feature of the deformation, namely the contours along the GB plane. These

indicate that the atoms of the left-hand grain along the GB have rearranged to match the

lattice of the grain on the right, resulting in a migration of the boundary.

Figure 8. A close-up of the dislocation labelled d2 at time t = 3. The contours between atoms

correspond to the edge component on interplanar slip.

At t = 4, the crack starts to propagate towards the GB by the separation of two (111)

planes. This is made evident in figure 8(c), where the original crack-tip atom is denoted

by ‘ct’. In addition, note that while the dislocation labelled d1 in the previous frame has

travelled out of the field of view, d2 has actually been drawn back towards the GB. At

this time, the transformation of the left-hand grain is substantial, so much so that the GB

has bowed towards the crack tip. The patterned black and white region along the GB (the

deformation causing this pattern will be discussed later) is the region that has transformed to

accommodate the GB migration. Notice that this GB migration is not just an elastic straining

of the grains, nor a rigid translation of the model, but a shuffling of atoms between crystal

lattices. The atoms in the patterned region were originally part of the left grain, but by

following the lines of the atomic planes, one can clearly see that they are now part of the

grain on the right.

Two time steps later, at t = 6, the crack has propagated up to the GB, and has been

blunted due to the sliding of the left-hand grain up along the GB. Notice that due to the

orientation of the GB with respect to the crack, this can only happen above the crack plane,

and the result is a discontinuity in the GB at the crack. The new location of the GB can be
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seen by tracing atomic planes from one grain into the other. Note also that the dislocations

immediately above the crack in the left grain have arranged themselves along a line just a

short distance from the GB, while many of the dislocations that are further away (or that

have travelled into the right-hand grain) continue to advance into the bulk crystal. While it

cannot be seen in the field of view of this figure, the dislocation labelled d1 has travelled

a distance of about 120 Å at t = 6, while the dislocations moving up and to the right have

all travelled more than 200 Å from the GB.

There are two aspects of this deformation process which we now consider in greater

detail. The first is the emission of dislocations from the GB and into the right-hand grain,

and the subsequent distance these dislocations travel. The second mechanism of interest is

the migration of the GB due to the stress field around the crack tip.

The fact that GBs can act as a significant source of dislocations has been observed

experimentally by several authors, as reviewed by Li (1981). Our simulation demonstrates

that for this particular GB, the stresses due to the crack tip lead to a large number of

dislocation emissions from the GB itself. The issue we discuss here is the distance which

such dislocations travel, once they have been emitted into the bulk crystal. Recall that in

order to follow a dislocation as it moves away from the GB, our model must continually

refine. As mentioned earlier, this refinement was carried out only three times for every load

step, and thus the final position of these long-range dislocations was around 200 Å from the

GB. Here, we try to estimate from linear elastic considerations the equilibrium distance that

such a defect would travel. The development follows closely that of Ohr (1987) and others,

in estimating the size of the ‘dislocation free zone’ ahead of a crack. The main difference

in our model is the existence of a pinned dislocation in the GB itself, which is created at the

same time as the mobile dislocation is emitted from the boundary. We begin constructing

the situation of interest (a crack, GB, and dislocation) by superimposing the linear elasticity

fields of defects. The GB itself can by built up as an array of dislocations, whose spacing

is determined by the tilt angle of the GB. Note that such an array of dislocations has a

highly localized stress field which dies off exponentially with distance into the neighbouring

perfect crystals (Hirth and Lothe 1992). Thus, the crystals are essentially stress free and

our dislocation will quickly cease to experience any force due to the GB itself. We are left

then with the forces on the dislocation due to the crack and those due to a dislocation of

equal and opposite Burgers vector held pinned in the GB itself. Finally, there are two forces

at the atomic level, one due to the formation of a stacking fault as the partial dislocation

moves and second, the Peierls force associated with moving a dislocation from one lattice

position to the next. The picture, then, is as shown in figure 9. We wish to determine the

equilibrium position of the mobile dislocation, r , given a crack loaded with some stress

intensity factor K in mode I, a pinned dislocation at d, a stacking fault energy γ , and a

Peierls stress σp. The total force (per unit length) on the mobile dislocation is therefore

(Lin and Thomson 1986)

f =
Kbe
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e
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) [

1
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+

1

r − d
−

1

r + d

]

− γ − σpbe. (13)

The first term in this equation is the force on the dislocation due to the crack-tip stress field.

The three terms in the square brackets are forces between dislocations, which includes a

force due to the image of the mobile dislocation, a force due to the pinned dislocation, and a

force between the image of the pinned dislocation and the mobile one. Finally, the last two

terms represent the force due to the creation of a stacking fault and that due to the existence

of a Peierls stress. There will be three distances r for which this force will go to zero. Two

of them will be within a few angstroms of the crack tip, and are in fact metastable equilibria.
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The third solution is a stable equilibrium at a relatively large distance from the crack tip.

