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Abstract

Geometric reconstruction problems in computer vision

are often solved by minimizing a cost function that com-

bines the reprojection errors in the 2D images. In this paper,

we show that, for various geometric reconstruction prob-

lems, their reprojection error functions share a common

and quasiconvex formulation. Based on the quasiconvex-

ity, we present a novel quasiconvex optimization framework

in which the geometric reconstruction problems are formu-

lated as a small number of small-scale convex programs

that are ready to solve. Our final reconstruction algorithm

is simple and has intuitive geometric interpretation. In con-

trast to existing random sampling or local minimization ap-

proaches, our algorithm is deterministic and guarantees a

predefined accuracy of the minimization result. We demon-

strate the effectiveness of our algorithm by experiments on

both synthetic and real data.

1 Introduction

Given measurements in 2D images, the goal of geo-

metric reconstruction in computer vision is to estimate

the three-dimensional information about the scene and the

camera motions. Classical examples include triangula-

tion [10], camera resectioning [4, 9], and structure from mo-

tion (see [6] for a review). The Gold standard for these esti-

mation problems is minimizing Fs, the average of squared

reprojection errors (model-fitting errors measured in 2D im-

age domain). Minimizing Fs leads to maximum likelihood

estimation when measurement noises follow Gaussian dis-

tribution.

Due to the camera perspective effect, the cost function

Fs is highly nonlinear and often contains multiple local

minima. Minimizing Fs is therefore difficult. Hartley and

Schaffalitzky [5] proposed using the pointwise maximum of

the squared reprojection errors as the cost function, which

we denote as F∞. In contrast to Fs, it was shown that F∞

contains only one single minimum value in its feasible do-

main. An approach using random line search in the parame-

ter space was used in [5] to minimize F∞. The convergence

behavior of random line search remains unclear. As pointed

out in [5], it is difficult to perform random line search when

the parameter space is high dimensional. Constrained min-

imization is also proposed in [5] for minimizing F∞. How-

ever, the constraints are nonlinear and nonconvex, making

such constrained minimization a difficult problem by itself.

We can consider the model-fitting error as a function of

the unknown parameters, which is termed reprojection er-

ror function in this paper. We show that the reprojection

error functions share a common and quasiconvex formula-

tion for the geometric reconstruction problems under our

consideration. As a result, F∞, the pointwise maximum

of a family of quasiconvex functions, is also a quasiconvex

function. We then present an one-dimensional bisection al-

gorithm to minimize the quasiconvex function F∞. Our

algorithm consists of a small number of small-scale con-

vex programs, specifically linear programs (LP) or second-

order cone programs (SOCP). Both LP and SOCP are well-

studied and existing efficient algorithms and implementa-

tions are ready to use. Compared to random line search in

parameter space or local minimization approaches, our min-

imization approach is efficient, even when the unknowns

are high dimensional. More importantly, our approach is

deterministic and guarantees a predefined accuracy of the

minimization result.

It has been pointed out in [5] that F∞ is sensitive to out-

liers. To handle outliers, we use Fm, the pointwise m-th

smallest reprojection error, as the cost function. In contrast

to F∞ or Fs, the cost function Fm is highly robust to out-

liers [14]. In spite of its complex formulation, in our cases

Fm is still a pointwise operator of a family of quasiconvex

functions. As a result, our algorithm to minimize F∞ can

be extended to efficiently minimize Fm, again by solving

small-scale convex programs (LP or SOCP).

1.1 Background: geometric reconstruction problems

We present four classical examples of geometric recon-

struction problems in computer vision.

1.1.1 Multi-view triangulation

We are given projection matrices of N cameras, denoted by

{Pi, i = 1, ..., N}, and the images of the unknown 3D point

Z in these N cameras, denoted by {xi, i = 1, ..., N}. The

task of triangulation is to estimate Z from {Pi} and {xi}.

Triangulation is a necessary step in two- or multi-view 3D

reconstruction, and in structure from motion.

Note that optimal triangulation algorithms [10, 8] for

two-view case are not generalizable to multi-view case.

1.1.2 Camera resectioning

We are given 3D points {Zi, i = 1, ..., N} and their images

{xi, i = 1, ..., N} in one camera. The task is to estimate



the camera projection matrix P from these N corresponding

pairs {xi ↔ Zi}. Camera resectioning is used in camera

calibration and in structure from motion.

