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QUASILINEAR EVOLUTION EQUATIONS 
AND PARABOLIC SYSTEMS 

BY 
HERBERT AMANN 

ABSTRACT. It is shown that general quasilinear parabolic systems possess unique 
maximal classical solutions for sufficiently smooth initial values, provided the 
boundary conditions are" time-independent". Moreover it is shown that, in the 
autonomous case, these equations generate local semi flows on appropriate Sobolev 
spaces. Our results apply, in particular, to the case of prescribed boundary values 
(Dirichlet boundary conditions). 

Introduction. In this paper we study quasilinear evolution equations of the form 

(1) it + A{t, u)u = /(t, u) 

in a general Banach space X. We assume that A (t, y) is, for each fixed argument, 
the infinitesimal generator of a strongly continuous analytic semigroup, such that the 
domain Xl of A(t, y) is independent of (t, y). Equation (1) is studied in general 
interpolation spaces Xu between X and Xl' and it is shown that (1) possesses a 
unique maximal solution, which depends (Lipschitz-)continuously upon its initial 
value. In the important autonomous case (that is, when A and / are independent of 
t) this implies that (1) generates a local semiflow in Xu. In addition we give simple 
sufficient conditions, which guarantee that a given maximal solution exists globally, 
that is, for all time. Moreover, by imposing some additional hypotheses, we show 
that the solutions of (1) possess better regularity properties. 

The general abstract results are then applied to quasilinear parabolic initial 
boundary value problems of the form 

au ( 2m-l ) at +.s;{ t, x, u, Du, ... , D u U 

=/(t,x,u,Du, ... ,D 2m - 1U) in {s,T] xn, 
!f8u = 0 on (s, T] X an, 

u ( s, . ) = u 0 on n, 
where n is a bounded smooth domain in Rn, !f8 denotes the Dirichlet boundary 
operator and .s;{(t, x, U, ... , D2m - l U) is a strongly parabolic differential operator of 
order 2m, acting on vector-valued functions u: n -4 C N and depending smoothly 
upon the indicated quantities. We shall show that this problem possesses a unique 
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192 HERBERT AMANN 

maximal classical solution u(·, s, uo) for every s E [0, T) and U o E Wp" satisfying 
!J8u o = 0 on afJ, provided n < p < 00 and 2m - 1 + nip < a < 2m, and that 
u( " s, uo) depends continuously upon U o in the topology of Wp". 

To be more specific we now state a special case of our general results of §10 in the 
important case of a strongly coupled real quasi linear second order autonomous 
system. For this we suppose that fJ is a bounded domain in Rn of class C 3 and that 

(2) j,k=l, ... ,n, 

where SP(RN) is the space of all linear mappings (= (N X N)-matrices) on R'V. 
Moreover we assume that 

{ 
N n } 

Re ~ . ~ a;~(x, 1), n~JeA)..s > 0 
r.s~l J.k~l 

(3) 

forall(x,1),nE Q xRN X RnN,all ~:= (~\ ... ,f') ERn and all A:= (A1, ... ,A N) 
E eN with ~ if. 0 and A if. O. Thus 

n 

--<1'(x, u, Du)u:= L ajk(x, U, Du)DJDku 
J.k~l 

is a quasilinear strongly coupled elliptic second order differential operator acting on 
N-vector-valued functions u: fJ -> RN. Finally we assume that 

(4) 
and consider the parabolic initial boundary value problem 

au at + --<1' ( x, u, Du) u = f ( x, u, Du) in (0, (0) X fJ, 
(5) u=O on(O,oo)xafJ, 

u(O,·) = U o on fJ. 

THEOREM. Suppose that n < p < 00 and 1 + nip < a < 2. Then (5) possesses a 
unique maximal classical solution u(·, uo) for each U o E Wp",81:= {u E 

Wp":= Wp"(fJ, RN)lulafJ = O}. The function (t, uo) ~ u(t, uo) is a local semiflow on 
Uj,~81 such that bounded orbits exist for all time. If an orbit is bounded in W; for some 
7' E (a, 2], then it is relatively compact in Uj,". 

It should be noted that-besides the regularity assumptions (2)~(4)-we do not 
require any growth or compatibility conditions (except for the initial value uo, of 
course). 

It is well known that the fact that nonlinear parabolic equations generate 
semi flows is very important for the study of the qualitative behaviour of the 
solutions of these equations (d. [12, 18 and 27] for recent surveys of some results of 
this type). Up to now this has only been known for semilinear parabolic equations 
and systems (e.g. [17 and 22]). 

Our principal abstract results are contained in §§6~8. In the last section we give 
applications of the abstract theory to quasilinear parabolic systems of arbitrary 
order. We are particularly interested in classical solutions. For simplicity we do not 
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QUASILINEAR EVOLUTION EQUATIONS 193 

give the most general results but choose a relatively simple setting. Due to the length 
of this paper we do not give specific conditions guaranteeing the existence of global 
solutions. 

The existence of solutions to abstract quasilinear evolution equations has already 
been studied by Sobolevskii [28] (cf. also Friedman [16]) and, more recently, by 
Potier-Ferry [24] and Lunardi [20, 21]. But our results about the continuous 
dependence of the solution upon the initial values are new, as are the simple criteria 
for global existence. Moreover the results of these authors do not give classical 
solutions to general parabolic systems as do our general theorems. A more detailed 
discussion of the relations between our results and those of other authors is given in 
the main body of this paper. 

Notations. Throughout this paper we use standard notations. All vector spaces are 
over K:= R or C. If K = R and we use complex quantities (for example in 
connection with spectral theory), it is always understood that we work with the 
natural complexifications (of spaces and operators). Thus, by peA), the resolvent set, 
and by a(A), the spectrum of a linear operator with domain D(A) and range R(A), 
we mean always the resolvent set and the spectrum, respectively, of its complexifica-
tion. 

X, Y, Z, with or without indices, always denote Banach spaces, and £l(X, Y) is 
the Banach space of all continuous linear operators from X into Y. By £ls ( X, Y) we 
mean the same vector space, but endowed with the topology of pointwise conver-
gence. Moreover £l(X):= .P(X, X). 

If S is a metric space, we denote by C(S, X) the space of all continuous functions 
from S into X, endowed with the topology of uniform convergence on compact 
subsets (the compact-open topology). If 0 < a < 1, then Co.(S, X) is the subspace of 
all a-Holder continuous functions, where f: S ~ X is said to be a-Holder continu-
ous, if each point So E S has a neighbourhood U such that f is uniformly a-Holder 
continuous on U, that is, 

[j]~:= sup Ilf(s) - f(~) II < 00, 
s,IEU [des, t)] 

where d denotes the metric in S. The space Co.(S, X) is given the locally convex 
topology induced by the seminorms 

(6) supllf(s)II+[j]~, U c S, U compact. 
SEU 

If a = 1, we denote this space by C1-(S, X), the space of Lipschitz continuous 
functions. More generally, if S is a subspace of some product space A X B, then we 
write f E Co.,/J(S, X) if each point (a, b) E S has a product neighbourhood U X V 
in S such that there exists a constant c with 

(7) Ilf(s, t) - f(S', t') II < c{ [dA(s, S/)] 0. + [dB(t, t')] /J} 

for all (s,t), (S',t')E Ux V. Moreover, fE Co,/J(S,X) means that f(',t) is 
continuous on U for each t E V and f(s, .) is uniformly ,8-Holder continuous on V, 
uniformly with respect to s E U. We shall repeatedly use the following important 
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194 HERBERT AMANN 

fact: If ° ~ a, /3 ~ 1 and if j E C a ,f3(S, X), then each compact set K in S has a 
neighbourhood W in S such that (7) holds for all (s, I), (s', I') E W (with the 
obvious modifications if a = ° or /3 = 0, and where a = 1 is interpreted as a = 1 -
etc.). For a proof of this fact we refer to [6, Satz 6.4]. 

If S is compact, then C(S, X) is a Banach space with the maximum norm and 
ca(s, X) is a Banach space with the norm (6), where U is replaced by S. We use 
these norms throughout. In general we denote by B(S, X) the Banach space of all 
bounded functions from S into X, endowed with the supremum norm. Moreover 
BC(S, X):= B(S, X) n C(S, X), and BUC(S, X) is the closed linear subspace of 
BC( S, X) consisting of all bounded and uniformly continuous functions. Similarly, 
Buca(s, X) denotes the Banach space of all bounded and uniformly a-Holder 
continuous functions on S, endowed with the norm (6), where U is replaced by S. 

If U is an open subset of some Banach space Y, then C k (U, X), kEN * : = 
N \ {O}, is the space of all k-times continuously differentiable functions from U into 
X, endowed with the usual locally convex topology. If Y = K, then U can also be a 
perfect subset of K, that is, a set such that each point of U is a limit point of U. 
Moreover Ck-(U, X) is the subspace of all j E Ck-1(U, X) such that Dk-1j E 
C 1 - (U, X), where D denotes the derivative. If U is a subset of some product space, 
we denote by D1, D2 , ••• the partial derivatives. 

Throughout this paper T is a fixed positive number. We let 

Moreover we denote by c positive constants, which may be different from formula to 
formula, but are alw<tys independent of the specific independent variables occurring 
at a given place. Thus we treat c in much the same way as the Landau symbol O. If 
the equations under consideration depend on additional parameters, say a, /3, ... , 
then we sometimes write c( a, /3, ... ) to indicate that c depends on these parameters. 
Finally, (3.5) means formula 5 in §3, if we refer to it outside of §3. 

1. Convolution-type equations. For each a E R we denote by S1'(X, Y, a) the 
Banach space of all functions k E C(Tt" .fE( X, Y» satisfying 

Ilkll(a):= sup. (/-srllk(t,s)ll< 00, 
(t,s)ET::. 

endowed with the norm II . II(a)' It is obvious that 

(1) S1'(X,Y,/3) ~ S1'(X,Y,a) for/3 < a, 

where ~ denotes continuous imbedding. If a < 0, then it is easily seen that 
k E H( X, Y, a) can be continuously extended over Tt, by letting k(t, I) = ° for ° ~ t ~ T, so that 

(2) S1'(X, Y,a) ~ C(Tt" .fE(X, Y)) for a < 0. 

Observe that 

(3) S1'(X, Y,O) = BC(Tt" .fE(X, Y)). 
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QUASILINEAR EVOLUTION EQUATIONS 195 

If X = K, we identify 2(K, Y) naturally with Y via 2(K, Y) =:1 B (4 B . 1 E Y. 
Hence k E ~(K, Y, a) iff k E CCTt:,., Y) and Ilk(t, s)11 < c(t - s)-a for (t, s) E Tt:,.. 
In particular, 

(4) C([O, T], Y) ~ ~(K, Y,O) = BC(Tt:,., y) 
by the obvious identification 

(5) C([O, T], y) =:1 U (4 ret, s) ~ u(t)] E BC(Tt:,., Y). 

Finally, ~(X, a):= ~(X, X, a). 
We define now a "convolution-type" operation * by 

h*k(t,s):= r h(t,T)k(T,s)dT, 
s 

whenever k E ~(X, Y, a) and h E rff(Y, Z, /3) with a, /3 < 1, so that the integral 
exists. 

LEMMA 1.1. (i) Let a, /3 E (- 00,1), k E ~(X, Y, a) and h E R\(Y, Z, /3). Then 

h*k E ~(X,Z,a + /3 -1) 
and 

(6) 
where B ( ., .) denotes the beta function. 

