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ABSTRACT. It is shown that general quasilinear parabolic systems possess unique
maximal classical solutions for sufficiently smooth initial values, provided the
boundary conditions are “time-independent”. Moreover it is shown that, in the
autonomous case, these equations generate local semiflows on appropriate Sobolev
spaces. Our results apply, in particular, to the case of prescribed boundary values
(Dirichlet boundary conditions).

Introduction. In this paper we study quasilinear evolution equations of the form
(1) i+ A(t,u)u=f(t,u)

in a general Banach space X. We assume that A(z, y) is, for each fixed argument,
the infinitesimal generator of a strongly continuous analytic semigroup, such that the
domain X; of A(¢, y) is independent of (¢, y). Equation (1) is studied in general
interpolation spaces X, between X and Xj, and it is shown that (1) possesses a
unique maximal solution, which depends (Lipschitz-)continuously upon its initial
value. In the important autonomous case (that is, when 4 and f are independent of
t) this implies that (1) generates a local semiflow in X,. In addition we give simple
sufficient conditions, which guarantee that a given maximal solution exists globally,
that is, for all time. Moreover, by imposing some additional hypotheses, we show
that the solutions of (1) possess better regularity properties.

The general abstract results are then applied to quasilinear parabolic initial
boundary value problems of the form

%Lti +(t,x,u,Du,...,D*" u)u

=f(¢t,x,u,Du,...,D*™ u) in(s,T] XQ,
Bu=0 on(s,T] xQ,
u(s,-)=u, ong,
where € is a bounded smooth domain in R", &% denotes the Dirichlet boundary
operator and #Z(t, x, u, ..., D™ 'u) is a strongly parabolic differential operator of

order 2m, acting on vector-valued functions u: € — C" and depending smoothly
upon the indicated quantities. We shall show that this problem possesses a unique
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192 HERBERT AMANN

maximal classical solution u(-, s, u,) for every s € [0,T) and u, € W, satisfying
HBu, =0 on 9%, provided n <p <oco and 2m—1+n/p <o <2m, and that
u(-, s, u,) depends continuously upon u, in the topology of W

To be more specific we now state a special case of our general results of §10 in the
important case of a strongly coupled real quasilinear second order autonomous
system. For this we suppose that £ is a bounded domain in R" of class C> and that

2 a,€ CHAXRY xRN, Z(RY)), jk=1,....n,
Jk

where Z(RV) is the space of all linear mappings (= (N X N )-matrices) on R".
Moreover we assume that

N ”n
(3) Re{ Y X ai(x,m OEEAX ) >0
rs=1j k=1
forall (x,n,{) € & XRY x RV, all §:= (¢',....¢") € R and all A\:= (A,...,\y)
€ CVwith £ # 0and A # 0. Thus
o (x,u,Du)u= — 3 a,(x,u, Du)D Du
J.k=1

is a quasilinear strongly coupled elliptic second order differential operator acting on
N-vector-valued functions u: & — R". Finally we assume that

(4) fe C*(Q xXRY x R"M,RY)
and consider the parabolic initial boundary value problem

88_1: + &7 (x,u,Du)u = f(x,u,Du) in(0,00) X Q,
(5) u=20 on (0, o0) X 02,

u(0, ) = u, on Q.

THEOREM. Suppose that n < p < oo and 1 + n/p < o < 2. Then (5) possesses a
unique maximal classical solution u(-, uy) for each u, € W) z'= {u €
W= I/Vp"(SZ,RN)IuIBQ = 0}. The function (t,uy) — u(t,uy) is a local semiflow on
W, g such that bounded orbits exist for all time. If an orbit is bounded in W for some
T € (0,2), then it is relatively compact in W

It should be noted that—besides the regularity assumptions (2)—(4)—we do not
require any growth or compatibility conditions (except for the initial value u,, of
course).

It is well known that the fact that nonlinear parabolic equations generate
semiflows is very important for the study of the qualitative behaviour of the
solutions of these equations (cf. [12, 18 and 27] for recent surveys of some results of
this type). Up to now this has only been known for semilinear parabolic equations
and systems (e.g. [17 and 22]).

Our principal abstract results are contained in §§6-8. In the last section we give
applications of the abstract theory to quasilinear parabolic systems of arbitrary
order. We are particularly interested in classical solutions. For simplicity we do not
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QUASILINEAR EVOLUTION EQUATIONS 193

give the most general results but choose a relatively simple setting. Due to the length
of this paper we do not give specific conditions guaranteeing the existence of global
solutions.

The existence of solutions to abstract quasilinear evolution equations has already
been studied by Sobolevskii [28] (cf. also Friedman [16]) and, more recently, by
Potier-Ferry [24] and Lunardi [20, 21]. But our results about the continuous
dependence of the solution upon the initial values are new, as are the simple criteria
for global existence. Moreover the results of these authors do not give classical
solutions to general parabolic systems as do our general theorems. A more detailed
discussion of the relations between our results and those of other authors is given in
the main body of this paper.

Notations. Throughout this paper we use standard notations. All vector spaces are
over K:= R or C. If K=R and we use complex quantities (for example in
connection with spectral theory), it is always understood that we work with the
natural complexifications (of spaces and operators). Thus, by p(A4), the resolvent set,
and by o(A4), the spectrum of a linear operator with domain D(A4) and range R(A4),
we mean always the resolvent set and the spectrum, respectively, of its complexifica-
tion.

X, Y, Z, with or without indices, always denote Banach spaces, and £ (X,Y) is
the Banach space of all continuous linear operators from X into Y. By £ (X, Y) we
mean the same vector space, but endowed with the topology of pointwise conver-
gence. Moreover Z(X):= £(X, X).

If S is a metric space, we denote by C(S, X) the space of all continuous functions
from S into X, endowed with the topology of uniform convergence on compact
subsets (the compact-open topology). If 0 < a < 1, then C*(S, X) is the subspace of
all a-Holder continuous functions, where f: S — X is said to be a-Holder continu-
ous, if each point 5, € S has a neighbourhood U such that f is uniformly a-Holder
continuous on U, that is,

v, 1f(s) = ()]l

20 T PO

where d denotes the metric in S. The space C*(S, X) is given the locally convex
topology induced by the seminorms

(6) §u;{)j||f(s)|l+[f]g, U c S, U compact.

< o0,

If « =1, we denote this space by C!7(S, X), the space of Lipschitz continuous
functions. More generally, if S is a subspace of some product space A X B, then we
write f € C*#(S, X) if each point (a, b) € S has a product neighbourhood U X V
in S such that there exists a constant ¢ with

(7) 1(s.0) = (" ) < e{ [dals.s0] " + [dp(1.)] )

for all (s,t), (s’,¢’) € U X V. Moreover, f< C*¥(S, X) means that f(-,7) is
continuous on U for each ¢t € ¥V and f(s, -) is uniformly 8-Holder continuous on V,
uniformly with respect to s € U. We shall repeatedly use the following important
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194 HERBERT AMANN

fact: If 0 < a, 8 < 1 and if f € C*A(S, X), then each compact set K in S has a
neighbourhood W in S such that (7) holds for all (s,t), (s',t") € W (with the
obvious modifications if a = 0 or 8 = 0, and where a« = 1 is interpreted as « = 1 —
etc.). For a proof of this fact we refer to [6, Satz 6.4].

If S is compact, then C(S, X) is a Banach space with the maximum norm and
C*(S, X) is a Banach space with the norm (6), where U is replaced by S. We use
these norms throughout. In general we denote by B(S, X) the Banach space of all
bounded functions from S into X, endowed with the supremum norm. Moreover
BC(S, X):= B(S, X) " C(S, X), and BUC(S, X) is the closed linear subspace of
BC(S, X) consisting of all bounded and uniformly continuous functions. Similarly,
BUCA(S, X) denotes the Banach space of all bounded and uniformly a-Holder
continuous functions on §, endowed with the norm (6), where U is replaced by S.

If U is an open subset of some Banach space Y, then C¥(U, X), k € N*:=
N\ {0}, is the space of all k-times continuously differentiable functions from U into
X, endowed with the usual locally convex topology. If Y = K, then U can also be a
perfect subset of K, that is, a set such that each point of U is a limit point of U.
Moreover C¥~(U, X) is the subspace of all f€ C*¥ (U, X) such that D*"f e
C' (U, X), where D denotes the derivative. If U is a subset of some product space,
we denote by D,, D,,... the partial derivatives.

Throughout this paper T is a fixed positive number. We let

i (1) R0 s 2 raT) and Tm | ()€ 1)

Moreover we denote by ¢ positive constants, which may be different from formula to
formula, but are always independent of the specific independent variables occurring
at a given place. Thus we treat ¢ in much the same way as the Landau symbol O. If
the equations under consideration depend on additional parameters, say a, 8,...,
then we sometimes write ¢(a, 8,...) to indicate that ¢ depends on these parameters.
Finally, (3.5) means formula 5 in §3, if we refer to it outside of §3.

1. Convolution-type equations. For each @ € R we denote by R(X,Y,«) the
Banach space of all functions k € C(T,, #( X, Y)) satisfying

lellw="sup (z—s)*[k(z,5)] < oo,

(1.5)ET)
endowed with the norm || - || ,,. It is obvious that
(1) R(X.Y,B) = R(X,Y,a) forB <a,

where < denotes continuous imbedding. If « < 0, then it is easily seen that
k € &(X,Y,a) can be continuously extended over 7, by letting k(z,¢t) = O for
0 <r < T, sothat

(2) R(X,Y,a) = C(T,, £(X,Y)) fora <0O0.
Observe that
(3) Q(X,Y,0) = BC(Ty, L(X,Y)).
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QUASILINEAR EVOLUTION EQUATIONS 195

If X =K, we identify #(K, Y) naturally with Y via (K, Y)> B B-1€ Y.
Hence k € Q(K,Y, a) iff k € C(T,,Y) and ||k(t,5)|| < c(t — 5) "« for (t,5) € T}
In particular,

(4) Cc([0,T],Y) - &(K,Y,0) = BC(T,,Y)
by the obvious identification
(5) C([0,T].Y)2 uo [(t,5) > u(z)] € BC(T,,Y).

Finally, (X, a) 1= R(X, X, a).
We define now a “convolution-type” operation * by

hxk(t,s):= /’h(z,T)k(T,s)dT, (t,5) € T,,

whenever k € ®(X,Y,a) and h € Q(Y, Z,B) with a,8 < 1, so that the integral
exists.
LEMMA 1.1. (i) Let a, B € (—0,1), k € &(X,Y,a) and h € R(Y, Z, B). Then
hxke Q(X,Z,a+B—-1)
and

(6) A * klla+rp-1 < B(1 — a,1 = B)|Alwl ki,

where B(-, -) denotes the beta function.
(ii) The operation * is associative.