1.1.3 Multi-view reconstruction with known rotations

In some cases the camera rotations are known, leaving only

the camera positions and the 3D of the scene to be esti-

mated [5]. For example, in vision-aided inertial navigation,

accurate camera pose is available from modern gyroscopes,

while the camera position information from accelerometers

is still noisy [3]. Another example is that there are recon-

struction methods in which the camera rotation for each

frame is estimated in a first step [13].

Denote the N intrinsically calibrated cameras as {Pi =
(Ri,−RiCi), i = 1, ..., N}, where for each camera the ro-

tation Ri is known, but its 3D position Ci is unknown. We

are given 2D feature points {xij} over the N cameras. Here

xij denotes the projection of j-th 3D point Zj onto the i-th
camera. The task is to estimate {Zj} and {Ci} from the 2D

points {xij} and the camera poses {Ri}.

1.1.4 Planar homography estimation

Two images of points on a 3D scene plane are related by a

planar homography H, a 3 × 3 non-singular matrix. Given

N correspondences {xi ↔ x′

i, i = 1, ..., N}, the task is to

estimate H such that x′

i = Hx.

2 The cost function

In this section, we define the reconstruction error metric

at each individual 2D measurement, and the cost functions

that combine reconstruction errors from individual 2D mea-

surements.

2.1 Error metric for one 2D measurment

We use Triangulation as an example to illustrate three

often-used error metrics for an individual 2D measurement.

2.1.1 Algebraic distance

Denote x̃i = (xi; 1) the homogeneous coordinates of the

2D measurement xi, we have the following linear equation:

kix̃i = PiZ (1)

Here Z is also expressed in homogeneous coordinates. The

algebraic distance for xi is then defined by:

fi(Z) = ‖kix̃i − PiZ‖2 (2)

Linear least-squares can be applied to estimate Z by min-

imizing the sum of squared algebraic distances. Since

the algebraic distance is not geometrically or statistically

meaningful, the algebraic reconstruction is not reliable (see

[14, 5]).

2.1.2 Distance in 3D space

In the case of calibrated cameras, fi(Z) can be defined as

the distance from the 3D point Z to the ray back-projected

from xi. In the case of two views, this distance function

eu

ev

α

Figure 1. Distance between x = (u, v) and x̂ = (û, v̂). The

solid square shows the contour on which the L1 norm error e1 =
|eu| + |ev| = α, while the dash line shows the contour on which

the L2 norm error e2 =
√

e2
u + e2

v = α. Here eu = (u − û), and

ev = (v − v̂).

leads to the midpoint estimation method where Z is given

by midpoint of the perpendicular between the two rays.

When a camera is further away from the 3D point Z, the

camera has larger uncertainty on Z. Distance metric in 3D

space cannot take such uncertainty into account. As a result,

the reconstruction result is unstable when the 3D point is far

away from cameras.

2.1.3 Reprojection error in the image

The reprojection error is defined as the distance in the 2D

image domain between xi and its reprojection x̂i = πi(Z):

fi(Z) = ‖xi − x̂i‖l = ‖xi − πi(Z)‖l (3)

where x̂i = πi(Z) is the reprojection of Z in the image of

camera Pi, and ‖ · ‖l denotes some vector norm. Both xi

and x̂i are in 2D Cartesian coordinates.

We choose reprojection error metric since it has a well-

defined geometric meaning and it leads to maximum like-

lihood estimation. For example, when L2 norm is used in

Eq. (3), the reprojection error fi is the Euclidean distance

between xi and x̂i. We can also use L1 norm. Its geometric

meaning is shown in Fig. 1.

2.2 Generalized reprojection error function

Definition 1. The general formulation of reprojection error

function:

f(X) =
p(X)

q(X)
(4)

where

• X ∈ R
n is the unknown vector to be estimated;

• p(X) is a convex function, and p(X) ≥ 0.

• q(X) is a linear function, and q(X) > 0;

In the following we show that most reprojection error

functions are special cases of the above general formula-

tion. For a geometric reconstruction problem, if its repro-

jection error function conforms to the general formulation

in Eq. (4), the algorithms we present in this paper can be

applied to solve such reconstruction problem.

2.2.1 Reprojection error function in the image plane

Result 1. For the reconstruction problems in Section 1.1,

the reprojection error function defined in the image domain

conforms to the general formulation in Definition 1.



