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Quasilocal density functional theory and its application
within the extended Thomas-Fermi approximation
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In this paper we propose a generalization of the density functional theory. The theory leads to single-particle
equations of motion with a quasilocal mean-field operator, which contains a quasiparticle position-dependent
effective mass and a spin-orbit potential. The energy density functional is constructed using the extended
Thomas-Fermi approximation and the ground-state properties of doubly magic nuclei are considered within the
framework of this approach. Calculations were performed using the finite-range Gogny D1S forces and the
results are compared with the exact Hartree-Fock calculations.
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I. INTRODUCTION

The Hartree-Fock~HF! method is one of the most widel
used approaches in nuclear physics. It is based on the
cept of independent particle motion in a mean field produ
by effective nucleon-nucleon forces which are generally n
local and density dependent. In this case, one can refer to
density-dependent Hartree-Fock method~DDHF! if neces-
sary to distinguish it from the HF methodab initio used in
atomic physics and quantum chemistry. The resulting eq
tions of motion contain a nonlocal single-particle potent
~SPP! which is determined self-consistently. Comprehens
studies of nuclear ground-state properties within the DD
method have been carried out with zero-range Skyrme-
forces ~see, for example, Refs.@1–3#, and references
therein!. The status of this problem is not the same for fini
range forces. The exact solution of the HF equations in
case is not an easy task, mainly due to the nonlocality of
SPP. For example, the complete solution of the HF equat
was carried out in Ref.@4# for finite-range effective forces
with a Gaussian form factor using a harmonic oscillator
sis. Furthermore, the M3Y effective forces with a Yukaw
form factor were employed in Ref.@5# within the Campi and
Bouyssy@6# local approximation for the single-particle de
sity matrix.

Thus, the problem of localization of the nonlocal SP
becomes extremely important. As is well known, the non
cal exchange Fock part of the SPP is determined using
nonlocal single-particle density matrix~DM, in the follow-
ing!. If one approaches the DM in terms of only local qua
tities such as the particle density and kinetic-energy den
the corresponding HF exchange energy becomes a funct
of these local quantities. The equations of motion obtain
from the resulting local HF functional are second-order d
ferential equations. It is important to note that these eq
tions do not contain any integral operators which lead
difficulties in the general nonlocal case. For instance,
Negele and Vautherin expansion of the DM@7# and its modi-
fication by Campi and Bouyssy@6# enable the HF energy
0556-2813/2003/67~1!/014324~14!/$20.00 67 0143
n-
d
-
he

a-
l
e
F
e

-
is
e

ns

-

-
he

-
y,
al
d
-
a-
o
e

to be expressed in the pointed functional form. Recen
another approach based on the extended Thomas-F
~ETF, see, for instance, Ref.@8#! method has been propose
in Ref. @9#.

An alternative approach to the mean-field theory, which
widely used in applications to electron systems, is based
the Kohn-Sham~KS! @10# method within the framework of
density functional theory~DFT!. The original version of this
theory~which we shall call the local DFT! was developed in
the pioneering paper of Hohenberg and Kohn~HK! @11#,
where an energy functional that only depends on the lo
particle density was considered. Later on other versions
the DFT were proposed~see, for example, Refs.@12,13#!. In
particular, the nonlocal extension of this theory was d
cussed by Gilbert in Ref.@14# where the functional depen
dence on the DM was included.

The main merit of the KS scheme is the following:
provides a means of obtaining single-particle equations
motion for the local DFT. These equations contain the lo
mean-field potential, which must be determined se
consistently. Notice that in contrast to the approximate
method, the DFT yields, in principle, theexactground-state
energies~and the referred quantities! of the many-body sys-
tem. As regards the single-particle spectrum only the
occupied level has the exact physical meaning of the che
cal potential in the DFT, which is just the particle separati
energy.

