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Abstract—Geometric reconstruction problems in computer vision are often solved by minimizing a cost function that combines the

reprojection errors in the 2D images. In this paper, we show that, for various geometric reconstruction problems, their reprojection error

functions share a common and quasiconvex formulation. Based on the quasiconvexity, we present a novel quasiconvex optimization

framework in which the geometric reconstruction problems are formulated as a small number of small-scale convex programs that are

readily solvable. Our final reconstruction algorithm is simple and has intuitive geometric interpretation. In contrast to existing local

minimization approaches, our algorithm is deterministic and guarantees a predefined accuracy of the minimization result. The

quasiconvexity also provides an intuitive method to handle directional uncertainties and outliers in measurements. For a large-scale

problem or in a situation where computational resources are constrained, we provide an efficient approximation that gives a good upper

bound (but not global minimum) on the reconstruction error. We demonstrate the effectiveness of our algorithm by experiments on both

synthetic and real data.

Index Terms—Multiview geometry, geometric reconstruction, convex programming, directional uncertainty, robust.

Ç

1 INTRODUCTION

GIVENmeasurements in 2D images, the goal of geometric
reconstruction in computer vision is to estimate the

three-dimensional information about the scene and/or the
camera motions. Classical examples include triangulation
[1], camera resectioning [2], [3], and structure from motion
(see [4] for a review). The Gold standard for these
estimation problems is minimizing Fs, the average of
squared reprojection errors (model-fitting errors measured
in 2D image domain). Minimizing Fs leads to maximum-
likelihood estimation when measurement noises follow
Gaussian distribution.

Due to the camera perspective effect, the cost functionFs is

nonconvex and often contains multiple local minima. Mini-

mizing Fs is therefore difficult. Hartley and Schaffalitzky [5]

proposed using L1, the pointwise maximum of the squared

reprojection errors, as the cost function, which we denote as

F1. It was first shown by Hartley and Schaffalitzky in their

pioneer work [5] that F1, in contast to Fs, contains only one

single minimum value in its feasible domain. An approach

using random line search in the parameter space was used in

[5] tominimizeF1. The convergence behavior of random line

search remains unclear. As pointed out in [5], it is difficult to

performrandomline searchwhen theparameter space ishigh

dimensional. Constrained minimization is also proposed in

[5] forminimizingF1.However, theconstraints arenonlinear

and nonconvex, making such constrained minimization a
difficult problem by itself. These properties of L1 has
motivated two simultaneously works by Ke and Kanade [6]
and Kahl [7] that offer efficient global minimization of F1.

We can consider themodel-fitting error as a function of the
unknown parameters, which is termed reprojection error
function in this paper. The error function is quasiconvex for
the geometric reconstruction problems under our considera-
tion [6], [7]. F1, the pointwise maximum of a family of
quasiconvex functions, is also a quasiconvex function. As a
result, F1 can be efficiently minimized using an one-
dimensional bisection algorithm [8]. Our algorithm consists
of a small number of small-scale convex programs, specifi-
cally linear programs (LP) or second-order cone programs
(SOCP). Both LP and SOCP are well-studied and existing
efficient algorithms and implementations are ready to use.
Compared to random line search in parameter space or local
minimization approaches, our minimization approach is
efficient, even when the unknowns are high dimensional.
More importantly, our approach is deterministic and
guarantees a predefined accuracy of theminimization result.
Previously, global optimal estimates can be achieved only in
rare instances, such as two-view triangulation usingL2-norm
[1] or L1-norm [9], three-view triangulation by solving
polynomial equation set [10], and affine reconstruction using
matrix factorization [11]. Minimizing F1 by quasiconvex
optimizationprovides a framework to achieve global optimal
estimation in many multiview geometric reconstruction
problems, without the limitation on the number of views
and/or the use of affine camera model.

It has beenpointedout in [5] thatF1 is sensitive to outliers.
To handle outliers, we use Fm (see definition in (24)), the
pointwise mth smallest reprojection error, as the cost
function. In contrast to F1 or Fs, the cost function Fm is
highly robust to outliers [12]. In spite of its complex
formulation, in our cases Fm is still a pointwise operator of
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a family of quasiconvex functions. As a result, our algorithm

to minimize F1 can be extended to efficiently minimize Fm,

again by solving small-scale convex programs (LP or SOCP).

For small-scale problems, our approach can identify the

global minimum of Fm. For large-scale problems, our

approach canprovide a goodupper bound on the reconstruc-

tion error. But to locate the exact global minimum of Fm, we

need to solve N
m

� �

convex programs,whereN is the number of

inputs. Although thismight be computational prohibitive for

some applications for large-scale problems, it does provide a

mechanism to locate the globalminimum.However,we need

to emphasize thatFm is no longer a quasiconvex function and

is subject to potentially numerous local minima for large-

scale problems.
Our quasiconvex minimization framework can also take

directional uncertainty into account in an intuitive way.

Cost functions (e.g., Fs and F1) are meaningful objectives to

minimize only when the measurement noises are isotropic

and i.i.d. (independent and identically distributed) at every

2D feature. In real data, this is rarely the case since the

quality of feature matching depends on the image intensity

pattern around the feature, which often varies at different

feature points and has strong directionality to it. To account

for the feature-dependent directional uncertainty, one

should minimize the covariance-weighted reprojection

error (the Mahalanobis distance), instead of the euclidean

distance. We incorporate the directional uncertainty model

into the quasiconvex optimization framework. The direc-

tional uncertainty can be characterized by the covariance

matrix at each 2D feature, as has been used in matrix

factorization for affine reconstruction [13], [14]. We show

that the point wise maximum of covariance-weighted

reprojection errors is still a quasiconvex function and,

therefore, its global minimum can be obtained by the

quasiconvex minimization framework. Moreover, since a

line feature can be modeled as a feature point with infinite

uncertainty along the line direction, point and line features

can be used simultaneously for geometric reconstruction in

a common quasiconvex optimization framework.

1.1 Background: Geometric Reconstruction
Problems

We present some classical examples of geometric recon-

struction problems in computer vision. These geometric

reconstruction problems can all be solved using our method

presented in this paper. We will also present, for each

problem, the reprojection (in the image plane) of the

geometric reconstruction result, which will be used later.

The following problems have been studied by Ke and

Kanade [6] and Kahl [7]. Kahl [7] showed that the

reconstruction problem given a reference plane can also

be solved by SOCP. Ke and Kanade [6] also showed that, in

addition to SOCP, the simpler Linear Programming (LP)

can be used to obtain the global minimum if robust L1-

distance is used to measure the reprojection error in the

image plane. We have also investigated using convex

optimization to handle directional uncertainties [15] and

outliers [6].

1.1.1 Multiview Triangulation

Given projection matrices of N cameras, denoted by
fPi; i ¼ 1; . . . ; Ng and the images of the unknown
3D point ~Z ¼ ðX;Y ; Z; 1Þ> in these N cameras, denoted
by fxi; i ¼ 1; . . . ; Ng, the task of multiview triangulation is
to estimate ~Z from fPig and fxig. Triangulation is a
necessary step in two or multiview 3D reconstruction and
in structure from motion. Note that optimal triangulation
algorithms [1], [16] for two-view case are not general-
izable to multiview case.