Proof. For the problems in Section 1.1, the reprojection of

x = (u, v) in the image can be written as:

x̂ =

(

a⊤X

c⊤X
,

b⊤X

c⊤X

)⊤

(5)

Here X is the vector to be estimated. a,b, and c are known

vectors. For example, in the triangulation problem, they are

the three rows of the camera matrix P, respectively.

The reprojection error function is:

f(X) = ‖x − x̂‖l = ‖
1

q(X)
(pu(X), pv(X)) ‖l, (6)

where ‖ · ‖l is the vector norm, and

pu(X) = (uc⊤ − a⊤)X,

pv(X) = (vc⊤ − b⊤)X, (7)

q(X) = c⊤X.

It is obvious that q(X) is a linear function of X.

In this paper, we consider affine or Euclidean reconstruc-

tion 1. The cheirality constraint (see [6]), which states that

the 3D points visible in the image must be in front of the

camera, can then be expressed as c⊤X > 0 2. Therefore, we

have q(X) > 0. The reprojection error function in Eq. (6)

can then be rewritten as:

f(X) =
1

q(X)
‖ (pu(X), pv(X)) ‖l =

p(X)

q(X)
(8)

Any norm function g(y) = ‖y‖l is a convex function of y.

The function h(X) = (pu(X), pv(X)) is an affine function

of X. The composition of a convex function g and an affine

function h, denoted by g◦h, is a convex function. Therefore,

p(X) = (g ◦ h)(X) is a convex function of X. It is obvious

that p(X) ≥ 0.

When uncertainty on the location of each 2D feature

point is available, it can be shown that the uncertainty-

weighted reprojection error function still conforms to the

general formulation in Definition 1.

2.2.2 Angular reprojection error function

When the camera is calibrated, the angle θ between the ob-

served ray x and the reprojection ray r = (a,b, c)⊤X can

be used to define the reprojection error [8, 5]:

f(X) = |tan(θ)| =

∣

∣

∣

∣

x × r

x⊤r

∣

∣

∣

∣

(9)

where × denotes cross-product. We choose tan(θ) since

it is a monotonically-increasing function of θ when θ ∈
[0, π/2). The cheirality constraint can be enforced by |θ| <
π/2, which leads to q(X) = x⊤r > 0. It is easy to verify

1In a way similar to the method briefed in [5], our algorithm in this

paper can be extended to projective reconstruction.
2In planar homography estimation, the chierality constraint p′⊤

3
X > 0

can be rewritten as h⊤

3
x > 0, by using the following facts: 1) X is on a

3D plane; 2) homography H = A− bv⊤, where P′ = [A|b] is the second

camera. Here p′⊤

3
is the third row of P′, and h⊤

3
the third row of H.

that q(X) is a linear function of X, and p(X) = |x × r|
is convex in X. Therefore, the angular reprojection error

function f(X) = p(X)
q(X) conforms to the general form in De-

finition 1.

2.3 Combining reprojection errors into cost function

The often used cost function Fs in geometric reconstruc-

tion is defined as the average of the squared L2-norm repro-

jection errors:

Fs =
1

M

∑

i

f2
i (X) (10)

where M is the total number of 2D measurements (points).

Fs is difficult to minimize as it is highly nonlinear and con-

tains multiple local minima [5].

Hartley and Schaffalitzky [5] proposed using the point-

wise maximum of the reprojection errors as the cost func-

tion:

F∞(X) = max
i

fi(X) (11)

It was shown in [5] that F∞(X) contains only one single

minimum value in its domain, and is therefore easier to min-

imize than Fs(X). But as is also pointed out in [5], F∞(X)
is sensitive to outliers.

To deal with the outliers, we propose using the pointwise

m-th smallest reprojection errors as the cost function:

Fm(X) = mth
i

fi(X) (12)

It is obvious that F∞ is a special case of Fm when m =
N . Fm is a highly robust function. For example, when

m = ⌊N/2⌋, it is the median operator. Minimizing Fm

leads to least-median optimization [14], which can handle

noisy measurements with up to 50% of outliers.

3 Minimizing the cost function

Both F∞ and Fm are constructed from pointwise oper-

ations on a family of functions. They are not differentiable

at many points. As a result, classical gradient-based ap-

proaches are not applicable to minimizing them. Random

line search in the parameter space was proposed in [5] to

minimize F∞, and random sampling [14, 11] is often used

to detect outliers and to minimize Fm. These randomized

approaches are not scalable when the unknowns are high-

dimensional. They do not guarantee convergence either.

