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In this paper we propose a generalization of the density functional theory. The theory leads to single-particle
equations of motion with a quasilocal mean-field operator, which contains a quasiparticle position-dependent
effective mass and a spin-orbit potential. The energy density functional is constructed using the extended
Thomas-Fermi approximation and the ground-state properties of doubly magic nuclei are considered within the
framework of this approach. Calculations were performed using the finite-range Gogny D1S forces and the
results are compared with the exact Hartree-Fock calculations.

DOI: 10.1103/PhysRevC.67.014324 PACS nunider21.60.Jz, 31.15.Ew, 31.15.Gy

[. INTRODUCTION to be expressed in the pointed functional form. Recently,
another approach based on the extended Thomas-Fermi
The Hartree-FockHF) method is one of the most widely (ETF, see, for instance, Rg8]) method has been proposed
used approaches in nuclear physics. It is based on the com Ref.[9].
cept of independent particle motion in a mean field produced An alternative approach to the mean-field theory, which is
by effective nucleon-nucleon forces which are generally nonwidely used in applications to electron systems, is based on
local and density dependent. In this case, one can refer to tithe Kohn-Sham(KS) [10] method within the framework of
density-dependent Hartree-Fock meth@DHF) if neces-  density functional theoryDFT). The original version of this
sary to distinguish it from the HF methab initio used in  theory(which we shall call the local DFHTwas developed in
atomic physics and quantum chemistry. The resulting equahe pioneering paper of Hohenberg and KofiK) [11],
tions of motion contain a nonlocal single-particle potentialwhere an energy functional that only depends on the local
(SPP which is determined self-consistently. Comprehensiveparticle density was considered. Later on other versions of
studies of nuclear ground-state properties within the DDHRhe DFT were propose@ee, for example, Reff12,13). In
method have been carried out with zero-range Skyrme-likgarticular, the nonlocal extension of this theory was dis-
forces (see, for example, Refs[1-3|, and references cussed by Gilbert in Ref.14] where the functional depen-
therein. The status of this problem is not the same for finite-dence on the DM was included.
range forces. The exact solution of the HF equations in this The main merit of the KS scheme is the following: it
case is not an easy task, mainly due to the nonlocality of therovides a means of obtaining single-particle equations of
SPP. For example, the complete solution of the HF equationsiotion for the local DFT. These equations contain the local
was carried out in Refl4] for finite-range effective forces mean-field potential, which must be determined self-
with a Gaussian form factor using a harmonic oscillator ba-consistently. Notice that in contrast to the approximate HF
sis. Furthermore, the M3Y effective forces with a Yukawamethod, the DFT yields, in principle, ttexactground-state
form factor were employed in Ref5] within the Campi and  energiesand the referred quantitiesf the many-body sys-
Bouyssy[6] local approximation for the single-particle den- tem. As regards the single-particle spectrum only the last
sity matrix. occupied level has the exact physical meaning of the chemi-
Thus, the problem of localization of the nonlocal SPPcal potential in the DFT, which is just the particle separation
becomes extremely important. As is well known, the nonlo-energy.
cal exchange Fock part of the SPP is determined using the There is one more important difference between the HF
nonlocal single-particle density matrioM, in the follow- and KS methods which is revealed in the applications to
ing). If one approaches the DM in terms of only local quan-nuclei. The radial-dependent effective mass and the spin-
tities such as the particle density and kinetic-energy densityorbit potential are essential components of the HF approach
the corresponding HF exchange energy becomes a functionad nuclear physics. These two quantities arise owing to the
of these local quantities. The equations of motion obtainedinetic-energy density and spin density dependence of the
from the resulting local HF functional are second-order dif-HF energy functional. However, in the original KS method
ferential equations. It is important to note that these equathe effective mass is constant and equal to the physical mass
tions do not contain any integral operators which lead toand there is no spin-orbit potential because this method starts
difficulties in the general nonlocal case. For instance, thdrom a local energy density functional. Furthermore, the
Negele and Vautherin expansion of the )F] and its modi-  spin-orbit potential at least is necessary for the realistic de-
fication by Campi and Bouyss}6] enable the HF energy scription of nuclear properties. It is possible to introduce the
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kinetic-energy density and spin density dependence of theperator is not important here. One can associate it with the
DFT energy functional formally. In this case, to derive theusual formula:
single-particle equations following the ideology of the KS

method, one assumes that any kinetic-energy density and _ NN Coul

spin density can be produced by the many-particle wave H—”% Vij Jﬂ; vijT @

function describing the noninteracting system in some exter-

nal potential with a spin-orbit component. However, in con-where

trast to the case of the local particle dengge Ref[15]),
. 2

this statemenhas not been proved T--3 h—A )
To include the radial-dependent effective mass and the T4 omT @

spin-orbit potential in a rigorous way, one would have to use
the nonlocal extension of the DFT and derive Single'particqu the kinetic-energy OperatouiNN is the bare nucleon-
equations of motion directly from the energy functional of ,;cleon (NN) strong two-particIeJ interactiony €°Y! is the

. . . . i
this theory. Hoyvever, the _stralghtforward application of thecq,10omb force acting between protons, and the ellipses de-
standard variational principle to the nonlocal energy func,yies the many-particle interactions if needed.
tional leads to serious difficulties in view of the specific  1he Hk energy functiona11], which only depends on
properties of the pseudo-Hamiltonian obtairisele Ref[14] ¢ |ocal particle density, can be defined within the frame-

for details. , work of the constrained search method as folldase, for
The main goal of the present paper is to develop theexample Refs[12,13):

modification of the nonlocal generalization of the DFT which

would be free from the above-mentioned shortcomings of the Epk[n]=infy_o(W]H| W), 3)
nonlocal theory. To this end we define an energy functional

that depends on the DM produced by a determinant wavyhere | W) is an arbitrary normalizedN-particle state. The
function (in what follows we shall refer to it as a Slater- short notatio? —n hereafter means the many-to-one map-
determinant DM. Although this DM generally does not cor- ping of the wave functio®’ (xy, . . . Xy) to the local density

respond to any interacting fermion system, we will neverthen(r), i.e., it means that the following equalities are fulfilled:
less show that the minimum of this functional coincides with

the exactground-state energy of the interacting system under n(r)=np(r)+np(r), 4
consideration. Applying the variational principle, we derive
the single-particle equations of motion which, in contrast to
the KS equations, contain a nonlocal SPP. This approach is Ng(r) =2, p(X,x), )
described in Sec. Il of the paper. 7