We have computed this distance for the load level associated with figure 7(b), using the

following values of the equation parameters: K = 1.021 MPa m−1/2, µ = 128.0 GPa,

ν = 0.33, α = 44.41◦, d = 20 Å, (be, bs) = (1.2445, 0.7185) Å, γ = 0.014 50 J m−2 and

σp = 0.000 68µ = 0.0870 GPa. The value of the Peierls stress is taken from a calculation

made by Shenoy and Phillips (1997) for a screw dislocation in aluminium. The resulting

equilibrium distance is r = 3971 Å, which is significantly further than was observed in the

simulation. It is perhaps not surprising that this distance agrees well with estimates for the

size of the ‘dislocation free zone’ ahead of a crack, which is of the order of 5 µm in fcc

materials (Ohr 1985). The fact that our simulation led to much shorter distances leads us

to conclude that there are important mesh effects entering our model. These effects will be

difficult to circumvent, as following a dislocation 4000 Å from the crack tip would lead to

extremely large computational demands. As evidence that this mesh effect is not affecting

the results in any significant qualitative way, we point out that this same simulation was

run with mesh adaption deactivated. The emission of dislocations from the boundary, GB

migration, load to crack propagation, and crack arrest by the GB were all observed to be

approximately the same as what has been reported here. The difference being, of course,

that no dislocations travelled further than the edges of the initial fully refined region of

figure 6. This suggests that even though these dislocations are being pinned by the mesh,

they are not significantly affecting the subsequent deformation of the GB and crack.

Figure 9. The model used to compute the equilibrium position r of the mobile dislocation.

The second aspect of the simulation which we consider in greater detail is the migration

of the boundary. A close-up of the crack-tip region from figure 7(c) is shown in figure 10.

Superimposed on this figure is a schematic representation of two rows of edge dislocations,

with arrows joining the initial and final positions of each dislocation core. This is in fact the

mechanism by which the boundary migrates, as evidenced by the dark slip traces beneath

each arrow in the figure. This arrangement of dislocations is an array of undissociated 〈110〉
edge dislocations on {111} planes, and indeed it can be verified that these will lead to the

correct tilt angle between the two grains. The motion of the boundary is then built up by

the individual motions of the dislocations in the array. As the stress field around the crack

tip builds, each dislocation experiences an increasing driving force. When the driving force

on any one of the dislocations exceeds the lattice resistance, the dislocation moves. The

nature of this driving force on the GB is the next topic of discussion.

The impetus for the migration of the GB is directly related to the jump in the elastic

fields across the interface. This has been described in detail by Abeyaratne and Knowles

(1990), Gurtin (1995), and others, and can be thought of in terms of a driving force on the

boundary. This driving force is given by

f = −[[E]] + [[mσ TFm]] (14)
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Figure 10. The mechanism of GB migration is the concerted slipping of the dislocations which

comprise the boundary.

where E is the internal energy of the system, in this case given by the strain energy density,

m is the normal to the boundary, and [[· · ·]] represents the jump in a quantity across the

interface. While it is not easy to compute the force directly from our QC analysis (recall

that we do not rigorously have stress fields, only the atomic-level stresses) we can estimate

the driving force based strictly on linear elastic considerations. In particular, if we consider

the bicrystal as an elastic body with a jump in the moduli across the GB, it is possible to

compute this driving force.

Within the finite-element method, it can be shown that the driving force of equation (14)

can be re-written as a set of discrete forces applied to the nodes along the GB. These forces

can be shown (Sussman and Bathe 1985) to be

GI
α = −

∫

�

(

E
∂Nα

∂XI
− PKJFKI

∂Nα

∂XJ

)

dV (15)

where GI
α is the force in the I th direction applied to node α, ∂Nα/∂X

I is the gradient of the

shape function at node α, P IJ is the first Piola–Kirchhoff stress, and F IJ is the deformation

gradient. By virtue of the compact support of the finite-element shape functions, the integral

only involves the elements in contact with node α, and can be evaluated using standard
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Gaussian quadrature methods. For the case of a linear elastic solid, this equation can be

written in the form

GI
α = −

∫

�

(

1

2
σPQ

∂ψP

∂XQ

∂Nα

∂XI
− σKJ

∂ψK

∂XI

∂Nα

∂XJ

)

dV. (16)

We have computed these nodal driving forces by performing an anisotropic, linear

elastic, finite-element analysis. The mesh used was the same as in figure 6, except that

midside nodes were added to each element and quadratic triangular elements were used for

improved accuracy. The boundary nodes were held fixed to the same displacements as the

boundary nodes in figure 7(a), and all interior nodes relaxed to the linear elastic solution.