The reprojection of ~Z on the ith image is

x̂>
i ¼ p1>

i
~Z

p3>
i

~Z
;
p2>
i

~Z

p3>
i

~Z

 !

; ð1Þ

where pk>
i is the kth row of the matrix Pi.

1.1.2 Camera Resectioning

Given 3D points f~Zj; j ¼ 1; . . . ;Mg and their images fxj; j ¼
1; . . . ;Mg in one camera, the task of camera resectioning is

to estimate the camera projection matrix P from these N

corresponding pairs fxj $ ~Zjg. Camera resectioning is

used in camera calibration and in structure from motion.
The reprojection of ~Zj on the image is

x̂>
j ¼

~Z>
j p

1

~Z>
j p

3
;

~Z>
j p

2

~Z>
j p

3

 !

; ð2Þ

where pk> is the kth row of matrix P.

1.1.3 Multiview Reconstruction with Known Rotations

In some cases the camera rotations are known, leaving

only the camera positions and the 3D of the scene to be

estimated [5]. For example, in vision-aided inertial naviga-

tion, accurate camera pose is available from modern

gyroscopes, while the camera position information from

accelerometers is still noisy [17]. Another example is that

there are reconstruction methods in which the camera

rotation for each frame is estimated in the first step [18].

Denote the N intrinsically calibrated cameras as fPi ¼
ðRi;�RiCiÞ; i ¼ 1; . . . ; Ng, where for each camera the

rotation Ri is known, but its 3D position Ci is unknown.

We are given 2D feature points fxijg over the N cameras.

Here, xij denotes the projection of jth 3D point ~Zj ¼
ðXj; Yj; Zj; 1Þ> onto the ith camera. The task is to estimate

f~Zjg and fCig from the 2D points fxijg and the camera

poses fRig.
The reprojection of ~Zj onto the ith image is

x̂>
ij ¼

r1>i Xij

r3>i Xij
;
r2>i Xij

r3>i Xij

� �

; ð3Þ

where rk>i is the kth row of the rotation matrix Ri and
Xij ¼ ðXj; Yj; ZjÞ> �Ci. The scale and the origin are ambig-
uous in thereconstructionof the3Dpointsf~Zgandthecamera
locations fCg. We set the first point ~Z1 as the origin (i.e.,
~Z1 ¼ ð0; 0; 0; 1Þ>) and fix the scale by settingC1 ¼ ð�; �; 1Þ>.

1.1.4 Planar Homography Estimation [6], [7]

Two images of points on a 3D scene plane are related by a

planar homography H, a 3� 3 nonsingular matrix. Given
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M correspondences fxj $ x0
j; j ¼ 1; . . . ;Mg, the task is to

estimate H such that wj~x
0
j ¼ H~xj. Here, ~x> ¼ ðx>; 1Þ and wj

is an unknown scale.
The mapping of xi onto the second image is:

x̂>
j ¼

~x>
j h

1

~x>
j h

3
;

~x>
j h

2

~x>
j h

3

 !

; ð4Þ

where hk> is the kth row of H.

2 THE COST FUNCTION

In this section, we define the reconstruction error metric

at each individual 2D measurement and the cost func-

tions that combine reconstruction errors from individual

2D measurements.

2.1 Error Metric for One 2D Measurement

Using triangulation as an example, let us illustrate three

error metrics for an individual 2D measurement. We denote

the homogeneous coordinate ~Z ¼ ðZ; 1Þ ¼ ðX;Y ; Z; 1Þ>.

2.1.1 Algebraic Distance

Denote ~xi ¼ ðxi; 1Þ the homogeneous coordinates of the

2D measurement xi, we have the following linear equation:

ki~xi ¼ Pi
~Z: ð5Þ

The algebraic error distance for xi is defined by

fið~ZÞ ¼ kki~xi � Pi
~Zk2: ð6Þ

Linear least-squares can be applied to estimate ~Z by
minimizing the sum of squared algebraic distances. Since
the algebraic distance is not geometrically or statistically
meaningful, the algebraic reconstruction could be unreliable
(see [5], [12]), especially for reconstruction problems when
the camera is moving mostly forward or when there are
large noises or outliers.

2.1.2 Distance in 3D Space

In the case of calibrated cameras, fiðZÞ can be defined as the
euclidean distance from the 3D point Z to the ray back
projected from xi (the ray connecting the camera optical
center and xi). In the case of two views, this distance function
leads to themidpoint estimationmethodwhereZ is given by
midpoint of the perpendicular between the two rays.

When a camera is further away from the 3D point Z, the

camera has larger uncertainty on Z. Distance metric in

3D space cannot take such uncertainty into account. As a

result, the reconstruction result is unstablewhen the 3Dpoint

is far away from cameras.

2.1.3 Reprojection Error in the Image

The reprojection error is defined as the distance in the
2D image domain between xi and its reprojection x̂i ¼ �ið~ZÞ

fið~ZÞ ¼ kxi � x̂ikl ¼ kxi � �ið~ZÞkl; ð7Þ

where x̂i ¼ �ið~ZÞ is the reprojection of ~Z in the image of

camera Pi and k � kl denotes some vector norm. Both xi and

x̂i are in 2D Cartesian coordinates.

We choose reprojection error metric since it has a well-
defined geometric meaning and it leads to maximum-
likelihood estimation. For example, when L2 norm is used
in (7), the reprojection error fi is the euclidean distance
between xi and x̂i. We can also use L1 norm. Its geometric

meaning is shown in Fig. 1.

2.2 Generalized Reprojection Error Function

For a pin-hole camera, the reprojection error function defined
in the image domain shares a common formulation in many
geometric reconstruction problems. Identifying such com-
mon formulation enables us to apply our algorithm to

different problems.

Definition 1. The general formulation of reprojection error
function

fðXÞ ¼ pðXÞ
qðXÞ ; ð8Þ

where

. X 2 IRn is the unknown vector to be estimated,

. pðXÞ is a convex function and pðXÞ � 0, and

. qðXÞ is a concave function and qðXÞ > 0.

Note that, for our applications, qðXÞ is usually a linear

function that constrains the admissible Xs. A linear
function is also a concave function.

In the following, we show that most reprojection error
functions are special cases of the above general formulation.
For a geometric reconstruction problem, if its reprojection

error function conforms to the general formulation in (8),
the algorithms we present in this paper can be applied to
solve such reconstruction problem.

2.2.1 Reprojection Error Function in the Image Plane

Theorem 1. In affine or euclidean reconstruction,1 for the
reconstruction problems in Section 1.1, the reprojection error

function defined in the image domain conforms to the general
formulation in Definition 1.