PROOF. (i) The estimate (6) is simple. The continuity of 4 *k on T, follows
essentially from Lebesgue’s theorem (for example, by modifying in an obvious way
the proof of [7, Lemma 1.1]).

(i) is a consequence of Fubini’s theorem. O

Let k € Q(X, Y, «) with @ < 1. Then 1t is an immediate consequence of Lemma
1.1 and (1) that

(7) kx e 2(8(Z,X,B8),8(2,Y,B))

and

(8) *k e Z(R(Y,Z,B), 8(X,Z,B)),

and that

(9) He =l If=kll< TV7°B(1 — a,1 = B[kl
provided B < 1. In particular,

(10) kx» e2(8(Y, X,B)), *keZ(R(X.Y,B))

for B < 1,if k € R (X, a) for some a < 1.
An easy induction argument shows that

(11)

|kxkx - xk(r9)]< (1= 5)7T(1 = )]kl

n+ 1

(6= 9)"*T(1 - @)l|k ] "
F((n + 1)1 - a))
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196 HERBERT AMANN

for n = 1. This well-known estimate (e.g. [31, formula (5.16)]) implies, together with
(9), that the linear operators (10) have spectral radii zero. Consequently the first part
of the following theorem is obvious.

THEOREM 1.2. Let a,B € (—o0,1) and k € §( X, a). Then the “convolution-type

equations”

(12) u=a+uxk
and

(13) v=b+kx*v

have for each a € Q(X,Y,B) and b € K(Y, X, 8) unique solutions u € {( X, Y, )
andv € Q(Y, X, B), respectively. The solution u of (12) can be represented by

(14) u=a+a*w,

where w, the resolvent kernel of (12), is the unique solution in {(X,a) of w =k +
k *w. Moreover, w = k + wxk.
An analogous representation formula holds for (13).

ProOF. Since the solution u of (12) is given by the Neumann series,

u=(1-*k) la= Y (*k)a=a+r,

/=0
where
ri= > (k) a=a*k+ Y (xk)a.
Jj=1 Jj=2
Let
= Y kx-xk=Y (xk) k.
Jj=2 j Jj=2

It follows from (11) that / € (X, a). Moreover a*[ = ¥%_,(* k)/a, so that r =
a * w, where

wi=k+Il=k+ Y kx- - xk
j=2 .
J
=k+ Ykrkx - xk)=k+ X (kx - xk)rk
Jj=1 : Jj=1 .
J J

Hencew =k + k*w=k+wxk. O

REMARKS 1.3. (a) By replacing the space £ (X,Y) in the definition of Q( X, 7Y, «)
by Z.(X,Y) we can introduce the spaces & (X,Y,a). Thus k € & (X, Y, ) iff k:
T, > £(X,Y) is strongly continuous and ||k|| (oy < 00. Then it is easily verified that
everything said above remains true for the spaces & (X, Y, «a), provided we sub-
stitute everywhere Z.(X,Y) for Z(X,Y).
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QUASILINEAR EVOLUTION EQUATIONS 197

(b) It is an obvious consequence of the estimate (11) that the norms of the
solutions of the convolution-type equations (12) and (13) are majorized by constants
depending only on bounds for the norms of a and &, or b and %, respectively, and
on 7, a and B, but not on the individual operators. O

Of course, the results of this section are known, in principle. For example, they are
implicitly contained in [28] and in [31, §5.2]. Since they are fundamental for our
work, and since we do not know of an explicit reference, we have shortly indicated
their proofs.

2. Families of analytic semigroups. In the following we let 2,:= {z € C| jarg z| <
¢+ 7/2} for 0 < ¢ < 7/2. Then we impose the following Assumption (A):

{A()0 <t < T} is a family of closed densely defined linear opera-
tors in X with constant domain, that is, D(A(1)) = D(A(0)) for
0 <t < T. Moreover, 2, C p(—A(t)) and

(1) [N+ 4@) < M/(1+]A])

foraeZ,and 0 << T

It is well known that this implies the existence of a constantd € (0, 7 /2)—which
we fix now—such that 24 C p(—A4(#)) and that (1) holds (with a new constant,
which we denote again by M) forall A € 2, and all + € [0, T'].

We let X, := D(A(0)), endowed with the norm x — [|x||; := ||4(0)x|}, which is
equivalent to the graph norm. Hence X, is a Banach space such that X; < X, and
A(t)y e (X, X).

We impose now the additional Assumption (A ):

A(-)e c([0,T], L(X,, X)) forsomep < (0,1).
Observe that (A ) implies the existence of a constant L such that
(2) 14(t) = 4(s) e vy < Llt = s Ve,seo,T].

Moreover (A,) and the smoothness of the inversion B — B ~! from Isom(X,Y)
onto Isom(Y, X), where Isom(X, Y) is the open subset in £ (X,Y) of all isomor-
phisms, imply

(3) [(£,5) = 4()(A + 4(s)) '] € ([0, TP, £(x))
and
(4) [(5,5) > (A + 4(s)) " a(0)] € (0.7, 2(x)))

for every A € 2. In particular there exists a constant N such that

(5) [4()A"Ys)|[|[s N Ve, se][0.T].
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198 HERBERT AMANN

We assume now that for each § € (0, 1) there is given an interpolation functor ¥,
from the category € of compatible pairs of Banach spaces to the category of all
Banach spaces, possessing the following property:

(IPF1): &, is an interpolation functor of exponent 4, that is,

1-9 [’}
T oo 4. o Bo. B < || T |26 BT 24, B,

whenever (A, 4;) and (B, B;) are objects and T is a morphism in the category €.

Observe that the complex interpolation functor {-, -], and the real interpolation
functors (-, )y ,» 1 < p < oo, possess the above property. (We refer to [10 and 32]
for the basic facts about interpolation spaces.)

It is a consequences of (IPF1) that %, possesses the following additional prop-
erty:

(IPF2): [[xlg, 00, 4 < c||x||£,;‘9||x||‘;’11 Vx € Ay, N A;, whenever (A4,, A;) is an
object in € (cf. the proof of Theorem 1.3.3(g) in [32]).

In the following we let

X0 = <&0()(0’ Xl)v

where X;:= X, and || - ||, denotes the norm in X.
It is well known that (A) implies that each — A(¢) is the infinitesimal generator of
a strongly continuous analytic semigroup {e™*4®|s > 0} on X, which is explicitly
given by
- 1 -1 .
(6) e sAM = ——/Fe)‘s(k +A(1)) N in 2(X),

2mi

where T is any piecewise smooth curve in =, running from cce ‘@*"/2 to
e (3+7/2)

LEMMA 2.1. Let 0 < m, 0 < 1. Then

(7) [(1,5) = A(r)e 0] € C([0,T] (0, 00), £(X,, X;))
and

(8) l4(2)e " |ecx, xy < es" 7 W(e,5) € [0,T] X(0, 00).
Moreover,

9 [(1,5) > e+ € C([0,T] X R,, £.(Xy)).

PROOF. Assumption (A) implies
(10) | 47(t)e " gx) < es/ V(t,5) € [0,T] x(0, 0)

for j = 0,1, 2. Now (8) follows easily by interpolation by observing that, due to (5),
{x > ||[A(®)x)|I0 <t < T} is a family of uniformly equivalent norms on X,. If
n=60=0 or n=60=1 we obtain (7) from (6), (3), (4), (10) and Lebesgue’s
theorem. If 0 < 7, § < 1 are arbitrary, (7) follows by interpolation. The strong
continuity (9) at (£,0), 0 < ¢ < T, in the case § = 0 follows by an obvious modifica-
tion of the standard proof of the strong continuity of s — e *4(9 at s = 0 for fixed ¢
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QUASILINEAR EVOLUTION EQUATIONS 199

(e.g. [31, pp. 66-67]). The same proof gives the result for 8 = 1, due to 4(t)e *4®
D e A4 (r) and the already observed uniform equivalence of the norms x —
[lA(2)x|| on X;. The general case is now obtained by interpolation on the basis of
(IPF2). O

3. Estimates for parabolic evolution operators. For convenience we introduce the
following simplifying notation: Whenever U is a function of two real variables and
V is a function of one real variable we write

VU(t,s):= V(t)U(t,s) and UV(t,s):= U(t,s)V(s),

provided the right-hand sides are meaningful.

By well-known results of Sobolevskii [28] and Tanabe [30] (cf. also {16, 23 and 31]
for expositions) Assumptions (A) and (A ) imply the existence of a unique function
U: T, = £ (X), a parabolic fundamental solution for { A(¢)|0 < f < T}, possessing
the following properties:

(Ul): U € C(T,, Z(X))and R(U(t,s)) C X, for (t,s) € T,.

(U2): U(t,t)=id and U(t,s) = U(t, 1)U(7,s)for0 < s<7<t < T.

(U3): U(-,5)e CY(s,T], Z(X)) and D, U= —AU. Moreover, U(t, )€
CY([0, 1), L(X,, X)) and D,Ux = Udx forall x € X,. :

(Ud): AU € C(T,, £(E)) and

lAU(t, s) | < (L, M,N,T,p)(t —s) "

It should be observed that (U3) and (U4) imply that U(-, s) € C}((s,T], L(X)).
It follows from (U1) and (U3) that

%[U(l,’l’)e‘(‘r-s)A(s)] = U(l,T)[A(’T) _A(S)]e‘(7~s)A(s)

in Z(X) for 0 <s <t <1t< T Thus, by integration, which is possible due to
(A,
(1)

U(t,s)=e (94 — fl U(t,7)[A(7) — A(s)]e =94 g7, (z,5) € T,

in % (X). Similarly,

D [emDAOY (2, 5)] = DA A1) ~ A(T)]U(r.5)

in Z(X)for0 < s <71 <1< T, and consequently,

(2
U(t,5) = e" @940 4 [*e D40 [ (1) = A(r)]U(r,5)dr, (t.5) € Ty,

in Z.(X). (It should be remarked that precisely the integral equations (1) and (2)
were used by Sobolevskii and Tanabe to derive the existence of the fundamental
solution U with the properties (U1)-(U4).)
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We introduce now the following abbreviations:
a(t,s)= e U794 b(t,s):= e (=AW,

k(t,s):= —[A(t) — A(s)]a(1,s), h(t,s)=b(1,5)[A(t) — A(s)]

for (t,s) € T,.

LEMMA 3.1. Let 0 < < 0 < 1. Then

(i) a,b € R(X,,0) N Q(X, Xy,0) N R(X,, X1, 1 — ),

(ii) Aa, Ab € K(X,, X5, 1 + 60 — ),

(i) k € K(X,, X,1 —n — p),

(iv) h € R(X,, X,.0 = p),

(v) Ah € R(X, Xp,1 + 8 — p).

