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QUASILINEAR PARABOLIC EQUATIONS

D. E. EDMUNDS and L. A. PELETIER

1. Introduction.

During the last decade an intensive study has been made of the

existence in the large of solutions of the first initial-boundary value problem,
or the Cauchy-Dirichlet problem as we prefer to call it, for quasilinear
parabolic equations. This problem has, in fact, been reduced to that of

obtaining a priori bounds for eventual solutions of the problem and for the
first derivatives of such solutions. In the present paper we shall investi-

gate the circumstances under which these a priori bounds may be obtained,
and shall give conditions under which the Cauchy~Dirichlet problem has
a solution: non-existence theorems for this problem will also be given.

The equations we shall study are of the form

and for convenience we shall write this more concisely as

where

The functions szl (x, t, u, p) and 93 (x, t, u, p) which define the structure of

equation (1) are assumed to be continuously differentiable for all u in R

(the reals), all p in Rn, and all (x, t) in the closure of a space-time cylinder

Pervenuto alla Redazione il 21 Settenibre 1970.
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Q ~ S~ x (0, T), where Q is a bounded domain in Rn with 04 boundary 3~.
It is supposed that (1) is parabolic : this means that ~ sIl; _ ~~ &#x3E; 0
for all non-zero 8 in Rn.

By the Cauchy-Dirichlet problem for equation (J) in Q we shall mean the

question of determining a function u such that E u = 0 in Q, with 1£ assu-

ming prescribed values on the base and the sides of Q. The existing literature
on problems of this nature is extensive, but up to very recent times has

been principally concerned either with equations possessing a rather simple
structure or with uniformly _parabolic equations, which are those with the

property that there exist positive constants v and u such that for all u in
R, all and $ in and all (x, t) in the closure of Q,

Particularly noteworthy in this connection are the contributions of Oleinik
and Kruzhkov [6], Ladyzhenskaya and Ui-,,tlltseva, [4], Ladyzhenskaya, Ural’tse-
va and Solonnikov [5], and Trudinger [8]. Amongst these authors there are
differences in the kind of solution which is sought : for example, Trudinger
is not concerned with solutions which are smooth right up to the boundary.
Here, however, we shall deal only with solutions which do possess this

degree of smoothness, so that the prescribed data has to satisfy certain

compatibility conditions on the boundary of the base of Q.
We show that there is a class of (not necessarily uniformly parabolic)

equations, the regularly parabolic equations which, so far as the Cauchy-
Dirichlet problem is concerned behave nicely in that existence may under

appropriate circumstances be obtained in arbitrary domains Q without the

need for special restrictions on the curvatures of Some idea of the

disasters which may occur if one wanders outside this class is given by
providing examples of equations for which prescribed smooth data can be

constructed such that the resulting Cauchy-Dirichlet problem has no solution.
Our work may be thought of as a beginning of the extension to parabolic
equations of the celebrated results of Serrin [7] concerning the Dirichlet

problem for quasilinea~r elliptic equations, which provide necessary condi-

tions and sufficient conditions for this problem, in a given domain and

with arbitrarily given smooth data, to be soluble. The methods adopted are
entirely natural analogues of those used by Serrin in the elliptic case,

though as might be expected there are difficulties not present in that

situation. We do not, however, deal with the analogue of that part of

Serrin’s work in which the curvatures of 8Q play a crucial role, and post-
pone our discussion of the subtle and complicated arguments that are then

necessary to a future paper.
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Our programme is as follows. In § 2 we give the fundamental existence
theorem, which by means of a basic theorem due to Ladyzhenskaya and

Ural’tseva reduces the Cauchy-Dirichlet problem to that of establishing
appropriate a priori bounds. This theorem necessitates a more complex
proof than does the comparable elliptic theorem, the extra complication
being occasioned by the consistency condition. The next four sections relate
to conditions under which the a priori bounds may be obtained, while §§ 7
and 8 give selections of existence and non-existence theorems. The paper

contains proofs of sharper versions of results announced in [2]. The authors
are grateful to Professors F. E. Browder and G. Stampacchia for helpful
discussions abont certain points dealt with in § 2.