(ii) The operation * is associative. 

PROOF. (i) The estimate (6) is simple. The continuity of h * k on Tt:,. follows 
essentially from Lebesgue's theorem (for example, by modifying in an obvious way 
the proof of [7, Lemma 1.1 D. 

(ii) is a consequence of Fubini's theorem. 0 
Let k E ~(X, Y, a) with a < 1. Then it is an immediate consequence of Lemma 

1.1 and (1) that 

(7) k* E2(rff(Z,X,/3),~(Z,Y,/3)) 

and 

(8) * k E 2(~(Y, Z,/3), ~(X, Z,/3)), 

and that 

(9) 
provided /3 < 1. In particular, 

(10) 

for /3 < 1, if k E ~ (X, a) for some a < 1. 
An easy induction argument shows that 

(11) 

II II a [(t - s /-af(1 - a)llk II(a)r 
k*k*~ .. · *k(t,s) «t-s)- f(l-a)llkll<a) f«n+l)(I-a)) 

n + 1 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



196 HERBERT AMANN 

for n ;;::, 1. This well-known estimate (e.g. [31, formula (5.16)]) implies, together with 
(9), that the linear operators (10) have spectral radii zero. Consequently the first part 
of the following theorem is obvious. 

THEOREM 1.2. Let a, 13 E (-- 00, 1) and k E ~ (X, a). Then the "convolution-type 
equations" 

(12) 

and 

(13) v=b+k*v 

have for each a E ~,( X, Y, 13) and b E ~,( Y, X, 13) unique solutions u E ~ (X, Y, 13) 
and v E R(Y, X, 13), respectively. The solution u of (12) can be represented by 

(14) u=a+a*w, 

where w, the resolvent kernel of (12), is the unique solution in R (X, a) of w = k + 
k * w. Moreover, w = k + w * k. 

An analogous representation formula holds for (13). 

PROOF. Since the solution u of (12) is given by the Neumann series, 

where 

Let 

00 00 

r:= ~(*k)Ja=a*k+ L(*k)Ja . 
/=1 /=2 

00 00 

/:= Lk*···*k=L(*k)J-1k . 
j=2~ /=2 

J 

It follows from (11) that IE ~(X,a). Moreover a*l= 'Lj=2(*k)Ja, so that r= 
a * w, where 

00 

w:= k + I = k + L k * ... * k 
j=2~ 

J 
oc 00 

= k + L k*C~:~J=k + L (!~_:~_~_:~~J*k. 
j= 1 j= 1 

j j 

Hence w = k + k * w = k + w * k. 0 
REMARKS 1.3. (a) By replacing the space .P(X, Y) in the definition of S'f(X, Y, a) 

by 2's (X, Y) we can introduce the spaces R,( X, Y, a). Thus k E S'f s (X, Y, a) iff k: 
Tt:,. ~ 2'(X, Y) is strongly continuous and Ilkll(a) < 00. Then it is easily verified that 
everything said above remains true for the spaces S'f seX, Y, a), provided we sub-
stitute everywhere .P,( X, Y) for .P( X, Y). 
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(b) It is an obvious consequence of the estimate (11) that the norms of the 
solutions of the convolution-type equations (12) and (13) are majorized by constants 
depending only on bounds for the norms of a and k, or band k, respectively, and 
on T, a and /3, but not on the individual operators. 0 

Of course, the results of this section are known, in principle. For example, they are 
implicitly contained in [28) and in [31, §5.2). Since they are fundamental for our 
work, and since we do not know of an explicit reference, we have shortly indicated 
their proofs. 

2. Families of analytic semigroups. In the following we let ~ t~:= {z Eel larg z 1 ~ 

{} + 17/2} for 0 ~ {} < 17/2. Then we impose the following Assumption (A): 

(1) 

{ A (t) 10 ~ t ~ T} is a fami~y of closed densely defined linear opera-
tors in X with constant domain, that is, D(A(t» = D(A(O» for 
o ~ t ~ T. Moreover, ~o c p( -A(t» and 

for A E ~o and 0 ~ t ~ T. 

It is well known that this implies the existence of a constant{} E (0,17 /2)-which 
we fix now-such that ~t~ c p( -A(t» and that (1) holds (with a new constant, 
which we denote again by M) for all A E ~If and all t E [0, T). 

We let X l := D(A(O», endowed with the norm x >-4 Ilxlh:= IIA(O)xll, which is 
equivalent to the graph norm. Hence Xl is a Banach space such that Xl ~ X, and 
A(t) E £"(Xl' X). 

We impose now the additional Assumption (Ap): 

A(·) E Cp([O, T], £"(Xl' X)) for some p E (0,1). 

Observe that (Ap) implies the existence of a constant L such that 

(2) 

Moreover (Ap) and the smoothness of the inversion B ~ B- 1 from Isom(X, Y) 
onto Isom(Y, X), where Isom(X, Y) is the open subset in £,,(X, Y) of all isomor-
phisms, imply 

(3) 

and 

(4) 

for every A E ~If' In particular there exists a constant N such that 

(5) IIA(t)A -l(S) II ~ N "if t, s E [0, T). 
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198 HERBERT AMANN 

We assume now that for each 8 E (0,1) there is given an interpolation functor ~II 
from the category C£ of compatible pairs of Banach spaces to the category of all 
Banach spaces, possessing the following property: 

(IPF1): ~ II is an interpolation functor of exponent 8, that is, 
1-11 II liT II:Eme(A o• Ad. ~e( Bo. Bdl < ell T 11:E(A o• Bolli T 11:E(A,. Bd, 

whenever (Ao, A l ) and (Bo, B l ) are objects and T is a morphism in the category C£. 
Observe that the complex interpolation functor [ " ']11 and the real interpolation 

functors (', . )1I.p' 1 < p < 00, possess the above property. (We refer to [10 and 32] 
for the basic facts about interpolation spaces.) 

It is a consequences of (lPF1) that ~ II possesses the following additional prop-
erty: 

(IPF2): Ilxll&e(Ao.Al) < ellxll~~lIllxll~l V x E Ao n A l , whenever (Ao, A l ) is an 
object in C£ (cf. the proof of Theorem 1.3.3(g) in [32]). 

In the following we let 

Xo:= ~o(Xo, Xl)' 

where Xo:= X, and II . 110 denotes the norm in Xo' 
It is well known that (A) implies that each -A(t) is the infinitesimal generator of 

a strongly continuous analytic semigroup {e-sA(tlls > o} on X, which is explicitly 
given by 

(6) 

where r is any piecewise smooth curve in ~il running from ooe- i (il+Tr/2) to 
ooe i (il+'lT/2). 

LEMMA 2.1. Let ° < 1), 8 < 1. Then 

(7) [(t,s) ~A(t)e-SA(t)] E C([O,T] x(O,oo), 2(XT/'Xo)) 

and 

(8) IIA(t)e-sA(t)II:E(x •. xe) < esT/-II-l V(t,s) E [O,T] x(O, (0). 

Moreover, 

(9) 

PROOF. Assumption (A) implies 

(10) IIAJ(t)e-sA(t)II:E(X) < es J V(t,s) E [O,T] x(O,oo) 

for j = 0, 1,2. Now (8) follows easily by interpolation by observing that, due to (5), 
{x ~ IIA(t)xIIIO < t < T} is a family of uniformly equivalent norms on Xl' If 
1) = 8 = ° or 1) = 8 = 1 we obtain (7) from (6), (3), (4), (10) and Lebesgue's 
theorem. If ° < 1), 8 < 1 are arbitrary, (7) follows by interpolation. The strong 
continuity (9) at (t, 0),0 < t < T, in the case 8 = 0 follows by an obvious modifica-
tion of the standard proof of the strong continuity of s ~ e-sA(t) at s = 0 for fixed t 
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QUASILINEAR EVOLUTION EQUATIONS 199 

(e.g. [31, pp. 66-67]). The same proof gives the result for B = 1, due to A(t)e-sA(t) 
~ e-sA(t)A(t) and the already observed uniform equivalence of the norms x ~ 
IIA(t)xll on Xl' The general case is now obtained by interpolation on the basis of 
(IPF2). 0 

3. Estimates for parabolic evolution operators. For convenience we introduce the 
following simplifying notation: Whenever V is a function of two real variables and 
V is a function of one real variable we write 

VV(t,s):= V(t)V(t,s) and VV(t,s):= V(t,s)V(s), 

provided the right-hand sides are meaningful. 
By well-known results of Sobolevskii [28] and Tanabe [30] (cf. also [16, 23 and 31] 

for expositions) Assumptions (A) and (Ap) imply the existence of a unique function 
V: T/:,. --+2'(X), a parabolic fundamental solution for {A(t)IO ~ t ~ T}, possessing 
the following properties: 

(VI): V E C(T/:,., 2's(X» and R(V(t, s» C Xl for (t, s) E Til' 
(V2): V(t, t) = id and V(t, s) = Vet, T)V( T, s) for 0 ~ s ~ T ~ t ~ T. 
(V3): V(·,S)ECl«s,T], 2's(X» and DP=-AU. Moreover, V(t,')E 

Cl([O, t), 2's( Xl' X» and Dpx = VAx for all x E Xl' 
. 

(V4): A V E C(TIl' 2'(E» and 

IIAV(t,s)ll~ c(L,M,N,T,p)(t - S)-l. 

It should be observed that(V3) and (V4) imply that V(', s) E Cl«s, T], 2'( X». 
It follows from (VI) and (V3) that 

aaT[V(t,T)e-(T-S)A(S)] = V(t,T)[A(T)-A(s)]e-(T-S)A(s) 

in 2's( X) for 0 ~ s < T < t ~ T. Thus, by integration, which is possible due to 
(Ap), 

(1) 
Vet,s) = e-(t-s)A(s)_ r V(t,T)[A(T) -A(s)]e-(T-S)A(S)dT, 

s 
(t,s)ETIl' 

in .:c:( X). Similarly, 

aaT [e-(I-T)A(I)V(T,S)] = e-(I-T)A(t)[A(t) -A(T)]V(T,S) 

in .:c:( X) for 0 ~ s < T < t ~ T, and consequently, 

(2) 
Vet,s) = e-(I-s)A(t) + r e-(t-T)A(I)[A(t) -A(T)]V(T,s)dT, 

s 
(t,s)ETIl' 

in 2's( X). (It should be remarked that precisely the integral equations (1) and (2) 
were used by Sobolevskii and Tanabe to derive the existence of the fundamental 
solution V with the properties (Vl)-(V4).) 
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We introduce now the following abbreviations: 
a(t,s):= e-(t-s)A(s), b(t,s):= e-(I-s)A(t), 

k(t,s):= -[A(t) -A(s)]a(t,s), h(t,s):= b(t,s)[A(t) -A(s)] 
for (t, s) E Tt:.. 

LEMMA 3.1. Let 0 ~ 1) ~ () ~ 1. Then 
(i) a, bE st(Xo,O) n ~(X, Xo, ()) n st(X'I' Xl' 1 - 1)), 

(ii) Aa, Ab E ~(X'I' XO, 1 + () - 1)), 

(iii) k E ~(X'I' X,l - 1) - p), 
(iv) h E ~(XI' XO, () - p), 
(v) Ah E ~(XI' XO, 1 + () - p). 
Moreover the norms of the above elements are bounded by constants depending only 

on L, M, N, p, 1), and (), but not on the individual elements. 