Proof. For the problems in Section 1.1, the reprojection of
x ¼ ðu; vÞ> in the image, as shown in (1), (3), and (4), can
be rearranged into the following general formulation:

x̂ ¼ a>X

c>X
;
b>X

c>X

� �>
: ð9Þ
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1. In a way similar to the method in [5], our algorithm in this paper can
be extended to projective reconstruction.

Fig. 1. Distance between x ¼ ðu; vÞ and x̂ ¼ ðû; v̂Þ. The solid square

shows the contour in which the L1 norm error e1 ¼ jeuj þ jevj ¼ �, while
the dash line shows the contour in which the L2 norm error

e2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2u þ e2v
p

¼ �. Here, eu ¼ ðu� ûÞ and ev ¼ ðv� v̂Þ.



Here, X is the vector to be estimated. a, b, and c are

known vectors.
The reprojection error function is

fðXÞ ¼ kx� x̂kl ¼ k 1

qðXÞ puðXÞ; pvðXÞð Þ>kl; ð10Þ

where k � kl is the vector norm and

puðXÞ ¼ ðuc> � a>ÞX;

pvðXÞ ¼ ðvc> � b>ÞX;

qðXÞ ¼ c>X:

ð11Þ

It is obvious that qðXÞ is a linear function of X and,
therefore, it is a concave function.

In affine or euclidean reconstruction, the cheirality
constraint [4], [19], which states that the 3D points visible
in the image must be in front of the camera, can be
expressed as c>X > 0. Therefore, we have qðXÞ > 0. The
reprojection error function in (10) can then be rewritten as

fðXÞ ¼ 1

qðXÞ k puðXÞ; pvðXÞð Þkl ¼
pðXÞ
qðXÞ : ð12Þ

Any norm function gðyÞ ¼ kykl is a convex function of y.
The function hðXÞ ¼ ðpuðXÞ; pvðXÞÞ is an affine function
of X. The composition of a convex function g and an
affine function h, denoted by g � h, is a convex function.
Therefore, pðXÞ ¼ ðg � hÞðXÞ is a convex function of X. It
is obvious that pðXÞ � 0. tu

2.2.2 Uncertainty-Weighted Reprojection Error Function

When the measurement uncertainty on the location of each
2D feature point is available, the reprojection error at each
feature should beweighted by its corresponding uncertainty.
In this section, we show that such uncertainty-weighted
reprojection error function still conforms to the general
formulation in Definition 1. As a result, our algorithm in this
paper can handle (directional) uncertainties.

Uncertainty of feature position. The accuracy of feature
matching depends on the intensity pattern around each
feature, which often has strong directionality and is location-
dependent. Suchdirectional uncertainty can be characterized
by the following inverse covariance matrix (cf. [20], [21]):

Q
�1 ¼ 1

s

X

ðu;vÞ2w

IuIu; IuIv
IuIv; IvIv

� �

; ð13Þ

where w is a small window centered around the feature
point in the image I of the ith camera, s is determined by
the intensity pattern inside w, and Iu and Iv are image
gradients along u and v direction, respectively. A more
accurate method to estimate feature position uncertainty is
presented in [21], which takes into account not only the
image pattern but also the image pixel noises.

Fig. 2 shows the three different types feature uncertainty:

. Q ¼ diagð�; �Þ: scalar uncertainty that is feature-
dependent, but is isotropic and, therefore, uncorre-
lated in u and v direction.

. Q ¼ diagð�1; �2Þ: directional ð�1 6¼ �2Þ but uncorre-
lated in u and v direction.

. Q ¼ full 2� 2 matrix: directional and correlated in u
and v direction.

Covariance-weighted reprojection error function. The

uncertainty in the location of each 2D feature point x can be

taken into account by weighting the reprojection error

appropriately using the covariance matrix. The covariance

matrix Q for the 2D point x is a symmetric positive

semidefinite matrix and can be decomposed by Singular

Value Decomposition into the following form: Q ¼ U�U>,

where � ¼ diagð�1; �2Þ, and U is a 2� 2 orthonormal matrix.

The inverse covariance matrix takes the form of

Q
�1 ¼ U�

�1
U
>: ð14Þ

Denote B ¼ ��1=2U>, which is a linear transformation that

transforms the input data into covariance-weighted data

space where the noises at each feature become isotropic and

i.i.d.. The transformed coordinates (in euclidean) of x and x̂

in the image plane are

x0 ¼ ðu0; v0Þ> ¼ Bðu; vÞ>; ð15Þ

x̂0 ¼ Bx̂ ¼ 1

c>X
B

a>

b>

� �

X; ð16Þ

where a> and b> follow the notation in (9). The covariance

matrixof thenoise in thecovariance-weighteddataspacenow

becomes isotropic and takes the form of diagð1; 1Þ. Denote

A ¼ B
u
v

� �

c> � B
a>

b>

� �� �

: ð17Þ

The covariance-weighted reprojection error function is

fwðXÞ ¼ kx0 � x̂0k ¼ AX

c>X

	

	

	

	

	

	

	

	

: ð18Þ

Again, the cheirality constraint [4], [19], which states that

the 3D points visible in the image must be in front of the

camera, can then be expressed as c>X > 0. Therefore, (18)

can then be written as

fwðXÞ ¼ 1

c>X
kAXk: ð19Þ

The norm function pðXÞ ¼ kAXk is convex and the function

in (19) conforms to the general formulation in Definition 1.

When k � k in (19) is L2-norm, fwðXÞ is the Mahalanobis

distance between x and x̂.
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Fig. 2. Uncertainty in feature point locations. (a) Scalar uncertainty with

covariance matrix Q ¼ diagð�; �Þ. (b) Directional but uncorrelated noises

with covariance matrix Q ¼ diagð�1; �2Þ. (c) Directional and correlated

noises, with covariance matrix Q a full 2� 2 matrix.



2.2.3 Angular Reprojection Error Function

When the camera is calibrated, the angle � between the
observed ray x and the reprojection ray r ¼ ða;b; cÞ>X can
be used to define the reprojection error [5], [16]

fðXÞ ¼ tanð�Þj j ¼ x� r

x>r

















; ð20Þ

where� denotes cross-product.We choose tanð�Þ since it is a
monotonically-increasing function of �when � 2 ½0; �=2Þ. The
cheirality constraint canbe enforcedby j�j < �=2,which leads
to qðXÞ ¼ x>r > 0. It is easy to verify that qðXÞ is a linear
function of X and pðXÞ ¼ jx� rj is convex in X. Therefore,
the angular reprojection error function fðXÞ ¼ pðXÞ

qðXÞ conforms
to the general form in Definition 1.

2.3 Combining Reprojection Errors into Cost
Function

The often used cost functionFs in geometric reconstruction is
defined as the average of the squared L2-norm reprojection
errors

Fs ¼
1

M

X

i

f2
i ðXÞ; ð21Þ

where M is the total number of 2D measurements (points).
Fs is difficult to minimize as it is highly nonlinear and
contains multiple local minima [5].