2. Reduction of the problem to that of obtaining a priori bounds.

Let 0 be a bounded domain in Rn, with boundary and closure

Q, and denote by Q the cylinder X (0, T), where T is some fixed positive
real number: points of Q will be written as (x, t), where x = ... , Xn) E S~
and t E [0, T]. We shall let T represent the parabolic boundary of Q, that

is, the set (0)) U X (0, T)), and shall write QT= D X (T). The set
of real-valued functions u that are continuous on Q together with their

derivatives ut, ~cx~ , will be denoted by 02, 1 ( Q) ; C2,1 ( Q) is defined in the

obvious way. We shall need to use spaces of Holder - continuous func-

tions : a function u defined on a closed subset Q, of Q is called Holder -
continuous on Q, with exponent a (0  a 1) and coefficient K if for all

(~ t), ti) in 7

By Ca (Q) we shall mean the linear space of those functions which satisfy
a Holder condition with exponent a in Q. Endowed with the norm

it becomes a Banach space. Next, (Q) will represent the Banach space
of those functions u in such that Ut, uXi and UXiXj all belong to C.. (Q) :
the norm on this space is
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Similarly 01+a (Q) will stand for the Banach space of those members u of

Ca (Q) such that u,,i E C.. (Q), with norm

Lastly, a function 1p defined on T will be said to be of class 02+a if it is

the restriction to 1’ of a function, also denoted by V, in C2+a (Q).
The Cauchy-Dirichlet problem for equation (1) in Q consists in deter-

mining a function u in C2,i()n such that

-Pu = 0 in Q,
(2) in given continuous function) on F.u = 1p (a given continuous function) on r.

We remark that if the solution u is in the class C2,1 (Q) then plainly the
condition ..e’(jJ = 0 must be satisfied on aQ X (0) : tlis necessary condition

will be referred to subsequently as the consistency condition.
We can now show how the question of the existence of solutions of

the Cauchy-Dirichlet problem which are smooth up to r may be reduced

to that of obtaining suitable a priori bounds. The fundamental tool is a

theorem due to Ladyzhenskaya and Ural’tseva [5, p. 533] which provides
bounds for the Holder norms of the solution and its space gradient given
bounds for the solution and its first derivatives. More precisely, let E C31
and suppose v E C2,1 (Q) is such that Ev = 0 in Q and v = 1jJ on r, where

ip is a given function of class Cz+1 which satisfies the consistency condition.
Suppose that

and also that v is a positive constant such that for all ~ in Rn and all

(x, t) in (x, t, v, h v ] 8 2. Under these assumptions, the theorem

of Ladyzhenskaya and Uralltseva implies that there are positive constants

N and Y (Y  1) such that ~~ v ~~1+Y~ ~ C N. These constants depend only on

v, M, bounds for stl, 03 and their derivatives, and on and the data 1J’:

they are independent of the particular function v.

The reduction mentioned above is a consequence of the following
theorem :

THEOREM 1. Let be of class and suppose the given data 1jJ is

of class C~+~ and satisfies the consistency condition = 0 on aS~ X (0).
Let T be any real number in [0, 1]. Suppose there is a number M, indepen-
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dent of ~, such that if v E C2,1 ( ~) satisfies

then

Then there is a solution u E of the Cauchy-Dirichlet problem (2).

PROOF. Suppose v E C2 1 (Q) satisfies (3) for some z in [0, 1]. Then by
(4) and the Ladyzhenskaya and Urahtseva theorem there are positive con-

stants N and y, independent of z, such 

Define .X to be the closed subset of 01+y (Q) consisting of those fun-

ctions which coincide with V ou Sd X 101. Let w E X, z E [0, 1], and consider

the linear problem

By linear theory (note that the consistency condition is satisfied) there is

exactly one solution C3-~(~) of this problem, and evidently W E X.

Hence there is a well defined map ] (c C~~ (~) x [0,1]) 2013~ ~
given by T (w, z) = W. We assert that T is completely continuous, that is, con-
tinuous, and compact. To see that T is compact let Kc .~ X [0, 1] be bounded.
By the linear a priori estimates the elements W of T(K) have uniformly bounded
second order x derivatives, so that for each fixed t the satisfy a Holder
condition with exponent 1. Similarly, since the Wt are uniformly bounded

the elements W satisfy for each fixed x a Holder condition with exponent 1.
Thus by a lemma of Ladyzhenskaya and Ural’tseva [4, p. 276] each Wx sati-

sfies a Holder condition in t with exponent 2’ and so WE 01+1 (Q) and2

there is a constant C such that for all W in ( W Q C. The

compactness of T is now an immediate consequence of the Arzela-Ascoli

theorem. That T is continuous follows from an elementary reductio ad
absurdum argument : we omit the details.