PROOF. (i) follows from Lemma 2.1 and (2.5) and by interpolation. 
(ii) is also a consequence of Lemma 2.1 and (2.5). 
(iii)-(v) are easily obtained from (A), the estimate (2.2), and from (i) and (ii). D 
It follows from Lemma 3.1 and Theorem 1.2 that the convolution-type equations 

(3) u=a+u*k in~(X,O) 

and 
(4) v = b + h * v in ~ ( Xl , 0) 
possess unique solutions u and v, respectively. Since st(X, Y,a) C sts(X, Y,a), we 
can consider (3) and (4) also in the spaces Sl's(X,O) and ~s(XI'O), respectively. 
However in these spaces they coincide with the integral equations (1) and (2), 
respectively. Thus u = v = U, by the unique solvability. Consequently, 
(5) U=a+U*k in~(X,O) 

and 
(6) U = b + h * U in ~ ( Xl' 0). 

It is now easy to derive further regularity properties of U, which we collect in the 
following 

THEOREM 3.2. (i) U E S~(X, Xo, (}) n ~(Xo, Xl' 1 - ()) for 0 ~ () ~ l. 
(ii) U E C(Tt:., 2's(Xo)) for 0 ~ () ~ l. 
(iii) If 0 ~ 1), () ~ 1 and () < p, then 

AU E ~(X'I' Xo, 1 + () - 1)). 

Moreover the norms of U and A U in the respective Banach spaces ~ are bounded by 
constants depending only on L, M, N, p, 1), () and T. 

PROOF. (i) Since U E Sl(X, 0) n ~(XI'O) n ~(X, Xl' 1) by (5), (6) and (U4), the 
assertion follows by interpolation. 

(ii) Since k E ~(Xo, X,l - () - p) by Lemma 3.1 and U E ~(X, Xo, ()) by (i), 
U*k E ~(Xo, -p) by Lemma 1.l. Thus U*k E C(Tt:.,2'(X,y)) by (1.2). Since 
a E C(Tt:., 2,.(Xo)) by Lemma 2.1, the assertion follows from (5). 
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(iii) From (6) we obtain AU = Ab + (Ah)* U. Since U E R(X1)' Xl' 1 - 1/) by (i) 
and Ah E R(XI' Xu, 1 + 8 - p), it follows from (1.1) and Lemma 1.1 that (Ah)* U 
E R(X1)' Xu, 1 + 8 - 1/) provided 8 < p. Now the assertion is a consequence of 
Lemma 3.1(v). 

The statement about the norms of U and A U is an obvious consequence of (U4), 
Lemma 3.1 and (1.6). 0 

It should be observed that the estimates contained in Theorem 3.2(ii), (iii) are 
counterparts to some estimates of Sobolevskii involving fractional powers of A (t) 
(cf. [28, Theorem 2 and p. 26]). 

Results which are related to Theorem 3.2(i), (ii) have also been obtained in the 
autonomous case and for particular interpolation functors by Sinestrari and Vernole 
[26, Proposition 1.1] and others. 

4. Linear evolution equations. Let / E C([O, T], X) be given. By a solution of the 
linear Cauchy problem 
(LCP)(s.X) u + A(t)u = let), s < t ~ T, u(s) = x, 
we mean a function u E C([s, T], X) Ii Cl«s, T], X), such that u(t) E Xl for 
s < t ~ T and such that (LCP)(s. x) is pointwise satisfied. Let 
(1) u(-,',x):= Ux+ U*/ '<:JxEX 
(cf. (1.4) and (1.5». Then u(',s,x) is said to be a mild solution of (LCP)(s.x)' It is 
well known that every solution of (LCP)(s,x) is a mild solution. As for the converse 
we have the following 

THEOREM 4.1. Let ° < 8 ~ 1 and suppose that either 
(2) / E CO([O, TJ, X) 
or 
(3) / E C([O, TJ, Xo). 
Then every mild solution is a solution. Moreover, i/ / E C([O, T], X) and ° ~ 1/ < 1, 
then 
(4) 
1/ (3) is satisfied, then (4) holds also for 1/ = 1. 

PROOF. If (2) is true, the first assertion has been proven by Sobolevskii [28] and 
Tanabe [30, 31]. Thus let (3) be satisfied. Since U(·,s)x is a solution of (LCP)(s,x) 
with /= 0, by (Ul) and (U3), it suffices to show that U*/(·,s) is a solution of 
(LCP)(s,O)' Since / E R(K, Xu, 0) by (3) and (1.4), and since U E R(Xo, Xl' 1 - 8) 
by Theorem 3.2(i), it follows from Lemma 1.1 and (1.2) that 
(5) U * / E C(Ttl, Xl) ~ C(Ttl , Xu), 
since Xl ~ X implies Xo ~ X. 

If (t, s) E ttl and ° < h < T - t, then 

f t+h 
h-1[U*/(t + h,s) - U*/(t,s)] = h- 1 U(t + h,1')/(1')d1' 

t 

+ r h-I[U(t + h,1') - U(t,1')]j(1')d1'. 
s 

(6) 
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Due to Theorem 3.2(ii) the first term on the right converges to f(t) in Xu, hence in 
X, if h ~ 0. By Theorem 3.2(iii) and (U3) we see that 

Ilu(t + h,T) - U(t'T)II~(xo'X)=llr+h -AU(a,T)dall 
t ~(~,~ 

~ c[(t + h - T)O -(t - T)O]. 

By means of the substitution ~:= hl( t - T) it is easily verified that 

h~l[(t + h - T)O -(t - T)O] ~ c(t - T)O~l Vh > 0, (t,T) E Tt.. 

Thus 

Ilh~l[U(t + h,T) - U(t,T)]f(T)II~ c(t - T)O~l. 

Since the integrand of the second integral in (6) converges towards -A Uf(t, T) as 
h ~ 0, by (U3), Lebesgue's theorem implies that U * f(" s) is right differentiable 
and that Di(U * /)(t, s) = f(t) - A(U * /)(t, s) for (t, s) E Tt.. Since Di(U * /) is 
continuous, by (5) and (Ap), it follows that U * f(', s) is continuously differentiable 
on (s, T] and that 

D1(U*f)(t,s)+A(U*j)(t,s)=f(t), s<t~ T. 
Thus U * f(', s) is a solution of (LCP)(s,O)' 

Theorem 3.2(ii) implies 
[(t,s,x) >-+ U(t,s)x] E CO,l(Tt. X Xu, Xu) 

for ° ~ 8 ~ 1. Since U E ~(X, Xu, 8) by Theorem 3.2(i), and since 
fE C([O,T], X) c ~(K,X,O), 

Lemma 1.1 and (1.2) give U * f E C( Tt., Xu). This implies (4). If (3) is satisfied, then 
(5) implies the validity of (4) for 1/ = 1. 0 

It should be remarked that Theorem 4,1 is essentially known, Indeed, the fact that 
(LCP)(s, x) has a unique solution if f takes its values in certain interpolation spaces 
has apparently first been observed by Da Prato and Grisvard [14] and has been 
exploited in a series of papers by Da Prato and his students (cf. [13] for a recent 
survey). It should also be noted that so-called" sharp regularity" results have been 
used by Da Prato and Sinestrari [15] to study the linear Cauchy problem without 
using fundamental solutions (cf. also [1,2]), 

The above simple proof for the differentiability of U * f(', s), if (3) is satisfied, 
follows an argument of Potier-Ferry [24]. 

Using the estimates of Theorem 3.2(iii) we can establish better regularity proper-
ties of the solution as a function of t. For this purpose the space Xf3 is said to be 
(X"' X)-compatible if ° ~ ex ~ f3 ~ y ~ 1 and Xy - Xf3 - X" and if 
(7) II x 11f3 ~ ell x II~Y~ f3)/(Y~")11 x 11;:a~,,)/(y~a) V x E X y • 

With this definition we have the following regularity 

THEOREM 4.2. Suppose that f E C([O, T], Xl') for some r E (0,1), that ° ~ 1/ ~ 8 
~ 1, that Xl) is (X, Xo)-compatible, and that x E Xu. Then 

(8) u(-, s, x) E CO~l)([O, T], Xl))' 
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Moreover, il x E X and 0 ~ a < min(p, n, then 

(9) u(-,s,x) E Cl((s,T]' Xcr)' 

PROOF. Due to Theorem 4.1 we can assume that () > O. By Theorem 3.2(iii) 

II(t - s)l-oAUx(t,s)ll~ cllxllo 
and, due to Lemma 1.1, 

II(Au)* III ~ c max 11/(t) Ilr 
s~t~T 

for all (t, s) E Ttl. Then, sinceA(U* f) = (AU)* I, 

(10) (t-s)l-oIIA(Ux+ U*/)(t,s)ll~c 'v'(t,S)E Ttl. 

203 

Let now (s, x) E [0, T) X Xo be fixed and let v:= u(·, s, x). Then vet) + A(t)v(t) 
= I(t) for s < t ~ T by Theorem 4.1, that is, 

(11) v(t) = -A(Ux + U*f)(t,s) + I(t) fors < t ~ T. 
Consequently (10) implies the estimate 

(t - s)l-ollv(t)ll~ c, s < t ~ T. 

Hence we obtain from 

II v (t) - v( r) II = r II v( r) II dr ~ r ( r - s )1- 011 v( r) II( r - r) 0-1 dr 
r r 

the estimate 

(12) Ilv(t) - v(r) II ~ c(t - r)o, s < r < t ~ T. 
Since v E C([s, T], Xo) by Theorem 4.1, the first assertion follows from (7), (12), 
and the (X, Xo )-compatibility of Xl)' provided () - 'I) < 1. 

If () = 1, then v E C([s, T], XJ by Theorem 4.1. Since 

A ( . ) E C ( [ s , T], 2' ( Xl' X)), 
it follows that v = - Av + I E C([s, T], X), which implies v E Cl([S, T], X). 

Since AVE ~(X,Xcr,1 + a) and (AU)*/E ~(K,Xcr,a - n by Theorem 3.2 
and Lemma 1.1, it follows from (11) that v E C(s, T], X cr ), which implies (9). 0 

REMARK 4.3. It follows from the above proof that, for () < 1, the norm of 
u(·, s, x) in CO-l)([O, T], Xl)) is bounded by a constant depending only on L, M, N, 
T, p, 'I), (), f and on bounds for Ilxllo and maxs.<;;t.<;;TII/(t)llr' 0 

5. Perturbation results. In order to study the dependence of the mild solutions on 
A ( .) and I we assume that there is given a second family {A 1 (t) 10 ~ t ~ T} of 
operators satisfying Assumptions (A) and (Ap). Moreover we assume (without loss 
of generality) that {Al(t)IO ~ t ~ T} satisfies the estimates (2.1), (2.2) and (2.5) 
with the same constants M, Land N, respectively, as the family {A(t)IO ~ t ~ T}. 

We now occasionally write A o for A and ao:= a, bo:= b, k o:= k and ho:= h. 
Then we define the functions aI' bl , kl' hI by replacing A o in the definition of ao, 
bo, ko, ho by AI' Finally we denote by II 'Ib the norm in CI'([O, T], 2'(Xl' X)), 
where C:= Co. 
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It should be observed that the constants c in the following lemmas depend only 
on L, M, N, T, p, 1) and O. 