In Sec. Il the quasilocal reduction of the DFT is devel-

oped. Within the quasilocal DFT the energy functional de- p(X,X')ZNJ W(X,Xp, ... Xn)
pends on the local particle densities as well as orutieor-
relatedkinetic-energy and spin densities. The single-particle XW* (X Xg, + . Xn)OXo- - - dXy s (6)

equations, which are obtained by the minimization of this
functional, contain the local SPP, thencorrelatedradial-  where p(x,x’) is the single-particle DMx={r,o,q} in-
dependent effective mass, and the spin-orbit potential.  cludes the spatial and spino variables, and the index of

In Sec. IV we derive a semiclassical HF energy functionalyycleon typeq=n,p. The integration ovex includes the
within the quasilocal scheme starting from the recently prosymmation over andg.
posed expansion o_f the DM in the extended Thomas-Fermi Tpe functional3) depends on the total local densityr).
method([9]. In the fifth section we apply our method to the one can define other energy functionals which are dependent
description of the ground-state properties of some doublyjther onng(r) or even onp(x,x). The particular choice of

magic spherical nuclei. To illustrate our approach, we use thgnctional dependence is determined by the task under con-
effective two-body finite-range forces with Gaussian formgiqeration.

factors. The residual correlation term is taken phenomeno- |, the |ocal DFT the minimum of the function&y[n]

logically. The main results are given in the summary. In Ap-;q proved to be just thezue ground-state energ§gs and is
pendices A and B some auxiliary formulas for the SPP with a4iained for therue ground-state densitygs. To obtainEgg
Qaussian form factor are given. In Appendix C we describ.e @ndngs, one can use the KS method which yields single-
simple method to take into account the two-body correction, icle equations similar to the HF equations. The rigorous
of the center-of-mass motion to the binding energy. derivation of these equations is based on the following state-
ment proved by Lielj15]:
II. THE NONLOCAL GENERALIZATION OF THE DFT I n(N=0, [n(r)dr=N, [(Vn(r)dr<c, then there
exists an Nparticle Slater-determinant wave functiofi
Let us consider a system dfinteracting fermions. In the  built up from an orthonormal set of N single-particle wave
nuclear case we are interested in systems with two kinds diinctionse; :
particles, namely, neutrons and protons. Hebe the nonrel-
ativistic many-particle Hamiltonian. The explicit form of this Wo(Xq, - .- Xny)=(N! )‘1/2del{<pi(x]-)}, @)
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such that¥o—n(r). In other words there is a many-to-one ingredients of the model nuclear single-particle Hamiltonian.

mapping of N-particle Slater-determinant wave functions To include them we propose the following method based on

onto the local particle density(r). a special version of the nonlocal extension of the DFT. Let us
It is worth noting that it is not necessary for the Slater-define the energy functional

determinant wave functio®¥ to be the ground-state wave

function of some noninte_racting systerr_l. In principle, it can go[Po]Zinf«lfo—>p0<‘1’o|ﬁ|‘1’o>, (15

correspond to some excited state of this system.

Th,'s theorem enables one to dgfme the klnetllc-er?erg%here V¥, is any Slater-determinant wave function of the
functional To[ n] for a system of noninteracting particles: form (7), po is the single-particle DM produced by, ac-

Toln]=infy o(Wo|T|W,), (8)  cording to Eq(6) (i.e., the Slater-determinant DMandH is
0 an effectivemany-body Hamiltonian which generally does
and to divide the HK functionaE,,[n] into two parts: not coincide with the microscopic Hamiltoniad. In our
approach the operatét plays the role of an arbitrary refer-
Enk[n]=To[n]+W[n], (9)  ence point, the choice of which will be discussed below. We

have to note that at the present momehis an arbitrary

N-particle operator such that the matrix element in 8dp)

exists.

The functional & pg] has the form of the HF energy

functional built up on the basis of the effective Hamiltonian
N H. Thus in what follows we shall also refer to it as the HF

ng(N=2, 2 lei(r,o,q)% (100 energy functional. Let us define the residual correlation en-
=1e ergy Egc as follows:

where the energy function&l/[ n] contains the potential en-

ergy as well as the correlation part of the kinetic energy.
Since the densityn is produced by some Slater-

determinant wave function, we have from E{8)—(7)

By the same reasoning the kinetic-energy functional of the

noninteracting systert8) can be written as Erd N]=E[N]—EolA], (16)
N 42 wherei={n,,n,} and
Toln]=2 5= 2 | [Vei(roldr. (11
=1 g E[A]=infy_ (W |H| W), (17)

Notice that one could define the kinetic-energy functional on _ _
the basis of a more general setifarticle wave functions:  Ee[A]=infy _a(WolH|Wo)=inf, _ainfy ., (VolH[Wo)

Tn]=infy_ (¥|T| V). (12 =inf,,—acol pol- (18

However, this functional cannot be written in the fordd)

g ) L . Because functional&[n] and Eg[A] only depend on the
and it is thus useless in deriving KS equations. Ln] ol ] y dep

. L ? . local densityf, by definition the same is true for the func-
AppIymg the yarlatlonaL prlnC|pIe. to the. functional tional Egr[fA]. The quantityE[A] is the exact energy func-
Enx[n] with functionse;, ¢i" as functional variables, one o pyiit up with the true microscopic Hamiltonid) on
obtains in accordance with Eqgl) and (9)~(11) the follow-  {he set of any normalized wave functiofis The auxiliary
ing KS equations: functional Eq[fi] (as well as the kinetic-energy functional
To[n] in KS theory is defined according to the Lieb theorem

Nk ei=2i¢i, 13 for any (not very “bad”) local densityfi. The final energy
with functional of our version of the nonlocal DFT is defined as
%2 & pol=Eol pol+Erd NI, (19
hik= = 5=A+U(n), (14

wherep, is related toh through Eqs(4)—(6). The function-

whereU(r) = sW/én is the local mean-field potential amg ~ @ls&l pol andEr([n] are defined by Eqs15) and(16). For
are the Lagrange multipliers to ensure the normalization conthe moment we shall not speculate as to whether these func-

dition of the single-particle wave functions . tionals are known or not. The most important thing is that
Often the energy functionaW[n] is divided into two  they are rigorously defined. _ .
parts:W[n]=Ey[n]+Exc[n], whereEy[n] is the “direct” The main property of the functiond] po] is expressed by

(Hartree functional, while Eyc[n] is the exchange- the following equalities:
correlation energy functional. Consequently, the mean-field . o ] R
potential U is also divided into two parts. For the sake of inf, &l pol=infrinf, sl pol=infaE[A]=Egs, (20)
simplicity we shall not do this in the present paper.