Moreover the norms of the above elements are bounded by constants depending only
onL, M, N, p, n, and 8, but not on the individual elements.

ProOF. (i) follows from Lemma 2.1 and (2.5) and by interpolation.

(i1) is also a consequence of Lemma 2.1 and (2.5).

(iii)—(v) are easily obtained from (A), the estimate (2.2), and from (i) and (i1). 0O
It follows from Lemma 3.1 and Theorem 1.2 that the convolution-type equations

(3) u=a+uxk in Q(X,0)
and
(4) b=b+h*v inR(X,0)

possess unique solutions u and v, respectively. Since §(X,Y,a) C {,(X, 7, a), we
can consider (3) and (4) also in the spaces & (X,0) and & ,(X;,0), respectively.
However in these spaces they coincide with the integral equations (1) and (2),
respectively. Thus u = v = U, by the unique solvability. Consequently,

(5) U=a+ Uxk in§&(X,0)
and
(6) U=b+h*U in 8(X,,0).
It is now easy to derive further regularity properties of U, which we collect in the
following

THEOREM 3.2. (i) U € Q(X, X,,0) N R(X,, X;,1 —0) for 0 <6 < 1.
(ii) U € C(Ty, L.(X,)) for 0 < 8 < 1.
(i) If 0 <m, 0 < land 0 < p, then

AU € Q(X,, X5,1+ 6 —n).

Moreover the norms of U and AU in the respective Banach spaces ) are bounded by
constants depending onlyon L, M, N, p, n, § and T.

PRrOOF. (i) Since U € §(X,0) N {(X,,0) N K(X, X;,1) by (5), (6) and (U4), the
assertion follows by interpolation.

(ii) Since k € {(X,, X,1 — 8 — p) by Lemma 3.1 and U € (X, X,,89) by (i),
Uxk € &(X,, —p) by Lemma 1.1. Thus U*k € C(T, £(X,Y)) by (1.2). Since
a € C(1, Z.(Xy)) by Lemma 2.1, the assertion follows from (5).
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(iii) From (6) we obtain AU = Ab + (Ah)*U. Since U € &(X,, X;,1 — n) by (i)
and 4h € (X, Xy, 1 + 6 — p), it follows from (1.1) and Lemma 1.1 that (4h)* U
€ R(X,, Xy,1 + 0 —n) provided 6 < p. Now the assertion is a consequence of
Lemma 3.1(v).

The statement about the norms of U and 4U is an obvious consequence of (U4),
Lemma 3.1 and (1.6). O

It should be observed that the estimates contained in Theorem 3.2(ii), (iii) are
counterparts to some estimates of Sobolevskii involving fractional powers of A(7)
(cf. [28, Theorem 2 and p. 26]).

Results which are related to Theorem 3.2(i), (ii) have also been obtained in the
autonomous case and for particular interpolation functors by Sinestrari and Vernole
[26, Proposition 1.1] and others.

4. Linear evolution equations. Let f € C([0, T}, X) be given. By a solution of the
linear Cauchy problem
(LCP)(s . i+ A(Du=1/f(t), s<t1<T, u(s)=x,
we mean a function u € C([s,T], X)N CY(s,T], X), such that u(z) € X, for
s < t < T and such that (LCP),, ,, is pointwise satisfied. Let
(1) u(-,,x)=Ux+U*xf VxeX
(cf. (1.4) and (1.5)). Then u(-, s, x) is said to be a mild solution of (LCP), ,,. It is
well known that every solution of (LCP),, ., is a mild solution. As for the converse
we have the following

THEOREM 4.1. Let O < 8 < 1 and suppose that either

(2) fec(lo,T]. X)

or

(3) fec([0,T], X,).

Then every mild solution is a solution. Moreover, if f € C([0,T], X) and 0 < n <1,
then

(4) [(t,5,x) = u(t,s,x)] € CONT, x X,, X,).

If (3) is satisfied, then (4) holds also for n = 1.

ProoF. If (2) is true, the first assertion has been proven by Sobolevskii [28] and
Tanabe [30, 31]. Thus let (3) be satisfied. Since U(-, s)x is a solution of (LCP); ,,
with f = 0, by (Ul) and (U3), it suffices to show that U=* f(-,s) is a solution of
(LCP), o) Since f € Q(K, X,,0) by (3) and (1.4), and since U € R( X, X;,1 — 8)
by Theorem 3.2(i), it follows from Lemma 1.1 and (1.2) that
(5) Uxfe C(Ty, X,) = C(T}, Xp),
since X; = X implies X, = X.

If(t,s)€ Tyand 0 < h < T — 1, then

U f(t + h,s) = Uxf(t,5)] = h—lft”h Ut + h,t)f(r)dr

(6) '
+/s RU(e + hyr) = U, )] £(r) dr.
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Due to Theorem 3.2(ii) the first term on the right converges to f(¢) in X,, hence in
X, if h — 0. By Theorem 3.2(ii1) and (U3) we see that

h
Ut + h,7) = Ut,7) lex, ) = ’fH —AU(o,7)do
t

L ( Xy, X)
<cl(t+h=-m)"=(1-1)].
By means of the substitution §:= s /(¢ — 7) it is easily verified that
R h—1) (=) <e(t =) Vh>0,(1,7) € L.
Thus
la (e + hyr) = UG D] (7)< e(e =)
Since the integrand of the second integral in (6) converges towards —~AUf(t, ) as
h — 0, by (U3), Lebesgue’s theorem implies that U * f(-,s) is right differentiable
and that D (U* f)(t,s) = f(t) — A(U* f)(t,5) for (t,s) € T. Since D (U * f) is
continuous, by (5) and (A ), it follows that U * f(-, 5) is continuously differentiable
on (s, T] and that
Dy(Uxf)t,s) + A(Uxf)(t,s) =f(t), s<t<T

Thus U * f(-, s) is a solution of (LCP) , 4.

Theorem 3.2(ii) implies

[(t’s’x) — U(t,s)x] = CO‘I(TA X Xﬂ’ X{))

for 0 < 8 < 1. Since U € R( X, X,, ) by Theorem 3.2(i), and since
Lemma 1.1 and (1.2) give U * f € C(T,, X,). This implies (4). If (3) is satisfied, then
(5) implies the validity of (4) forn = 1. O

It should be remarked that Theorem 4.1 is essentially known. Indeed, the fact that
(LCP), ,, has a unique solution if f takes its values in certain interpolation spaces
has apparently first been observed by Da Prato and Grisvard [14] and has been
exploited in a series of papers by Da Prato and his students (cf. [13] for a recent
survey). It should also be noted that so-called “sharp regularity” results have been
used by Da Prato and Sinestrari {15] to study the linear Cauchy problem without
using fundamental solutions (cf. also [1, 2]).

The above simple proof for the differentiability of U= f(-,s), if (3) is satisfied,
follows an argument of Potier-Ferry [24].

Using the estimates of Theorem 3.2(iii) we can establish better regularity proper-
ties of the solution as a function of 1. For this purpose the space X; is said to be
(X, X,)-compatibleif 0 <a<B<y<land X, = X; = X, and if

=B/ (y—a)y (B-a)/(y—e)
(7) Ixlle < ellxlfd ™™ Fhelly "

With this definition we have the following regularity

Vx € Xy.

THEOREM 4.2. Suppose that f € C([0,T], X;) for some { € (0,1), that 0 <7 < 8
< 1, that X, is (X, Xg)-compatible, and that x € X,. Then

(8) u(-,s,x) e c?([0,T], X,).
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Moreover, if x € Xand 0 < 0 < min(p,{), then
(9) u(-,s,x) e CY(s. 7], X,).
PROOF. Due to Theorem 4.1 we can assume that > 0. By Theorem 3.2(iii)
(e = ) PaUx(2,5) | < el x o
and, due to Lemma 1.1,
I(40)*fl < e max |70l
for all (¢,s) € T,. Then, since A(U * f) = (AU)* f,
(10) (1= 9) "lAa(Ux + Uxf)(t,5) < e V(1,5) € T
Let now (s, x) € [0,T) X X, be fixed and let v:= u(-,s, x). Then o(¢) + A(t)v(r)
= f(¢t)for s <t < T by Theorem 4.1, that is,
(11) 0(t)= —A(Ux + Uxf)(t,s)+f(t) fors<it<gT.
Consequently (10) implies the estimate
(t—s5) " lo(t)|<e, s<t<T.

Hence we obtain from
t — -
lo() =o(r) = [*lo(r)lldr < [* (7= ) Jo(r) (r = r)" "dr
the estimate

(12) lo(r) —v(r)||<c(t—r)’, s<r<t<T.
Since v € C([s,T], X,;) by Theorem 4.1, the first assertion follows from (7), (12),
and the (X, Xj)-compatibility of X,, provided § — 5 < 1.

If 8 =1, then v € C([s,T], X,) by Theorem 4.1. Since

A() € C([S,T], g(Xl’ X))’

it follows that o = —Av + f € C((s, T}, X), which implies v € C*([s, T}, X).
Since AU € §(X, X,,1 4+ 0) and (AU)* f€ Q(K, X,,0 — {) by Theorem 3.2
and Lemma 1.1, it follows from (11) that » € C((s, T'], X, ), which implies (9). O
REMARK 4.3. It follows from the above proof that, for § <1, the norm of
u(-, s, x)in C4([0, T}, X,) is bounded by a constant depending only on L, M, N,
T, p, m, 8, { and on bounds for ||x||, and max, _, _ 7| f(D)ll;. O

5. Perturbation results. In order to study the dependence of the mild solutions on
A(-) and f we assume that there is given a second family {A4,(1)0 <t < T} of
operators satisfying Assumptions (A) and (A ). Moreover we assume (without loss
of generality) that { 4,(¢){0 < ¢ < T} satisfies the estimates (2.1), (2.2) and (2.5)
with the same constants M, L and N, respectively, as the family { A(£)[0 <t < T }.

We now occasionally write 4, for A and a,:= a, by:= b, ky:= k and hy:= h.
Then we define the functions a,, b, k;, h; by replacing A, in the definition of a,
by, ko, hy by A;. Finally we denote by || - ||+ the norm in C*([0, T}, L (X,, X)),
where C:= C°.
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It should be observed that the constants ¢ in the following lemmas depend only
on L, M, N, T, p, gand 0.