LEMMA 5.1. Let ° ~ 1), 0, ~ 1. Then ao - a1 and bo - b1 belong to 
the space ~(Xo, Xl)' 1) - 0) and the norms of 

(i) ao - a1 and bo - b1 in ~(Xo, Xl)' 1) - 0), 
(ii) ko - k1 in ~(Xo, X,1 - 0), and 
(iii) ho - h1 in S'l(X1' Xl)' 1)) 

are bounded by cIIA o(') - A1(· )11c-
The norms of 
(iv) ko - k1 in ~(Xo, X,1 - 0 - p) and 
(v) ho - h1 in ~(X1' Xl)' 1) - p) 

are bounded by cIIA o(') - A1(· )Ib. 
PROOF. (i) Observe that Aj(t)(A + A;Ct))-l = 1 - A(A + A;Ct))-l. Hence 

IIA;Ct)(A + A;Ct))- l ll ~ 1 + M, which implies, by (2.5), that 

II(A + A/t)fl~(x'XIl ~ N(1 + M). 

Moreover, 

II( A + Aj( t)) -1112(x
j

) ~ II A(O)( A + Aj( t)) -1 A -1(0) II 
~ N 21IAj(t)(A + Aj(t)f1Aj-1(t) II 
= N 2 11(A + Aj(t)f111 ~ N 2M/IAI· 

Thus, by interpolation, 

(1) 

for ° ~ 1), 0 ~ 1, A E ~,';, t E [0, T] and j = 0,1 (cf. [7, Lemma 8.1]). 
Since 

(A + AO(t))-l -(A + A1(t))-1 

= (A + Ao(t))-\A 1(t) - Ao(t))(A + A1(t)r 1, 

it follows that 

By (1) the integrand can be estimated in the norm of £?(Xo, Xl)) by 

cleASllA 1l)-O-lIIAoC) - A1C) lie, 
which implies, by standard arguments (e.g. [31, p. 66]), that 

(2) Ile-sAo(l) - e-sAj(t) 112(X., x") ~ csO-l)IIA o(') - A1(·) lie' 
whence the assertion. 
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(ii) Let B;(t, s):= -[A/t) - A;(s)] and observe that 

(3) IIBo(t,s)-Bl(t,s)II£'(xl,x)~21IAo(')-Al(-)lle 

and 

(4) 

Moreover, 

(5) ko - kl = [Bo(-,') - Bl (-, ·)]ao + Bl (-, ·)[ao - all· 
Hence (i) and Lemma 3.I(i) imply the estimate 

II k o( t, s) - k 1 (t, s) 11£'(xe, X) ~ ell Ao (- ) - Al (- ) Ile( t - s) 0-1, 

whence the assertion. 
(iii) follows by analogous arguments. 
(iv) and (v) are obtained from (5) by replacing (3) and (4) by the estimates 

II Bo( t, s) - Bl (t, s) 11£,(x1 , X) ~ It - s n Ao(- ) - Al (- ) lice 
and 

respectively. 0 
We now denote by Wj and 'j the resolvent kernels of u = k j + u * k j and 

u = h j + h J * U, respectively. 

LEMMA 5.2. Let ° ~ 1), () ~ 1. Then Wj E .R'( Xo, X,1 - () - p) and 

(6) Ilwo-wlll~(Xe,x,l-o)~eIIAo(')-Al(')lle if(}>O, 

and 

(7) Ilwo - wlllst(xe,X,l-O-p) ~ eIIAo(') - A l(·) lice for ° ~ () ~ 1. 

Similarly, rj E .R'(Xl' X'I,1) - p) and 

IIro - rl IISt(x1 .x",'1) ~ eIIAo(-) - A l(·) lie if 1) < 1, 

and 

PROOF. Since k j E .R'(Xo, X,1 - () - p) by Lemma 3.I(iii), thus in particular, 
k j E .R'(X, 1 - p), it follows from Theorem 1.2 that Wj E .R'(X, 1 - p). Hence 
Wj * k j E R(Xo, X,1 - () - 2p) C .R'(Xo, X,1 - () - p) by Lemma 1.1 and (1.1). 
Consequently, by Theorem 1.2, Wj = k j + Wj * k j E .R'(Xo, X,1 - () - p). Moreover 

Wo - WI = ko - kl + wo*(k o - k l ) +(wo - w l )* kl' 

and Lemma 5.1 and (Ll) imply 

II [k o - kl + Wo * (ko - k l )]( t, s) 11£'( Xe, X) ~ e( t - s) 0 -111 Ao (- ) - Al (- )II C' 
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Thus 

II ( Wo - Wl )( t , s )112'( Xe. X) ~ C (t - S) 0 - 111 A 0 ( • ) - Al (- ) II e 
+c t ('l" - s y- l ll( Wo - wl )(t, 'l") 112'(xe• X) dr 

s 

for (t, s) E Ttl. From this we deduce, by a well-known generalization of Gronwall's 
lemma (e.g. [5, Corollary 2,4 or 17, §7.1]), the estimate 

II( Wo - wJ( t, s) 112'(xe• X) ~ c( t - s) 0- 1 11 AoC ) - Al C )lie, 
that is, the estimate (6). The proof of (7) is obtained by obvious modifications of the 
above arguments, as it is the case for the proof of the second part of the assertion. 
o 

Finally we put Vo:= V and denote by VI the parabolic fundamental solution for 
{A l (t)IO ~ t ~ T}. 

LEMMA 5.3. Let 0 ~ 1/, () ~ 1 satisfy 11/ - ()I < 1. Then 

Vo - VI E ~ ( Xo, X"" 1/ - ()) 

and 

II Vo - Vl llst(xe, X"",-O) ~ cll A o(') - Al (.) lie', 
where J.L:= 0 if () > 0 and 1/ < 1, and where J.L:= p otherwise. 

PROOF. Formula (3.5) and Theorem 1.2 imply 

Vo - VI = ao - al +(ao - al )* Wo + al *(wo - Wj)' 
Thus, if 1/ < 1 the assertion follows from Lemmas 5.1, 5.2, 3.1(i) and 1.1. If 1/ = 1, 
we use in a similar way 

Vo - Vj = bo - b j + ro*(bo - bl ) +(ro - rl )*b j , 

which follows from (3.6) and Theorem 1.2, to obtain the assertion. 0 
After these preparations we can easily prove the following important perturba-

tion: 

THEOREM 5,4. Let 0 < 1/, (), f ~ 1 and suppose that fj E C([O, Tj, Xl')' Denote by 
u i the solutions of 

u + A/t)u = fj(t), s < t ~ T, u(s) = Xi' 

respectively. Then 

Iluo(t,s,x o) - u j (t,s,x l )11", 

~ c{IIAo(·) -A j (·)IIc'([s.t].2'(X1 ,X)) 

x(llxollo(t - s)o-", +(t - S)I H -", s~;~tllfo('l")IIl') 

+ (t - s r s ~~~ ) fo ( 'l") - f 1 ( 'l" ) Ill' + (t - s ) A II X 0 - X 1 110 } , 
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if 1/ < 1, 
if 1/ = 1, v:= max {I - 1/, n ' A.= {o e - 1 

Moreover the constant c depends only on L, M, N, p, 1/, e, rand T. 

PROOF. Since 

if Xu ~ Xl)' 
otherwise. 

U o - U l = (Uo - Ul)X o +(Uo - Ul )* fo + Ul *(fo - fl) + Ul(X o - Xl), 

207 

the assertion is an easy consequence of Lemma 5.3, Theorem 3.2(i), (ii), the uniform 
boundedness principle, Lemma 1.1, and Xl ~ Xl). 0 

6. Quasilinear evolution equations. We denote now by Xl and X o:= X two fixed 
Banach spaces such that 

(Ql) Xl is continuously and densely imbedded in X. 

Then we suppose that 

(Q2) ° < 1/ < e < 1 and that Xl) is (X, Xu )-compatible, 

where, of course, X~:= l}~(X, Xl) for ° < ~ < 1. Moreover we assume that 

V is an open subset of Xl) and 

(Q3) [(t,y) ~A(t,Y)l E cr.l-([O,T] X V, oP(Xl,X)) 

for some p E (0,1). 

We suppose also that 

(Q4) 

for each point Yo E V there exist a neighbourhood Vvo and constants 
M > ° and w E R such that 

w + L o c p ( - A (t, y)) 

and 

II(A + A(t, y)) -111 < M/(1 + IA - wi) 
for all A E w + L o and (t, y) E [0, T] X Tjo' where A(t, y) is con-
sidered as a linear operator in X with domain Xl. 

Finally we assume that 

(Q5) f E C°.l- ([0, T] X V, Xl") for some r E (0,1). 

By a solution of the quasilinear Cauchy problem 

(QCP)(s.X) u+A(t,u)u=f(t,u), s<t<T,u(s)=x, 

on J we mean a function u E C( J, V) Ii C l ( j, X) such that J is a perfect 
subinterval of [s,T] containing sand j:= J\ {s}, and such that u(s) = X, 
u(t) E Xl and u(t) + A(t, u(t))u(t) = f(t, u(t)) for t E f A solution u is maximal 
if there does not exist a solution of (QCP)(s.x) which is a proper extension of u. In 
this case J is a maximal interval of existence. 
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For each v: [0, Tj -4 V put 

A,,(t):= A(t,v(t)) and /,,(t):= /(t,v(t)), o ~ t ~ T. 

Moreover, fix Po E (0, P /\ «() - 11» and let 

W:= {v E C([O,T], v)lllv(s) - v(t)II'l ~Is - t(O forO ~ s,t ~ T}. 

If v E W, then the compactness of v([O, T]) in V and (Q3) and (Q4) imply the 
existence of constants wand L such that 

o ~ s, t ~ T. 

Hence {(w + A,,)(t)IO ~ t ~ T} satisfies Assumption (Apo)' Moreover it is an easy 
consequence of (Ql) and (Q4) that {(w + Av)(t)IO ~ t ~ T} also satisfies (A). 
Hence there exists a unique parabolic fundamental solution Uv•w for {(w + A,,)(t)1 
o ~ t ~ T}. It is easily verified that 

(t,s)ET/:,., 

is a parabolic fundamental solution for {A,,(t )10 ~ t ~ T}, and the only one. 
Let wE Wand suppose that vl[a,'Tj = wl[a,'Tj for some ('T,a) E t/:,.. Then it 

follows from (3.5), for example, that 

(1) 

Finally it is clear that all results of §§3-5 are true for Uv and the corresponding 
linear Cauchy problem (provided the constant N is chosen so that 

for all (t, s) E T/:,., and where the various constants now depend also on w, of 
course). 

For each v E Wand x E X we put 

ljt(v,x):= u"x + u,,*/v' 
If 1 is a perfect compact subinterval of [0, Tj and w: 1 -4 X, then we denote by w 
the function on [0, Tj, defined by 

Moreover we let 

and 

{
w(a) 

w(t):= wet) 
w(f3) 

for 0 ~ t ~ a:= min 1, 
for a ~ t ~ f3:= max 1, 
for f3 ~ t ~ T. 

ljts(v,x):= ljt(v,x)(-,s), 
1s 8:= [s,s + «5] n[O,T] 

for 0 ~ s < T and 8 > O. Finally, if S is a nonempty subset of Xg, 0 ~ ~ ~ 1, then 
Bg(S, e) denotes the closed e-neighbourhood of Sin Xg, and So:= S n Xo, endowed 
with the topology of Xo. 
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LEMMA 6.1. Let S be a compact subset of V such that Se is nonempty and bounded in 
Xe' Then there exist positive numbers a, e, 8 and Ko such that a ~ e and 

(i) Be(Se, e) c B,/S, a) c B1)(S, 3a) c V; 
(ii) III/;s(v, x) - !s(w, x)llc(J"8' X,) ~ 111v - wll c(J,.8,X,) fo~ all v, wE W, all s E 

[0, T), and all x E Be(Se, 3e), provided v([O, TJ), w([O, TJ) c B1)(s, 3a); 
(iii) lLi/; s< v, x) - I/; s( v, Y )lIc([s, fJ, X,) ~ Kollx - Ylle for all (t, s) E T~, v E W, and 

x, y E Be(Se, 3e) provided v([O, T]) c B1)(S,3a). 
(iv) (v, x, t, s) ~ I/;(v, x)(t, s) is continuous from {v E Wlv([O, TJ) c B1)(S, 3a)} 

X Be(Se, 3e) X T~ into X". 