In this section, we show that the general reprojection er-

ror function (Definition 1) is quasiconvex. Such quasicon-

vexity enables us to design a deterministic and efficient al-

gorithm to minimizing F∞ and Fm.

3.1 Minimization by feasibility

Instead of random search or sampling, let us look at a

minimization approach that uses the classic bisection search

in the range domain of F∞ and Fm.

For the vision problems in which we are interested, the

image size is bounded. Therefore, it is realistic to assume



Algorithm: minX F (X).

1: Given l ≤ F ∗, h ≥ F ∗, and the tolerance ε > 0.

2: while (h − l) > ε do

3: α = (h + l)/2.

4: Solve the feasibility problem (14).

5: if (14) is feasible, then h = α;

6: else l = α.

7: end while

Figure 2. Classical bisection algorithm to pin down the optimal

value by searching in the one-dimensional range domain.

that l ≤ F (X) ≤ h, where F (X) is the cost function. For

α ∈ [l, h], denote Sα the α-sublevel set of F (X):

Sα = {X | F (X) ≤ α} (13)

If Sα is non-empty, then we know that F ∗, the minimum

value of F (X), satisfies F ∗ ≤ α. Otherwise, we have F ∗ >
α. Determining whether Sα is empty or not can be achieved

by solving the following feasibility problem:

find X (14)

s.t. X ∈ Sα

Based on the above observation, we can use the bisec-

tion algorithm (see [2]) to pin down the optimal value of

F (X) by solving a sequence of feasibility problems. Fig. 2

shows the basic procedure of the algorithm. It starts with a

range [l, h] that is known to contain F ∗. Then we solve the

feasibility problem at its mid-point α = (l + h)/2. If it is

feasible, then the optimal value F ∗ is in the lower half of

the interval and we can shrink [l, h] to [l, α]. Otherwise, F ∗

must be in the upper half of the interval and we shrink [l, h]
to [α, h]. The algorithm then continues on the identified half

of the interval.

As we can see, at each iteration the range is shrunk by

half, and the bisection algorithm is guaranteed to converge

in ⌈log2((h − l)/ε)⌉ iterations. For example, [0, 100] al-

lows the re-projection error to be as many as 100 pixels,

which is guaranteed to contain the optimal value F ∗. If we

choose ε = 0.5 pixel, the algorithm will converge in only

⌈log2 200⌉ = 8 iterations. Note that the number of itera-

tions is independent of the dimension of the unknown X,

indicating that the algorithm is suitable for solving high di-

mensional problems. More importantly, the optimal value

we derive is guaranteed to be less than ε = 0.5 pixel away

from the true minimum value.

3.2 Quasiconvex functions

The bisection algorithm in Fig. 2 is simple, determinis-

tic, and it converges in a small number of iterations. It can

even be applied to minimizing cost functions with multiple

minima. The critical step in the algorithm is solving the fea-

sibility problem in Eq. (14), which could be a hard problem

by itself if the α-sublevel set of F (X) is complicated. How-

α

Sα

A

B

x

f(x)

Figure 3. A quasiconvex function. All of its α-sublevel sets {Sα}
are convex. But this quasiconvex function is not convex, as can be

seen from the line segment AB that lies below the function.

ever, if Sα is convex, then Eq. (14) is a convex feasibility

problem [2] that can be solved efficiently. A function with

such convex α-sublevel set is called a quasiconvex function:

Definition 2. (see [2]) A function f : R
n → R is quasicon-

vex if its domain dom(f) and all its sublevel sets

Sα = {x ∈ dom(f) |f(x) ≤ α},

for α ∈ R, are convex.

A convex function has convex sublevel sets, and there-

fore, is quasiconvex. The reverse is not true in general.

Fig. 3 shows an example of quasiconvex function that is not

convex. The dash-line segment that lies below the function

indicates the non-convexity of the function.

The reprojection error functions are not convex due to

camera perspective effect, but they are quasiconvex:

Result 2. A reprojection error function that conforms to the

general form defined in Eq. (4) is a quasiconvex function.