The nodal forces were then computed using (16), and interpolated along the entire GB using

the finite-element shape functions. This driving force is plotted in figure 11(a) (normalized

by C11 = 233.0 GPa for nickel), against the distance along the GB (normalized by the

lattice constant a0 = 3.52 Å). In figure 11(b), the driving force is plotted directly on top

of the finite-element mesh, scaled so that its maximum coincides with the maximum bow

out of the boundary. Notice that this figure is plotted on the reference configuration of the

finite-element mesh. The high-frequency noise in the force curve is a consequence of the

finite-element mesh used to obtain the result, in conjunction with the need to interpolate

nodal forces into a distributed force along the boundary. While any direct relation between

the force on the boundary and the distance that it migrates must take into account the

kinetics of boundary motion, some insight into these kinetics may be inferred by comparing

the force distribution to the boundary profile. Above the plane of the crack, the fit between

the driving force and the GB migration is quite good, while there is a large discrepancy

below the crack plane. This difference in agreement seems to correlate with the fact that

dislocation activity is mostly restricted to the segment of the GB above the crack plane. It

is possible that the ability of a GB to emit dislocations is related to the GBs mobility. In

the region above the crack tip, the GB was able to emit dislocations, which will presumably

lower the driving force on the boundary and restrict the amount that the boundary can

move. Below the crack plane, however, the inability of the GB to emit dislocations leads

to a greater driving force and a subsequently greater GB migration. More study of this role

of dislocation activity in the mobility of a GB is certainly warranted.

It is interesting to note the similarities between the GB migration observed in this

simulation and that observed in the experimental studies of Würschum and Balluffi (1993)

and Babcock and Balluffi (1989). While the nature of the driving force is very different in

the two cases, the mechanisms of boundary migration seem closely related. Specifically,

the experimental results for high-angle boundaries showed that boundary migration is

achieved by the shuffling of atoms across the interface. Indeed, our calculations find

such a mechanism, and elucidate the details of how this atomic shuffling takes place.

The experiments report a ‘jerky’ boundary motion, indicative of a thermally activated

mechanism. Our zero-temperature simulation demonstrates that the same mechanism can

be initiated due to purely mechanical deformations. Finally, it is interesting that while the

mechanism we observe is indeed a shuffling of atoms across the interface, the net result

of the mechanism is the collective sliding of the dislocations comprising the boundary

(cf figure 10). It may have been expected, due to the high angle of the boundary and

high dislocation density, that the overlapping dislocation cores would invalidate this simple

description of the boundary motion. However, in this case the highly planar structure of the

dislocation cores enables them to exist in such close proximity without significant overlap.
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Figure 11. The linear elastic driving force on a 6 = 21(421) GB. (a) The normalized force per

unit area as a function of the normalized distance s/a0 along the boundary. (s = 0 is the point

on the boundary directly in front of the crack tip.) (b) The force superimposed on the reference

configuration at t = 4 to compare the force to the amount of boundary migration. The patterned

light/dark grey contours indicate the region through which the GB has migrated.

4.2. Intergranular fracture

As a second example, we study the interaction between a crack and the 6 = 5(1̄20)

symmetric tilt boundary in nickel. The tilt axis of the boundary is in the [001] direction,

and the tilt angle is 36.87◦. The mesh design is very similar to that of the previous example,

adjusted for the new crystallography, and the crack is initiated by removing a (110) plane

from one of the crystals. The loading program is identical to that of the previous example.

For comparison with the results of figure 7, the same load steps were used in this simulation,

but a different selection of these load steps are shown in the results of figure 12. The

differences in the behaviour are immediately apparent. Due to the lack of available slip

systems in this 2D simulation of the new orientation, there is no dislocation activity. For

this reason, we do not show the slip contours in this figure, and present only the atomic

positions themselves around the crack tip. In addition, no mesh adaption was needed in this

simulation as no dislocations form to carry the deformation beyond the initial fully refined

region. The crack propagates to meet the boundary, but in this case the boundary does

not migrate as in the previous example. While a driving force exists on this boundary as

well, it is not high enough to lead to boundary motion. This can be thought of in terms

of the dislocations which comprise the GB itself. In the previous example, the dislocations

were mobile [110] dislocations on (111) planes. In this case, however, the GB is made up

of sessile [100] dislocations on (010) planes. Such dislocations will require significantly

higher driving forces to overcome lattice resistance. When the crack reaches the boundary

it branches, running down along the boundary as well as up into the right grain, dragging

the GB along and leaving in its wake a region where the right grain has transformed to

match the crystallography of the grain on the left.
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Figure 12. Simulation of a crack running up to a 6 = 5(1̄20) GB. See the text for details.