PROOF. (i) is an obvious consequence of the fact that Xe ~ X1) by (Q2) and the 
compactness of S in the open set V. 

(ii), (iii) By decreasing a, if necessary, it follows from the compactness of Sand 
the assumptions (Q3)-(Q5) that we can assume that 

(2) the constant Min (Q4) is independent of y E B1)(S, 3a), 

(3) IIA(t, y) - A(s, z) 112'(xj ,x) ~ c(lt - s(O + Ily - zll1»)' 
(4) II(w + A(t, y))(w + A(s, z))-lll ~ N for some wE R, 

(5) Ilf(t,Y)lll~c 

and 

(6) II f( t, y) - f( t, z) III ~ cll y - z 111) 

for all s, t E [0, T] and y, z E B1)(S, 3a). Hence 

(7) IIAv(t) - A,,(s) 112'(xj ,x) ~ (Ko + l)lt - s (0 
and 

(8) 
for s, t E [0, T] and all v E W with v([O, TJ) c B1)(S, 3a). Now (3), (5), (6), (Q2) 
and Theorem 5.4 imply the estimate 
(9) 
III/;(v, x)(t, s) - 1/;( w, y)(t, s) 111) ~ c{ (t - s)e-1)llv - wllC([s,fJ,x,) + Ilx - Ylle} 

for all (t, s) E T~, x, Y E Bo(Se, 3e) and v, wE W with v([O, TJ), w([O, TJ) c 
B1)(S, 3a). The assertions are now obvious. 

(iv) It follows from Theorem 4.1 that I/;(v, x) E C(T~, Xo) for each (v, x) E W X 

Xe' Hence the assertion is a consequence of Xe ~ X1) and (9). 0 

LEMMA 6.2. Let S be a compact subset of V such that So is non empty and compact in 
Xe' Then there exist positive numbers a, e, 8, Kl and K2 such that a ~ e and 

(i) Bo(Se, e) c B1)(S, a) C B1)(S, 3a) c V; 
(ii) (QCP)(s.x) has for each (s, x) E [0, T) X Be(Se, e) a unique solution v(·, s, x) 

on Js,s such that v(Js,s) c B1)(S, 3a). 
(iii) Ilv(t, s, x) - vet, s, y)ll1) ~ Klllx - Ylle for all s E [0, T), t E Js,s, and x, y E 

Be(So, e). 
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(iv) If () < 1, then 

Ilv(t, s, x) - v(t, s, y) 110 ~ K211x - y 110 

for all s E [0, T), t E Js,8' and x, y E Bo(So, e). 

PROOF. (i) follows from Lemma 6.1(i). 
(ii) We deduce from (2), (7), (8), (Q2), Theorem 4.2 and Remark 4.3 that 

111/1(v,x)(a,x) -1/1(v,x)('T,s)ll1) ~ c8 0 -1)- Po la - '1'(0 

for all s E [0, T), a, '1' E Js.8, X E Bo(So, 3e) and v E W with v([O, T)) c B1)(S, 30:). 
Hence, by decreasing 8 further, if necessary, we see that 

(10) l/1(v, x, Js,8) E W 

for all s E [0, T), x E Bo(So, 3e) and v E W with v([O, T]) c B1)(S, 30:). In particu-
lar 

(11) 

since the constant function t ~ x belongs to W. Since 1/1 (x, x)(s, s) = x, we deduce 
from Lemma 6.1(iv) and the compactness of So in Xo that we can decrease e and 8 
further so that 

(12) 111/1(x,x,Js,8)(t,s)-xll1)~0: 'VxEBo(So,e),(t,s)ETt;,. 

Now let (s, x) E [0, T) X Bo(So, e) be fixed and let 

w"x:= { v E C( Js.8, X1)) Iv E W, v(s) = x, 

v( Js,8) C B1)(S, 30:) and II v - l/1(x, x, Js,8) 11e(J,., x") ~ o:}. 
Then w"x is a closed nonempty subset of the Banach space C( Js,8, X1)' hence a 
complete metric space. It follows from (i), (10)-(12) and Lemma 6.1(ii) that 
1/1 s(', x )IJs,8 maps w"x into itself and is a strict contraction. Hence, by Banach's 
fixed point theorem there exists a unique function v(·, s, x) E C( Js,8' X1) such that 
vc-, s, x) E W, v(s, s, x) = x, V(1s,8' S, x) E B1)(S, 30:), and 

(13) 

Now it follows from Theorem 4.1 that v(·, s, x) is a solution of (QCP)(s,X) on Js ,8, 

and the only one. 
(iii) Let s E [0, T) and x, y E Bo(So, e). Then 

v(-,s,x) - v(·,s,y) = I/1s(v(-,s,x), x) -l/1s(v(',s,y), x) 

+l/1s(v(·,s,y), x) -l/1s(v(-,s,y), y) 

on Js ,8' and Lemma 6.1(ii), (iii) imply the estimate 

Ilv(t, s, x) - v(t, s, y) 111) ~ 2Kollx - yllo, t E Js ,8' 

which proves the assertion. 
(iv) is now an easy consequence of (3)-(6), (iii), Theorem 5.4 and Xo '"-> X1)' 0 
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After these preparations we can now prove the main result of this section: 

THEOREM 6.3. The quasilinear Cauchy problem (QCP)(s,x) possesses for each 
(s, x) E [0, T) X Vo a unique maximal solution u( . , s, x), and 
(14) u(-, s, x) E CO-~(J, X~) for 0 ~ ~ ~ 0, 
provided X~ is (X, Xo)-compatible. Moreover, if 0 ~ a < min{p, 0 - 1/, n, then 
(15) u(-,S,X)ECI(j,X(J)' 
The maximal interval of existence J(s, x):= J is open in [s, T]. 

PROOF. Let (s, x) E [0, T) X VB be fixed. Then (QCP)(s,x) possesses, according to 
Lemma 6.2, a unique solution U o on some nontrivial interval [s, to]. Suppose that 
to < T. Then, by applying Lemma 6.2 to (QCP)(lo,Uo(to»' we find that the equation 

u + A(t, u)u = f(t, u) 
has a unique solution u l on some nontrivial interval [to' td satisfying u(to) = uo(to). 
By Theorem 4.2, U o E CO-"([s, to]' X,,) and UI E CO-"([to, td, X,,). Thus, defining 
u: [s, t I] -+ X" by ul[s, to]:= Uo and ul[to, td:= uI , it follows that 

u E CO-"([s, t I], X,,). 
Then it is clear that {Au(t)IO ~ t ~ T} satisfies Assumptions (A) and (Ap), where 
PI:= min{ p, 0 - 1/}. Hence there exists a unique parabolic fundamental solution Uu 
for {Au(t)IO ~ t ~ T}, and, by (1), we see that Uu(t, a) = Uu/t, a) for tj _ I ~ a ~ t 
~ tj , j = 0,1, where t- I := s. Using these facts and property (U2) it is easily 
verified that 

u(t) = (Uux + Uii * fu)(t, s) for s ~ t ~ tl' 
Now we deduce from Theorem 4.1 that u is a solution of (QCP)(s,x) on [s, td. 

Let 

J(s,x):= U{ [s,t]c [s, T]I(QCP)(s,X) has a solution on [s,tl}. 
Then J(s, x) is a perfect subinterval of [s, T] containing s. Moreover J(s, x) is open 
in [s, T], since otherwise an application of Lemma 6.2 to its right endpoint would 
give a contradiction. Clearly J( s, x) is a maximal interval of existence of a solution 
u(·, s, x) of (QCP)(S,x)' and there is only one maximal solution. 

Since u:= u(·,s,x)E CO-"(J(s,x), [s,to]), where toEJ(s,uo) is arbitrary, it 
follows from (3) that A u(') E cP1([0, T], !e( Xl' X)). Hence (14) and (15) are 
consequences of Theorem 4.2. 0 

Similar but less precise results have been obtained by Sobolevskii [28] (cf. also 
Friedman [16]), Potier-Ferry [24] and Lunardi [20]. Sobolevskii and Lunardi prove 
the existence of a local solution, that is, a solution on some interval [s, to], provided 
the initial value x has "better regularity properties than the solution itself'. (This 
would correspond to an assumption of the form x E V n X" for some ex > 0.) Thus, 
in particular, these authors cannot admit the value 0 = 1. Sobolevskii uses fractional 
powers and Lunardi works in specific interpolation spaces (namely in (X, XI)o,oo 
and in "continuous interpolation spaces" introduced by Da Prato and Grisvard 
[14]). Hence, also as far as the possible choice of the spaces is concerned, our results 
are more general. 
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Lunardi does not use fundamental solutions, but works with the (essentially 
equivalent) theory developed by Sinestrari [25] and Acquistapace and Terreni [1, 2]. 
Moreover she does not assume that Xl is dense in X. This is mainly done in order to 
be able to work in spaces of continuous functions, which will yield almost classical 
solutions in the case of parabolic partial differential equations (cf. however the 
remarks at the end of §10). 

Potier-Ferry works in Xl (that is, he considers the case (J = 1 only) and uses 
Sobolevskii's theory of fractional powers. However he can only prove the existence 
of solutions for initial values close to 0, and this restriction is essential for his proof. 
Moreover he has to assume more regularity, namely that 

[(t,y) ..... A(t,y)] E Cp,l+p([O,T] X V,£'(XI,X)) 

for some p E (0,1). 

7. Global existence. A solution u of (QCP)(s,x) on J is said to be global if 
J:= [s, T]. Clearly every global solution is maximal. In this section we give simple 
and useful sufficient criteria for a maximal solution to be global. For this we let 

t+(s,X):= supJ(s,x) \f(s,x) E [O,T) X Vo. 

We now fix (s,x)E[O,T)xVo and put u:=u(',s,x), J:=J(s,x) and 
t+ := t+(s, x). 

THEOREM 7.1. Suppose that u E BUC'(J, X1J) for some € E (0,1). Then either 
u(t) -+ y E av in X1J as t -+ t+, or u is a global solution. 

PROOF. The assumption implies that u(t) -+ y in X1J for some y E X1J as t -+ t+. 
Assume that y $. av and let v(t):= u(t) for t E J and v(t+):= y. Then v E 

C'([s,t+], V). Hence Av(·)E C'l([O,T], £'(X1,X», where €l:= min{€,p}, and 
there exists a unique parabolic fundamental solution Uv for {Av(' )10 ~ t ~ T}. It 
follows from (6.1) and the construction of u (cf. (6.13», that 

u = (Uvx + Uv*fv)(',s) on J. 