Equation(14) does not contain either a radial-dependentwhereEgs is thetrue ground-state energy of the interacting
effective mass nor a spin-orbit potential which are essentiadystem as in the case of HK theory. It is important to note
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that our energy functionaf is not uniquely defined by Eq. Where the energy densibgc(r) is just an algebraic function
(19) and depends ofi explicitly. of the local densities. In the general case this formula is not

To obtain the equations of motion we have to suppose thdfue for th?_exacl_t| Ere) an(_jf must be Confrid?r_teq only ;'ibsl a?
the choice of the HamiltoniaHl in Eq. (15) ensures that the approximation. HOWEVEr, Il we assume that It IS possible 1o

infimum of the functionak] p,] in Eq. (20) is a minimum. In represent the function&r¢ in such a form, then one could

addition, we use the general formula for the Slater_choose the parameters and the density dependence of the
determinant DMp, which follows from Egs.(6) and (7). effective forces in the DDHF method in such a way that the

Namely DDHF energy functional would be equal to the exact DFT
' energy functionak. As a corollary under these assumptions

N the DDHF method is able to reproduce thgact ground-
po(x,X') =2 @i(X)ef (X), (21)  state energy anexactlocal particle densities.
=1

where the sum is taken over the occupied states. Applying lll. REDUCTION TO THE QUASILOCAL THEORY

the variational principle to the funCtifné[Po] defined by The approach described above enables one to introduce a
Eq. (19) and using the functiong;, ¢i" as functional vari-  reduced energy functiondly" which depends on the follow-
ables according to E21) we obtain the following set of ing set of local quantities: the local particte,, kinetic-

single-particle equations: energyr,, and spinJ, densities for neutrons and protons:
f ho(X,X") @i(x")dX’ + Urc(X) ¢i(X) =g @i(X), (22 nq(r):z J dx’' 8(x—x")po(X,x"), (26)
where we have defined the nonlocal pseudo-Hamiltohiggn
and the local potentidl ;¢ as follows: Tq(r)=2 f dX' S(x—x")(V,V,)po(x,x"), (27)
&
ho(X,x") = L’?O], (23)
Opo(X" ) J(n=i> f dX' 8(r=1")85.q/[(0) 7 o X ¥ 1po(X,X'),
SErc (28)

Urc(X)=Ugc(r,q)= (24)

ong(r) where 5(x—x")=6(r—r")d, , 64,4 » and the quantities,
It is worth noting that the occupation numbers of the Slater@nd Jq are the uncorrelated neutron and proton kinetic-
determinant DM are fixed to either 1 or 0. Thus, we avoid€Nergy and spin densities, respectively. Introducing the short

difficulties arising from the uncertainty of the occupation NOtation pou={Ny,Nn,7p,7n,Jp.Jn}, let us define the

numbers in the theory developed in REF4]. guasilocal energy functional as follows:
It should also be stressed that our approach is not aimed at oL _ c0L N
the complete description of nuclear dynamics. It only pro- Epoul=E6 Tpoul+Erd ], (29)

vides an exact description of a few ground-state characteris-

tics: the ground-state energy, and the local particle density'"®®

together with the referred quantities. For a review of nuclear oL .

many-body theories giving more comprehensive treatment of €6 Lpqll= IanO_’pQLSO[pO:l'
the nuclear dynamics, see, for example, RE8s16]. How-

ever, a discussion on the relationship between our approadnotice that the many-to-one mappipg— pq is established
and the DDHF method seems to be more relevant. As haccording to Eqs(26)—(28), and that the sefi={n,,n,}
been mentioned above, the DFT is the exact theory. It mear@t€rspq.: N€pq .

(30

that the minimum of the energy functiond] p,] (if it is From Egs.(19), (20), (29), and(30) we have
attained yields theexactground-state energy and tlegact ) oL
local particle density. Generally this is not fulfilled for the inf,, €~ 1pal=Egs: (31

DDHF energy functional. In a sense, the DDHF method can
be considered as a phenomenological realization of our noriJsing Eq.(10) and the explicit expressions for the remaining
local generalization of the DFT. In this case the contributionlocal quantities

of the density-dependent part of the effective forces to the \

DDHF energy functional plays the role of residual correla-

tion energyEgc. In most of the DDHF schemesee, for Tq(r):igl ; |Vei(r,a,q)
example, Refs[2,4]) this contribution(which is Eg¢ in our
notation) has the form

2, (32

N
J(n=12 2 ¢ (r,o",(0)er X VIgi(r,o,a),
Erdf]= [ dreqc(r), 25 33
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one can apply the variational principle to the energy func-+ional E[fi] obviously has the minimal property that is nec-
tional EQL[pQL] with ¢;, ¢ as functional variables. The essary to apply the variational principle. However, this may

resulting single-particle equations are not be true for the nonlocal energy functiod@p,] [in spite
of the fact that the equalit§20) is always tru¢ Because the

heei==eiei, (34) functional & p,] depends o explicitly [see Eqs(19) and
where (15)] one has to choosd to ensure the minimal property of

the energy functionaf] pg]. Notice that at least in one par-
ticular case, whed =T, this condition is fulfilled because
we come to the usual KS theory. Indeed, if one détsT
then ma‘:m, W,=0, and Eq.(34) coincides with the KS
52 SEQL equation. In this case the residual correlation energy func-
(36)  tional Egxd ] corresponds to the sum of the diré¢ktartree

term and the exchange and correlation energies in the KS

2

h .
Na™ _V2m§(r) V+Uy(N—iWy(n)-[VXe], (39

2mi(r) Omg(n)’

method.
S5EQt . =
Ug(N=5—, (37 Here we consider a more general case, setiirg be the
ong(r) N-particle Hamiltonian with areffective NNinteraction:
SER-
WD = 5340 38 A=T+3 oM+ S vSov. (39

7 7
These expressions are general to the exact quasilocal DFT. If 5
the DDHF energy functional were equal to the exact quasiloWe will use the effectiveNN forces enterindH in the form
cal expressionsee abovethese expressions would corre-
spond to those reported in Ref§,7]. If the functional€*" 5”’\‘:{,9 +{,iSJ.0, (40)
is known, we would be able to calculate the exact ground-
state energyEy=Egs and exact local densities;=nqs.  where the central part of the effective forces is given by
The kinetic-energy density, and spin density, correspond
to the system without correlations and do not coincide with
the exact densities in our approach. 0% =2, [Wy+b,P]—h,P—m,PIP Tun(s), (41)
The following remark is in order. As was pointed out in "
the Introduction, the energy functional dependence on the
exact kinetic-energy and spin densities could be introducedVn+Pn:Nn, and m, are the parameters of the forces (
for example, by the application of the above quasilocal re=1.2, - . .), Pij and Pjj are the spin and isospin exchange
duction procedure to the energy functional of the nonlocaPperators, andn(s) (s=r;—r;) are the radial form factors of
theory developed in Ref14]. However, the mapping of the the central part of the Qﬁecuve forces. The spin-orbit part of
Slater-determinant wave functiods, onto theexactkinetic-  the forces is chosen in the form used in the Skyrme and
energy and spin densities is not defined, in contrast to th&0gny interaction$2,4] as follows:
mapping onto the&xactlocal density, i.e., Eq932) and(33)
are incorrect for the exact kinetic-energy and spin densities. 05"=iWo( 0+ ay) - [K' X 8(ri—ry)k], (42
As a consequence, it is impossible to derive the single-
particle equations such as E¢34)—(38). wherek=1/21(V;—V;) denotes the operator acting on the
right andk’ = —1/2i(V;—V),) is the operator acting on the
IV. THE EXTENDED THOMAS-FERMI APPROXIMATION left.
IN THE QUASILOCAL DFT In our approach this natural, but particular, choicélois
. . . compensated for by the addition of the formally defined, but,
W? WQUIdJ]OW like to turn our e.lttentlon o Fhe effeptwg strictly speaking, unknown residual correlation energy
Hamiltonian H. It has beerl mentioned that its choice is Erd 1], which contains all necessary density dependence of
rather arbitrary. The operatét is confined only by the fol-  the total energy functional. In the applications of the method
lowing formal mathematical conditions. First, the energythe functionalEgr[fA] is parametrized phenomenologically
functional & has to be well defined. While the functional and the parameters are adjusted to describe nuclear ground-
E[A] is always defined, this is not the case for the function-state properties. Following this ideology the effective inter-