Hartley and Schaffalitzky [5] proposed using the point-
wise maximum of the reprojection errors as the cost function

F1ðXÞ ¼ max
i

fiðXÞ: ð22Þ

When the measurement uncertainties are available, the
uncertainty-weighted cost function is defined by

F1ðXÞ ¼ max
i

fwi ðXÞ: ð23Þ

It was shown in [5] that F1ðXÞ contains only one single
minimum value in its domain and is therefore easier to
minimize than FsðXÞ. But as is also pointed out in [5],
F1ðXÞ is sensitive to outliers.

To deal with the outliers, we propose using the
pointwise mth smallest reprojection errors as the cost
function

FmðXÞ ¼ mth
i

fiðXÞ: ð24Þ

It is obvious that F1 is a special case of Fm whenm ¼ N . Fm

is a highly robust function. For example, when m ¼ bN=2c,
it is the median operator. Minimizing Fm leads to least-
median optimization [12], which can handle noisy measure-
ments with up to 50 percent of outliers.

3 MINIMIZING THE COST FUNCTION

Both F1 and Fm are constructed from point-wise operations
on a family of functions. It is not clear how classical
gradient-based approaches can be applied to minimizing
them. Random line search in the parameter space was
proposed in [5] to minimize F1, and random sampling [12],
[22] is often used to detect outliers and to minimize Fm.
These randomized approaches converge only in a probabil-
istic manner. Moreover, random line search is not scalable
when the unknowns are high-dimensional.

In this section, we show that the general reprojection

error function (Definition 1) is quasiconvex. Such quasi-

convexity enables us to design a deterministic and efficient

algorithm to minimizing F1 and Fm.

3.1 Minimization by Feasibility

Instead of random search or sampling, let us look at a

minimization approach that uses the classic bisection search

in the range domain of F1 and Fm.

For the vision problems in which we are interested, the

image size is bounded. Therefore, it is realistic to assume

that l � F ðXÞ � h, where F ðXÞ is the cost function. For

� 2 ½l; h	, denote S� the �-sublevel set of F ðXÞ

S� ¼ fX j F ðXÞ � �g: ð25Þ

If S� is nonempty, then we know that F �, the minimum

value of F ðXÞ, satisfies F � � �. Otherwise, we have F � > �.

Determining whether S� is empty or not can be achieved by

solving the following feasibility problem:

find X;

s:t: X 2 S�:
ð26Þ

Based on the above observation, we can use the bisection

algorithm (see [8]) to pin down the optimal value of F ðXÞ by
solving a sequence of feasibility problems. Fig. 3 shows the

basic procedure of the algorithm. It starts with a range ½l; h	
that is known to contain F �. Then, we solve the feasibility

problemat itsmid-point� ¼ ðlþ hÞ=2. If it is feasible, then the
optimal valueF � is in the lower half of the interval andwe can

shrink ½l; h	 to ½l; �	. Otherwise,F � must be in the upper half of

the interval and we shrink ½l; h	 to ½�; h	. The algorithm then

continues on the identified half of the interval.

Aswe can see, at each iteration the range is shrunk by half,

and the bisection algorithm is guaranteed to converge in

dlog2ððh� lÞ="Þe iterations. For example, [0, 100] allows the

reprojection error to be as many as 100 pixels, which is

guaranteed to contain the optimal value F �. If we choose " ¼
0:5 pixel, the algorithm will converge in only dlog2 200e ¼ 8

iterations. Note that the number of iterations is independent

of the dimension of the unknown X, indicating that the

algorithm is suitable for solving high dimensional problems.

More importantly, the optimal valuewe derive is guaranteed

to be less than " ¼ 0:5 pixel away from the true minimum

value.

3.2 Quasiconvex Functions

The bisection algorithm in Fig. 3 is simple, deterministic, and

it converges in a small number of iterations. It can even be

applied to minimizing cost functions with multiple minima.

The critical step in the algorithm is solving the feasibility

problem in (26), which could be a hard problemby itself if the

�-sublevel set of F ðXÞ is complicated. However, if S� is

convex, then (26) becomes a convex feasibility problem, as a

result the functionF ðXÞ can beminimized efficiently (see [8],

Algorithm 4.1, p. 145). A function with such convex

�-sublevel set is called a quasiconvex function.
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Definition 2 (see [8]). A function f : IRn ! IR is quasiconvex
if its domain domðfÞ and all its sublevel sets,

S� ¼ fx 2 domðfÞ jfðxÞ � �g ð27Þ
for � 2 IR, are convex.

A convex function has convex sublevel sets, and there-
fore, is quasiconvex. The reverse is not true in general. Fig. 4
shows an example of quasiconvex function that is not
convex. The dashline segment AB that lies below the
function indicates the nonconvexity of the function.

The reprojection error functions are not convex due to

camera perspective effect, but they are quasiconvex.

Theorem 2. A reprojection error function that conforms to the
general form defined in (8) is a quasiconvex function.

Proof. For any � > 0, the �-sublevel set of fðXÞ is

S� ¼fX j fðXÞ � �g
¼fX j pðXÞ � �qðXÞ � 0; qðXÞ > 0g:

From the definition of the general reprojection error
function (Definition 1), we know that pðXÞ is a convex
function, and��qðXÞ is a linear function and, therefore, a
convex function. The sum of these two convex functions
�ðXÞ ¼ pðXÞ � �qðXÞ is still a convex function. A sublevel
set of a convex function is a convex set. As a result, S� is a
convex set since it is the intersection of two convex sets:
The zero sublevel set of�ðXÞ and the half space defined by
qðXÞ > 0. Since domðfÞ ¼ fX j qðXÞ > 0g and S� are all
convex, we conclude that fðXÞ is quasiconvex. tu

3.3 Minimizing Cost Function f1
We have shown that the reprojection error function is
quasiconvex. The pointwise maximum of quasiconvex
functions is also quasiconvex.

Theorem 3. F1ðXÞ, the pointwise maximum of quasiconvex
reprojection error functions fiðXÞ, is also quasiconvex.

Due to its quasiconvexity,F1 can be efficientlyminimized
by the bisection algorithm in Fig. 3. The convex set S� ¼
TN

i¼1 S
i
� can be expressed as

S� ¼ fX j qiðXÞ > 0; piðXÞ � �qiðXÞ � 0;

i ¼ 1; � � � ; Ng: ð28Þ

The feasibility problem of the bisection algorithm in (26) can
now be solved by the following convex program:

min
X;�

�

s:t: � qiðXÞ þ � � �;

piðXÞ � �qiðXÞ � �;

i ¼ 1; . . . ; N:

ð29Þ

Here, � is a small positive number.2

Equation (29) first relaxes the inequality constraints (in
(28)) by �, then minimizes the relaxation. Denote �� the
optimal value of (29). If �� � 0, then S� of F1ðXÞ is
nonempty and the problem in (26) is feasible; otherwise,
(26) is infeasible. Note that we do not need to solve (29) with
high accuracy. The algorithm terminates whenever � � 0 is
satisfied or whenever a dual feasible point is found with
positive dual objective (which means �� > 0).