There is one more important difference between the
and KS methods which is revealed in the applications
nuclei. The radial-dependent effective mass and the s
orbit potential are essential components of the HF appro
in nuclear physics. These two quantities arise owing to
kinetic-energy density and spin density dependence of
HF energy functional. However, in the original KS metho
the effective mass is constant and equal to the physical m
and there is no spin-orbit potential because this method s
from a local energy density functional. Furthermore, t
spin-orbit potential at least is necessary for the realistic
scription of nuclear properties. It is possible to introduce
©2003 The American Physical Society24-1
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kinetic-energy density and spin density dependence of
DFT energy functional formally. In this case, to derive t
single-particle equations following the ideology of the K
method, one assumes that any kinetic-energy density
spin density can be produced by the many-particle w
function describing the noninteracting system in some ex
nal potential with a spin-orbit component. However, in co
trast to the case of the local particle density~see Ref.@15#!,
this statementhas not been proved.

To include the radial-dependent effective mass and
spin-orbit potential in a rigorous way, one would have to u
the nonlocal extension of the DFT and derive single-part
equations of motion directly from the energy functional
this theory. However, the straightforward application of t
standard variational principle to the nonlocal energy fu
tional leads to serious difficulties in view of the speci
properties of the pseudo-Hamiltonian obtained~see Ref.@14#
for details!.

The main goal of the present paper is to develop
modification of the nonlocal generalization of the DFT whi
would be free from the above-mentioned shortcomings of
nonlocal theory. To this end we define an energy functio
that depends on the DM produced by a determinant w
function ~in what follows we shall refer to it as a Slate
determinant DM!. Although this DM generally does not co
respond to any interacting fermion system, we will nevert
less show that the minimum of this functional coincides w
theexactground-state energy of the interacting system un
consideration. Applying the variational principle, we deri
the single-particle equations of motion which, in contrast
the KS equations, contain a nonlocal SPP. This approac
described in Sec. II of the paper.

In Sec. III the quasilocal reduction of the DFT is deve
oped. Within the quasilocal DFT the energy functional d
pends on the local particle densities as well as on theuncor-
relatedkinetic-energy and spin densities. The single-parti
equations, which are obtained by the minimization of t
functional, contain the local SPP, theuncorrelatedradial-
dependent effective mass, and the spin-orbit potential.

In Sec. IV we derive a semiclassical HF energy functio
within the quasilocal scheme starting from the recently p
posed expansion of the DM in the extended Thomas-Fe
method@9#. In the fifth section we apply our method to th
description of the ground-state properties of some dou
magic spherical nuclei. To illustrate our approach, we use
effective two-body finite-range forces with Gaussian fo
factors. The residual correlation term is taken phenome
logically. The main results are given in the summary. In A
pendices A and B some auxiliary formulas for the SPP wit
Gaussian form factor are given. In Appendix C we describ
simple method to take into account the two-body correct
of the center-of-mass motion to the binding energy.

II. THE NONLOCAL GENERALIZATION OF THE DFT

Let us consider a system ofN interacting fermions. In the
nuclear case we are interested in systems with two kind
particles, namely, neutrons and protons. LetH be the nonrel-
ativistic many-particle Hamiltonian. The explicit form of th
01432
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operator is not important here. One can associate it with
usual formula:

H5T1(
iÞ j

v i j
NN1(

iÞ j
v i j

Coul1•••, ~1!

where

T52(
i

\2

2m
D i ~2!

is the kinetic-energy operator,v i j
NN is the bare nucleon-

nucleon ~NN! strong two-particle interaction,v i j
Coul is the

Coulomb force acting between protons, and the ellipses
notes the many-particle interactions if needed.

The HK energy functional@11#, which only depends on
the local particle densityn, can be defined within the frame
work of the constrained search method as follows~see, for
example, Refs.@12,13#!:

EHK@n#5 infC→n^CuHuC&, ~3!

where uC& is an arbitrary normalizedN-particle state. The
short notationC→n hereafter means the many-to-one ma
ping of the wave functionC(x1 , . . . ,xN) to the local density
n„r…, i.e., it means that the following equalities are fulfille

n~r!5np~r!1nn~r!, ~4!

nq~r!5(
s

r~x,x!, ~5!

r~x,x8!5NE C~x,x2 , . . . ,xN!