als & po] andEq[N]. Indeed, the matrix element of the true actions entering the operatbir are taken to be density inde-
microscopic Hamiltonian with the barBiN interactionH  pendent. The situation is quite different in the usual DDHF
over the Slater-determinant wave functions can diverge dughethod, where there are no other ingredients apart from the
to the short-range singularity of the forces, as it happens igffective forces which are taken to be density dependent in
standard many-body theory. Thus, we will use a Hamiltoniarprder to ensure nuclear saturation. Thus, we would like to
H with an effectivetwo-body NN interaction whose matrix stress that the effective interactions in our DFT approach are
elements are well defined. Secondly, the local energy funcaot exactly the same as in the DDHF theory. Therefore, the
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effective NN forces (40) enteringH could, for example, be Nucl h?
chosen as the finite-range part of the Gogny forces or the HExchZ(r)zé m
density-independent part of the M3Y7] interaction.

Let us define the densityf, of the quasilocal HF energy (an)2 1
functional E§'[pq.] as follows: +Kqfg 57 ng 36

3, 1
(fq—l) Tq—gkqnq—zAnq

Anq

R

In this equationf = f(r,kg), f(;:(afq(r,k)/ak)k:kq. The

function fy(r,k) is the inverse of the position- and
momentum-dependent effective mass and is defined in the
ETF approximation by

ESL:f dro(r). (43

According to Egs.(39)—(42) the energy density{, is de-
scribed by six terms,

IV Exeng(K)
h? =14 - Exeha T 50
Ho= g (7ot 7o) + LB LG HER 4 HE R WO R T a0
(44) Nucl

whereVEg,chq is the Wigner transform of the exchange po-
Nucl

The direct nuclear energy densify §!'°' comes from the tential in the Thomas-Fermi approximation
central part of the\NN forces and is given by

m
glurc'(r)_—J’ 5 n(r)n(r’)—(h+ E)

X[np(r)np(r/)—‘rnn(r)nn(rl)]]U(|r_r,|)- and analogously foWpyg,, with the permutation of indices
p and n (see Ref.[9] for detailg. It is worth noting that

(45  within the semiclassical ETF approximation the kinetic-

energy density is a functional of the local density. Thus, the

Vil (k)= f dse % (8)[ Xeany(1)]1(kpS)

+XeaNn(N]j1(KnS)] (51)

The density of the Coulomb direct energy is energy functional obtained would only depend on the local
) particle density and spin density. However, it was found in

7 Coul(r) = f ,Mp(N)Np(r’) (46) Ref.[9] that the use of the quantal kinetic energy in E$),
T gir lr—r'| ' which vyields the radial-dependent effective mass, signifi-

cantly improves agreement with results of the full HF calcu-
These direct energies give the contribution to the so-calle¢dtion. This has led us to use the ans€2) for 7, in the
Hartree functional. Up to now we have developed ¢ivact ~ present paper.
theory. In the following step we will make some approxima-  The Coulomb exchange energy consists of the Slater term
tions that are similar to those used in R¢&7). To calculate  and the second-order correction, which in the ETF approxi-
the exchange terms that come from the central part oRfde ~mation, is written a$9,18|
forces we use the recently proposed ETF approximation for

the DM up to%? order[9]. Notice that there are other pos- 2 Coul 3(3 B 7 (Vnp)?
sible options to obtain the quasilocal energy functional based H Exen(N) =~ i P 432m(372) Y3 43
on the Negele-Vautherin and Campi-Bouyssy DM expan- P (52)

sions[5-7]. In our approach for spin-saturated nuclei the
nuclear exchange energy density is given by two terms,  Finally, the spin-orbit energy density is given by
HExcn= M Exenot M Exchz- (47) 1
H3(r)=— EWO[n(r)VJJr Nn(NVIn+np(r) V],
The first term is calculated #° order(which corresponds to (53)
the Slater approximation for the DM
1 whereJ=J,+J,.
g Nucl 2 2 It is important to point out that in this section we replace
r dsv(s)| = Ng(r)j1(KyS) p p p
HExchd1) = f ( : a2 [Na(Nfa(ked)] the exact quasilocal function&f" by the approximate func-
tional calculated within the ETF approximation. The differ-
+ XN (D] 1(koS)No(N]1(koS) |, (48) ence _between_ them gi\_/es a very small contribu(me the
2Mn(Da(kaS)np(N]alkp following section$, but it cannot be totally included within
A the residual correlation term because this difference depends
whereky(r) =[372ny(r)]** is the Fermi momentumj,y(x) ~ on thepg, (due to ther,, 7,, J,, andJ, dependencies
=3j1(X)/x, j1(x) is the spherical Bessel function, aXd;  while the latter only depends on tlie
=m+h/2—b—-w/2, X,,=m+h/2. The second term corre- The formulas(45) and (47)—(51) are valid for any radial
sponds to thei? correction: form factorv (s) of the central part of the effective forces. In
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this paper we use the effective interaction with a Gaussianiew, an effective interaction could be derived fronGana-

form factor. The reason for this is the following. It was trix calculation, as in the case of the density-dependent M3Y
pointed out that under some assumptions the DDHF energfprces used in Ref[5]. However, the contributions of the
functional may coincide with the exact DFT functional. different spin-isospin channels to the binding energy of
Thus, if the effective forces, which provide a sufficiently nuclear matter calculated with the Gogny D1 forces com-
good description of the nuclear ground-state propertiepared with the same values obtained with the Brueckner-
within the framework of the DDHF approach, are knoyas  Hartree-Fock theory with a realistic two-body interaction
in the case of the Gogny forcest is reasonable to use them show reasonable agreement in the even pa&ts(Q, T=1