Finally, define ~i =- (w - ~ : w E X) and T, : ~1 x [0, 1] -+ Xi by
T, (w - ip, 1’) = r) - V. Evidently ~i is a closed linear subspace of
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Cl+r (Q), and hence is a Banach space when given the induced topology,
and from the properties derived above for T it is plain that is comple-
tely continuous. Let B denote the closed ball in Xi with centre 0 and
radius N + 11 V -f-1· It is easy to see that T, (w - ~y, 0) = 0 for all

w E X, and moreover T1 -1p, r) # on the boundary of B, for all
T E [0, 1]. Hence by the Leray-Schauder theorem (see [1], p. 106), Pi (., 1) has
a fixed point in B, and so there exists in X such that Z’ (ic,1) = u. Such
a function u is a solution of the Cauchy-Dirichet problem (2): since moreover
2c evidently belongs to O2,1 (Q) the proof is coinplete.

To apply Theorem 1 it is necessary to derive a priori bounds related

to the solutions of a whole family of Cauchy-Dirichlet problems, namely
those given by (3), with i varying from 0 to 1. While we can derive such

bounds in a variety of situations, and indeed shall do precisely this in the
succeeding sections, it turns out that for some purposes there is an advan-

tage in having a different homotopy family of equations to handle. For this
reason we give the following reduction theorem, even though the class of

data y to which it applies is rather severely limited.

THEOREM 2. Let aD be of class 03, and suppose the given data is
of class C2+1 and satisfies = 0, x = 0 and -ci (x, 0, 0, 0) 1pxx - 93 (x, 0, U, 0) -

- 1pt = 0 on aD x (0). Let z be any real number in [0,1. Suppose there is a

number M, independent of ~~ such that if v E satisfies

then

Then there is a solution u E C2,1 (Q) of the Cauchy-Dirichlet problem (2).
We omit the proof because of its general similarity to that of Theorem 1,

and merely remark that the conditions imposed on V in the theorem are

designed to ensure that problem (6) has data which satisfies the consistency
condition.

The question of the existence of solutions of the Cauchy-Dirichlet
problem can therefore be regarded as settled if we can obtain a priori
bounds of the kind used in Theorems 1 or 2. These bounds may be obtained

for equations having a suitable form by carrying out the following four

steps :
(A) Estimate ma,x I u I.

Q
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(B) Given that (A) has been achieved, estimate luzl at [0, T].
( C) Given (A) and (B), estimate I u,, I in the entire domain.

(D) Estimate I ut I on aS~ X to}.
It should be emphasised that these steps have to be carried out for a

whole family of problems (either (3) or (6)), and that the estimates obtained
must be independent of the homotopy parameter 1:. Despite this it will

suffice to discuss the various steps in terms of the original Cauchy-Dirichlet
problem, provided care is taken to describe the dependence of the estimates
on the structure of the equation and the prescribed data. The next four

sections are devoted to the a priori estimates required by steps (A)-(D).
Before passing to these estimates, however, it will be convenient to

record here certain conventions and notations. We shall write

where the norm is defined to be the square root of the sum of the

squares of the entries in the matrix 

Certain invariant functions prove to be of great importance, just as
in the elliptic situation : these are

A final point is that when dealing with various functions of the variables

x, t, u, and p the range of any one of the variables is, if not specifically

delineated, to be taken to [0, T], R and Rn respectively.

3. Estimates for u I in Q.

Here we give a number of maximum principles, all closely related to

those presented by Serrin [7] in his analysis of the corresponding elliptic
situation.

THEOREM 3. Let co E O2,1 f Q U C (Q) be such that + b)  0
in Q U QT for all positive constants b. Suppose also that u E C2,1 (Q u QT) n C(Q)
is a solution of equation (1) in Q such that u S co on l’. Then 11,:::;: OJ on Q.
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PROOF. Put v = u - w, K = sup v, and suppose K &#x3E; 0. Then there

exists a point P = (xp, tp) in Q U QT at which v takes the value K, and

evidently we may suppose that there is a neighbourhood N of P such that
in N, v &#x3E; 0, and in ~t ~ tP~, We know that

for all ~x, t) in N, and for all b ) 0 ; hence this inequality will also hold

for all positive functions b. Thus if we take b = v we obtain

Since u is a solution of (1) we also have

Subtraction of (7) from (8) and application of the mean value theorem now
shows that

However, Nirenberg’s maximum principle implies that v = g in

which is a contradiction. Hence which proves the

theorem.