3C* ~x8,x2 , . . . ,xN!dx2•••dxN , ~6!

where r(x,x8) is the single-particle DM,x5$r,s,q% in-
cludes the spatialr and spins variables, and the index o
nucleon typeq5n,p. The integration overx includes the
summation overs andq.

The functional~3! depends on the total local densityn(r).
One can define other energy functionals which are depen
either onnq(r) or even onr(x,x). The particular choice of
functional dependence is determined by the task under c
sideration.

In the local DFT the minimum of the functionalEHK@n#
is proved to be just thetrue ground-state energyEGS and is
attained for thetrue ground-state densitynGS. To obtainEGS
and nGS, one can use the KS method which yields sing
particle equations similar to the HF equations. The rigoro
derivation of these equations is based on the following st
ment proved by Lieb@15#:

If n(r)>0, *n(r)dr5N, *(“An(r))2dr,`, then there
exists an N-particle Slater-determinant wave functionC0
built up from an orthonormal set of N single-particle wav
functionsw i :

C0~x1 , . . . ,xN!5~N! !21/2det$w i~xj !%, ~7!
4-2
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such thatC0→n(r). In other words there is a many-to-on
mapping of N-particle Slater-determinant wave function
onto the local particle densityn(r).

It is worth noting that it is not necessary for the Slate
determinant wave functionC0 to be the ground-state wav
function of some noninteracting system. In principle, it c
correspond to some excited state of this system.

This theorem enables one to define the kinetic-ene
functionalT0@n# for a system of noninteracting particles:

T0@n#5 infC0→n^C0uTuC0&, ~8!

and to divide the HK functionalEHK@n# into two parts:

EHK@n#5T0@n#1W@n#, ~9!

where the energy functionalW@n# contains the potential en
ergy as well as the correlation part of the kinetic energy.

Since the densityn is produced by some Slate
determinant wave function, we have from Eqs.~5!–~7!

nq~r!5(
i 51

N

(
s

uw i~r,s,q!u2. ~10!

By the same reasoning the kinetic-energy functional of
noninteracting system~8! can be written as

T0@n#5(
i 51

N
\2

2m (
s,q

E u“w i~r,s,q!u2dr. ~11!

Notice that one could define the kinetic-energy functional
the basis of a more general set ofN-particle wave functions:

T@n#5 infC→n^CuTuC&. ~12!

However, this functional cannot be written in the form~11!
and it is thus useless in deriving KS equations.

Applying the variational principle to the functiona
EHK@n# with functionsw i , w i* as functional variables, on
obtains in accordance with Eqs.~4! and~9!–~11! the follow-
ing KS equations:

hHKw i5« iw i , ~13!

with

hHK52
\2

2m
D1U~r!, ~14!

whereU(r)5dW/dn is the local mean-field potential and« i
are the Lagrange multipliers to ensure the normalization c
dition of the single-particle wave functionsw i .

Often the energy functionalW@n# is divided into two
parts:W@n#5EH@n#1EXC@n#, whereEH@n# is the ‘‘direct’’
~Hartree! functional, while EXC@n# is the exchange-
correlation energy functional. Consequently, the mean-fi
potential U is also divided into two parts. For the sake
simplicity we shall not do this in the present paper.

Equation~14! does not contain either a radial-depende
effective mass nor a spin-orbit potential which are essen
01432
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To include them we propose the following method based
a special version of the nonlocal extension of the DFT. Let
define the energy functional

E0@r0#5 infC0→r0
^C0uH̃uC0&, ~15!

where C0 is any Slater-determinant wave function of th
form ~7!, r0 is the single-particle DM produced byC0 ac-
cording to Eq.~6! ~i.e., the Slater-determinant DM!, andH̃ is
an effectivemany-body Hamiltonian which generally doe
not coincide with the microscopic HamiltonianH. In our
approach the operatorH̃ plays the role of an arbitrary refer
ence point, the choice of which will be discussed below. W
have to note that at the present momentH̃ is an arbitrary
N-particle operator such that the matrix element in Eq.~15!
exists.