3.4 Minimizing Robust Cost Function Fm

F1ðXÞ is sensitive to outliers [5]. To deal with outliers, we
use the robust cost function FmðXÞ, which is defined as the
mth smallest reprojection error (see (24)). FmðXÞ is not a
quasiconvex function, except for m ¼ N , in which case Fm

becomes F1.
However, since FmðXÞ is a pointwise function of a family

of quasiconvex functions ffiðXÞg, its �-sublevel set can still
be represented by the convex sublevel sets of these
quasiconvex functions. As a result, we are able to extend
the bisection algorithm to efficiently minimize Fm.

3.4.1 The �-Sublevel Set of Fm

A point X0 belongs to the �-sublevel set of FmðXÞ if and
only if there exists a group of m �-sublevel sets whose
intersection contains the point X0.

Theorem 4. S� the�-sublevel set ofFmðXÞ. For anyX0,X0 2 S�

if and only if X0 2m fS1
�; S

2
�; � � � ; SN

� g. Here, Si
� is the

�-sublevel set of fiðXÞ. The symbol 2m means that there exist
m sublevel sets in fS1

�; S
2
�; � � � ; SN

� g such that X0 is inside the
intersection of thesem sublevel sets.

Proof. For any X0, we sort the N reprojection errors

f1ðX0Þ; f2ðX0Þ; � � � ; fNðX0Þ ð30Þ
into the nondecreasing order

fð1ÞðX0Þ � � � � � fðmÞðX0Þ � � � � � fðNÞðX0Þ: ð31Þ

For the necessary condition, if X0 2 S�, then we have
FmðX0Þ ¼ fðmÞðX0Þ � �. The first m smallest reprojection
errors ffðiÞðX0Þ; i ¼ 1; � � � ;mg in (31)must therefore satisfy
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Fig. 3. Classical bisection algorithm (see [8]) to pin down the optimal

value by searching in the one-dimensional range domain.

Fig. 4. A quasiconvex function. All of its �-sublevel sets fS�g are
convex. But this quasiconvex function is not convex, as can be seen
from the line segment AB that lies below the function.

2. We set � ¼ 1 in practice.



fðiÞðX0Þ � �. As a result, X0 belongs to the intersection of
them �-sublevel sets of the firstm functions in (31).

For the sufficient condition, suppose X0 is in the
intersection of the following m sublevel sets: fSðiÞ

� ;
i ¼ 1; � � � ;mg, where SðiÞ

� is the �-sublevel set of f ðiÞ. We
must have

f ðiÞðX0Þ � �; i ¼ 1; � � � ;m: ð32Þ
Now, if FmðX0Þ ¼ fðmÞðX0Þ > �, then from the sorted
sequence in (31) we know that the number of less-than-�
reprojection errors is less than m. This contradicts (32)
where there are m less-than-� reprojection errors.
Therefore, we have FmðX0Þ � �, i.e., X0 2 S�. tu

3.4.2 Feasibility by Convex Program

The significance of Theorem 4 is that the feasibility problem
(in the bisection algorithm to minimizing Fm) can now be
rewritten as

find X

s:t: X 2m fS1
�; S

2
�; � � � ; SN

� g:
ð33Þ

In other words, we need to determine if there exist m
�-sublevel sets whose common intersection is nonempty.

Exact global minimization. The formulation of (33)
allows us to locate the global minimum of Fm, by checking
the feasibility of every possible group of m sublevel sets in
each iteration of the bisection algorithm, where for each
group its feasibility can be exactly determined by the convex
program of (29). In the worst case, this requires N

m

� �

convex
programs to solve (33) in order to locate the global minimum
of Fm, which is good for smallN , but could be computational
too expensive for largeN . WhenN is large, we can use either
integer programming or its convex approximation.

Minimizing number of infeasibility.

Theorem 5. The feasibility problem in (33) can be formulated
exactly by integer programming:

min
X;��

�1 þ �2 þ � � � þ �N

s:t: � qiðXÞ þ � � �i;

piðXÞ � �qiðXÞ � �i;

�i ¼ f0; vg;
i ¼ 1; . . . ; N:

ð34Þ

Here, v > 0 is an arbitrary large positive integer.

Given optimal values ðX�; ���Þ of the above minimization
problem, if �i ¼ 0, then the ith reprojection error fiðXÞ � �,
i.e., X is inside the ith �-sublevel set. On the other hand, if
�i ¼ v, then X is outside the ith �-sublevel set. When ð�1 þ
�2 þ � � � þ �NÞ is minimized, we obtain a solution X�, where
the number of infeasible constraints is minimized. In other
words, we seek a solution which maximizes the number of
�-sublevel sets who have nonempty common intersection.
If this number is larger than m, then (33) is feasible;
otherwise, it is infeasible.

Minimizing sum of infeasibility. For large-scale pro-
blems, where integer programming may become computa-
tional expensive or prohibited, we can use LP or SOCP as an
approximation.

Theorem 6. We can use sum of infeasibility as an approximation
to estimate the number ofinfeasible constraints

min
X;��

�1 þ �2 þ � � � þ �N

s:t: � qiðXÞ þ � � �i;

piðXÞ � �qiðXÞ � �i;

�i � 0; i ¼ 1; . . . ; N:

ð35Þ

Denote ��� ¼ ð��1 ; ��2 ; � � � ; ��NÞ the optimal value of the above
convex program achieving at X�. Denote g the number of zero
elements in ���. If g � m, then the problem defined by (33)
must be feasible.

��i is called the infeasibility of fiðX�Þ. For any sublevel
set Si

�, if its corresponding infeasibility ��i ¼ 0, then X� is
inside Si

�. As a result, the condition g � m is sufficient for
(33) to be feasible since these g sublevel sets contain the
common point X�.

While g � m is a sufficient condition, it is an approximated
necessary condition for (33) to be feasible. The exact
conclusion about the infeasibility of (33) requires checking
the feasibility of N

m

� �

groups ofm sublevel sets orusing integer
programming to find the optimal point X� that minimizes
the number of infeasibilities (the number of nonzero
components in ���). Theorem 6 finds the minimum sum-of-
infeasibilities

P

i �
�
i and uses it to approximate theminimum

number of infeasibilities. Though the global minimum of Fm

is not guaranteed with such approximation, the bisection
algorithm gives an upper bound on the true minimum value
of Fm. The reason is that the sum of infeasibility k��k1 ¼

P

i �i
is by itself a robust metric (L1 norm is a robust metric),
especially in our cases where themagnitude of outliers in the
2D measurements is bounded by the image size. As a result,
the bisection algorithm using Theorem 6 can usually achieve
a tight upper bound on the true minimum value of Fm.