to construct the energy function&in our theory. The DDHF andS=1, T=0) at least for momenta from zero to 1.5 Tt
effective forces can be split into two parts: the density-(see Fig. 1 of Ref{4]). Although these forces are phenom-
independent and the density-dependent expressions. The fietological, they can be considered to be a reasonable param-
part can be used to construct the HF energy functidpalf  etrization of theG matrix which provides the correct satura-
our theory. The functionaEgc is then simply the DDHF tion propertie§4]. On the other hand, a study of the equation
energy functional calculated with the density-dependent panf state for cold asymmetric nuclear matt2@] shows that at

of the forces. In the applications of the method, which ardow densities and moderate asymmetries, which are relevant
presented in the next section, we employ the well-knowrfor the description of terrestrial finite nuclei, the Gogny D1
parameter set of the D1S Gogny fordd®] which is suc- forces agree reasonably well with the results obtained with
cessfully used in the DDHF calculations of the nuclear propthe realistic UV14-TNI interaction [21], although agree-
erties. The radial dependence of the Gogny forces is detement fails at high densities and asymmetries.

mined by the Gaussian form factor, which explains our
choice. These considerations enable the use of the density-
dependent part of the Gogny forces in order to approximate
the residual correlation energy entering our energy func- In this section we check our quasilocal DFT approxima-
tional. We therefore takBg in the form of the phenomeno- tion as compared with the full DDHF method using finite-

V. NUMERICAL RESULTS

logical ansatz range Gogny forces. First of all, we compare the exact HF
ground-state binding energies as well as the rms radii of the
. 13 o 2 neutron and proton densities of some magic nuclei computed

Erdh]= ZJ drn*(r{(2+xg)n"(r) with the Gogny D1S forcefgl 9] with our DFT results. In this

) ) comparison we use two different quasilocal functionals:
—(2x3+1)[ng(r) +ny(r)1}. (54 DFT-4°, where the exchange energy coming from the finite-
) ) S range part of the interaction is taken at a pure Thomas-Fermi
Although this form is probably too simplistic, it enables the |g\e| (Slater approachand DFT#42, where the ETH:2 con-
saturation mechanism to be reproduced. We also would likgiphytions have been added to the Slater part. Notice that in
to point out that the formuléBfl) is a standard ansatz which his DFT#2 approach the semiclassical kinetic-energy den-
does not only enter the density-dependent part of the Gognyiry entering Eq(49) has been replaced by the corresponding
forces, but is also used in, for example, the densityquantal density for reasons pointed out above. In both DFT
dependent part of the Skyrme forces. The explicit expresgg|cy|ations we solve the local Séliinger Eq.(34) for neu-

sions for the above-defined energy densities and f<2)r the SRfons and protons with the potentials and effective masses
in the case of a Gaussian form factd(s) = exp(-s7/a’) are reported in Appendix A. Table | collects all these binding
given in Appendix A. N energies and radii which have been computed taking into
The parameters enterirtzc andH should be chosen in  account the two-body center-of-mass correction. In our cal-
such a way that our quasilocal ETF approach would reproeulation we take into account this correction as explained in
duce finite nuclei experimental data. However, in the numeriAppendix C. We would like to say in passing that the nu-
cal applications of our model presented in this paper, thenerical value of this two-body center-of-mass correction
parameters;, X3, anda in Eq. (54) together with the pa- along the whole Periodic Table is very well reproduced by
rameters of the effective two-body Hamiltonigh are cho- using the pocket formula based on the harmonic oscillator
sen to be equal to the corresponding parameters of the safnd derived in Ref{22].
D1S. In this way, rather than reproducing the experimental From Table | we can see that the DET-binding energies
data in the best way possible, we are examining whether oueproduce the HF values fairly well. The differences between
quasilocal ETF approach is able to reproduce the full DDHFHF and DFT#? are smaller than 1% for all the considered
results obtained with the D1S forces. nuclei from 4°Ca to 2°%b and in the case dfO the relative
The Gogny forces are purely phenomenological in thedifference is only 1.8%. The DFA? binding energies show
sense that these interactions have a predetermined fortarger discrepancies with the full HF results. The relative
whose parameters are fitted to reproduce global properties differences range from 7% 0 to 1% in the heaviest
nuclei and nuclear matter. The Gaussian form factor is chonucleus considered?®®h. As regards the rms radii of the
sen due to its computational advantages in the full DDHFeutron and proton densities, the full HF values are again
calculations of deformed nuclei. However, these forces sibetter reproduced by the DFi* approximation than by the
multaneously provide a good description of the mean-fieldFT-%° approach. These results show the importance of the
and the pairing properties. From a more fundamental point of? corrections in the local approximation to the HF exchange
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TABLE I. Total binding energie® (in MeV), neutronr,, and 12 L ! : 1
protonr, rms radii(in fm), and separation energies of neutr@s -
and protonsS, (in MeV) of some magic nuclei computed with the 7 10 -
D1S Gogny forces using the DFi? and DFT42 approaches com- £ “Ca, neutrons
pared with the full HF results. :' 81 N
o — HF
0  Oca “ca %9zr ¥ 20%pp Z 61 -
0 > ----— DFT-#2
B DFT-# 120.2 329.6 407.5 7721 1092.9 1623.3 2 4 L
DFT-#2 127.3 3419 4150 7839 1101.2 1636.6 2 """" - DFT-4°
HF 129.6 344.6 416.7 785.6 1103.0 1638.9 8 2 I~
experiment 127.6 342.1 416.0 783.9 11029 1636.4
r, DFT#° 272 341 362 429 487 559 od z 7 ' ' o
DFT-#2 269 339 361 428 486 5.58 r (fm)
HF 265 337 358 4.27 4.84 5.57
o DFT-#° 275 346 347 4.24 4.66 5.44 12 L L 1 L
DFT-#2 271 344 346 4.23 4.66 5.44
HF 267 341 344 421 4.65 5.44 10 -

Sh DFT4° 1220 1321 931 11.87 7.49 7.45

“Ca, protons
DFT-#? 1455 1536 9.52 12.02 7.59 8.03

HF 1508 16.04 9.66 11.88 7.68  7.80 —— HF i
experiment 1566 15.64 9.95 1197 7.31 7.37 -———— DFT—#2

S, DFT#° 898 643 1407 743 1552 817 4- a
DFT#2 1124 845 1651 825 1594 929 @& |  \ .. - DFT—4°

HF 1253 9.27 17.09 8.36 16.23 951
experiment 12.13 8.33 1581 8.36 1534 8.01

Density (1072 fm™)
(o]