Lemma 5.1. Let 0<m, 0 <1 Then ay, —a; and by, — b, belong to
the space K( Xy, X,,n — 0) and the norms of

() ag — ay and by — by in R( Xy, X,,n — 0),

(i) ky — ky in Q( Xy, X,1 ~ 0), and

(iti) hy — hy in R(X, X, M)
are bounded by c||Ay(-) — A;(*)|}c-

The norms of

(iv) ko — kyin (X, X,1 — 0 — p) and

(V) hg = by in (X, X;,n = p)
are bounded by c||Ay(*) — A;( )l -

PROOF. (i) Observe that A,(1}A+ A4,(1))"' =1 - AA+ 4,(1))"". Hence
| 4;(1)X + A,(1))" Y| < 1 + M, which implies, by (2.5), that

(A + 4,(0)) N1 + M).

Hg (X, X, )
Moreover,

|(x+ 4,(0))” <[l 4@)(A +4,() lmw

HJ(X)

Nz”A (£)(A+4,(r)) t)”

= N2(A + 4,(1) 7| < MM/
Thus, by interpolation,

n(l-6)-1

(1) [(x+4,(0))" < c(M,N,n,8)|A|

“.Y(X,; Xy)

forO0<n,0<,A€Z2;,re[0,T]and j = 0,1 (cf. [7, Lemma 8.1}).
Since

(A +40(1) " =(A+ 4,() 7
= (X + 40(0) 7 (44(1) = Ao() (A + 4,(0)) "
it follows that
e 00 — e A0 = [N+ 40(1) (A1) — g ()N + 4,(1) N
By (1) the integrand can be estimated in the norm of £( X, X,) by

cle M I}‘l “Ao( ) = Ay(- )HC’
which implies, by standard arguments (e.g. [31, p. 66]), that

) le™s4 — e= O lec. x) < es” 77 Ao (+) = A4 () [le

n—60—1

whence the assertion.
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(i) Let B/(#,5):= —[A4;(t) — A;(s)] and observe that

(3) IBo(1,5) = Bi(t,5) |ox. x < 2[ 40 (+) — 4:(:) |l
and

(4) IB1(1,5) llecx. x) < LT*.

Moreover,

(5) ko — ki = [Bo('a ) - B1(‘> ')]ao + Bl(" ')[ao - al]'

Hence (i) and Lemma 3.1(i) imply the estimate

g-1
Iko(z,5) = ki(t,5) e, < cll 4o () = A1 () (e = 5)" 7,
whence the assertion.
(1i1) follows by analogous arguments.
(iv) and (v) are obtained from (5) by replacing (3) and (4) by the estimates
o
[ Bo(2,8) = Bi(1,5) lecx,. ;00 <1t = s 4o(+) = 4(-) || o

and

| B\ (2, 5)|lecx,. xy < LIt = slp,

respectively. O
We now denote by w, and r, the resolvent kernels of u =k; + u*k; and
v =h;+ h;* v, respectively.

LEMMA 5.2. Let 0 <, 8 < 1. Thenw; € R( Xy, X,1 — 0 — p) and

(6) [we ~ W1l|ﬁ(xo,x,1—o) < C“A()(') —A,(") “c if8>0,
and
(7) Iwo = willgx,. xa—0-p < c Ao(-) = A1) o for 0 <8< 1.

Similarly, r, € R(X,, X,,m — p) and
llro — r1“9"(X1qXT,,n) < C“Ao(‘) - Ay(") HC ifq <1,
and

7o = rillecx. x,m-p < Ao () = A, () o for 0 <m <1

PrROOF. Since k; € 8( Xy, X,1 — 8 — p) by Lemma 3.1(ii1), thus in particular,
k; € &(X,1 - p), it follows from Theorem 12 that w, € K(X,1 — p). Hence
wyxk; € Q(Xg, X,1 -0 —2p) C R(Xy, X,1 — 80— p) by Lemma 1.1 and (1L.1).
Consequently, by Theorem 1.2, w; = k, + w; * k; € R( Xy, X,1 — 6 — p). Moreover

wo = wy =k — ky +wor(ko — ki) +(wy — wy)*ky,

and Lemma 5.1 and (1.1) imply

”[ko ~ ky + wy* (ko — kl)](t’s)”f(xm/\’) < et - 3)071”/10(') _Al(')Hc-
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Thus
[[(wo — Wl)(t’s)“-?()(a.x) <ec(r— 5)071”‘40(') - A1) l¢
+C/t (r=5)" [ (wo — w)(1,7) hrcy, 3y d7

for (t,s) € T,. From this we deduce, by a well-known generalization of Gronwall’s
lemma (e.g. [S, Corollary 2.4 or 17, §7.1]), the estimate

”(Wo - Wl)(t’s) “wx,,,n <e(r - 3)0*1”140(‘) - Al(‘) “c’

that is, the estimate (6). The proof of (7) is obtained by obvious modifications of the
above arguments, as it is the case for the proof of the second part of the assertion.
O

Finally we put U,:= U and denote by U, the parabolic fundamental solution for
{A(H0 << T

LEMMA 5.3. Let 0 < 0, 0 < 1 satisfy |p — 8] < 1. Then
Uy— U e Q(Xy, X,,m—8)
and
1Us = Urllscxp. x,.0-6) < e[ 4o (+) = 4,(+) [l
where w:= 0 if 8 > 0 and n < 1, and where p:= p otherwise.
ProOOF. Formula (3.5) and Theorem 1.2 imply
Uy — Uy = ag — a; +(ag — ay)*wy + ayx(wy = wy).

Thus, if n < 1 the assertion follows from Lemmas 5.1, 5.2, 3.1(1) and 1.1. If n =1,
we use in a similar way

Uy— Uy = by — by + ry%(by — by) +(rg— r)*by,

which follows from (3.6) and Theorem 1.2, to obtain the assertion. O
After these preparations we can easily prove the following important perturba-
tion:

THEOREM 5.4. Let 0 <, 0, { < 1 and suppose that f, € C([0,T], X;). Denote by
u; the solutions of

i+ A (u=f(t), s<t<T u(s)=x,
respectively. Then
luo(2, s, x0) = uy(1, 5, x,) Il
< C{”Ao(') = 4 () o200

69— —
X(Ixolla(r = 5)° 7"+ (6 = )57 max | 7y(7) )

#(t=5)" max | £y(7) = £i(7) s + (¢ = ) xo = 31,
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where
. 0 ifn<l,
”;{p ifn=1,
Moreover the constant ¢ depends only on L, M, N, p, v, 8, { and T.

0 if Xy > X,
vi=max{l —n,{}, }\:={ K
{ ) 8 — 1 otherwise.
ProoOF. Since
ug—uy = (Uy = U))xo +(Uy = U *fo + Up*(fy — f1) + Ui(xg — x,),

the assertion is an easy consequence of Lemma 5.3, Theorem 3.2(i), (ii), the uniform
boundedness principle, Lemma 1.1, and X; = X,. O

6. Quasilinear evolution equations. We denote now by X; and X,:= X two fixed
Banach spaces such that

(Q1) X, is continuously and densely imbedded in X.

Then we suppose that

(Q2) 0 <n <8< 1andthat X, is (X, X,)-compatible,

where, of course, X,:= & (X, X;) for 0 < £ < 1. Moreover we assume that
V'is an open subset of X, and

(Q3) [(t, ) = A, 9)] € C*2=([0,T] x ¥, £(X,, X))
for some p € (0,1).

We suppose also that

for each point y, € V there exist a neighbourhood V, and constants
M > 0 and «w € R such that

(Q4) w+ 32, Cp(—A(1,y))
and
IOx + 4@z, ) < M/(1+]A = )

forall N € w+ 2, and (t,y) € [0,T] X V, , where A(t, y) is con-
sidered as a linear operator in X with domain X.

Finally we assume that

(Q5) feC®([0,T]x ¥, X,) forsome} € (0,1).
By a solution of the quasilinear Cauchy problem

(QCP) 5.y i+ A(t,u)u=f(t,u), s<t<T,u(s)=x,

on J we mean a function u € C(J,V)N CYJ, X) such that J is a perfect
subinterval of [s,T] containing s and J:= J\ {s}, and such that u(s)= x,
u(r) € X, and a(t) + A(t, u(t))u(t) = f(t,u(t)) for t € J. A solution u is maximal
if there does not exist a solution of (QCP),, ,, which is a proper extension of u. In
this case J is a maximal interval of existence.
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For each v: [0,T] — V put
A (t):=A(t,v(2)) and f,(t):=f(t,0(z)), O0<i<T.
Moreover, fix p, € (0,p A (8 — 1)) and let
wi={vec(0.T].V)||o(s) = v(t) |y <ls — ¢|" for0 < s, e < T}.
If v € W, then the compactness of v([0,T]) in V and (Q3) and (Q4) imply the
existence of constants «w and L such that
(@ + A4,)(1) = (0 + A,)(8) |lex. o< LIs = ¢, 0<s,1<T.

Hence {(w + 4,)(#)[0 < t < T} satisfies Assumption (A, ). Moreover it is an easy
consequence of (Ql) and (Q4) that {(w + A4, ) ()0 << T} also satisfies (A).
Hence there exists a unique parabolic fundamental solution U, , for {(w + A4,)(1)|
0 <t < T}. Itis easily verified that

Ult,s)=e“U, (t,5)e"*,  (t,5) € T,

is a parabolic fundamental solution for { 4,(¢)|0 < ¢t < T}, and the only one.
Let w € W and suppose that v|[o, 7] = w|o, 7] for some (7,0) € T,. Then it
follows from (3.5), for example, that

(1) U(t,s)=U/(t,s) foro<s<t<r.
Finally it is clear that all results of §§3-5 are true for U, and the corresponding
linear Cauchy problem (provided the constant N is chosen so that

[(e+ 4,()) (0 +4,(s)) <N

for all (z,s5) € T, and where the various constants now depend also on w, of
course).
Foreachv € Wand x € X we put
v(v,x)=Ux+ U*f,.

If J is a perfect compact subinterval of [0, 7] and w: J — X, then we denote by w
the function on [0, T'], defined by

w(a) for0 <7< a:=mnlJ,
w(t):={(w(r) fora<t<pB:=maxJ,
w(B) forB<it<T

Moreover we let
¥ (0, x)i= d(v, x)(-, 5),
J, 5= [s,s+8]n[0,T]
and
Vv, x, 7, 5)= (v, x)J; 5
for 0 < s < T and § > 0. Finally, if S is a nonempty subset of X;, 0 < § < 1, then

—BE(S, &) denotes the closed e-neighbourhood of S in X, and Sp:= S N X,, endowed
with the topology of X,.
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LEMMA 6.1. Let S be a compact subset of V such that Sy is nonempty and bounded in
X,. Then there exist positive numbers a, €, § and K, such that o > € and

(i) By(Sp, £) € B,(S,a) € B,(S,3a) C V;

(i) 14,00, %) = 4,0 Dl 30 < M0 = Wl x,, Jor all v,w € W, all s €
[0, T), and all x € By(S,, 3¢), provzded v([0, T, w([O T]) cB (5, 3a);

(iii) 1940, %) = ¥,(0. Wlleqs.n, x) < Kollx = Vllo for all (1,5) € Ty, v € W, and
x, y € By(Sy, 3¢) provided v([0,T]) C B (S, 3a).