Minimizing sum of weighted infeasibility. We can
further improve the result by using weighted sum of
infeasibility w>�� in (35), where w ¼ ðw1; � � � ; wNÞ is the
weight for each measurement and wi 2 ½0; 1	 can be set
according to its corresponding reprojection error to down-
weight outliers, as shown in the following convex program:

min
X;��

w1�1 þ w2�2 þ � � � þ wN�N

s:t: � qiðXÞ þ � � �i;

piðXÞ � �qiðXÞ � �i;

�i � 0; i ¼ 1; . . . ; N:

ð36Þ

A simple weighting scheme is the {0, 1} weighting where
the weights wi corresponding to active constraints are set to
0. Another scheme is to determine the weight wi according
to reprojection error ri ¼





Xi � pi
qi





. Note that (35) is a special
case of (36). In our experiments presented in this paper, we
use an iterative version of the first scheme.

3.4.3 Discussion on Minimizing Fm

Fm is a robust error function that isno longerquasiconvexand
is subject to local minima. If we can determine the feasibility
of its �-sublevel set (i.e., solve (26)), thenwe can still locate its
global minima. However, solving (26) is a hard problem due
to its nonconvexity. In Theorem 4, we show that determining
such feasibility is equivalent to finding m (out of N) convex
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coneswith common intersection, as shown in (33).As a result,
we can locate the global minimum of Fm for small-scale
problems by checking the intersection of every m convex
cones (each intersection checking is a convex programming).
For larger scale problems, we have presented an approxima-
tionmethod (and its iterativeversion) to solve (33). Theorem4
also enables us to design RANSAC-like methods to deter-
mine, in a probabilistic way, the feasibility of the �-sublevel
set of Fm. For example, we can randomly choose k (a small
number) cones, solving for the intersection of these k cones
(which is a SOCP with k cones) and then check if such
intersection is inside at least m cones (which is straightfor-
ward). The probability of obtaining the global minimum is
then determined by the number of random sample sets and
the fraction of outliers. We leave this as part of our future
work in further investigating the use ofL1-norm given noisy
data with outliers.

3.5 Feasibility by LP or SOCP

When L1 or L2-norm error metric is used in defining the
reprojection error function in the image domain, the convex
program for feasibility becomes small-scale linear programs
(LP) or second-order convex programs (SOCP), respec-
tively. Both LP and SOCP are well-studied and existing
efficient algorithms and implementations are ready to use
(e.g., the Matlab built-in function linprog or SeDuMi [23]). In
the following, we present the detailed LP and SOCP for the
convex program in (35), which also applies to (29) as it is a
special case of (35).

3.5.1 L1-Norm Error Metric Leads to LP

When L1-norm is used to compute the reprojection error in
image domain, the convex program in (35) becomes the
following linear program:

min
X;��

�1 þ �1 þ � � � þ �N

s:t: � qiðXÞ þ � � �i;

� �qiðXÞ þ puiðXÞ � pviðXÞ � �i;

� �qiðXÞ þ puiðXÞ þ pviðXÞ � �i;

� �qiðXÞ � puiðXÞ � pviðXÞ � �i;

� �qiðXÞ � puiðXÞ þ pviðXÞ � �i;

�i � 0; i ¼ 1; . . . ; N:

ð37Þ

Here, pui, pvi, and qi are all linear functions of X (see (11) for
the definition).

3.5.2 L2-Norm Error Metric Leads to SOCP

When L2-norm is used to compute the reprojection error in
image domain, (35) becomes

min
X;��

�1 þ �1 þ � � � þ �N

s:t: � qiðXÞ þ � � �i;

kAiXk2 � �qiðXÞ þ �i;

�i � 0; i ¼ 1; . . . ; N:

ð38Þ

Here, Ai is a 2� 3 matrix defined in (17). �qiðXÞ þ �i is a
linear function of X. Therefore, the inequality

kAiXk2 � �qiðXÞ þ �i ð39Þ

defines a second-order convex cone [8]. As a result, (38) is a
second-order cone programming (SOCP).

The minimization algorithm we presented in this
section has intuitive geometric interpretation. We use
uncertainty-weighted multiview triangulation as an ex-
ample to illustrate. For each 2D feature point xi, the
�-sublevel set Sw

i of the covariance-weighted reprojection
error function fw

i ðXÞ is a second-order convex cone in the
3D space in front of the camera. The shape and size of
such convex cone are determined by � and the covariance
matrix Qi ¼ U diagð�1; �2ÞU>, as shown in Fig. 5a. The
construction of convex cone Sw

i is the following. First, a
circle in the image plane with radius � is scaled by

ffiffiffiffiffi

�1
p

and
ffiffiffiffiffi

�2
p

in u and v direction, respectively. This results in
an ellipse with axes of �

ffiffiffiffiffi

�1
p

and �
ffiffiffiffiffi

�2
p

, respectively. The
ellipse is then rotated by the rotation matrix U. The final
convex cone, dubbed as elliptical cone, is formed by
connecting the camera optical center and the rotated
ellipse.

The �-sublevel set S1
� of the cost function F1ðXÞ is the

intersection of all �-sublevel sets fSw
i g. Minimizing the

covariance-weighted cost F1ðXÞ is therefore equivalent to
determining if there exists common intersection of the convex
elliptical cones fSw

i g, as shown in Fig. 5b. The bisection
algorithm then seeks a minimum value � such that the
common intersection of the convex elliptical cones fSw

i g is
nonempty. To minimize the robust function FmðXÞ, the
algorithm determines whether or not there exist m-out-of-N
convex cones that have nonempty common intersection.

Since � is common for all convex cones, the relative shape
and size of each individual cone is actually determined by its
associated covariance matrix. Therefore, the effect of each
convex cone constraint on the final estimationX is weighted
by the inverse covariance matrix. Consider an extreme
case when uncertainty goes to infinity. In such case, the
corresponding convex cone is scaled to infinite size and does
not have any constraint on the estimate of X. On the other
hand, if theuncertainty is zero, the convex conebecomes a ray
and we must constraint X on the ray, which is a strong
constraint. When directional uncertainty is presented, the
effect of constraints from different directions are determined
by �1 and �2, respectively.
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Fig. 5. Geometric illustration of 3D reconstruction using quasiconvex
optimization. Here, L2 norm is used in the reprojection error function.
(a) The shape and size of each cone are determined by � and
covariance matrix Qi. (b) The algorithm seeks minimum � such that the
cones have nonempty common intersection S1

� . Note that cones have
different shapes and sizes. The last cone Cm has large directional
uncertainty and has little constraint on determining S1

� in the direction
that has large uncertainty.



Note that as a camera is further away from the 3D pointX,
it has weaker constraint since the convex cone size at X

becomes larger. This is a nice property since the further away
from the camera, the larger uncertainty about the 3D position
the camera has.

4 EXPERIMENTS

We apply our quasiconvex optimization algorithm to
multiview triangulation and sequential structure from
motion (SFM) (see [24]), and evaluate the performance
using both synthetic and real data. Using multiview
triangulation and planar homography estimation as two
examples, we also show that, when (directional) uncertain-
ties are available, the use of covariance-weighted error
functions can greatly improve the reconstruction results.