The proof is identical wlth that given by Serrin [7] for the corresponding
result in the elliptic situation, save that we have to use the Nirenberg
maximum principle rather than the Hopf one. We now give a number of

applications of this result which correspond to ones given by Serrin : because
the proofs are similar in every respect to those of Serrin we shall give
only the barest indication (if any at all) of them.

THEOREM 4. Suppose that u Cf3 (x, t, u, 0) &#x3E; 0 &#x3E; M, and let
c (Q) be a solution of (1) in Q such that I u C m on

r. Then in Q.

PROOF. Take (o = max (m, M) and apply Theorem 3.

THEOREM 5. Let S~ be contained in a ball (in of radius R, and

assume that
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for and I _v I ~~! 1 &#x3E; 0. Let u E O2,1 (Q U QT) n C (Q) be a solution of (1 )
in Q such that I u ]  no on r. Then max (m, M) + in Q.

PROOF. Apply Theorem 3 (x, t) = max (m, l~1 ) -~- l R (e - er/R)
(0 m r £ R), where r denotes the distance of (x, t) to (xo, t ) and xo corre-
sponds to the centre of the ball containing S~.

THEOREM 6. Suppose that for some fixed direction v and for all o  0,

where 99 is a positive continuous function such that
7

Let u E C2,1 (Q U QT) U C (Q) be a solution of (1) such that I u ~ m on r.

Then u ~ in Q, where K depends only on m, 99 and the diameter of S~.

THEOREM 7. Suppose -ci is independent of u and 0. Let

tt,roE02,l(QU Qr) U be such and in Q, and

suppose u C w on T. Then in D.

PROOF. Evidently ,~ (w -~- b)  .C~ (co) ~ 0 for all positive constants b.

4. Estimates for I at S.

Step (B) of our programme is achieved by the method of global barriers.

Let d (x) denote the distance from points (x, t) in Q to S = a,~ X [0, T] :
it follows from the work of Serrin [7, p. 420] that d is twice continuously
differentiable for 0 ~ d  do , 1 where do depends on Let N be the

neighbourhood of S defined by the inequalities 0  d  d, - do’ A function
v in 02,1 (N) is called a global barrier functions if (i) E(v -~- b) ~ 0 in N

for all positive constants b, and (ii) v (x, t) can be written as 1p (x, t) + h (d),
where h is non-negative and continuous in the closure of N and is such

that h (0) = 0, h (d1) = M.
Given the existence of an appropriate global barrier function it is easy

to see that step (B) can be carried out: more precisely, we have the following

LEMMA 1. Let be a solution of the Cauchy-Dirichlet problem
(2), and suppose u  m. Suppose also that there is a global barrier function

corresponding to M -- m + c . Then for every spacelike direc-an
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tion n into Q, where C is a constant which depends on the global barrier

function.

l)ROOF. Let v === ~ -~- ~ be the global barrier function. Then u = v on

(4?), and when 

+ M = v. It follows from Theorem 3 that c v in N, so that a2c av C
an a7z

 max vx I = C on S, for every direction n into Q.
s ~

It follows that step (B) is reduced to the problem of constructing a
suitable global barrier function. As it turns out there is a class of equa-

tions, which by analogy with Serrin’s terminology in the elliptic case we
shall call the regularly parabolic equations, for which global barrier func-
tions can be constructed for any cylinder Q with aD of class C3.

We shall say that equation (1) is m-regularly parabolic if

where 0 : R+ --~ R+ is a decreasing continuous function such that

If 4S (to) can be taken of the form Oe-1 log Lo for large p equation (1) will

be called regularly parabolic in the strong sense.
Various examples will serve to illustrate this definition. Thus it is easy

to verify that uniformly parabolic equations are m-regularly parabolic in the
strong sense if

The class of regularly parabolic equations includes various non-uniformly
parabolic equations : as an example may be cited the equation (in two space
variables)

Moreover, all equations with genre g  1 and trace a bounded away from
zero are regularly parabolic in the strong sense provided
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We recall that equation ~1) is said to have a well-defined genre if there are

positive constants ,2 and a real number I such that ,u1 I P [I  (f/trace
I’ for I p ~ 1 : the genre g is defined to be 2 - 1, which is ne-

cessarily non negative, and zero for uniformly parabolic equations. If g ) 1
the equation is not regularly parabolic.