Proof. For any α > 0, the α-sublevel set of f(X) is:

Sα = {X | f(X) ≤ α}

= {X | p(X) − αq(X) ≤ 0, q(X) > 0}

From the definition of the general reprojection error func-

tion (Definition 1), we know that p(X) is a convex func-

tion, and −αq(X) is a linear function and, therefore, a

convex function. The sum of these two convex functions

φ(X) = p(X) − αq(X) is still a convex function. A sub-

level set of a convex function is a convex set. As a result, Sα

is a convex set since it is the intersection of two convex sets:

the zero sublevel set of φ(X), and the half space defined by

q(X) > 0. Since dom(f) = R
n and Sα are all convex, we

conclude that f(X) is quasiconvex.

3.3 Minimizing cost function F∞

Result 3. F∞(X), the pointwise maximum of quasiconvex

reprojection error functions fi(X), is also quasiconvex.

Proof. The α-sublevel set Sα of F∞(X) is:

Sα = {X | max
i

fi(X) ≤ α}

= {X | fi(X) ≤ α, i = 1, 2, · · · , N}

=

N
⋂

i=1

Si
α



Here Si
α is the α-sublevel set of the reprojection error func-

tion fi(X). From Result 2, we know that {Si
α} are all con-

vex sets. As a result, their intersection Sα is also a convex

set. Therefore, F∞(X) is a quasiconvex function.

Due to its quasiconvexity, F∞ can be efficiently mini-

mized by the bisection algorithm in Fig. 2. The convex set

Sα =
⋂N

i=1 Si
α can be expressed as:

Sα = {X | qi(X) > 0; pi(X)−αqi(X) ≤ 0; i = 1, · · · , N}

The feasibility problem of the bisection algorithm in

Eq. (14) can now be solved by the following convex pro-

gram:
min
X,γ

γ (15)

s.t. −qi(X) + ǫ ≤ γ,

pi(X) − αqi(X) ≤ γ,

i = 1, ..., N.

Here ǫ is a small positive number. Denote γ∗ the optimal

value of (15). If γ∗ ≤ 0, then Sα of F∞(X) is nonempty,

and the problem in (14) is feasible; otherwise (14) is infea-

sible. Note that we do not need to solve (15) with high accu-

racy. The algorithm terminates whenever γ ≤ 0 is satisfied,

or whenever a dual feasible point is found with positive dual

objective (which means γ∗ > 0).

3.4 Minimizing robust cost function Fm

F∞(X) is sensitive to outliers [5]. To deal with outliers,

we use the robust cost function Fm(X), which is defined as

the m-th smallest reprojection error (see Eq. (12)). Fm(X)
is not a quasiconvex function, except for m = N , in which

case Fm becomes F∞.

However, since Fm(X) is a pointwise function of a fam-

ily of quasiconvex functions {fi(X)}, its α-sublevel set can

still be represented by the convex sublevel sets of these qua-

siconvex functions. As a result, we are able to extend the

bisection algorithm to efficiently minimize Fm.

3.4.1 The α-sublevel set of Fm

A point X0 belongs to the α-sublevel set of Fm(X) if and

only if there exists a group of m α-sublevel sets whose in-

tersection contains the point X0.

Result 4. Denote Sα the α-sublevel set of Fm(X). For any

X0, X0 ∈ Sα if and only if X0 ∈m {S1
α, S2

α, · · · , SN
α }.

Here Si
α is the α-sublevel set of fi(X). The symbol ∈m

means that there exist m sublevel sets in {S1
α, S2

α, · · · , SN
α }

such that X0 is inside the intersection of these m sublevel

sets.

Proof. For any X0, we sort the N reprojection errors

f1(X0), f2(X0), · · · , fN (X0)

into the nondecreasing order

f(1)(X0) ≤ · · · ≤ f(m)(X0) ≤ · · · ≤ f(N)(X0) (16)

For the necessary condition, if X0 ∈ Sα, then we have

Fm(X0) = f(m)(X0) ≤ α. The first m smallest repro-

jection errors {f(i)(X0), i = 1, · · · , m} in Eq. (16) must

therefore satisfy f(i)(X0) ≤ α. As a result, X0 belongs

to the intersection of the m α-sublevel sets of the first m
functions in Eq. (16).