4.1 Multiview Triangulation: Synthetic Data

The synthetic scene contains 40 3D points, distributed at

different depth, that are imaged by a moving synthetic

camera, as shown in Fig. 6a. We use 10 consecutive views in

the triangulation. Controlled zero-meanGaussian noises and

outliers are added to the 2Dpoints.Weapplyour algorithm to

minimize three cost functions F1, Fm, and Fw
m. Here, Fw

m

denotes Fm withweighted sum-of-infeasibilities used in (36).

The reconstruction results from the algebraic approach (see

Section 2.1.1) are included for comparison purpose.
Fig. 6 shows the average reconstruction errors, where

Fig. 6b shows results when Gaussian noises are added to
the 2D positions at increasing variances, and Fig. 6c shows
the results with both Gaussian noises and 50 percent of
outliers. The reconstruction error is normalized by

err ¼ kZ� ZTk2
kZTk2

; ð40Þ

where ZT is the known ground truth of 3D position and Z is
the triangulation result. As we can see, the algebraic
approach has poor performance when there are noises or
outliers, while our quasiconvex optimization appears to
successfully minimize F1, Fm, and Fw

m. Without outliers,
F1, Fm, and Fw

m have similar performance with Fm and Fw
m

better than F1 when the noises become larger. When there
are outliers, the performance of F1 degrades quickly.

4.2 Multiview Triangulation: Real Data with
“Ground Truth”

We use the corridor sequence3 in which the camera is moving
forward along the corridor. Fig. 7a shows the first frame of
this 11-frame sequence. Along with the sequence, the
2D feature tracks, camera projection matrices, and 3D points
are also provided. We use 2D feature tracks and camera
matrices for triangulation, and compare the recovered
3D against the provided “ground truth.”

Controlled zero-meanGaussianand/or outliers are added
to the 2D feature coordinates. Figs. 7b and 7c show the
reconstruction errors. The results are consistent with those
from the synthetic data experiment. Again, our quasiconvex
optimization successfully minimizes F1, Fm, and Fw

m.
We observed that the value of F1 is determined by

outliers. Its performance depends on the “strength” of the
outliers. Fig 7d shows the results where the strength of one
outlier is increased. As we can see, the performance from
F1 degrades quickly when outlier strength is increased. Fw

m

performs better than Fm when outlier strength is large.
When the outlier strength (in 2D feature tracking error) is
less than 25 pixels, Fm performs as well as Fw

m, indicating
that in real scenarios Fm is usually good enough.

4.3 Application: Sequential Structure from Motion

Our target application is vision-aided small and micro aerial
vehicle (SMAV) navigation, in which sequential SFM [24] is
applied to estimate both the camera motions and the 3D. We
apply our Fm minimization method to the sequential SFM.

There are two steps in our sequential reconstruction. In
the first step, we estimate the essential matrix (the camera is
intrinsically calibrated) from feature correspondences. The
camera rotation and translation are then recovered from the
essential matrix. We observe that the estimation of camera
rotation is much better than the estimation of the camera
translation, especially in a typical SMAVmotion which has a
major forward-motion component. Therefore, in a second
step, the camera translations and the 3D of the feature points
are estimated from multiple frames using Fm minimization,
i.e., reconstruction with known rotations (see Section 1.1.3).
In the near future, we will use IMU sensors in the SMAV
navigation and control. IMU sensors typically provide good
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Fig. 6. Multiview triangulation: synthetic data (image size: 200� 200). (a) The camera is rotating and translating, imaging a 3D scene consists of

40 points. (b) Reconstruction errors (normalized by (40)) with zero-mean Gaussian noises added to 2D point coordinates. (c) Reconstruction errors

under both Gaussian noises and outliers. The unit is pixel in the standard deviation of Gaussian noises.

3. http://www.robots.ox.ac.uk/~vgg/data1.html.



rotational estimations but very noisy positional estimations.
The two-step approach is suitable for fusing such IMU sensor
measurements with image measurements.

A 450-frame image sequence is taken by a intrinsically
calibratedmini camera thatwasmoved around by hand in an
office. Fig. 8 (first column) shows the first, middle, and last
frames in this sequence. Notice that the images captured by
the mini camera have low quality, which results in noisy
2D feature tracking.

Fig. 8 (second column) shows the final reconstruction
result (without global bundle adjustment). The red circle
indicates the points from the chair visible both in the first and
the last image. In the 3D view, the reconstruction of those
points at the end of the sequence aligns very well with their
reconstruction at the beginning of the sequence, indicating a
good estimation of both the 3D and the camera motions.

4.4 Experiments: Quasiconvex Minimization with
Directional Uncertainty

We use planar homography estimation and multiview
triangulation as two example applications to evaluate our
algorithm for handling directional uncertainties. Using
synthetic and real data, we compare the performances of
quasiconvex minimization of F1 with and without un-
certainty model. The uncertainty-weighted version of F1 is
denoted by Fw

1. The results from normalized linear
algorithm are also included for comparison purpose.

4.4.1 Homography Estimation with Directional

Uncertainty: Synthetic Data

We [6] and Kahl [7] have shown that planar homography
can be estimated by SOCP minimization. Kahl [7] presented
experimental results. In this section, we extend the works
by taking uncertainty into account.

Fig. 9 shows the setup to generate the synthetic data for
homography estimation,where the camera images the points
on the “ground plane.” This simulates the case where a
cameramountedonavehicle is lookingat the groundplane at
some angle. Note that, in this case, h33 in homography HT (the
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Fig. 7. Multiview triangulation: corridor sequence (image size: 512� 512). (a) The first image of this 11-frame sequence. (b) Reconstruction errors
(normalized by (40)) with added zero-mean Gaussian noises. (c) Reconstruction errors with both Gaussian noises and outliers. For each feature
track, the outliers are added to 1 to 3 views, depending on the number of views in which the corresponding 3D point is visible. (d) Reconstruction
errors with increased strength of outliers (ranged from 5 to 40 pixels). The unit is pixel in the standard deviation of Gaussian noises.

Fig. 8. Multiview triangulation in sequential SFM. The camera is moved
(largely forward motion) around inside the office. The first column shows
the first, middle, and last frame of the 450-frame sequence (image size
360� 240), with tracked points superimposed. The image on the right is
the top-down view of the reconstruction results of camera trajectory and
3D points. The yellow lines show the optical axis of the recovered
cameras. The red circle indicates the 3D points corresponding to the
chair.



ground truth homography between the groundplane and the
image plane) may become very small. In all the algorithms
being compared, we do not assume h33 ¼ 1. Furthermore, in
the following experiments, we use two images and assume
the noise is only in the second image.

We randomly generate 20 3D points Xi on the ground
plane and compute the 2D images xi of these 3D points.
We then add elliptical Gaussian noise to xi. The noise
perturbed points are denoted by ~xi. The ellipticity of the
noise is measured by r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�max=�min

p
, where �max and �min

are the major and minor axes of the uncertainty ellipse,
respectively. The orientation of the ellipse is randomly
selected for each point.