Before we can exhibit the construction of the global barrier functions

we need two preliminary lemmas. Let N be the strip defined by 
and write v (x, t) (x, t) + h (d), where h E C2 (0, d1) n C [0, d1] and h’ &#x3E; 0.

LEMMA 2. For (x, t) in N and for all positive constants b we have

Here nl = -gi (x, t, v + b, p), 3 + JP = po + = YIX 7
and v is the inner unit normal at the unique point y (x) on aS~ nearest to
x. Also 

- - --

and 21, ... , ,2n-1 are respectively the principal curvatures
and principal directions of aD at y (x).

PROOF. Exactly as in lemma 4.1 of Serrin [7].

LEMMA 3. Suppose that Then

PROOF. An elementary modification of that of lemma 7.2 of Serrin [7].

THEOREM 8. Let u E C2,j ( Q) be a solution of the Cauchy-Dirichlet pro-
blem (2), and suppose 11t in Q. Then if (1) is 11l,-regular]y parabolic
we have I Ux ~ C on S, where C depends only on co , C1 , C2 , r3 , m, .g and 0.

PROOF. Initially we suppose that the inequality

holds for all u, not merely for I u C m. For 0 ~ d ~ d1  do put

where h is twice continuously difterentiable and h (0) = 0, h (di) = M, h’ (d) a,
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oc being a positive constant to be specified later. By lemma 3 we have for

and since

we obtain

Next, we notice that

the last statement holding because the integral in (9) diverges. It follows

that there exists a positive constant o such that 8 ci for

Now choose a = max (c~ -}- a, , 1). Since p = po and

~ po ~ ~ °1 we have

and

Thus

Moreover,

If we use these inequalities in (11) we obtain
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It remains to choose h in such a manner that h"/h’3 + c4$ (h’ - = 07
which will ensure that -~- b)  0. To do this we check, exactly as Ser-
rin [7, p. 433] that the following parametric definition of h does what is

required : -

where fJ is defined by the relation Lemma 1 may now

be invoked to show that au  C on Since we may replace u by - u in
an

the equation without affecting the construction we conclude that au &#x3E; - 0an
on S, which completes the proof of the theorem, subject to the assumption
that (10) holds for all u. To remove this assumption we construct new

functions sfl and 93 according to the prescription

with 3 similarly defined. Evidently u is a solution of the equation 

- C)3 - Ut t == 0, and ) (. U ) the prece-

ding argument may be repeated. This concludes the proof of Theorem 8.

5. Interior estimates for ~ I UX I.

For these estimates the cases = 2 and n &#x3E; 2 seem to require sepa-
rate treatment. Since, however, the details of the arguments are often quite
similar to those of the corresponding elliptic theorems in [7] we shall in
these cases present only the barest outline of the proofs, leaving the rest

of the proof to the reader as a useful exercise.
We begin with a discussion of the case n = 2. For p =t= 0 set 1* =

3. Annali della Scuola Norm. Sup. Pisa.
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THEOREM 9. Suppose lj + 0 for C’. Let u E C2,1 (Q) be a
solution of (1) in Q such that ux E C2,1 (D)  C on r. Then 

in Q.

PROOF. Put W = ux ~2, and let Q’ be the open subset of Q on which
’IV =J= 0. It can now be shown, by following closely the procedure used by
Serrin in the proof of his Theorem 12.1, that in Q’ the function w satisfies
an equation of the form

Here the arguments of -of, CD and (f* are x, t, u, ux and ut (for CD), while

9N is a continuous function on Q’. An application of Nirenberg’s maximum
principle now finishes the proof.

Theorem 9 has the effect of reducing step ( C ) to the problem of fin-

ding conditions on the structure of equation (1) under which it can be

shown that 15 + Q2 h 0, and it turns out that such conditions exist in

situations compatible with (1) being regularly parabolic.

THEOREM 10. Suppose 2 and that (f* S (1 2013 u) trace -gi for

some positive constant a. Suppose also that p ~2 a = 0 (d) and

03u , 03p , p 2 au ,  ap - 0 (dy as 1-+ oo, uniformly on

compact sets. Let it E C2,1 (S) be a solution of (1) with uzE C2,1 ( Q) and sati-
sfying in Q on 7~. Then in Q, where M

depends only on p, rra, C and bounds for the order terms above.