Since both sides are continuous in ton [s, t+], it follows that 

Hence u is a solution of (QCP)(S,X) on [s, t+]. If t+ < T, this contradicts the 
maximality of J. Thus J = [s, T]. D 

THEOREM 7.2. Suppose that u(J) is relatively compact in Xo and has a positive 
distance in X1J from aVo Then u is a global solution. 

PROOF. Let S denote the closure of u( J) in Xo. Since Xo '-+ X1J , by (Q2), and 
since S is compact in Xo, it follows that S is compact in X1J and contains u( J). 
Hence S contains the closure of u( J) in X1J and, using Xo '-+ X1J again, we see that 
S equals the closure of u(J) in X1J' Thus S is a compact subset of V and So is 
nonempty and compact. 
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Suppose now that t+< T. Lemma 6.2 guarantees that for each (a, y) E I X u(J) 
there exists a unique solution of (QCP)«J,y) on 1(J,Ii' where 8 > ° is independent of 
(a, y), In particular, there exists a unique solution of (QCP)«J,u«J)) for each a E I 
with t+ - a < 8/2, which exists on 1(J,Ii' Similar to the proof of Theorem 6.3, we see 
that this implies the existence of a solution of (QCP)(s,x), which is a proper 
extension of u, This contradiction proves the theorem, D 

The following corollary will be particularly useful in applications. Here and in the 
following ~ denotes compact imbedding. 

COROLLARY 7.3. Suppose that E is a Banach space such that E ~ Xo and such that 
U([Sl' t+» is contained and bounded in E for some Sl E f Then u is a global solution, 
provided u( I) has a positive distance in X1) from av. 

PROOF. Since u E cel, Xu) it follows that u([s, sd) is compact in Xu. Since 
E~ Xo, it follows that U([Sl' t+» is relatively compact in Xo' Hence u(J) is 
relatively compact in Xo. D 

Of course, the above criteria become particularly simple if V = X1)' since in this 
case the conditions involving av are vacuously satisfied. 

Lunardi [21] has shown that there exists a global solution, provided one can find 
an a priori bound in Xl (if f is Holder continuous from an appropriate interpolation 
space, namely (X, X1)0,oo into X), and if the problem is autonomous, However for 
practical applications it is essential to be able to work in spaces with a rather weak 
norm, that is, in an interpolation space Xo with 0 close to zero, to derive a priori 
bounds for the solutions. Deriving a priori bounds in Xl directly is almost impossi-
ble in most concrete situations. 

8. Continuity properties. In this section we study the continuity of the function 
(t, x) ---7 u(t, s, x) for a fixed "initial time" s. 

For each s E [0, T) we put 

~ (s ):= { (t, x) E [s, T] X Volt E l( s, x) } . 

Thus ~(s) is the domain of u(" s, .), 

THEOREM 8.1. Suppose that 0 < 1. Then ~(s) is open in [s, T] X Xo and u(-, s, .) 
E C°,l-(~(s), Xo)' 

PROOF. Let (to,x o) E ~(s) be given and put S:= u([s,toJ, s,xo). Then S is a 
nonempty compact subset of V and of Xo' Hence, by Lemma 6.2, there exist positive 
numbers 10, 8 and K such that the maximal solution u(·, a, x) of (QCP)«J,x) exists 
on 1(J,1i for each (a, x) E [s, to] X Bo(S, 10) and satisfies 

(1) Ilu(t,a,x) - u(t,a, y) 110 < Kllx - yllo, 
provided y E Bo(S, 10). 

We now fix points s =:ao < a1 < ... < am:= to such that aj+1 - aj < 8 for 
j = 0,1, ... , m - 1. Moreover we let 10/= Kj-m-1€ for j = 0,1, ... , m + 1, where 
we can assume that K ~ 1. Hence €j < 10 and €j+1 = K€j for j = 0,1, ... , m. 
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It follows from (1) that u(·, OJ, x) exists on J"1'8 and satisfies 

u(t,Oj'x) EBo(u(t,s,xo), eJ+1 ), t EJ(J,,8' 

and 

(2) 

for all x, y E Bo(u(oj' s, x o), e) and j = 0,1, ... , m. From this we obtain, by 
piecing together the local solutions similarly as in the proof of Theorem 6.3, that 
J(s, x) :J [s, (to + 8) 1\ T] for each x E Bu(xo, eo). Hence I0(s) is open in [s, T] X 

(V n Xo), 
Since, due to the unique solvability, u( t, OJ, u( OJ, 0j-l' x» = u( t, 0j_l' x) for OJ < t 

< 0j+l' X E Bo( u( 0j_l' s, x o), ej _ 1) and j = 1,2, ... , m, we obtain from (2) that 

(3) II u( t, s, x) - u( t, s, y) 110 < ell x - y 110 

for all x, y E Bo(xo, eo) and t E [s, (to + 8) 1\ T]. Now u(·, s, .) E 

C°,l-(I0(s), Xo) follows from (3) and the fact that u(',s,x) E C(J(s,x), Xu) by 
Theorem 6.3. 0 

Let S be a metric space and let t+: S ---> (0,00]. Put 

I0:= U [O,t+(x)) x{x} 
xES 

and suppose that cp: I0 ---> S is a map with the following properties: 
(i) I0 is open in R+x S; 
(ii) cp E C( I0, S); 
(iii) cp(O, .) = ids; 
(iv) if ° < 7" < t+(x) and ° < t < t+(Cp(7", x», then 7" + t < t+(x) and 

cp(t, cp( 7", x» = cp(t + 7", x), 
Then cp is a (local) semiflow on S, If t + (x) = 00 for all XES, then cp is a global 

semiflow. For each xES the set y+(x):= {cp(t, x)IO < t < t+(x)} is the (positive) 
orbit through x and t+(x) is the (positive) exit time of x (e.g. [6, 11]). 

Consider now the autonomous quasilinear evolution equation 

U + A(u)u = f(u), 

that is, suppose that A and f are independent of t. Then the proceeding results are 
valid for every T > 0, In particular the quasilinear Cauchy problem 

u+A(u)u=f(u), s<t< oo,u(s)=x, 

possesses a unique maximal solution u(', s, x), which is defined on some open 
interval J(s, x) of [s,oo) containing s, such that the regularity properties of 
Theorem 6.3 are satisfied. 

Let 

cp(t,x):= u(t,O,x), t+(x):= supJ(O,x) 

and 
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Then the unique solvability of (QCP)(s,X) implies easily that cp satisfies the proper-
ties (iii) and (iv), In fact, we have the following important 

THEOREM 8.2. Let A and f be independent of t and suppose that () < 1. Then cp is a 
semiflowon Vo and cp E C°,1-U~, Xo), 

PROOF. This is an easy consequence of the above remarks and Theorems 6.3 and 
8,1. 0 

It is important to notice that the semiflow possesses a smoothing property, namely 

(4) 

Hence suppose that E is a Banach space such that 

Xl '-+ E ~Xo 

and suppose that, for some x E Vo and some tl E (0, t+(x», the set {cp(t, x)ltl .,;; t 
< t+(x)} is bounded in E, Then y+(x) is relatively compact in Xo' Hence, if y+(x) 
has a positive distance from avo, it follows that y+(x) is relatively compact in Vo' 
Consequently t+(x) = 00 in this case by well-known abstract results (e.g, [6, Satz 
(10.12)]). Observe that this is also a special case of Corollary 7,3. 

9. Special regularity results. Theorem 6.3 contains important regularity assertions 
for the solution u(·, s, x). In particular we obtain "smooth" solutions if we can 
choose () and (J "large", However in some applications to parabolic differential 
equations-in particular in the case of Dirichlet boundary conditions considered in 
the next section-it turns out that a reasonable large choice of (J imposes compati-
bility conditions for the nonlinearity f. In order to avoid such restrictions we shall 
now prove a "higher regularity" result by imposing additional assumptions, which 
are motivated by the applications of the next section. 

Let Y and Z be Banach spaces such that Y'-+ Z, and let B: D(B) c Z ~ Z be a 
linear operator in Z. Then By, the Y-realization of B (or" the maximal restriction" 
of B to Y), is defined by 

D(By):= {y E D(B) n YIBy E Y} and Byy:= By. 

It is easily verified that By is closed in Y if B is closed. 
We consider first linear evolution equations, that is, we assume that {A(t)IO .,;; t 

< T} satisfies Assumptions (A) and (Ap). Moreover we suppose that 

Yand Yl are Banach spaces such that Yl '-+ Xl '-+ Y '-+ X. 

In this situation it is clear that 

D ( A y ( t )) = { Y E D ( A ( t ) ) IA ( t ) Y E y}, 
From this we deduce that 

p( -Ay(t)) ::l L,'} "t/ t E [0, T], 

and that 

(1) [A + Ay(t)]-l = (A + A(t)) -llY "t/(t, A) E [0, T] XL,'}. 
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We suppose now that 

(2) 

Thus it follows that 

HERBERT AMANN 

there exists a number K E (0,1) such that 

11(;\ + Ay(t)rl~(Y):( cl;\I-1+K 
Jorall (t,;\) E [0, T] X ~~. 

e-sAy(t):= 2~iIre'\S(;\+Ay(t»-ld;\ 

is well defined for s > ° and, letting eOAy(t):= id y, standard arguments show that 
{e-SAy(t)ls ;,. o} is a sernigroup on Y, which is differentiable for s > ° (but not 
strongly continuous at s = 0) and satisfies 

(3) 

for s > 0, j = 0,1 and t E [0, T]. Moreover (1) implies 

(4) s> 0, t E [0, T]. 
Finally we suppose that 

(5) 
D(Ay(t» = Y1 Jor 0:( t:( Tand 

A y (') E Cf3 ([O, T], .P(Y1, Y)) 
Jorsome f3 E (2K,1). 

Similar to §2, it follows that the family of norms {y >--) II[Ay(t)]lIyIO :( t:( T} is 
uniformly equivalent to the original norm of Y1. Hence we deduce from (1), (3) and 
(4) that 

(6) ay(t,s):= e-(t-s)Ay(s) = a(t,s)IY 

and 

(7) ky(t,s):= -[Ay(t) -Ay{s)]ay(t,s) = k(t,s)IY 

for (t, s) E TI)., and that 

(8) 

and 

(9) ky E ~(Y, 1 - (f3 - K)). 
Now Theorem 1.2 shows that the convolution-type equation 

(10) 

has a unique solution 

(11) wy E ~(Y, 1 - (f3 - K», 

and (7) implies that 

wy = wlY, 

where w is the resolvent kernel of the equation u = a + u * k in X. 
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LEMMA 9.1. Suppose that K < a < /3 - K. Then 

Ilwy(t,s) - Wy('T,s)II~(Y) ~ e(t - 'T)"('T - s)-Y, 0 ~ S < 'T < t ~ T, 

where y:= 1 + a + K - /3. 
PROOF. This follows from (9)-(11) by obvious modifications of the proof of [31, 

Lemma 5.2.1) (where Rl and R correspond to ky and w y , respectively). 0 

LEMMA 9.2. U E qTc., 2"(Y, Y1». 
PROOF. Recall that U = a + a * w by (3.5) and Theorem 1.2. Hence 

(12) UIY= ay+(a*w)IY 
and, due to (8), it remains to show that (a * w)IY E qTc., 2"(Y, Y1». Observe that 

(13) [(a* w)IY](t,s) = t ay(t,'T)[wy(t,s) - wy('T,s)] d'T 
s 

+ 11 e-(I-r)Ay(s) d'TW y( t, s), 
s 

and that the first integrand can be estimated in 2"( Y, Y1) by e( t - 'T )"-K-l( 'T - s) -Y, 

due to (8) and Lemma 9.1. Hence an application of Lebesgue's theorem shows that 
the first term on the right-hand side of (13) has the desired continuity property. 
Since 

Ay(s) 11 e-(I-r)Ay(S)d'T = id y - e-(I-s)Ay(s), 
s 

(t,S)ETc. 