For the sufficient condition, suppose X0 is in the in-

tersection of the following m sublevel sets: {S
(i)
α , i =

1, · · · ,m}, where S
(i)
α is the α-sublevel set of f (i). We

must have:

f (i)(X0) ≤ α, i = 1, · · · ,m (17)

Now if Fm(X0) = f(m)(X0) > α, then from the sorted se-

quence in Eq. (16) we know that the number of less-than-α
reprojection errors is less than m. This contradicts Eq. (17)

where there are m less-than-α reprojection errors. There-

fore we have Fm(X0) ≤ α, i.e., X0 ∈ Sα.

3.4.2 Feasibility by convex program

From Result 4, the feasibility problem in the bisection algo-

rithm to minimizing Fm can be rewritten as:

find X (18)

s.t. X ∈m {S1
α, S2

α, · · · , SN
α }

In other words, we need to determine if there exist m α-

sublevel sets whose common intersection is non-empty. A

straightforward approach is to check the feasibility of every

possible group of m sublevel sets, where for each group its

feasibility can be exactly determined by the convex program

of Eq. (15). In worst case, this requires
(

N
m

)

convex pro-

grams to solve Eq. (18), which is good for small N . When

N is large, we use the following single convex program to

determine the feasibility problem in Eq. (18):

Result 5. Denote γ
∗ = (γ∗

1 , γ∗
2 , · · · , γ∗

N ) the optimal value

of the following convex program achieving at X∗:

min
X,γ

γ1 + γ2 + · · · + γN (19)

s.t. −qi(X) + ǫ ≤ γi,

pi(X) − αqi(X) ≤ γi,

γi ≥ 0,

i = 1, ..., N.

Here ǫ is a small positive number. Denote g the number of

zero elements in γ
∗. If g ≥ m, then the problem defined by

Eq. (18) must be feasible; otherwise we consider Eq. (18)

infeasible.

γ∗

i is called the infeasibility of fi(X
∗). For any sublevel

set Si
α, if its corresponding infeasibility γ∗

i = 0, then X∗ is

inside Si
α. As a result, the condition g ≥ m is sufficient for

Eq. (18) to be feasible, since these g sublevel sets contain

the common point X∗.

While g ≥ m is a sufficient condition, it is an approxi-

mated necessary condition for Eq. (18) to be feasible. The
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Figure 4. When the camera matrix is normalized appropriately,

the infeasibility γ∗

i is the distance from X
∗ to the α-convex cone.

For comparison purpose, di is the distance to the ray back-

projected from 2D measurement xi.

exact conclusion about the infeasibility of Eq. (18) requires

checking the feasibility of
(

N
m

)

groups of m sublevel sets,

or using integer programming to find the optimal point X∗

that minimizes the number of infeasibilities (the number

of nonzero components in γ
∗). Result 5 finds the mini-

mum sum-of-infeasibilities
∑

i γ∗

i , and uses it to approxi-

mate the minimum number of infeasibilities. With such ap-

proximation, the bisection algorithm gives an upper bound

on the true minimum value of Fm. The sum of infeasibility

‖γ‖1 =
∑

i γi is by itself a robust metric (L1 norm is a

robust metric), especially in our cases where the magnitude

of outliers in the 2D measurements is bound by the image

size. As a result, the bisection algorithm using Result 5

can usually achieve a tight upper bound on the true mini-

mum value of Fm. We can further improve the result by us-

ing weighted sum of infeasibility w⊤
γ in Eq. (19), where

w = (w1, · · · , wN ) is the weight for each measurement,

and wi ∈ [0, 1] can be set according to its corresponding

reprojection error to down-weight outliers.

Fig. 4 illustrates the meaning of γ∗

i . When the camera

matrix is normalized appropriately, the infeasibility γ∗

i is

the distance from X∗ to the convex cone if X∗ is outside the

cone. If X∗ is inside the cone Si
α, then γ∗

i = 0. The sum-of-

infeasibilities
∑

i γ∗

i is therefore the sum of distances from

X∗ to the convex cones that do not contain X∗. When X∗

goes further away from the camera Ci, the camera Ci has

larger uncertainty on X∗. Such varying uncertainty is taken

into account by γ∗

i as it is the distance to the cone, and the

cone becomes larger as X∗ goes further away from the cam-

era Ci. This is in contrast to the distance to back-projected

ray in 3D space (see Fig. 4).