@iv) (v, x,1,58) = Y(v, x)t,s) is continuous from {v € Wiv(0,T]) Cﬁn(S,3a)}
X By( Sy, 3¢) X Tinto X,.

PROOF. (i) is an obvious consequence of the fact that X, < X, by (Q2) and the
compactness of S in the open set V.

(ii), (iii) By decreasing a, if necessary, it follows from the compactness of S and
the assumptions (Q3)—(Q5) that we can assume that

(2) the constant M in (Q4) is independent of y € B, (S, 3a),
(3) |4, 9) = A4(s, 2) e < et = s + 1y = zll),

(4) (o + A4(z, »))(w + A(s,2)) | < N forsome w € R,
(5) I/t ) e <e

and

(6) 1, y) = £t 2) e < clly =zl

forall s, € [0,T]and y,z € B (S, 3a). Hence

() 14,(8) = 4,(5) | ;0 < (Ko + Dt = 5[

and

(8) [(e+ 4,()) (e +4,(s) 7 | <N

for 5,: €[0,T] and all v € W with v([0,T]) C _Bn(S, 3a). Now (3), (5), (6), (Q2)
and Theorem 5.4 imply the estimate
(9)

Iy (o, x)(t,5) = b (w, p)(£.5) < e{ (£ =) o = wlleas.a.x) +[|x =yl )
for all (1,s)€ T, x,y € By(S,,3¢) and v,w € W with v([0,T]), w(0,T]) C
B, (S, 3a). The assertions are now obvious.

(iv) It follows from Theorem 4.1 that ¢/(v, x) € C(T,, Xy) for each (v,x) € W X
X,. Hence the assertion is a consequence of Xy <> X, and (9). O

LEMMA 6.2. Let S be a compact subset of V such that S, is nonempty and compact in
Xy. Then there exist positive numbers a, €, 8, K, and K, such that a > € and

(1) By(Sy, £) € B(S, ) C B,(S,3a) C V;

(i1) (QCP), ., has for each (s,x) € [0,T) X By(Sy, €) a unique solution v(-, s, x)
onJ, s such that v(J 5) C B (S, 3a).

(i) jjv(e, s, x) — v(t, s, y)|| < Kjlx —yllg foralls € [0,T), t € J 5, andx, y €
By (S, 2).
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v) If 6 < 1, then
lo(2,5,x) = v(t, 5, y)llo < Kol x = »llo
foralls € [0,T), t€J 5, andx, y € B,(S,, €).

PRrOOEF. (i) follows from Lemma 6.1(i).
(i) We deduce from (2), (7), (8), (Q2), Theorem 4.2 and Remark 4.3 that

190, x)(0, %) = ¥ (0,x)(r,5) | < 8%~ ] — 7"

forall s €[0,T),0,71€EJ 4 x € B,(S;,3¢) and v € W with v([0,T]) C ]—3,1(5, 3a).
Hence, by decreasing & further, if necessary, we see that

(10) l,b(U,X, Js,b‘)e w

for all s € [0,T), x € By(S,,3¢) and v € W with v([0, T]) C B,(S, 3a). In particu-
lar

(11) V(x,x,J,5) €W VxEBy(S,¢),s€[0,T),

since the constant function ¢ — x belongs to W. Since ¢ (x, x)(s, 5) = x, we deduce
from Lemma 6.1(iv) and the compactness of S; in X, that we can decrease ¢ and §
further so that

(12) [ (x,x,J,s)(t,5) = x|, <« Vx €By(Sy,¢), (t,5) € T,.
Now let (s, x) € [0, T) X By(S,, ¢) be fixed and let

W = {UEC(JS,S,X,")IEG Wa U(S)=x’

8,X

v(‘]s,B) = Bn(S’3a) and HU - \IJ(X,X, Js,S) “C(J,;-,van) < a}'

Then W, is a closed nonempty subset of the Banach space C(J, 5, X,), hence a
complete metric space. It follows from (i), (10)—(12) and Lemma 6.1(ii) that
¢, (-, x)|J; 5 maps W, _ into itself and is a strict contraction. Hence, by Banach’s
fixed point theorem there exists a unique function v(-, s, x) € C(J; 4, X,) such that
b(-,s,x)€ W, o(s,s,x)=x,v(J; 4,8 x) € B(S,3a), and

(13) (-, 8,x) = (Ux + Uﬁ*fﬁ)(.’s)l‘]s,ﬁ'

Now it follows from Theorem 4.1 that v(-, s, x) is a solution of (QCP), ., on J_ s,
and the only one.
(ili) Let s € [0, T) and x, y € By(Sy, €). Then

U(',S,X) - v(-,s,y) = ‘Ps(lj("s’x)’ X) —\,(/s(lj(’,s, Y)’ x)
+¢s(5("sa }’), X) —tl/s(l_J(',S, y)’ y)
on J; 5, and Lemma 6.1(i1), (iii) imply the estimate
“U(I,S,x)—U(t,S,y)“n<2K0“X—y“g, tEJs,s’

which proves the assertion.
(iv) is now an easy consequence of (3)-(6), (iii), Theorem 5.4 and X, < X,. O
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After these preparations we can now prove the main result of this section:

THEOREM 6.3. The quasilinear Cauchy problem (QCP), ., possesses for each
(s,x) €[0,T) X V, a unique maximal solution u(-, s, x), and

(14) u(-,s,x)€ C*4(J,X,) for0<£<,
provided X, is (X, X,)-compatible. Moreover, if 0 < ¢ < min{p,8 — ,{}, then
(15) u(+,s,x)e CcY(J, X,).

The maximal interval of existence J(s, x) .= J is open in {s,T].

PrOOF. Let (s, x) € [0, T) X V, be fixed. Then (QCP),, ., possesses, according to
Lemma 6.2, a unique solution u, on some nontrivial interval [s, ¢,]. Suppose that
ty < T. Then, by applying Lemma 6.2 to (QCP), () We find that the equation

i+ A(t,u)u=f(t,u)
has a unique solution ©; on some nontrivial interval [¢,, ¢,] satisfying u(z,) = u,(2,)-
By Theorem 4.2, uy € C~"([s, 1,], X,) and u; € C?~"([ty,1,], X,). Thus, defining
u: [s, 5] = X, by ul[s, t,]:= uy and uf[z,, 1;]:= wuy, it follows that

ue (s, 1], X,).

]
Then it is clear that { 4,(2)|0 < ¢ < T} satisfies Assumptions (A) and (A, ), where
p, := min{p, 8§ — n}. Hence there exists a unique parabolic fundamental solution U
for { A,()|0 < t < T}, and, by (1), we see that U,(t,0) = qu(t,a) forr, 1 <o<1t
<t;, j=0,1, where _,:=s. Using these facts and property (U2) it is easily
verified that

u(t)=(Ux+ U*f,)(t,s) fors<it<i.
Now we deduce from Theorem 4.1 that u is a solution of (QCP),, ., on s, #].
Let

J(s,x):= U{ [5,¢] € [s, T](QCP);.x) has a solution on [, 1]}.

Then J(s, x) is a perfect subinterval of [s, T'] containing s. Moreover J(s, x) is open
in [s, T], since otherwise an application of Lemma 6.2 to its right endpoint would
give a contradiction. Clearly J(s, x) is a maximal interval of existence of a solution
u(-, s, x) of (QCP), .y, and there is only one maximal solution.

Since u:= u(-,s,x) € CO™"(J(s, x), [s,t,]), where t, € J(s,u,) is arbitrary, it
follows from (3) that A.(-) € C*([0,T], £(X;, X)). Hence (14) and (15) are
consequences of Theorem 4.2. O

Similar but less precise results have been obtained by Sobolevskii [28] (cf. also
Friedman [16]), Potier-Ferry [24] and Lunardi [20]. Sobolevskii and Lunardi prove
the existence of a local solution, that is, a solution on some interval [s, ¢,], provided
the initial value x has “better regularity properties than the solution itself”. (This
would correspond to an assumption of the form x € V' N X for some a > §.) Thus,
in particular, these authors cannot admit the value 8 = 1. Sobolevskii uses fractional
powers and Lunardi works in specific interpolation spaces (namely in (X, X)), .
and in “continuous interpolation spaces” introduced by Da Prato and Grisvard
[14]). Hence, also as far as the possible choice of the spaces is concerned, our results
are more general.
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Lunardi does not use fundamental solutions, but works with the (essentially
equivalent) theory developed by Sinestrari [25] and Acquistapace and Terreni [1, 2].
Moreover she does not assume that X; is dense in X. This is mainly done in order to
be able to work in spaces of continuous functions, which will yield almost classical
solutions in the case of parabolic partial differential equations (cf. however the
remarks at the end of §10).

Potier-Ferry works in X, (that is, he considers the case § = 1 only) and uses
Sobolevskii’s theory of fractional powers. However he can only prove the existence
of solutions for initial values close to 0, and this restriction is essential for his proof.
Moreover he has to assume more regularity, namely that

[(2,y) = A2, p)] € Co ([0, T X V, £(X,, X))
for some p € (0,1).

7. Global existence. A solution u of (QCP). ,) on J is said to be global if
J:= [s5,T]. Clearly every global solution is maximal. In this section we give simple
and useful sufficient criteria for a maximal solution to be global. For this we let

t"(s,x):=supJ(s,x) Y(s,x) € [0,T)XV,.

We now fix (s,x)€[0,T)X ¥V, and put wu:= u(-,s,x), J:=J(s,x) and
t* = 17(s, x).

THEOREM 7.1. Suppose that u € BUC*(J, X,) for some ¢ € (0,1). Then either
u(t) »y€edvinX ast - t*, or u is a global solution.

PROOF. The assumption implies that u(¢) - y in X, for some y € X, as t - ™.
Assume that y & 9V and let v(¢):= u(¢) for t €J and v(t*):=y. Then v €
C(s,t™], V). Hence A,(-) € C2([0,T], L(X,, X)), where ¢ := min{e p}, and
there exists a unique parabolic fundamental solution U, for {4,(-)[0 <t < T}. It
follows from (6.1) and the construction of u (cf. (6.13)), that

u={(Ux+ U*f)(-,s) onlJ.
Since both sides are continuous in ¢ on [s, 1 ¥], it follows that
5= (Ux+ U=*f,)(-,s) on[s,t7].