PROOF. Since there is no loss of generality in assuming that
the order terms arising are bounded independently of u. We introduce a

new dependent variable u by means of the transformation u op (u), where

cp’ (u) &#x3E; 0. It is easy to see that u satisfies the equation

where .it = -~- w (f ) /199’, w = - cp" /cp’2, and the arguments of

~3 and (f are x, t, u and p = g’ (u) p. Also,

It follows that if we write
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we obtain

Hence T) + (D2 will be non-negative provided that

For simplicity set ~’

Now assume 0, Then

and, as 1

for I p &#x3E; a1 say. For convenience el will denote any constant, unless an

especial one is needed. Hence for 

Moreover

~ a2 say, so that

We finally obtain
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so that if we can choose op in such a way that CÐ &#x3E; 0 and

for p I sufficiently large, we have shown, remembering that

To effect such a choice we define rp by means of the inverse relation

Use of this relation in (15) gives

Thus 0 provided ~ max (ai , 1, e2a~~2~,+1)~ --. C’ say.
We have therefore shown that ~D -~- ~D2 ~ 0 provided p ~ &#x3E; C’ ; that

is, provided Iii ~ C’/min 9)’. By Theorem 9, ux I ~ max (0, C’)/min g’, and

so

The proof is complete.
For n &#x3E; 2 further restrictions on the equation appear to be necessary

and it proves possible to deal with equations for which ni can be written as

0) and g, are real-valued functions, and s/l’ is a positive definite
matrix with unit trace. Given that (16) holds we write cS = + Ut)/(jp 
(p # 0), and define c5 just as T) was defined earlier. The argument from
this point on is close to that given for n = 2, with (D replaced by cS : that

is, it can be shown that step (C) may be carried out if C5 + c52 &#x3E; 0 for
large enough and conditions under which this inequality holds are

given in terms of the structure of the equation. The precise results are as
follows :

THEOREM 11. Suppose that (16) holds and for 

Let u E O2,1 ( Q) be such that ux E C2,1 ( Q) C C on r. Then I Ux c
(C, 0’) in Q.
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PROOF. As in the proof of Theorem 9 we put w = ux 12 and let Q’
be the open subset of Q on which w ~ 0. A routine adaptation of the proof
of Theorem 13.1 of Serrin [7] enables us to show that in Q’,

Here the arguments of and c5 are x, t, u, ux and % is a continuous
vector-valued function on Q’. The rest of the proof follows immediately
from Nirenberg’s maximum principle.

The analogue of Theorem 10 is obtained under the assumption that

(16) holds in a sharper form. More precisely, we require that A be of the
form

where , ~ ( ~ U) and g, are real-valued functions, and is a

positive definite matrix with unit trace.

THEOREM 12. Suppose that (17) holds. Assume that n &#x3E; 2 but other-
wise let the hypothesis of Theorem 10 be satisfied. Then the conclusion of
that theorem also holds.

PROOF. As in the proof of Theorem 10 we introduce a transformation
u = cp (it), so that u satisfies the equation

where

and

Theorem 11 may be applied to equation (18) since ~ has the required

form, and so we have to express c5 = - e + - c + -==- In as conve-

q 1 p I 
nient a way as possible. If we take the trace of (17) we obtain

Moreover,
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Thus if we eliminate 1 from these equations we find that

where

It follows that d = (1- (f 111) CJJ, and so

Since ~’~‘ is bounded away from 1 it is easy to modify the proof of Theo-
rem 10 to cope with this new situation : we omit the entirely routine details.

6. Estilnates for I on Q x (0).

This estimate is by far the easiest to obtain.

THEOREM 13. Let u E C2,1 (Q) be a solution of (2), and suppose 
Then C on Do = S~ X (0), where C depends only on y and l1t.

PROOF. Set v (x, t) = 11’ (x, t) + at, where a is a positive constant to be

chosen later. Define 3 as in § 4: evidently u is a solution of = 0

in Q, u == V on lr’. For all positive constants b,

in Q, where 01 is independent of a and b, and depends only on 1p and n»

(and Q, of course). Choose so in Q for all b &#x3E; 0.
Moreover, y u S v on .1. It follows from Theorem 3 (note that this is appli-
cable to f) that in Q. Hence on Do. If we replace
u by - u in the equation and thus obtain a lower bound for ut, y the proof
becomes complete.