3.5 Feasibility by LP or SOCP

When L1- or L2-norm error metric is used in defining the

reprojection error function, the convex program for feasi-

bility becomes small-scale linear programs (LP) or second-

order convex programs (SOCP), respectively.

3.5.1 L1-norm error metric leads to LP

When L1-norm error metric is used, the convex program in

Eq. (19) becomes the following linear program:

C2 CN…

C1

Figure 5. Geometric illustration of 3D reconstruction using con-

vex feasibility. The algorithm seeks the minimum cone size with

which at least m cones have non-empty intersection.

min
X,γ

γ1 + γ1 + · · · + γN (20)

s.t. −qi(X) + ǫ ≤ γi,

−αqi(X) + pui(X) − pvi(X) ≤ γi,

−αqi(X) + pui(X) + pvi(X) ≤ γi,

−αqi(X) − pui(X) − pvi(X) ≤ γi,

−αqi(X) − pui(X) + pvi(X) ≤ γi,

γi ≥ 0, i = 1, ..., N.

Here pui, pvi, and qi are all linear functions of X (see

Eq. (7) for the definition).

3.5.2 L2-norm error metric leads to SOCP

When L2-norm error metric is used, Eq. (19) becomes:

min
X,γ

γ1 + γ1 + · · · + γN (21)

s.t. −qi(X) + ǫ ≤ γi,

‖AiX‖2 ≤ αqi(X) + γi,

γi ≥ 0, i = 1, ..., N.

Here

Ai =

(

uic
⊤

i − a⊤

i

vic
⊤

i − b⊤

i

)

is a 2 × 3 matrix, and a,b, and c are known vectors (see

Eq. (5) for the notation). αqi(X)+γi is a linear function of

X. Therefore, the inequality

‖AiX‖2 ≤ αqi(X) + γi

defines a second order convex cone [2]. As a result, Eq. (21)

is a second-order cone programming (SOCP).

3.6 Geometric interpretation

The minimization algorithm we presented in this section

has intuitive geometric interpretation. We use multi-view

triangulation as an example to illustrate. For each 2D mea-

surement, the camera optical center and the six linear in-

equalities in Eq.(20) form a convex cone Si
α in front of the

camera in the 3D space, as shown in Fig. 5. The cone size is

determined by α. For any point inside the convex cone Si
α,

its reprojection error must be less than α. If the common in-

tersection of at least m convex cones is not empty, then we

conclude that there exists at least one point X0 in the 3D

space such that the cost function Fm(X0) ≤ α. Minimiz-

ing Fm(X) is therefore equivalent to adjusting α, the size of
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Figure 6. Multi-view triangulation: synthetic data. (a): The cam-

era is rotating and translating, imaging a 3D scene consists of 40

points; (b): Reconstruction errors (normalized by Eq. (22)) with

zero-mean Gaussian noises added to 2D point coordinates; (c):

Reconstruction errors under both Gaussian noises and outliers.

the convex cone, until we find the minimum α with which

the intersection of at least m convex cones is non-empty.

Note that as a camera is further away from the 3D point

X0, it has weaker constraint, since the convex cone size at

X0 becomes larger. This is a nice property since the further

away from the camera, the larger uncertainty about the 3D

position the camera has.

4 Experiments

We apply our quasiconvex optimization algorithm to

multi-view triangulation and sequential structure from mo-

tion (SFM)(see [1]), and evaluate the performance using

both synthetic and real data.

4.1 Synthetic data

The synthetic scene contains forty 3D points, distributed

at different depth, that are imaged by a moving synthetic

camera, as shown in Fig. 6(a). We use 10 consecutive views

in the triangulation. Controlled zero-mean Gaussian noises

and outliers are added to the 2D points. We apply our al-

gorithm to minimize three cost functions F∞, Fm, and Fw
m .

Here Fw
m denotes Fm with weighted sum-of-infeasibilities

used in Eq. (19). The reconstruction results from the alge-

braic approach (see Section 2.1.1) are included for compar-

ison purpose.