(e.g. [7, Lemma 9.1)), it is easily verified that the second term on the right-hand side 
of (13) belongs also to qTc., 2"(Y, Y1». U 

LEMMA 9.3. Let g E C([s, T), Y) for some v E (K, 1). Then 
[t ~ U*g(t,s)] E C(s,T], Y1). 

PROOF. By (12), 

U * g( t, s) = a y * g( t, s) + [ (a * w) I Y] * g( t, s ). 

The above proof shows that 

a y * g (- , s) E C ( ( s, T], Y1). 

Since 

Ilay(t,'T)Wy('T,(J)g«J)IIY~ e(t - 'T)-K('T _ (J)l-(P-K) 

for s ~ (J < 'T < t ~ T, we can apply Fubini's theorem (in Y) to deduce that 

[ (a * w) I Y] * g( t , s) = a y * [ Wy * g ] (t , s ), s < t ~ T. 
From Lemma 9.1 and [7, Proposition 1.4) we obtain 

Wy*g(',s) E C"([s,T], Y). 
Hence 

ay*[wy*g](',s) E C(s,T], Y1), 

as above, and the assertion follows. 0 
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It should be noted that the above proofs are modifications of corresponding 
results in [7, §9]. 

After these preparations we can prove the desired regularity 

THEOREM 9.4. Suppose, in addition to the assumptions (Ql)-(Q5), that there are 
Banach spaces Y and YI such that 
(HRl) YI '-+ Xl '-+ Y '-+ X, 
such that 

(HR2) 

such that 

(HR3) 

and such that 

(HR4) 

D(Ay(t,y)) = YI for (t,y) E [O,T] X Vand 
[(t,y) ~A(t,y)] E cP,I-([O,T] X v, 2'(YI,y)) 

for some {3 E (0,1) u {l - }, 

there exists a number K E (0, {3/2) such that 

liP, + Ay(t, Y)rIII.~(Y) ~ C/lh - W(K 
for each Yo E V, all (t, y) E [0, T] X VyO ' and all 
hEw + ~o, 

f E C,I-([O, T] X V, Y) for some P E (K, 1) U {l - }. 
Finally suppose that 
(14) 
Then 

() - 1/ > 2K and X(J '-+ Y. 

u(·,s,x) E C(j(s,x), YI ) n CI(j(s,x), Y) 
for each (s, x) E [0, T) X V(J. 

PROOF. Let (s, x) E [0, T) X V(J and tl E j(s, x) be arbitrary, and let 
u:= u(·, s, x)l[s, td. Clearly it suffices to show that 

u E C((s, t l ], YI) n CI((s, tI], Y). 
Since u E C(J-1}([s, td, X) by Theorem 6.3, it follows from (HR2), (HR3) and (14), 
that 

Ay(t):= Ay(t, u(t)), ° ~ t ~ T, 
satisfies (2) and (5) with 13:= min({3, () - 1/), since we can assume without loss of 
generality that w = 0. Moreover, 
(15) g:=f(-,u(-)) E C"([s,T], Y) 
for Ii:= min { P, () - 1/}. Thus, since x E X(J C Y, we deduce from Lemmas 9.2 and 
9.3 that 

U(·,s)x + U*g(',s) E C([s,T], YI). 
Of course, U(·, s)x + U * g( . , s) coincides on [s, t d with u. Hence 
(16) u E C((s, t l ], YI ). 
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Since 

u(t) = -A(t, U(t))U(t) + I(t, U(t)) = -A(t)u(t) + g(t), 

in X, we obtain from (15), (16) and (HR2) that u E C«s, td, Y). This implies 
u E el«s, td, Y). D 

10. Quasilinear parabolic systems. Throughout this section m, n, N E N*, and 
kEN satisfies k ::::;: 2m - l. 

We denote by n a bounded domain in Rn of class e 2m , that is, ~ is a compact 
n-dimensional e 2m-submanifold of Rn with boundary an. We let N(k):= NL1"1'" kI, 
where a E Nn and lal:= al + ... + an is the length of the multi-index a, and we 
denote by G an open subset of KN(k). Then we suppose that 

there exists a number p E (0,1) such that 
(1) a" E cP,O,l-([O, T] X ~ xG, 2(KN)) 

lor all a E N n with lal ::::;: 2m. 

We consider a family of linear differential operators of order 2m: 

.9Jf(t,1/)u:= (_I)m L a,,(t,',1/)D"u, (t,1/) E [O,T] X G, 
1"1.;; 2m 

acting on N-tuples of K-valued functions u: n ...... KN. We let 

a(t,x,1/;~):= L a,,(t,X,1/H"E2(KN ) 

l"I=2m 

for ~ E Rn and denote by ('1 . ) the Euclidean inner product in eN. Then we suppose 
that .9Jf is strongly parabolic in the sense that 

(2) Re( a(t,x,1/; ~)tIn > ° "V(t,X,1/,tn E [O,T] X ~ xG X Rn X eN, 
~ i= 0, r i= 0. 

We denote by 

!!.8u:= (u,aulav, ... ,am-lulavm-l) 
the Dirichlet boundary operator on an, where v is the outer normal on an. Moreover 
we suppose that 

(3) 
Finally we denote by F the substitution operator induced by I, that is, 

F( t, u ) ( x ):= I ( t , x, u ( x ), Du ( x ), ... , D k U ( X ) ) 

for u: ~ ...... G and x E ~. 

For 1 < P < 00 and 0::::;: s ::::;: 2m we let W;:= W;(n, KN), so that ~o = 
Lp:= Lp(n, K N ). Moreover 

W;,9f:= { u E W;laJulavJ = ° on an for j = 0,1, ... , m - 1 and j < S - lip} . 
Observe that 

(4) W;,9f = W; if s < lip. 
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We let 
tffp:= {} + Ilpl} = 0,1, ... , m - I}. 

If 0 < B < 1 and 2mB $ tffp, we know by [7, Theorem 13.3] that 

WP~g/ = (Lp, ~~~)II,p if2mB $ N, 

and 
w2mll - [L W2m] if 2mB E N. P.tB - p' p,tB II 

Thus, due to reiteration and commutativity properties of the real and complex 
interpolation functors (cf. [10, Theorems 3.5.3, 4.6.1, and 4.7.2]), it follows that 

(5) 
W;,tB is (~",tB' W;,tB )-compatible for 
o ~ (J ~ s ~ 7' ~ 2 m and s, (J, 7' $ tffp. 

Recall the well-known Sobolev-type imbedding theorems: 

(6) W; '-+ W; if lip ~ llq and s - nip ~ t - nlq, 

(7) 
(8) 
and 

W; '-'-+ W; if lip ~ Ijq and s - nip> t - nlq, 

W; '-'-+ C t if s - nip> t 

(9) W; '-+ C t if s - nip = t $ N, 
where C t := ct(~, KN) and 0 ~ s, t ~ 2m, 1 < p, q < 00 (cf. [32], for example). 

It is an easy consequence of (8) and the fact that W;'tB is a closed linear subspace 
of W;, that 

(10) 
~",tB' if k + nip < (J ~ 2m and (J $ tffp 

(cf. [7, Proposition 15.4]). 
For each (t, v) E [0, T] X V; with k + nip < (J ~ 2m and (J $ tffp 

linear operator A/t, v) in Lp with domain ~~~ by 
( 11 ) A p ( t, v) u : = d ( t, v, Dv, ... , D kV ) u, 
where 

d ( t , v, Dv, ... , D kv ) U (x) 

we define a 

:= (_I)m L aa(t,x,v(x), Dv(x), ... ,Dkv(x))Dau(x) 

for x E n. 
LEMMA 10.1. Let n < p < 00 and put X:= Lp, X l := ~~~, and X~:= ~~~~ for 

o < ~ < 1. Then 
(i) conditions (Ql) and (Q2) are satisfied if 2mT/, 2mB $ tffp' 
(ii) A/·, .) satisfies conditions (Q3) and (Q4) provided k + nip < 2mT/ ~ 2m 

and 2mT/ $ tffp. 
(iii) If 0 ~ e < 2mT/ - k - nip and e < 1, then 

FE Cl-([O T] X v 2m 1) WE) , p' p . 
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PROOF. (i) (Q1) is clear, (Q2) follows from (5). 
(ii) (Q3) is an easy consequence of (10), (8) and (1). (Q4) follows from [8, Theorem 

6.6] and (2), by using again (8) and the fact that (2) implies a uniform estimate on 
compact sets. 

(iii) is a consequence of (3) and [7, Proposition 15.6]. 0 
After these preparations we consider now the quasilinear parabolic initial boundary 

value problem 
( QIBVP)(s.uo) 

~~ +d(t,u,D2u, ... ,D;u)u=f(t,x,u,D2u, ... ,D;u) in (s,T] xn, 

fJdu = ° on (s, T] X an, 
u(s,·)=uoonn. 

By an Lp-solution, n < p < 00, of (QIBVP)(s.uo) we mean a solution of the quasilin-
ear Cauchy problem 

iI + Ap(t, u)u = F(t, u), 

in Lp. A function u: g ~ G with 

s < t:( T, u(s) = un' 

u E C(J X g, G) n CO.2m(j X g, KN) n C1'0(j X g, K N), 

defined on a perfect subinterval J of [s, T] containing s, is a classical solution of 
(QIBVP)(s,uo)' provided it satisfies (QIBVP)(s,uo) pointwise. Clearly every classical 
solution is a Lp-solution for p E (n, 00). 

THEOREM 10.2. Suppose that n < p < 00 and that k + nip < (J :( 2m with (J $. tffp" 

Then (QIBVP)(s.uo) possesses for each (s, un) E [0, T) X V; a unique maximal 
Lp-solution u(·, s, uo), and 

(12) 

Moreover 

(13) u(·, s, un) E C1( j, Wp') for ° :( e < min { p, (J - k - nip, lip}. 

The maximal interval of existence J(s, uo):= J is open in [s, T]. If (J < 2m, then 

(14) 

is open in [s, T] X Uj,~81' and 

(15) 

for every s E [0, T). 
If 

is bounded in Uj," and has a positive distance from alj," for some (s, un) E [0, T) X lj,", 
then u(·, s, un) is a global solution, that is, J(s, un) = [s, T]. 
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PROOF. Let ():= al2m and choose 1] E (0, ()) such that 2m1] fE lffp and k + nip 
< 2m1]. Moreover let r E (0,1) satisfy E:= 2mr < ljp and 2mr + k + nip < 
2m1]. Then everything, except the last assertion, follows from (4), Lemma 1O.1(i), (ii) 
and (iv), Theorem 6.3 and Theorem 8.l. 