7. Existence theoreins.

Now that steps (~.)-(D) have been carried out, under certain conditions,
we can give various theorems asserting the existence of a solution of the

Cauchy-Dirichlet problem.

THEOREM 14. Let Q e Rn be a bounded domain with boundary of
class 04. Assume either n--- 2 or that (17) holds. Suppose there is a positive
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constant p such that

for all large enough I pi, , and that as - oo,

Lastly suppose that C’)3 satisfies the hypotheses of Theorem 4. Then the

Cauchy-Dirichlet problem (2) is soluble for arbitrarily given data tp such

that y E C2+1 (Q) and V,, E 02+1 ( Q).

PROOF. The main object is to arrange matters so that the basic theo-

rem 1 may applied. Thus let v E C2,l (Q) be such that for some in ~0,1],

and v = 1p on r. Clearly I v co on 7~: to obtain a global bound indepen-
dent of a for v we have to obtain a maximum principle for solutions of

(19). This follows just as Theorem 4 follows from Theorem 3, save that we
take m = elt max (m, M) for an appropriately large and positive ~.

To obtain bounds for I we first note that equation (19) is regularly
parabolic : for all z E [0, 1],

03

for large enough I pi, and ’  I = oo. It follows that on S
1 1

where m1 is independent of 7:. 
_

We must now estimate I throughout Q. Since v belongs to C2,1 (Q),
it follows from Lemma. 2 on p. 276 of Ladyzhenskaya and UraFtseva [4]

that v, satisfies a Holder condition in t with exponent 2 Hence the coef2
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ficients in (19), regarded as functions of (x, t), are in 0. (Q) for some x, 0 

 a ~ 1, so that by linear theory ([3], p. 65), v E C2+a (Q). This now implies
that the cofficients of (19) have x-derivatives in Ca (Q), and a second appli-
cation of linear theory ([3], p. 72) enables us to conclude that v, E C2+a (Q).
From Theorem 10 it follows that in Q, where m2 is independent of z.

Conditions are thus right for Theorem 1 to be applied, and this com-
pletes the proof.

REMARKS. 1) The condition (1 + a) is made simply to ensure
that equation (1) is regularly parabolic in the strong sense, and the theorem
is true if this condition is replaced by that of requiring (1) to be regularly
parabolic in the strong sense. It is not clear whether we may merely re-

quire (1) to be regularly parabolic, since (19) may then fail to be regularly
parabolic.

2) A variant of Theorem 14 may be obtained by appealing to Theo-
rem 6 rather than to Theorem 4 : more precisely, we replace the condition
on Cf3 required by Theorem 4 by those on 93 and (f necessitated by Theo-
rem 6, with g (p) = for large ~O. In the proof we would then have to
show that the hypotheses of Theorem 6 were satisfied by the invariants ê1:
and which correspond to equation (19). However, it is clear that

00

and since Theorem 6 can indeed be applied to give 
0

in Q, where m is a constant independent of z.
The assumption that Cf3 and 6 satisfy the hypotheses of Theorem 6,

with 99 (g) = Gle for large o. is made so as to be able to obtain a ma,ximum

principle for solutions of (19): if one wishes to use Theorem 6 it is clear

that the demand that g (Lo) be eventually equal to C/o may be replaced by
00

the requirement that f d = oo for every positive constant C.q y p

0

Remark 2 makes it plain that the use of the homotopy family of equa-
tions necessitated by appealing to Theorem 1 is a source of some difficulty
in that it is sometimes necessary to impose extra conditions on the structure
of equation ( ) merely to ensure that equation (19) has an equally pleasant



417

structure. This difficulty is, of course, removed if instead of using Theorem
I we choose to employ Theorem 2, with its much simpler homotopy. We

pay a penalty for doing this, however, as the data is then much more re-

stricted than hitherto. The kind of theorem which is obtainable by adopting
this procedure is the following:

THEOREM 15. Suppose the hypotheses of Theorem 14 hold, save for
the final condition concerning 03. Let 03 and (f satisfy the hypotheses of

either Theorem 4 or Theorem 6. Assume further that the given data 1p is

of class C2+1 (Q) and satisfies ’tjJ = 0, tpx = 0 and sf{ (x, 0, 0, 0) -

- c)O (x, U, 0, U) -- y = 0 on ail x 10). Then the Caucby-Dirichlet problem
(2) has a solution.