We compare the performances using four criteria:

. Maximum reprojection error

F1ðXÞ ¼ max
i

dð~xi; HxiÞ; ð41Þ

where dð�; �Þ denotes the euclidean distance.
. Root of Mean Squares (RMS) of reprojection errors.
. Maximum covariance-weighted reprojection error,

defined in (23) and denoted by Fw
1ðxÞ.

. Error in H defined as

eH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

i¼1

d2ðxi; HxiÞ

v

u

u

t ; ð42Þ

where dðxi; HxiÞ is the euclidean distance between
the ground truth 2D point xi and the reprojection
point HXi. This error metric compares the estimated
H to the ground truth HT using ground truth points.
If there is not error in the estimated H, then eH ¼ 0.

We apply our algorithm to estimate H from this synthetic
data. We repeat the experiments for 20 times, and report the
average error. Fig. 10 shows the results, where

ffiffiffiffiffiffiffiffiffiffi

�min
p ¼ 0:01

and
ffiffiffiffiffiffiffiffiffiffi

�max
p

varies from 0.01 to 0.2, i.e., the ellipticity r varies
from 1 (isotropic) to 20.

As we can see from Fig. 10a, both F1 and Fw
1 have similar

RMS error. Normalized linear algorithm has similar RMS
error when r is small, but becomes unreliable when r � 10.

From Fig. 10d, which compares the estimated H against
ground truth HT using the metric eH , we can see that Fw

1
performs the best and its performance does not degrade at
all with the increase of r. This indicates that Fw

1 is the
proper metric to minimize. We also find that normalized
linear algorithm performs better than F1 when r is small,
but when r is large, the performance of normalized linear
algorithm becomes unreliable.

4.4.2 Multiview Triangulation with Directional

Uncertainty: Synthetic Data

We use the set up in Fig. 6a to generate the synthetic data for
multiview triangulation with uncertainty. The camera is
rotating and translating and takes 10 consecutive views of
20 3D points located at different depth. Directional Gaussian
noises are added to the locations of image points.
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Fig. 9. The set up for synthetic data generation for homography
estimation. The camera is looking at points on the ground plane. The
image coordinates are normalized such that the camera focal length
f ¼ 1.

Fig. 10. Results from planar homography estimation. (a) RMS error. (b) Maximum of reprojection error. (c) Maximum of covariance-weighted

reprojection error. (d) Error in H.



Fig. 11 shows the average results of 20 runs. Again, it

shows that the covariance-weighted reprojection error is the

right metric to use, as can be seen by the fact that Fw
1 gives

the best 3D estimation Z when compared to the ground

truth ZT using the error metric of (40).

4.4.3 Infinite Directional Uncertainty

The performance of Fw
1 does not degrade even when r, the

ellipticity of the noises, goes to essentially infinity, as can be

seen from Table 1. This fact indicates that the normal optical

flow can be modeled by directional (infinity) uncertainty.

As a result, the point feature and line feature can be

simultaneously used in the quasiconvex optimization for

many geometric reconstruction problems.

4.4.4 Homography Estimation with Directional

Uncertainty: Real Data

We apply our algorithm to estimate the inter-image homo-

graphy using real image data. Fig. 12 shows two input

images.Here, Fig. 12a shows the first image. Theother images

are obtained by applying a known and gradually-changed

planar homography to Fig. 12a. Thiswaywehave the ground

truth of the planar homography for evaluation purpose.
The features in the first image are tracked through the

sequence and the inverse covariance matrix for each feature

is computed by the matrix defined in (13). The elliptical

uncertainties for some feature points are shown in Fig. 12a.
Fig. 13 shows the image residual by applying the

inverse-warping using the estimated homographies. As

we can see, minimizing Fw
1 gives the homography that has

the lowest intensity residual. It correctly down weights the

features with large directional uncertainty on the top of the

box to produce a correct estimate of H. On the other hand,

both normalized linear algorithm and the minimization of

F1 give worse results, as can be seen by the large residuals

on the top of the box, where there exist features with large

directional uncertainty. Normalized linear algorithm per-

forms better than minimizing F1 in this case.
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Fig. 11. Results from multiview triangulation. (a) RMS error. (b) Maximum of reprojection error. (c) Maximum of covariance-weighted reprojection
error. (d) Reconstruction error compared against ground truth 3D.

TABLE 1
Results under Infinite Elliptical Uncertainty r ¼ 105

The table shows eH for homography estimation and e3D for triangulation.
Fig. 12. Two input images. (a) First image, where elliptical uncertainties

for some feature points are shown. (b) Last image.



5 CONCLUSION

We have presented a novel quasiconvex optimization frame-
work to geometric reconstruction problems, which are
formulated as a small number of small-scale convex

programs, more specifically, Second-Order Cone Program
(SOCP) when the reprojection error in each image is
measured by L2-norm (euclidean distance), and Linear
Program (LP) when the reprojection error is measured by
L1-norm. We derived the algorithm based on sound

mathematical grounds, and the algorithm requires very little
of parameter tuning. The final algorithm is simple, robust,
and has very intuitive geometric interpretation. In contrast to
previous methods, our algorithm is deterministic and
guarantees a predefined accuracy of the global minimization
result.

The robust error function Fm is used to handle outliers. In
general,Fm is not a quasiconvex function. To obtain its global
minimum using the bisection algorithm, one needs to solve
the feasibility problem in (26), which is a hard problemdue to
its nonconvexity. We show in Theorem 4 that the feasibility
problem of (26) is equivalent to finding m (out of N) convex

cones with common intersection (see (33)). For small-scale
problems (e.g., 5-10 view 3D triangulation), we can afford to
check the intersection of all possiblem cones, thus achieve the
globalminimum. For larger scale problems,we need to resort
to approximationmethods, in such cases the globalminimum

is no longer guaranteed. We have presented one approxima-
tion solution (and its iterative version), which is a convex
approximation of integer programming. For the scale of the
problems we presented in this paper, the iterative approx-
imation solutionworkswell. In the experimentwith synthetic
data, the iterative version is able to find all the outliers, while

thenoniterativeversion fails to identify someoutliers at about
5 percent to 10 percent of the time (it depends on the
percentage of the outliers, as well as the strength of the
outliers and we have reported the average reconstruction
error). As part of our future work, we are also currently
investigating a RANSAC-like method to solve the feasibility

problem of (33) in a probabilistic way (see Section 3.4.3).
Our quasiconvex optimization method can take into

account (directional) uncertainties in a straightforward and
seamless way. Since line features can be represented as a
point feature with infinite uncertainty in the line direction,
our method allows points and lines to be simultaneously
used in reconstruction.

We identified the general quasiconvex formulation of the

reprojection error functions, therefore, our quasiconvex

optimization framework can be potentially applied to many

other estimation problems. We are investigating the applica-

tions of our approach to space carving [25], multibaseline

stereo reconstruction, and efficient bundle adjustment [26] in

structure frommotinon.We are also extending our approach

tomultiview triangulation without feature correspondences.
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