Let now 1] < ~ < () such that T:= 2m~ fE lffp- Since Uo E Xu ~ X we can apply 
Theorem 6.3 also in the space X~. Denoting the solution in this case by ug(·, s, uo), 
it is clear that u~(" s, uo) ~ u(·, s, uo). On the other hand, 

since u~(·,s,uo) is an Lp-solution. This shows that u~(·,s,uo) = u(',s,uo)' Since 
y+(s, uo) is bounded in Xu, by assumption, and since Xu ~ X~, by (7), the last 
assertion follows from Corollary 7.3. 0 

COROLLARY 10.3. Suppose that n < p < 00 and k + nip < a < 2m with a fE lffp-
Moreover suppose that d and f are independent of t, and let cp(t, uo):= u(t, 0, uo) 
and {J);:= {J);(O). Then cp is a semiflow on ~rJ such that cp E C°,l-({J);, WprJ). 
Moreover, bounded orbits, which are bounded away from aVprJ, exist globally. If they 
are also bounded in ~T for some T > a, then they are relatively compact in ~rJ. 

Of course, an orbit is bounded in ~T for T > a if it is bounded "after" some 
positive initial time (if U o fE W;). 

Our next theorem shows that u(·, s, uo) has much better regularity properties for 
t > S. 

THEOREM 10.4. Suppose that n < p < 00 and k + nip < a .:::;; 2m with a fE lffp' and 
that (s, uo) E [0, T) X V;. Then 

u(-,S,Uo)EC(j,Wq2m ) VqE[p,oo). 

PROOF. Let p < q < 00 and choose a a E (k + nlq, 2m - n(p-1 - q-1))\lffq 
which is possible by 2m - nip> k. Hence u1:= U(Sl' s, uo) E Wp~; ~ W:'.96 by 
(6), where Sl E j is arbitrary. Since U 1 E V:' we obtain from Theorem 10.2 that 
(QIBVP)(SI,Ul) has a unique maximal Lq-solution u1(', Sl' u1). Similar to the proof of 
Theorem 10.2, we find that u1(', Sl' u1) = u(', s, uo)l(J n [Sl' T]). Since Sl E j is 
arbitrary, the assertion follows. 0 

It follows from Theorem 10.4 and (8) that 

for every J1. E (0,1). In the following we shall show that we obtain classical solutions 
if we impose further mild regularity assumptions. For simplicity we do not give the 
most general assumptions (for n and the coefficients a,,), but choose a simple 
setting. Namely we assume that n belongs to class c(2m+ 1)- and 

10:1.:::;; 2m. 
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Then we prove the following crucial 

LEMMA 10.5. Suppose that 2n < q < 00 and that 1/ E (0,1) satisfies 2m1/ > k + 
n/q. Moreover let ° < J-L < (2m1/ - k - 2n/q) 1\ 1 and put X:= L q , Xl := wt", 
Y:= Cil and Yl := {u E C 2m +lll86'u = ° on aQ}. Then the conditions (HRl)-(HR4) 
are satisfied with f3 = II = 1 - and K = J-L/2m. 

PROOF. It follows from (8) that (HRl) is true. Moreover, by using (8) and the 
mean-value theorem (in integral form), it is not difficult to verify that 

(16) [ (t, y) ~ A(t, y)IY1] E Cl-([O, T] X V, £,(Yu Y)). 

Consider now the operators 

a2m ( ) ._ ( k) (_)m i~~ .#~ t,v w.-d t,v,Dv, ... ,D v w+ 1 e 2 aT m 

on Q X R, where (t, v) E [0, T] X V and 1f; E R. Then it follows from [8, Lemmas 
6.1 and 6.3, and 7, Theorem 9.3] (cf. also [29, Theorem 2.1]) that we can assume that, 
for each fixed Yo E V, the neighbourhood Vvo and the constant it E (0, 7T /2) are 
chosen such that 

(17) QxR {II II QXR QXR} IIwIl2m+ll~ C .#~(t,y)w Il + II w 110 

for all (t, y) E [0, T] X Vvo' 1f; E [-it - 7T/2, it + 7T/2] and all 

wE c 2m +ll(g XR,C N ) 

whose supports are contained in a fixed compact subset of g X R, and which satisfy 
86'w = ° on aQ X R. Here 11'llr denotes the norm in C,,(M,K L ), where M is a 
compact subset of some euclidean space and L E N*. Following an idea of Agmon 
[3], we fix a function cp E COO(R, R) with supp( cp) c ( - 2,2) and cpl[ - ~, ~] = 1. 
Then we put w(x, T):= cp( T)eirTu(x), where r ~ 1 is fixed and u E c2m+1l satisfies 
86'u = ° on aQ. Then an easy calculation shows that 

(18) 
11.#~(t, y)wll~XR ~ c{llcpeirTII[Il-2,2JII(A(t, y) + r 2meN )ull y 

(d. [7, formula (12.7)]). On the other hand, 

IIwll~;!1l ~ L IIDj(eirT)Daull~X[-l'lJ 
j+lal~2m 

(19) + L [Dj(eirT)Daul~X[-l,lJ 

j+lal~2m 

~ ~ r2m-k{lIull~ + L [Dau]~} = ~ r2m-kllull~~Il' 
k~O lal~k k~O 

Since 

II irT II[ - 2,2J II irT II[ - 2,2J Il cpe Il , e Il ~ cr , 
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we deduce from (17)-(19) the estimate 

2m ~ 

L r2m~k~1'11 U II~+I' ~ cll( A( t, y) + r 2me iIV ) U II y, 
k~O 

provided r is sufficiently large. Hence, letting A:= r 2me iIV , we see that 

2m ~ ~ 

(20) " 1~(k+I')/2m n lie ) ) n .t.. IAI Ilullk+1' ~ c A(t, Y + A ulll' 
k~O 

for all u E c 2 m+1' satisfying !!/u = 0 on a~, all (t, y) E [0, T] X VVo' and A E ~II 

with IAI ~ AO for some AO ~ 1. This implies, in particular, that for each point 
Yo E V there exists a neighbourhood Tjo and positive constants wand {} such that 

(21) I I~I'/2m II II IA - w Ilxlly ~ c (A + A(t, y))x y 

for all (t, y, x) E [0, T] X Vvo X YI and A E W + ~II' 
The arguments of the proof of Theorem 6.6 in [8] now show that A + A(t, y) is an 

isomorphism from YI onto Y for A> wand (t, y) E [0, T] X VYo' This implies, in 
particular, that Ay(t, y) = A(t, y)IY for all (t, y) E [0, T] X V. Now (HR2) and 
(HR3) follow from (16) and (21). 

Finally (HR4) is an obvious consequence of Lemma 10.1(iii) and (8), since we can 
choose K E (0,1) such that f.L + n/q < 2mK =:1: < 2m1) - k - n/q and I: < 1. 0 

After these preparations we can prove the following regularity 

THEOREM 10.6. Suppose that ~ belongs to class c(2m+I)~ and that 

lal ~ 2m. 

Moreover suppose that n < p < 00 and k + nip < a ~ 2m with aft tffp, and that 
(s, uo) E [0, T) X ~o. Then 

(22) u(-, s, uo) E cU, C 2m +l') (\ CIU, CI') 

for every f.L E [0,1/\ (2m - k)m/(l + m)). In particular, u(',s,uo) is a classical 
solution. 

PROOF. Choose any q E (p, 00) with q > 2n. By replacing U o by U(Sl' S, uo) and s 
by Sl' where Sl E j is arbitrary, we can assume, due to Theorem 10.4, that 
Uo E Vq2m. Thus we can choose X:= L q, X I := Wq:;, (J:= 1, 1) E (0,1) with 2m1) > 
k + n/q and 2m1) ft tffq, f.L E (0,1) with 2m(1 - Tj) > f.L/m and f.L < 2mTj - k -
2n/q, Y:= CI' and Y1 := c 2m+1' (\ Xl' Then it follows from Lemma 10.5 that the 
hypotheses of Theorem 9.4 are satisfied with f3:= P:= 1 - and K:= p.j2m. Hence 
Theorem 9.4 implies (22) for this choice of f.L. Since we can choose q arbitrarily large, 
it follows that f.L has to satisfy the restrictions 2m(1 - 1)) > f.L/m and f.L < 2m1) - k, 
where 1 > 1) > k/2m, and, of course, f.L < 1. This leads to the asserted range for f.L. 
The last part of the assertion is now obvious, since u E C(J, WpO) by Theorem 10.2 
and Uj,0 '-+ C by (8). 0 
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REMARKS 10.7. For the sake of an easy presentation we have chosen a relatively 
simple setting. However it should be observed that our abstract results apply to 
much more general situations. Namely: 

(a) The differential operator does not need to be strongly parabolic. It suffices 
that it satisfies the a-root condition for some a E (0, 7T /2), uniformly in t E [0, T], 
in the sense of [7]. 

(b) The Dirichlet boundary operator gj can be replaced by much more general 
systems, provided it remains indl!pendent of t and (d, gj) is a strongly a-regularly 
elliptic boundary value problem, uniformly in t E [0, T], in the sense of [7]. For 
concrete instances of such systems we refer to [8, §6]. 

(c) F does not need to be a substitution operator. It can be a nonlocal operator. 
(d) n can be unbounded (cf. [7] for details). Of course, in this case the above 

assertions guaranteeing global existence and compactness of orbits are not valid 
since their proofs depend upon the compact imbed dings (7) and (8). 0 

The existence of solutions for quasilinear parabolic equations has been studied 
extensively by Ladyzenskaja, Solonnikov and Ural'ceva [19] for a single second order 
equation. Their method is completely different. Namely it is based upon a priori 
estimates and fixed point arguments. This requires restrictive structure conditions 
for the nonlinearities (since it means essentially that all solutions have to be bounded 
in the maximum norm), but gives global solutions. In addition these authors have to 
impose compatibility conditions. None of these restrictions is necessary in our 
approach, which is "dynamical" in contrast to the "static" approach in [19]. 
Moreover we can handle-essentially with the same ease-systems of arbitrary even 
order. Due to the above results the question of global existence has been reduced to 
the problem of finding a priori bounds in an appropriate norm. The problem of 
existence and regularity has been completely settled. 

As mentioned earlier, the existence of a local Lp-solution for quasilinear parabolic 
equations has been shown by Sobolevskii [28] (cf. also [16, §II.17]), and our abstract 
approach follows essentially his method. However our regularity results (e.g. Theo-
rem 10.6) are new, as are, in particular, the results concerning the continuous 
dependence on the initial values. 

The existence of a classical solution to certain quasilinear parabolic equations has 
also been shown by Lunardi [20, 21]. She works in the space C(Q) and does not 
assume that the operators are densely defined in order to avoid compatibility 
conditions. However she can only treat equations with a principal part of the very 
particular form a(t, x, u, Du)/lu, where /l is the Laplace operator. 

A related but different approach to quasilinear parabolic equations has been given 
by Da Prato and Grisvard [14] (cf. also [13] for a survey). These authors use a 
linearization method based upon "maximal regularity" results. However it is not 
clear whether their method can be applied to general quasilinear parabolic systems 
to give the same precise results as the ones of this paper. 

We should also like to mention the results for quasilinear parabolic equations 
obtained by the theory of nonlinear semigroups, that is, the theory of monotone and 
accretive operators (e.g. [9]). These results apply essentially to different classes of 
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problems and are closer to the "static" approach of [19] than to our "dynamic" 
method. 

Finally we want to point out that von Wahl [33, 34] was the first to apply 
Agmon's technique to Holder spaces. He derived an estimate similar to our estimate 
(20) for a single linear operator (that is, N = 1 and d is independent of v E V). 
He then used these estimates to define fractional powers in ell-SpaCes and to derive 
regularity results for semilinear parabolic equations. 
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