Intergranular fracture is not observed experimentally in fcc nickel (Briant 1990). The

fact that we see this behaviour in our simulations may be explained on the basis of a

number of approximations in our model. First, the fact that our model is not fully 3D can

constrain certain deformation mechanisms that would be readily accessible to real materials.

Second, our simulation is done at zero temperature, which makes the material more likely

to behave in a brittle fashion. Finally, recall our earlier discussion of the EAM potentials

used in these simulations. Rather than treating them literally as a description of nickel,

we can think of them instead as representing a generic brittle fcc metal. In this case, we

can compare our observations to the experimental studies of fracture in copper bicrystals
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carried out by Wang and Anderson (1991). In that work it was found that the symmetric

tilt 6 = 5(130) boundary exhibited brittle fracture when a notch was introduced along the

boundary plane. The boundary they studied is closely related to the one studied here, with

the same 6 number and tilt axis, but a different boundary plane.

While it may be difficult to make direct contact between this simulation and experimental

observations, the differences between figures 7 and 12 demonstrate the ability of the QC

model to capture a wide range of material response. Essentially, there is only one difference

between the input to the simulation of figure 7 and that of figure 12—a change in the

orientation of the two crystals.

5. Conclusion

We have made use of the QC method to study fracture in single crystals and in the

presence of GBs. In single crystals, the results were used to quantify the error associated

with approximate models of crack-tip plasticity like that proposed by Rice (1992). Two

crack orientations were considered, one which failed in what is commonly referred to as a

brittle mode—the advance of the crack by cleavage between atomic planes. In the second

orientation, the crack tip emitted a dislocation, which we refer to as a ductile response.

It was found that in the brittle orientation, the Griffith analysis is in good agreement with

the atomistic results, although the effect of atomic scale crack blunting leads to a small but

significant increase in the critical energy release rate. On the other hand, the Rice criterion

used to discern between brittle or ductile behaviour was qualitatively incorrect in this case,

predicting dislocation emission for the brittle crack orientation.

In the case where the crack did not advance, but failed by the emission of dislocations,

the Rice model underpredicted the critical load to failure by about 45%. We noted that

a number of authors have presented corrections to the Rice approach whose effect is to

increase the predicted critical load for dislocation emission. Our results suggest that this is

the correct sign on the correction, but it is unclear whether these new models capture all

of the relevant physics of the problem. In an effort to understand the reason for the failure

of the Rice analysis, we examined the extent of the nonlinear region in the vicinity of the

crack tip. We have concluded that nonlinearity, while indeed confined to a region only a

few lattice spacings away from the crack tip, is not confined to a single atomic plane, as

assumed in the cohesive zone models. This suggests that a model which can extend the

nonlinear region beyond a single plane may be a more faithful representation of the crack-tip

deformation. Finally, a comparison between the atomic scale stresses near the crack tip and

simple estimates of the theoretical strength based on the UBER and γ -surface was made.

The results show that for the cases considered, the atomic-level stresses attain significantly

higher values than the simple estimates suggest.

In studying the interaction between cracks and GBs, we have revealed a number of

interesting deformation mechanisms. In the example of the 6 = 21(421) boundary, the

approaching crack induces the GB to migrate towards the crack tip, at the same time

activating a number of dislocation sources along the boundary. As a result, the advance

of the crack is accompanied by a significant amount of plastic flow originating from

the GB. This suggests that grain boundaries in fcc metals may be significant sources of

dislocations, and an important contribution to the hardening behaviour of such materials.

Finally, the advance of the crack is arrested as it is blunted by the boundary, a process that

is accommodated by GB sliding.

For the 6 = 5(1̄20) boundary, the lack of any available slip systems (due in part to the

reduced dimensionality of our model) leads to intergranular fracture. The crack reaches the
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boundary and then branches, moving along the boundary in one direction and up into the

neighbouring grain in another direction.

In both of the GB simulations, the observed behaviour was rationalized based on

continuum mechanics arguments. The migration of the 6 = 21(421) boundary was

correlated to a configurational force on the GB due to the change in the elastic moduli tensor

across the interface. The mechanism of the boundary motion could be further understood

as the collective motion of the individual dislocations of which the boundary is comprised.

On the other hand, the observation that the 6 = 5(1̄20) boundary did not migrate can be

understood on the basis of the sessile nature of its constituent dislocation cores.

There are still many questions to be answered regarding fracture at the atomic scale.

One general conclusion of this work is that modelling must truly address the issue of 3D

configurations in order to make proper contact with experiments. Simulations with reduced

dimensionality tend to freeze out possible deformation paths, such as dislocation emission

along planes that are oblique to both the crack plane and the crack front (Xu et al 1995).

In addition, the need for a more general analytical framework to describe fracture at the

atomic scale must be developed. While simulations of fracture processes are valuable tools

for exploring possible fracture processes, it is through an analytical framework that the

greatest potential for insight and prediction is gained.
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