Hence 7 is a solution of (QCP) ., on [s,¢%]. If ¢t*< T, this contradicts the
maximality of J. Thus J = {5, T]. O

THEOREM 7.2. Suppose that u(J) is relatively compact in Xy and has a positive
distance in X, from OV. Then u is a global solution.

PROOF. Let S denote the closure of u(J) in Xj. Since Xy — X,, by (Q2), and
since S is compact in Xj, it follows that § is compact in X, and contains u(J).
Hence S contains the closure of u(J)in X, and, using X, = X, again, we see that
S equals the closure of u(J) in X,. Thus S is a compact subset of V and § is
nonempty and compact.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



QUASILINEAR EVOLUTION EQUATIONS 213

Suppose now that t* < T. Lemma 6.2 guarantees that for each (o, y) € J X u(J)
there exists a unique solution of (QCP),, ,, on J, 5, where § > 0 is independent of
(o, y). In particular, there exists a unique solution of (QCP), ., for each ¢ €J
with t*— ¢ < §/2, which exists on J, 5. Similar to the proof of Theorem 6.3, we see
that this implies the existence of a solution of (QCP), .,, which is a proper
extension of u. This contradiction proves the theorem. O

The following corollary will be particularly useful in applications. Here and in the
following = denotes compact imbedding.

COROLLARY 7.3. Suppose that E is a Banach space such that E < X, and such that
u([sy,t ")) is contained and bounded in E for some s, € J. Then u is a global solution,
provided u(J ) has a positive distance in X, from V.

PrROOF. Since u € C(J, Xy) it follows that u([s, s,]) is compact in X,. Since
E«> X,, it follows that u([s,,77)) is relatively compact in X,. Hence u(J) is
relatively compact in X,;. 0O

Of course, the above criteria become particularly simple if V' = X, since in this
case the conditions involving 8} are vacuously satisfied.

Lunardi [21] has shown that there exists a global solution, provided one can find
an a priori bound in X, (if f is Holder continuous from an appropriate interpolation
space, namely (X, X), . into X), and if the problem is autonomous. However for
practical applications it is essential to be able to work in spaces with a rather weak
norm, that is, in an interpolation space X, with @ close to zero, to derive a priori
bounds for the solutions. Deriving a priori bounds in X, directly is almost impossi-
ble in most concrete situations.

8. Continuity properties. In this section we study the continuity of the function
(¢, x) - u(t,s, x) for a fixed “initial time” s.
For each s € [0, T) we put

D(s)={ (t,x) € [s,T] X V|t € J(s,x)}.
Thus 2(s) is the domain of u(-, s, -).

THEOREM 8.1. Suppose that 8 < 1. Then D(s) is open in [s,T] X X, and u(-,s, )
€ CH7(D(s), Xy).

PROOF. Let (#,, xy) € Z(s) be given and put S:= u([s,?,], s,x,). Then S is a
nonempty compact subset of V" and of X,. Hence, by Lemma 6.2, there exist positive
numbers &, & and K such that the maximal solution u(-,0, x) of (QCP), ,, exists
on J, s for each (o, x) € [s, 1] X By(S, ¢) and satisfies

(1) ||u(t,o,x)—u(t,o,y)Hg<KHx—y[g, tEJo,S?
provided y € By(S, ¢).

We now fix points s =:0, <6, < --- <o0,:=t, such that o, — g, <8 for
Jj=0,1,...,m — 1. Moreover we let ¢,;:= K/~ !¢ for j=0,1,...,m + 1, where
we can assume that K > 1. Hence ¢; < eand ¢;,; = K¢, for j =0,1,...,m.
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It follows from (1) that u(-, g;, x) exists on Jo.5 and satisfies

u(t,oj,x)eﬁ,,(u(t,s,xo), ejﬂ), t€J, 5
and
(2) lu(t,0,,x) —u(r,0, 9)[|, <Klx =ylo, 1€ J, 5,

for all x,y € By(u(o;,5,X,), ¢) and j=0,1,...,m. From this we obtain, by
piecing together the local solutions similarly as in the proof of Theorem 6.3, that
J(s,x) D [s, (1, + 8) A T] for each x € By(x,, ¢,)- Hence 2(s) is open in [s, T'] X
V' N Xp).

Since, due to the unique solvability, u(¢, 0 u(o;,0,_1,x)) = u(t,0,_y, x)foro <t

<0, X€E ﬁg(u(aj_l,s, Xo), €_1) and j=1,2,..., m, we obtain from (2) that

(3) lue,s,x) —u(t,s, y) llo < clx =yl
for all x,y € By(xg,8) and t € s, (t, + 8) A T]. Now u(-,s, )€
Co'7(9(s), X,) follows from (3) and the fact that u(-,s, x) € C(J(s, x), Xy) by
Theorem 6.3. O

Let S be a metric space and let t*: § — (0, oo]. Put

2= U [0, (x)) x{x}

xES
and suppose that ¢p: 9 — § is a map with the following properties:

(1) 2 isopenin R X S;

(i) ¢ € C(2,5);

(iii) (0, -) = id;

(v) if 0 <7 <t"(x) and 0 <t < t"(@(7,x)), then 7+ ¢t <¢"(x) and
e(t, (1, x)) = @1 + 7, X).

Then ¢ is a (local) semiflow on S. If :*(x) = oo for all x € §, then ¢ is a global
semiflow. For each x € S the set y*(x):= {@(z,x)[0 <t < 17(x)} is the (positive)
orbit through x and 77 (x) is the (positive) exit time of x (e.g. [6, 11]).

Consider now the autonomous quasilinear evolution equation

i+ A(u)u = f(u),

that is, suppose that 4 and f are independent of z. Then the proceeding results are
valid for every T > 0. In particular the quasilinear Cauchy problem

i+ A(u)u=f(u), s<t<oo,u(s)=x,

possesses a unique maximal solution u(-,s, x), which is defined on some open
interval J(s, x) of [s,o0) containing s, such that the regularity properties of
Theorem 6.3 are satisfied.

Let

o(t,x):=u(1,0,x), t"(x):= supJ(0, x)
and

9.

{(,x) e R, X Wl0 <t <17(x)}.
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Then the unique solvability of (QCP),; ., implies easily that @ satisfies the proper-
ties (iii) and (iv). In fact, we have the following important

THEOREM 8.2. Let A and f be independent of t and suppose that § < 1. Then @ is a
semiflow on Vy and ¢ € C* (2, X,).

Proor. This is an easy consequence of the above remarks and Theorems 6.3 and

81. O
It is important to notice that the semiflow possesses a smoothing property, namely
@) Y (O\{x}) X, Vxe .

Hence suppose that E is a Banach space such that
X, = E=X,

and suppose that, for some x € Vj, and some ¢; € (0, 77 (x)), the set { (¢, x)|t; < ¢
< t7(x)} is bounded in E. Then y*(x) is relatively compact in X,. Hence, if y*(x)
has a positive distance from 0V}, it follows that y*(x) is relatively compact in V.
Consequently *(x) = oo in this case by well-known abstract results (e.g. [6, Satz
(10.12)]). Observe that this is also a special case of Corollary 7.3.

9. Special regularity results. Theorem 6.3 contains important regularity asserttons
for the solution u(-,s, x). In particular we obtain “smooth” solutions if we can
choose 8 and o “large”. However in some applications to parabolic differential
equations—in particular in the case of Dirichlet boundary conditions considered in
the next section—it turns out that a reasonable large choice of o imposes compati-
bility conditions for the nonlinearity f. In order to avoid such restrictions we shall
now prove a “higher regularity” result by imposing additional assumptions, which
are motivated by the applications of the next section.

Let Y and Z be Banach spaces such that Y — Z, and let B: D(B)C Z —» Z be a
linear operator in Z. Then B, the Y-realization of B (or “the maximal restriction”
of B to Y), is defined by

D(By)={yeD(B)nYByeY} and Byy:= By.

It is easily verified that B is closed in Y if B is closed.
We consider first linear evolution equations, that is, we assume that { A(¢)|0 < ¢
< T} satisfies Assumptions (A) and (A ). Moreover we suppose that

Y and Y| are Banach spaces such that Y, = X; = Y < X.
In this situation it is clear that
D(Ay(1)) = {y € D(A(1))l4(r)y e Y}.
From this we deduce that
p(—4y(1)) 22, Vie[0,T],
and that

(1) A+ Ap(D)] T = (A +4(0) Y V() €[0,T] X 2,
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We suppose now that
there exists a number k € (0,1) such that

(2) ”(}\-*-AY(I))_IN‘_?(Y)< C|)\l
forall (t,A\) € [0,T] xZ,.

-1+«

Thus it follows that

—1—/F eM (A + Ay(1)) " dA

—sAy(8) e
271

e
is well defined for s > 0 and, letting %'V := id,, standard arguments show that
{e**®|s > 0} is a semigroup on Y, which is differentiable for s > 0 (but not
strongly continuous at s = 0) and satisfies

(3) |44 (1) e O gyy < s
fors >0, j = 0,1and ¢ € [0, T]. Moreover (1) implies
(4) e D = omsAy - 5> 0,1 [0,T].

Finally we suppose that
D(Ay(t)) =Y, for 0<t< Tand
(5) Ay(-) € C¥([0,T], £(7,.Y))
for some B € (2x,1).
Similar to §2, it follows that the family of norms {y = [[A,(D]I/0 <t < T} is

uniformly equivalent to the original norm of Y;. Hence we deduce from (1), (3) and
(4) that

(6) ay(t,s)=e IO = g(1,5)|Y
and
(7 ey (1,5):= = [4y(1) = Ay(5)] ay(1,5) = k(1,5)|¥
for (¢, s) € T,, and that
(8) ay € (Y, k) N (Y, Y,1 +«)
and
(9) ky€ &(Y,1-(B—«)).
Now Theorem 1.2 shows that the convolution-type equation
(10) u=ky+ky*ru
has a unique solution
(11) wy € R(Y,1 - (B - x)),
and (7) implies that

wy = w|Y,

where w is the resolvent kernel of the equation ¥ = a + u* k in X.
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LEMMA 9.1. Suppose that k < a < 8 — k. Then
wy(t,s) = wy(r,s) ey <c(t —7)(r=3s)"7, O<ss<r<i<T,
where yi=1+a+«— B.

Proor. This follows from (9)-(11) by obvious modifications of the proof of [31,
Lemma 5.2.1] (where R, and R correspond to &, and w,, respectively). O

LEMMA 9.2. U € C(T}, #(Y, Y,)).