4 6
r (fm)
energy. It should be pointed out that the eigenvalyes Eq.
(34) have no rigorous physical sense in the DFT except for FIG. 1. Neutron and proton densities of the nuclé®@a calcu-
the energy of the last filled level, which corresponds to theated with the D1S Gogny forces using the DET{dotted liney
neutron or proton separation energghemical potential and DFT#2 (dashed linesapproaches compared with the full HF
Table | also displays the neutron and proton chemical poterdensities(solid lines.
tials obtained using the DFT?, DFT+#2, and HF approxi-
mations. The DFT:? chemical potentials differ from the HF the DFT density follows the full HF density profile very
chemical potentials by less than 1 MeV, while the shift ofwell, although a small shift between the full HF and DFT
the DFT#4° separation energies with respect to the full HF proton and neutron densities appears in this central region.
values is larger and can be approximately 3 MeV for lightThese differences can be attributed to the fact that our DFT
nuclei. description of thes orbitals, whose wave functions mainly
It is important to note that the agreement of the proposegrovide the proton and neutron densities at the center of the
DFT approximations with the full HF results is determined nuclei, show some small differences with the corresponding
by the treatment of the nonlocal effects. The contribution ofHF s orbitals. Comparing the DF#® and DFT#? densities,
the pointed effects can be quantified in terms of the effectivét can be seen that by including th€& contributions in our
mass in nuclear matter. The results of Table | show that folocal approximation, we obtain better agreement with the full
effective forces with an effective mass of approximately 0.7, HF densities.
as in the case of the Gogny force&3], the nonlocal effects Figure 3 displays the radial dependence of the neutron
can be very well accounted for by the DET-functional ~ and proton effective masses calculated with the BEBp-
proposed in this paper. However, for forces where the nonproach[see Eq.(A13)] for the 2°Pb nucleus(solid lines.
local effects are larger, the result of our DE¥-approxima-  Because there is no explicit radial-dependent effective mass
tion is worse when compared with the HF results, but is stillin the full HF calculation of finite nuclei using the Gogny
better than other suitable choices of the exchange-energy Iferces, we compare the DFIZ results with the neutron and
calization such as the Negele-Vautherin or Campi-Bouyssyroton effective masses obtained using the Skyrme Sl
approachessee Ref[9] for more details on this poiht forces[24] (dashed lines We find that the DFT? results
Figures 1 and 2 display the neutron and proton densitieexhibit similar trends to those of the Skyrme effective
for “°Ca and?°%b obtained using the D1S forces in the full masses. The differences between the two calculations are ba-
HF (solid lineg as well as in the DF%? (dashed linesand  sically due to the different values of the nucleon effective
DFT-4° (dotted lineg calculations. The DFT proton and neu- mass in nuclear matter which are&/m=0.70 for the Gogny
tron densities nicely reproduce the surface and the tail of th®1S forces anan*/m=0.76 for the Skyrme SlII interaction.
full HF densities. In the region near the center of the nuclei, The neutron and proton SPP of the nucléd®b calcu-

10
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12 1 1 1 1 1 [l 1 1.1 1 | 1 1 1
%10 - 1.0
E 208ph  neutrons
8- - 0.9- »on .
o HF g Pb, neutrons
e 6+ L ~ 084 o ___._ -
o o DFT—#2 —— DFT-#?2
> - B 07- -
74 i ' ----~ SIII
@ |\ _...... _ _¢0
g DFT-4° | 0.6 I
(]
0 S A S — %03 4 8 8 ® © w
0 2 4
: (frsn ) 10 12 14 r (fm)
12 | \ . \ . . . 1'1 1 i 1 1 1 1 1
1',;10_ i 1.0
N 208py.  protons 0.9 / -
o 8- P - H 2%ph, protons
' —— HF ~. 0.8 ;
2 6+ R I S —— DFT-#2
----- DFT-#? TN
2 41 I 07 -~ SIII
- - DFT—4° 0.6 -
O 2 L
= 0.5 ; , ; : . ; l
0 : : : . : : , 2 4 6 8 10 12 14
0 2 4 6 8 10 12 14 r (fm)

r (fm)
FIG. 3. Radial dependence of the neutron and proton effective
FIG. 2. Same as in Fig. 1 for the nuclet®Pb. masses of the nucleu8®Pb calculated with the D1S Gogny forces
using the DFT%? approach(solid lines compared with the corre-
sponding HF effective masses obtained with the Skyrme SllII forces

. . -2 . .
lated within the framework of the DFI< approximation are (dashed lines

presented in Fig. 4. The contributions of the direldt'g‘(‘r‘fg

Nucl P f

and exchange Ueycng) nUCIEar potentials are @sp_layed. tonian which ensures its existence. This feature of nucleon
Note th_at the total S.PBq aIso_mé:Icudes th‘? contribution of systems arises from the specific properties of the Ibxe
the residual correlation potentitll; ~ according to EQ(A4).  f5ces in contrast to the Coulomb force in electron systems.
The re;ults show th{:\t contrlbgtlons from the direct nuclearln our approach the total energy functional consists of the HF
and residual Correl_atlo_n potentials are large, whereas the_re Bart and the residual correlation energy. The HF energy func-
only a small contribution from exchange nuclear potentialjona| can be calculated directly, while the residual correla-
This is due to the particular structure of the Gogny forcesyjon energy is considered phenomenologically. Using the re-
Modgarn effethe interactions derived from a.Brueckner Ca"cently proposed semiclassical ETF approximation for the
culatlon[S] give a strong exchange contribution when com-p\ [9], we obtain a quasilocal energy density functional
pared with the direct part. which only depends on the local particle, kinetic-energy and
spin densities. The resulting single-particle equations of mo-
tion contain the local mean-field potential, the uncorrelated
effective mass, and the spin-orbit potential. Using the finite-

In the present paper we propose a nonlocal extension gainge density-dependent Gogny forces they are calculated
the DFT and its quasilocal reduction. To this end we defineanalytically. The use of the different effective forces such as
an energy functional which depends on the SlaterM3Y will be reported in the future.
determinant DM where the occupation numbers are either 1 Our method has been used to calculate some nuclear
or 0. This enables us to avoid the difficulties of the nonlocalground-state properties using the Gogny D1S forces and our
DFT reported in Ref[14]. Defining the uncorrelated kinetic- results are compared with those of the exact HF calculations.
energy densities and spin densities, we construct the quasildery good agreement is obtained in the description of the
cal energy functional and rigorously derive the single-binding energies and root mean square radii. The single-
particle equations with the radial-dependent effective masparticle energies of the highest occupied neutron and proton
and the spin-orbit potential. levels in the full HF calculation are well reproduced by our

In order to define the energy functional of the Slater-local approximation. The particle densities are also in good
determinant DM one has to introduce an effective Hamil-agreement with the exact HF densities. The radial-dependent