Fig. 6 shows the average reconstruction errors, where (b)

shows results when Gaussian noises are added to the 2D

positions at increasing variances, and (c) shows the results

with both Gaussian noises and 50% of outliers. The recon-

struction error is normalized by

err =
‖Z − ZT ‖2

‖ZT ‖2
(22)

where ZT is the known ground truth of 3D position, and

Z is the triangulation result. As we can see, the algebraic

approach has poor performance when there are noises or

outliers, while our quasiconvex optimization successfully

minimizes F∞, Fm, and Fw
m . Without outliers, F∞, Fm,

and Fw
m have similar performance, with Fm and Fw

m better

than F∞ when the noises become larger. When there are
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Figure 7. Multi-view triangulation: corridor sequence. (a): The

first image of this 11-frame sequence; (b): Reconstruction errors

(normalized by Eq. (22)) with added zero-mean Gaussian noises;

(c): Reconstruction errors with both Gaussian noises and outliers.

For each feature track, the outliers are added to 1 to 3 views, de-

pending on the number of views in which the corresponding 3D

point is visible. (d): Reconstruction errors with increased strength

of outliers (ranged from 5 to 40 pixels).

outliers, the performance of F∞ degrades quickly.

4.2 Real data with “ground truth”

We use the corridor sequence 3 in which the camera is

moving forward along the corridor. Fig. 7(a) shows the first

frame of this 11-frame sequence. Along with the sequence,

the 2D feature tracks, camera projection matrices, and 3D

points are also provided. We use 2D feature tracks and cam-

era matrices for triangulation, and compare the recovered

3D against the provided “ground truth”.

Controlled zero-mean Gaussian and/or outliers are added

to the 2D feature coordinates. Fig. 7(b) and (c) show the

reconstruction errors. The results are consistent with those

from the synthetic data experiment. Again, our quasiconvex

optimization successfully minimizes F∞, Fm, and Fw
m .

We observed that F∞ is determined by outliers. Its per-

formance depends on the “strength” of the outliers. Fig 7(d)

shows the results where the strength of one outlier is in-

creased. As we can see, the performance from F∞ degrades

quickly when outlier strength is increased. Fw
m performs

better than Fm when outlier strength is large. When the 2D

feature tracking error is less than 25 pixels, Fm performs as

well as Fw
m , indicating that in real scenarios Fm is usually

good enough.

3http://www.robots.ox.ac.uk/∼vgg/data1.html



(a) (b)

Figure 8. Multi-view triangulation in sequential SFM. The cam-

era is moved (largely forward motion) around inside the office.

(a): The first, middle, and last frame of the 450-frame sequence

(image size 360 × 240), with tracked points superimposed. (b):

Top-down view of the reconstruction results of camera trajectory

and 3D points. The yellow lines show the optical axis of the recov-

ered cameras. The red circle indicates the 3D points correspond-

ing to the chair.

4.3 Application: sequential structure from motion

Our target application is vision-aided small and micro

aerial vehicle navigation, in which sequential SFM is ap-

plied to estimate both the camera motions and the 3D. We

apply our multi-view triangulation using Fm minimization

to the sequential SFM.

A 450-frame image sequence is taken by a mini camera

that was moved around by hand in an office. Fig. 8(a) shows

the first, middle, and last frames in this sequence. The cam-

era is mostly moving forward, which is typical for a micro

aerial vehicle. The forward motion makes the 3D estima-

tion very challenging. Moreover, the images captured by

the mini camera have low quality, resulting in noisy 2D fea-

ture tracking. We therefore seek to use as many frames as

possible in triangulating a 3D point.

Fig. 8(b) shows the final reconstruction result (without

global bundle adjustment). The red circle indicates the

points from the chair visible both in the first and the last

image. In the 3D view, the reconstruction of those points

at the end of the sequence aligns very well with their recon-

struction at the beginning of the sequence, indicating a good

estimation of both the 3D and the camera motions.

5 Conclusion

We have presented a novel quasiconvex optimization

framework to geometric reconstruction problems. Our algo-

rithm is an efficient bisection search in the one-dimensional

range domain, with each search step accomplished by a

small-scale convex program that can be efficiently solved.

We derived the algorithm based on sound mathematical

grounds, and the algorithm is essentially free of parame-

ter tuning. The final algorithm is simple, deterministic, and

has very intuitive geometric interpretation. We have demon-

strated the effectiveness of our approach, using both syn-

thetic and real data.

We identified the general quasiconvex formulation of the

reprojection error functions, therefore our quasiconvex op-

timization framework can be potentially applied to many

other estimation problems. We are investigating the appli-

cations of our approach to space carving [7], multi-baseline

stereo reconstruction, and efficient bundle adjustment [12]

in structure from motion.
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