PrOOF. Recall that U = a + a * w by (3.5) and Theorem 1.2. Hence
(12) UlY=ay,+(a*xw)|Y
and, due to (8), it remains to show that (a * w)|Y € C(7,, £(Y,Y;)). Observe that
) [(arnY](15) = [Tay(t,)[wy(t5) = wy(r,5)] dr

13
+ f e I drwy(t, 5),
)

and that the first integrand can be estimated in £(Y, Y) by c(z — 7)* " 1(r — 5)77,
due to (8) and Lemma 9.1. Hence an application of Lebesgue’s theorem shows that
the first term on the right-hand side of (13) has the desired continuity property.
Since

AY(s)ft e T dr = idy, — e TV, (t,5) e T,
(e.g. {7, Lemma 9.1]), it is easily verified that the second term on the right-hand side
of (13) belongs also to C(T,, £(Y,Y;)). O

LEMMA 9.3. Let g € C*’([s,T], Y) for some v € (x,1). Then
[t > U=xg(t,s)] € C((s,T], 17).

PrOOF. By (12),
Usg(t,s)=ay*g(t,s) +[ (asxw)¥]+g(s,s),
The above proof shows that
ay*g(-,s) e C((s, 7], 1,).
Since
lay (s, m)wy(7,0)8(0) [ly < e(t = 1) *(r = o) 77

for s < 6 < 7 <t < T, we can apply Fubini’s theorem (in Y) to deduce that

[(@xw)[¥]og(t,s) =ayslwysgl(ts), s<i<T.
From Lemma 9.1 and [7, Proposition 1.4] we obtain
wy*g(-,s) e C*([s, T}, Y).
Hence
ay*[wy*gl(-,s) € C((5,T]. 1,),
as above, and the assertion follows. O
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It should be noted that the above proofs are modifications of corresponding
results in [7, §9].
After these preparations we can prove the desired regularity

THEOREM 9.4. Suppose, in addition to the assumptions (Q1)~(QS), that there are
Banach spaces Y and Y, such that

(HR1) Y, o X, o Yo X,
such that
D(Ay(t,y)) =Y, for(t,y)€[0,T] % Vand
(HR2) [(r.y) = A(z, )] € CP([0,TI X V, 2(Y,,Y))
for some B € (0,1) U{1 -},
such that
there exists a number x € (0, B/2) such that

I+ Ay (2, 9) Mgy, < /I = 0"

foreachy, € V, all (t,y) € [0,T] X V, , and all
Aew+ X,

(HR3)

and such that
(HR4) fe ([0, T} x V,Y) forsomeve (x,1)U{l —}.
Finally suppose that
(14) 6—n>2k and Xy Y.
Then
u(-,s,x) € C(J(s,x), Y;) N CH{J(s,x),Y)
for each (s,x) €[0,T) X V.
PROOF. Let (s,x)€[0,T) X ¥, and ¢, € J(s,x) be arbitrary, and let
w:= u(-,s, x)|s, t;}]. Clearly it suffices to show that
ue C((s,t1], ¥;) N CY(s,1,], Y).

Since u € C?~"([s,1,], X) by Theorem 6.3, it follows from (HR2), (HR3) and (14),
that

Ay(t)= A, (1,u(1)), 0<tr<T,

satisfies (2) and (5) with B:= min(8, 8 — n), since we can assume without loss of
generality that « = 0. Moreover,

(15) g=/f(,a(")) € C°([s,T]. Y)
for #:= min{», 8 — n}. Thus, since x € X, C Y, we deduce from Lemmas 9.2 and
9.3 that

U(-,s)x + Usg(-,s) € C([5,T], 1,).
Of course, U(-, s)x + U * g(-, s) coincides on [s, ¢;] with u. Hence
(16) ue C((s,tI], Yl).
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Since

()= —A(t,u())u(t) + f(t,u(r)) = —A()u(z) + g(¢), s<t<t,
in X, we obtain from (15), (16) and (HR2) that & € C((s, t;], Y). This implies
ue CY(s, )L Y) O

10. Quasilinear parabolic systems. Throughout this section m,n, N € N*, and
k € N satisfies k < 2m — 1.

We denote by © a bounded domain in R” of class C2™, that is, @ is a compact
n-dimensional C2™-submanifold of R” with boundary 3Q. We let N(k):= N Lia<kls
where a € N” and ja}:= a, + -+ +a, is the length of the multi-index «, and we
denote by G an open subset of K¥*), Then we suppose that

there exists a number p € (0,1) such that
(1) a, € C**([0,T] x @ xG, £(K"))
for all « € N" with |a| < 2m.

We consider a family of linear differential operators of order 2m:

A(t,m)u=(-1)" ¥ a,t,-,1)D%u, (1,7)€[0,T]XG,

laj<2m

acting on N-tuples of K-valued functions u: & — K". We let

a(t,x,n; &)=Y, at,x,n)¢* € L(KV)

|aj=2m

for ¢ € R” and denote by (-| - ) the Euclidean inner product in C". Then we suppose
that 7 is strongly parabeolic in the sense that

(2) Re( a(t,x,n; £)§']§) >0 V(1,x,1,6¢)€[0,.T] X2 XGXR"x C¥,
£E+0,¢+0.
We denote by
Bu:= (u,du/dv,...,0"m tu/dp™ 1)

the Dirichlet boundary operator on 9€2, where » is the outer normal on 9€2. Moreover
we suppose that

(3) fec*([0,T] x 2 xG,K").
Finally we denote by F the substitution operator induced by f, that is,
F(t,u)(x):= f(t,x,u(x), Du(x),..., D*u(x))
for u: @ > G and x € Q.

For 1<p<oo and 0<s<2m we let W= Wi(Q,K"), so that W)=
L,= L,(2,K"). Moreover

W a= { u € Wid/u/dv/ = 0ondQ for j=0,1,...,m —land j <s — 1/p}.
Observe that
(4) Wega=W: ifs<1/p.

p- p
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We let

&= {j+1/pli=0,1,....,m -1},
If0 < 8 <1and 2mé & &,, we know by [7, Theorem 13.3] that

WZ'"" (L, w23),, if2mf &N,
and

Wit =L, W3], if2m§eN.

Thus, due to reiteration and commutativity properties of the real and complex
interpolation functors (cf. {10, Theorems 3.5.3, 4.6.1, and 4.7.2]), it follows that
(5) o @ 18 (I/Vp",g, Wp’,g)-compatible for
) O<o<s<7<2mands,o,7€£(a‘”p.

Recall the well-known Sobolev-type imbedding theorems:

(6) W, > W, ifl/p>1/qands—n/p>t—n/q,

(7 Wy<sW, ifl/p>1/qands—n/p>t—n/q,

(8) Wy «>C' ifs—n/p>t

and

(9) W;QC’ ifs—n/p=1te&N,

where C*:= C/(Q,K")and 0 < <2m,1 < p, g < o (cf. [32], for example).

It is an easy consequence of (8) and the fact that W 4 is a closed linear subspace
of W, that

A {ue W7 4l(u, Du, ..., D*u)(2) c G} is open in
Paifk+n/p<o<2mando €&,

(cf. [7, Proposition 15.4]).
For each (t,0) € [0,T] X V; with k + n/p <0< 2m and o & &, we define a

(10)

linear operator 4 ,(¢,v)in L, Wlth domain W3 by
(11) Ap(t,v)u = (t,v,Dv,..., D*v)u,
where

& (t,v,Dv,..., Dv)u(x)
=(-1)" 'Z a,(t,x,v(x), Dv(x),..., D*o(x)) D*u(x)
laj<2m

for x € Q.

LEMMA 10.1. Let n < p < oo and put X:= L,, X,:= W5, and X;:= W23 for
0<¢é<1. Then

(i) conditions (Q1) and (Q2) are satisfied if 2mn, 2m8 & &,.

(i) A4,(-, ) satisfies conditions (Q3) and (Q4) provided k + n/p < 2mn < 2m
and 2mn & &,.

(i) If0<e<2mn—k—n/pand e <1, then

Fe ' ([0,T] x v, wy).
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PROOF. (i) (Q1) is clear, (Q2) follows from (5).

(i1) (Q3) is an easy consequence of (10), (8) and (1). (Q4) follows from [8, Theorem
6.6] and (2), by using again (8) and the fact that (2) implies a uniform estimate on
compact sets.

(ii1) is a consequence of (3) and [7, Proposition 15.6]. O

After these preparations we consider now the quasilinear parabolic initial boundary
value problem

(QIBVP)(;s.u,)

%—L; +J2¢(t,u,D2u,...,D2ku)u =f(t,x,u,D2u,...,D2"u) in (s,7] X 2,

Bu=0 on(s,T] x0Q,
u(s,)=u, onf.

By an L -solution, n < p < oo, of (QIBVP), , , we mean a solution of the quasilin-
ear Cauchy problem

i+ A,(t,u)u=F(t,u), s<t<T,u(s)=u,
in L,. A function u: @ — G with
ue C(JXQ,G)NCO(JxQK"Yn C(J x Q,KV),

defined on a perfect subinterval J of [s, T] containing s, is a classical solution of
(QIBVP), ,.y» provided it satisfies (QIBVP), , , pointwise. Clearly every classical
solution is a L -solution for p € (n, o0).

THEOREM 10.2. Suppose thatn < p < co and thatk + n/p <o < 2mwith o & &,.
Then (QIBVP) ., possesses for each (s,uy) €[0,T)X V) a unique maximal
Lp-solution u(-,s,uy), and

(12) u(-,s,up) € C°(J,Wy) for0<7<0,7€6,
Moreover

(13)  u(-,s,uy) € CY(J,W;) for 0<e<min{p,0—k—n/p,1/p}.
The maximal interval of existence J(s,uy):= J is open in [s,T]. If 0 < 2m, then
(14) 22(s)i= { (t,up) € [s, TI X V2lt € J(s,u,)

is open in s, T] X W] 4, and

(15) u(-,s,-) € CO(25(s), Wy)

for every s € [0, T).
If

Y (s,uy)i= { u(t,s,uy)|t € J(s, uo)}

is bounded in W, and has a positive distance from 3V} for some (s,u,) € [0,T) X V,
then u(-, s, u,) is a global solution, that is, J(s,uy) = [s,T].
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PROOF. Let 6:= 0/2m and choose n € (0,6) such that 2mn & &, and k + n/p
< 2mn. Moreover let { € (0,1) satisfy e:=2m{ <1/p and 2m{ + k + n/p <
2mm. Then everything, except the last assertion, follows from (4), Lemma 10.1(1), (i1)
and (iv), Theorem 6.3 and Theorem 8.1.