VI. SUMMARY
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0 APPENDIX A
— In this appendix we present the formulas for the energy
> —50 1 B densities and for the SPP in the case of the single Gaussian
= form factorv (s) = exp(—s%/a?). Assuming spherical symme-
:_100 i | try of the particle densities, we obtain from EqgL5)
8 and (48)
=
2150 -
2
o Nucl It (I‘—I’ )
=¥ H pir (r)—— dr r'y ex >
—200 A B a
0 (r+r")? b ,
—exp - +5n(rn(r’)
0
h+ o > | [np(r)np(r ’)+nn(r)nn(r’)]],
> —50 1 -
v
= (A1)
—~—100 -
©
ot 2 \/;
- g Nuc! _ NT 3.3
5-150- I H Excnol 1) = S,Zasf elg { 5 a’kierflaky)
o
& 200 a%k; » 3a%k;
- T T T T 1 T + T_ exq_a q)_T+l
0 8 10 12 14
r (fm \/;
(fm) +Xe2 ;1 7 733(kn+ 7Kp)
FIG. 4. Neutron and proton single-particle potentials of the e
nucleus ?%Pb calculated with the D1S Gogny forces within the . a
framework of the DFT? approximation: the total SPB, without X (Kn+ kp_ ﬂknkp)erf E(kn‘*' 77kp)
the Coulomb contribution for protongsolid lineg, the direct
nuclear SPFUB,“rCf1 (dashed lines and the exchange nuclear SPP +(a2(kﬁ+ kg_ ﬂknkp)—z)
ug;g;q (dotted line$. See Eqs(A4)—(A8) for details.
2
a
xexr{—z(kﬁ nkp)z)”. (A2)

effective mass and SPP have also been analyzed within our

approach. . . The second-order correction to the exchange nuclear energy
In conclusion, our approach has the following advantagesdens'ty(49) can be rewritten in the following way:

it handles local differential equations in contrast to the inte-
grodifferential equations in the HF approach and the quality

of the obtained results is sufficiently high; our method en- HNue )= 2
ables one to construct a quasilocal energy density functional HExchz

on the basis of effective forces with arbitrary radial form
factors; and the method can be straightforwardly generalized
to the nonspherical case.

3 1
Tq 5 q ZAnq
1(Vny? 1

q 2—7—nq - %Anq”, (A3)

+G

where the explicit formulas for the functiors, and G in
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_r1\2
B.“flq(r)——f dr'r [ r{—(r a;) Ugs(n = ejdr (T )| (A9)
(r+r")? . ’ 3
B 2/ VS (1=~ | (1) (A10)

Ng(r)|.

(A5) Including the#? correction to the Coulomb exchange energy
[second term in Eq52)] in the SPP leads to the unphysical

. . behavior of the potential at—ooc. Its contribution to the
The exchange nuclear potential consists of two parts follow

. ) binding energy is thus calculated as a perturbation.
ing Eq. (47): The contribution of the spin-orbit energy to the SPP is
given by
UBiieha=UBiiehao™ Ubkehaz: (6)
1
where, for example, the Slater part of the exchange SPP act- Ug’=— EWo(VJJFVJq)- (A11)

ing on the protons is given by

Finally, the contribution of the residual correlation energy
T Ierf(ak,) into the SPP is defined by Eq87) and(54). Thus according
P P

2
uhus = ————1 X a .
el 2 to the notation(A4) we have

E ,0
LN

2)2 22 2,2
+akpexp —akp) —a‘k

t
UGo=7n" H(2+ a)(2+xg)n

7 perf >

VT a3 a(kp+nkn)) —(2xg+ D[a(ni+nd)+2ngn]}t.  (A12)

+2Xe 2 7
n=*1

The radial-dependent effective maeé(r) and the form fac-
(A7) tor Wy (r) of the spin-orbit potential are defined according to

1 a?
+ —azkf,exp( — 7 (kpt 7k,)?

2 Egs.(36), (38), (43), (44), (53), and(A3) by the relations
For the second-order contribution to the exchange SPP, we %2 42
have =—+F,, (A13)
2mi(r) 2m ¢
1 3G,
yNuel - _ -2} — Fp(T ——k2 ) _GP 1
Exehp.2 kp| PLTPT R T 57 k2o P W() = 5Wo(Vn+Vng). (A14)
(Vnp)2 1/[8G, o _ ) )
38l 2 +Gp+9Fp | An, A similar expression for the radial-dependent effective mass
P Ko (A13) also appears in the independent particle Hamiltonian
3 Vno? 1 obtained in Refs[5,7].
+FBl 7,— =k?n, +—Gﬁ( i - —(GF
5 27 n, 36
APPENDIX B
+9FP)An, | — 272k p(Vnp)(Vnn) —|:p|<'2J In this appendix we present the explicit expressions for
n np

the functionsF,, G, Fg', Gg', AF,, andAG, calculated
with a Gaussian form factor. These functions are used to
- ZAFp_ %AGp, (A8) obtain the second-order contributions to the exchange
nuclear energy densityA3) and the corresponding SPR3).

) ) In the following, with the exception of Eq$B4) and (B5),
where the functiongg , G , AF,, andAG, used in Eq.  we assume thay’ #q:

(A8) are given in Appendix B. The formulas for the Slater
and#? contributions to the nuclear exchange potential acting

2 Z2 ZZ
on neutrons are obtained by replacimdpy p andp by nin Fq=— a_{ xelzgexr{ — _q) Ql<_q)
Egs. (A7) and (A8). 2\m 2)7\ 2
The Coulomb direct and exchange potentials, entering Eq. 5 2
(A4), are only not equal to zero for protons. In the explicit X7 _ Ztzy ZgZq’
2Z,eX Q: , (B
form we have 4 2
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2 2 2 2
a Z yA z
— 2 3 q q 2 q
oz oo - 5ol )3
2 2
4tz ZqZyr
3 q
+Xezzq,ex;{ - kil Ql( q2q )
ZoZyr
~24Q; —5+ ] (82)

wherez,=ak, and the function®(x) are defined by

()= 2.