8. Non-existence Theorems.

For certain classes of non-regularly parabolic equations it is possible
to construct smooth data for which no solution of the Cauchy-Dirichlet
problem is possible. We give one such class, analogous to the irregularly
elliptic equations of Serrin.

Equation (1) is said to be irregularly parabolic if

and

where l, M are positive constants, and !P is a positive continuous function
such that oo

For example, jf ê ¿ ftl when equation (1) is irregularly pa-
rabolic if

where 0 is a positive constant. Hence a uniformly parabolic equation is
irregularly parabolic if

the equation - ut = 0 is thus irregularly parabolic if fl &#x3E; 2.
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To obtain our non-existence theorem we need a variant of the maximum

principle analogous to that introduced by Serrin for a similar purpose in
the elliptic situation [7, p. 459]. Let x E BQ, and suppose N is a neighbour-
lood of x in Rn : the set aD f1 N is called a boundary neighbourhood of x,
and a subset of 9D is called open if it contains a boundary neighbourhood
of each of its points. In the following theorem will stand for an

open subset of aS2, and we shall write 81 = X (0, T).

THEOREM 16. Let C2,1 (Q U QT) n 0 (Q) be such + b)  0

in Q U QT for all positive constants b, and let 2013 = 2013 oo at each point
an

here n denotes the normal into Q. Suppose u E QT U S1) n C ( Q)
is a solution of (1) in Q such that on .~’- ~1. Then u S w in Q.

PROOF. Suppose the theorem were false. Then v = u - co must become

positive 0n Si , I by Theorem 3. But on S av - au - a oi 00, since u E
an an an

This gives a contradiction, and establishes the theorem.
The promised non-existence theorem follows.

THEOREM 17. Let Q be a bounded domain in Rn . Let equation (1) be

irregularly parabolic, and suppose 93 (,x, 0, 0, 0) = 0 for x E aS?. Therl there
exists Coo data, satisfying the consistency condition, such that the Cauchy-
Dirichlet problem (2) has no solution.

PROOF. We shall assume, without loss of generality that (20) and (21)
hold with the absolute value signs removed frome. Let P be a point of
aS~ at which there is an internally touching sphere Xc. Rn. Let the radius
of Z be 2~, let the diameter of Q be 6, and denote distance from P by r.
Put (PI x (0, T ) = Sp .

Consider the function co defined by

where h E °2 for f3  r S 8, h’ (f3) = - (b) = 0, h’ (r) S - l, M

are the quantities arising in (21). Then for any positive constant b,
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by (21). As in Serrin [7], h may be chosen so that f(m -~- b)  0 : we give
cm

the details briefly for convenience. Put

define a by

Now let h and r be parametrically related by

It is easy to verify that It (b) = 0, and

Hence -0 (co -- U) U.
Next we apply Theorem 16 to the region Q n I(x, t) : r = d (x, P) &#x3E; fl,

0  t  1’} = Q n C~ = Q~ say. = S n 10, , and let sup a1 = m. Then

by Theorem 16,

in To obtain an estimate for u at (P, t) we proceed as follows. Let
0  s and let s denote distance (in R’’) from the centre of E. Define
a function w1 by

where and hi - s) = 00, h, (fl) = 0, hi (s) h l* ~ 0.
For any positive constant b, 

1 1
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Since ela - oo as I ~ ~ 1-+ 00, there exists a positive constant If such that

eja &#x3E; 2-1 for I ~ ~ [ h li . Using ( ~ 1 ) we finally obtain

if we take I* = max (l, l1)’ Just as in the first part of the proof we may

choose h, in such a way b)  0. Now apply Theorem 16 to
the domain Q-’ = ((x, t) : r  fl, 0  t  I) n t) : s  2fl - e, 0  t  1’}.
This gives

where If we let 8 ~ 0 and use the continuity

of zc we obtain the same inequality at (P, t) for 0  t  T.

To construct data 1jl which gives rise to a contradiction we merely
need to take a Coo function V sllch that 1p = 0 on r fl ~~x, t) : x E ~, 0 ~
   ?y  Tj, == 0 onsn (x,t):r&#x3E;,0tT), y(P,t’-Ci for

T.

REMARK. The condition 03 (x, 0, 0, 0) = 0 for x E aD is imposed so that
the Coo data 1Jl which is constructed above will satisfy the consistency
condition. This condition can be relinquished if we are prepared to be
satisfied with somewhat less smooth data.
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