Let now n < £ < @ such that 7:= 2m¢ & &,. Since u, € Xy = X we can apply
Theorem 6.3 also in the space X,. Denoting the solution in this case by u.(-, s, u,),
itis clear that u.(-, s, uy) D u(-, s, uy). On the other hand,

ug(t,s,u0) € W5 Xy= WS4 fore>s,

since ug(-,s,uy) is an Lp-solution. This shows that u.(-,s, uy) = u(-,s,u,). Since
y*(s,uy) is bounded in X,, by assumption, and since X, <= X, by (7), the last
assertion follows from Corollary 7.3. O

CoRroOLLARY 10.3. Suppose that n < p < oo and k + n/p <o < 2m with 0 & &,
Moreover suppose that &/ and f are independent of t, and let @(t,uy):= u(1,0,uy)
and D= 27(0). Then ¢ is a semiflow on V; such thar ¢ € C*'~ (2], W)).
Moreover, bounded orbits, which are bounded away from 3V, exist globally. If they
are also bounded in W, for some 7> o, then they are relatively compact in W.

Of course, an orbit is bounded in W, for 1>0 if it is bounded “after” some
positive initial time (if u, &€ W)).

Our next theorem shows that u(-, s, u,) has much better regularity properties for
t>s.

THEOREM 10.4. Suppose thatn < p < oo andk + n/p < o6 < 2mwith ¢ &€ &,, and
that (s,uy) € [0,T) X V. Then

u(-,s,uy) € C(J, W) Vge|p, o).
q

PROOF. Let p < g < oo and choose a 6 € (k + n/q, 2m — n(p~' — ¢7' Y\ &,
which is possible by 2m — n/p > k. Hence u,:= u(s;,s,uy) € W5 = WS4 by
(6), where s, € J is arbitrary. Since u; € V, we obtain from Theorem 10.2 that
(QIBVP), ,, has a unique maximal L solution u,(-, s,, #;). Similar to the proof of
Theorem 10.2, we find that u,(-,s,, u;) = u(-, s, ug)(J N [sy, T]). Since s; € J is
arbitrary, the assertion follows. O

It follows from Theorem 10.4 and (8) that

u(-,s,uy) € C(J,C¥m 1+2(Q,K"Y))

for every p € (0, 1). In the following we shall show that we obtain classical solutions
if we impose further mild regularity assumptions. For simplicity we do not give the
most general assumptions (for @ and the coefficients a,), but choose a simple
setting. Namely we assume that § belongs to class C?™*D~ and

a,€ C([0,T] xQ xG, £(K")), |a| <2m.
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Then we prove the following crucial

LemMa 10.5. Suppose that 2n < g < oo and that v € (0,1) satisfies 2mn > k +
n/q. Moreover let 0 < p < (2mn —k —2n/q) A1 and put X:= L, X,:= W™,
Yi=Ctand Y:= {u € C*"*"*%Bu =0 on dQ}. Then the conditions (HR1)-(HR4)
are satisfied with $ =v =1 — and x = p/2m.

ProOF. It follows from (8) that (HR1) is true. Moreover, by using (8) and the
mean-value theorem (in integral form), it is not difficult to verify that

(16) [ (1.y) = A, p)Iv,] € ([0, T] x ¥V, 2(¥,,Y)).
Consider now the operators

92mw

T 2m

on X R, where (1,v) €[0,T] X V and ¢ € R. Then it follows from [8, Lemmas
6.1 and 6.3, and 7, Theorem 9.3] (cf. also [29, Theorem 2.1]) that we can assume that,
for each fixed y, € V, the neighbourhood V| ~and the constant ¢ € (0,7 /2) are
chosen such that '

(17) ol < e{ oty (ro " + 1wl ™)

A, (t,0)wi= (1,0, Dv,..., D'v)w +(-1)"e"

forall (1, ) € [0,TIXV, .,y €[-9% —7/2, & + m/2] and all
we C*™ H(Q XR,CY)

whose supports are contained in a fixed compact subset of € XR, and which satisfy
ZBw =0 on 02 X R. Here | - ||} denotes the norm in C*(M,K"), where M is a
compact subset of some euclidean space and L € N*. Following an idea of Agmon
[3], we fix a function ¢ € C*(R,R) with supp(¢) € (—2,2) and ¢|[— 3,3] = 1.
Then we put w(x, 7):= @(7)e""u(x), where r > 1is fixed and u € C>™"* satisfies
#u = 0 on 9€. Then an easy calculation shows that

[z (ol ™ < e{loe [ ACe y) + r2me )l

+r2m e | )y )

(18)

(cf. [7, formula (12.7)]). On the other hand,

Q L Qx[-1,
Iwlznte> X [DAe) Doy

Jtlal<2m

(19) + Z [D/(eirT)Dau]}?X[*l‘l]
JHlal=2m
2m a g 2m Q

N (IR T T WA M

k=0 || =k k=0

Since

e P P Y

»

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



224 HERBERT AMANN

we deduce from (17)-(19) the estimate

2m

Z rzmgkA#“u”?*P < C“(A(t»y) + r2mei¢)ul|y,
k=0

provided r is sufficiently large. Hence, letting A := r2™e'¥, we see that
2m _ -

(20) ST i < el (A v) + N ully
k=0

for all u € C*>"** satisfying Bu =0 on 3R, all (¢, )€ [0,T] X V,, and A € =,
with |A| = A, for some A, > 1. This implies, in particular, that for each point
Yo € V there exists a neighbourhood ¥V, and positive constants » and ¢ such that

1—p/2m
(21) A= el T lly < el(A+ Az, p))xly

forall (¢, y,x)€[0,T] XV, X Yyand A € w + Z,.

The arguments of the proof of Theorem 6.6 in [8] now show that A + A(¢, y) is an
isomorphism from Y; onto Y for A > w and (¢, y) € [0,T] X V, . This implies, in
particular, that A,(z, y) = A(z, y)|Y for all (1, y) € [0,T] X V. Now (HR2) and
(HR3) follow from (16) and (21).

Finally (HR4) is an obvious consequence of Lemma 10.1(iii) and (8), since we can
choose { € (0,1 suchthat p + n/qg < 2m{ =:e <2mnm —k —n/qand e <1. O

After these preparations we can prove the following regularity

THEOREM 10.6. Suppose that  belongs to class C*™* V™ and that
a, € C*([0,T] X Q xG, Z(K")), la| <2m.

Moreover suppose that n <p < o and k + n/p <o < 2m with ¢ & &,, and that
(s,ug) €[0,T)X V. Then

(22) u(-,s,uy) € C(J,C*™*)yn CYJ,C")

for every p € [0,1 A 2m — k)m/(1 + m)). In particular, u(-,s,u,) is a classical
solution.

PrOOE. Choose any g € ( p, oo) with ¢ > 2n. By replacing uy by u(sy, s, uy) and s
by s,, where s, € J is arbitrary, we can assume, due to Theorem 10.4, that
uy € V™. Thus we can choose X:= L, X,:= W3, 6:= 1,9 € (0,1) with 2mn >
k+n/q and 2mn & &, p € (0,1) with 2m(1 —n) > p/m and p <2mn — k —
2n/q, Y:= C* and Y, := C?"** N X,. Then it follows from Lemma 10.5 that the
hypotheses of Theorem 9.4 are satisfied with 8:= »:= 1 — and x:= p/2m. Hence
Theorem 9.4 implies (22) for this choice of p. Since we can choose g arbitrarily large,
it follows that p has to satisfy the restrictions 2m(1 — 1) > p/m and p < 2mn — k,
where 1 > 9 > k/2m, and, of course, p. < 1. This leads to the asserted range for u.
The last part of the assertion is now obvious, since u € C(J, W;’) by Theorem 10.2
and W) = C by (8). O
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ReMARkS 10.7. For the sake of an easy presentation we have chosen a relatively
simple setting. However it should be observed that our abstract results apply to
much more general situations. Namely:

(a) The differential operator does not need to be strongly parabolic. It suffices
that it satisfies the a-root condition for some a € (0, 7/2), uniformly in ¢ € [0, T'],
in the sense of {7].

(b) The Dirichlet boundary operator % can be replaced by much more general
systems, provided it remains independent of ¢ and (&7, &) is a strongly a-regularly
elliptic boundary value problem, uniformly in 7 € [0, T'], in the sense of [7]. For
concrete instances of such systems we refer to [8, §6].

(c) F does not need to be a substitution operator. It can be a nonlocal operator.

(d) © can be unbounded (cf. [7] for details). Of course, in this case the above
assertions guaranteeing global existence and compactness of orbits are not valid
since their proofs depend upon the compact imbeddings (7) and (8). O

The existence of solutions for quasilinear parabolic equations has been studied
extensively by LadyZenskaja, Solonnikov and Ural’ceva [19] for a single second order
equation. Their method is completely different. Namely it is based upon a priori
estimates and fixed point arguments. This requires restrictive structure conditions
for the nonlinearities (since it means essentially that all solutions have to be bounded
in the maximum norm), but gives global solutions. In addition these authors have to
impose compatibility conditions. None of these restrictions is necessary in our
approach, which is “dynamical” in contrast to the “static” approach in [19].
Moreover we can handle—essentially with the same ease—systems of arbitrary even
order. Due to the above results the question of global existence has been reduced to
the problem of finding a priori bounds in an appropriate norm. The problem of
existence and regularity has been completely settled.

As mentioned earlier, the existence of a local L ,-solution for quasilinear parabolic
equations has been shown by Sobolevskii [28] (cf. also [16, §11.17]), and our abstract
approach follows essentially his method. However our regularity results (e.g. Theo-
rem 10.6) are new, as are, in particular, the results concerning the continuous
dependence on the initial values.

The existence of a classical solution to certain quasilinear parabolic equations has
also been shown by Lunardi [20, 21]. She works in the space C(£) and does not
assume that the operators are densely defined in order to avoid compatibility
conditions. However she can only treat equations with a principal part of the very
particular form a(z, x, u, Du)Au, where A is the Laplace operator.

A related but different approach to quasilinear parabolic equations has been given
by Da Prato and Grisvard [14] (cf. also [13] for a survey). These authors use a
linearization method based upon “maximal regularity” results. However it is not
clear whether their method can be applied to general quasilinear parabolic systems
to give the same precise results as the ones of this paper.

We should also like to mention the results for quasilinear parabolic equations
obtained by the theory of nonlinear semigroups, that is, the theory of monotone and
accretive operators (e.g. [9]). These results apply essentially to different classes of
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problems and are closer to the “static” approach of [19] than to our “dynamic”
method.

Finally we want to point out that von Wahl [33, 34] was the first to apply
Agmon’s technique to Holder spaces. He derived an estimate similar to our estimate
(20) for a single linear operator (that is, N = 1 and &/ is independent of v € V).
He then used these estimates to define fractional powers in C*-spaces and to derive
regularity results for semilinear parabolic equations.
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