X mE1Tox  dx

1 dQn(x)

The functionng', Gg', Fg'q", and Gg'q" (the last two
functions needed to obtaiaF, and AG,, see below are

defined as
, 1 oF .. J°F
Fi=——1, Fl9=—— (B4)
kq/ aqu aqu&kqn
2
o ian aq -Gy
Gq - ] q - ’ (BS)
Kgr 9Ky IKgr IKgr

and their explicit form is

a.4
Fi=— m{zxeleqzq[(s— 22)Q1(Xq) +2gQa(Xg)]

+Xez€0Z5 [ 2/ Q2(X0) ~ Qu(X0) 1}, (B6)
qa' — a* 2 2.2
Fo=— mxezeozq'[(G_qu)Ql(X0)+ZqurQ2(Xo)],
(B7)

qq 2’ z g
Fa'== 8\/;{4Xeleqzq[(2_zq)(3_ 223)Qu(Xq)

—24(1+223)Qa(xq) |~ Xeo®oZy [ (2— 24— 23,)

X Qu(Xo) + 22, (4+25)Qa(X0) 1}, (B8)
vq & a2 22 4
Fq ' = ﬁxezeozq,[(m 14zq,+zqzq,+zq,)Q1(xo)
+22§z§,(2—z§,)Q2(x0)], (B9)
4

’

Fad =a—xezeozqzz,[(6—222/)Q1(Xo)
8\ ; ‘

+25,(25+20)Qa(X0) ], (B10)

— . (B3)
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q at 3 2 2
GqZﬁ{ZXeleqzq[(S—22q)Q1(xq)+zq(3
+225)Qa(Xq) 1+ Xea€0Zg [ (4= 25— 22/) Qi (Xo)
+22;,(3+2)Qa(X0) 1}, (B11)

, at
GY =——X_,e,2%2,[(6—22%, X
q 8\/; eZqu[( q)Ql(O)

+25,(25+20)Qa(X0) ], (B12)
a4

Gl=———[8Xe18,23 (10— 722+ 220) Q1(Xy)

16\
—25(6+ 25+ 224) Qa(Xg) ]

3 2
+ Xez€0Zq [ (8~ 1025+ 4z,
+ 3z§zé, +24)Q1(Xo)

— 22, (48+ 1023+ 2370, +323)Qa(X0) 1}, (B13)

4
a
aaq __ = 2 _ 2 4 2.2
q —16\/;Xezeozqzq,[(24 222q,+32q,+zqzq,)Ql(xo)
+22,(422+ 22, — 3222, — 7°,) Qu(Xo) ] (B14)
qr q qr q qr qr 2\A0/ 1
, a 2 2 a2 2.2 , .4
qa’ __ < 62—
Gq 16\/;Xezeozqzq,[(24 6z, 82q,+32qzq,+zq,)
X Qu(Xo) + 25, (425~ 625, — 32572, — Z4) Qa(X0) ],
(B15)

where zg=aky, Xq=25/2, Xo=2yZ,/2, €q=exp(-x;), and
€= exp(=(X,+x,)/2). Finally, AF, andAG, are given by

(Vng)?

AF, =T L (paasope (VM0 | ey
=3 i |(Fd q) Ng g2 Mg

Kq

(Vng)

1 2 )
+— +3Fg Ang

qr

a'q’" _opd’
(Fq 2F, )

Ny
2
+

FI9(Vng)(Vng) |, (B16)

21,2
K2KZ,

77_2

AGQZ?

(Vng)?
k—q[(GgQ— 2Gg)n—q“ +3GJAn,

(Vng)?

n

1
+_
q/

a9 _ o9’ q’
(Gq ZGq ) +3Gq Ang

ql
672 aq’

+ 55 Gy (Vny)(Vng:)
quq/

. (B17)
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APPENDIX C self-consistent approach we have to add the nonlocal opera-

c.m. H H H H
In this appendix we briefly describe the method to calcu o’ Kzgq 10 the single-particle kinetic-energy operator. Thus
he total correction td is

late the center-of-mass correction to the ground-state energy.
As is well known, the general idea consists of subtracting the 5
p

quantity L (9
2mq 2m1 q

2

PZ
2M

Ec'm':<\yg-s q’g-s-> (€D In the local or quasilocal DFT and in similar approaches

nonlocality ofK5g" in Eq. (C9) leads to unpleasant difficul-
from Egy . HereP is the total momentum operator, atlis  ties. We therefore use the simplified method, proposed in
the total mass of a nucleus. Usually the quanfy™ is  Ref.[25], in which we take the contribution of the operator
represented as a sum of two terms: >4 in the single-particle equations into account.
Let us write the density matrig, in the form

whereE‘jm.' is the one-body angs™ is the two-body center- Pl r’)=2f dk (R, k)elks, (C10
of-mass kinetic energy. The quantig;™ is defined by the 3
following formulas:
whereR=(r+r")/2, s=r'—r, andny(R, k) is the momen-
1 tum distribution function. The approximation consists of re-
E{M= Z Efq Ei'_g“:mSp(pzpq), (C3  placing the functiom,(R, k) in Eq.(C10 by some effective
constant valueng™. Substituting Eq(C10 with ny(R, k)

where in accordance with the definitidf) the following =ng™ into Eq. (C8) we get
notation is introduced:

Rc.m.:ﬁc.m.

¢ (C1

=3,

Pa=po(rr)=2 p(rog, r'0a).  (CH

The value ofn™ is defined by the substitution &5" into

Heremafter the symbol' Sp dgnqotes the trace.over the s;?acﬁq_ (C7) instead omg;g“-. Taking into account Eq$C3) and
variables. The subtraction &;™ leads to the simple renor (C11) we obtain

malization of the nucleon mass in the single-particle Hamil-
tonianhg: mg—myq,
M= —EST/ES . (C12
my o /mg=M/(M—mg). (C5)

The quantitie€ 7" andE5 " are defined everywhere by Egs.
The most reasonable method for the evaluation of the quanC3) and(C7) which can be rewritten in the following forms
tity E5™ is the Hartree-Fock approximation for the ground- making use of Eq(21) for the Slater-determinant density
state wave functionV s in Eq. (C1). In addition, we adopt matrix:
the following approximation for the single-particle DM:

2 N
1 cm_ ) 2
p(ro.d, 1,0",0)=58,,,pq(rr').  (CH) TR fd”v“"(r' o % (€19
With these assumptions we have N N
h?
1 2q__m22 E dr(P|(r g, Q)
= i’=l o
ES™=2 E5q.  ESg=—5SHKSTpy),  (C7) ,
q 2
XV (r, o, q) (C19

where the single-particle operati; " is defined as

It is easy to prove, using EqEC13) and(C14) and the com-
(c8) pleteness of the set of functiors, that|E54'|{<|E7q{ and

1
cm_
2a = o PPaP- consequently

In contrast to the one-body contribution, the subtraction of e
ES™ leads to additional nonlocality in thie,, since in the 0<ng <1 (C1H
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One can also prove that in the limiting casﬁ"("—@ and The total center-of-mass correctionttgin this method is
ASM_.1) the action of the approximate operato§™ upon reduced to the renormalization of the nucleon mass, as in the
q

q _ .
the wave functions of the occupied orbitalscoincides with one-body case:

the action of the initial operatdt5 4" as defined by EqC8). ’ ,
Thus Eq. (C11) can be conS|dered as the interpolation p__} p_, Mg _ M . (C18
formula. 2Mg  2m," Mg M+ (2ng™—1)m,
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