The functionalE0@r0# has the form of the HF energ
functional built up on the basis of the effective Hamiltonia
H̃. Thus in what follows we shall also refer to it as the H
energy functional. Let us define the residual correlation
ergy ERC as follows:

ERC@ n̂#5E@ n̂#2E0@ n̂#, ~16!

wheren̂5$np ,nn% and

E@ n̂#5 infC→n̂^CuHuC&, ~17!

E0@ n̂#5 infC0→n̂^C0uH̃uC0&5 infr0→n̂infC0→r0
^C0uH̃uC0&

5 infr0→n̂E0@r0#. ~18!

Because functionalsE@ n̂# and E0@ n̂# only depend on the
local densityn̂, by definition the same is true for the func
tional ERC@ n̂#. The quantityE@ n̂# is the exact energy func
tional built up with the true microscopic Hamiltonian~1! on
the set of any normalized wave functionsC. The auxiliary
functional E0@ n̂# ~as well as the kinetic-energy functiona
T0@n# in KS theory! is defined according to the Lieb theore
for any ~not very ‘‘bad’’! local densityn̂. The final energy
functional of our version of the nonlocal DFT is defined a

E@r0#5E0@r0#1ERC@ n̂#, ~19!

wherer0 is related ton̂ through Eqs.~4!–~6!. The function-
alsE0@r0# andERC@ n̂# are defined by Eqs.~15! and~16!. For
the moment we shall not speculate as to whether these f
tionals are known or not. The most important thing is th
they are rigorously defined.

The main property of the functionalE@r0# is expressed by
the following equalities:

infr0
E@r0#5 infn̂infr0→n̂E@r0#5 infn̂E@ n̂#5EGS, ~20!

whereEGS is the true ground-state energy of the interactin
system as in the case of HK theory. It is important to no
4-3
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that our energy functionalE is not uniquely defined by Eq
~19! and depends onH̃ explicitly.

To obtain the equations of motion we have to suppose
the choice of the HamiltonianH̃ in Eq. ~15! ensures that the
infimum of the functionalE@r0# in Eq. ~20! is a minimum. In
addition, we use the general formula for the Slat
determinant DMr0 which follows from Eqs.~6! and ~7!.
Namely,

r0~x,x8!5(
i 51

N

w i~x!w i* ~x8!, ~21!

where the sum is taken over the occupied states. Apply
the variational principle to the functionalE@r0# defined by
Eq. ~19! and using the functionsw i , w i* as functional vari-
ables according to Eq.~21! we obtain the following set of
single-particle equations:

E h0~x,x8!w i~x8!dx81URC~x!w i~x!5« iw i~x!, ~22!

where we have defined the nonlocal pseudo-Hamiltonianh0
and the local potentialURC as follows:

h0~x,x8!5
dE0@r0#

dr0~x8,x!
, ~23!

URC~x!5URC~r,q!5
dERC

dnq~r!
. ~24!

It is worth noting that the occupation numbers of the Slat
determinant DM are fixed to either 1 or 0. Thus, we avo
difficulties arising from the uncertainty of the occupatio
numbers in the theory developed in Ref.@14#.

It should also be stressed that our approach is not aime
the complete description of nuclear dynamics. It only p
vides an exact description of a few ground-state characte
tics: the ground-state energy, and the local particle den
together with the referred quantities. For a review of nucl
many-body theories giving more comprehensive treatmen
the nuclear dynamics, see, for example, Refs.@8,16#. How-
ever, a discussion on the relationship between our appro
and the DDHF method seems to be more relevant. As
been mentioned above, the DFT is the exact theory. It me
that the minimum of the energy functionalE@r0# ~if it is
attained! yields theexactground-state energy and theexact
local particle density. Generally this is not fulfilled for th
DDHF energy functional. In a sense, the DDHF method c
be considered as a phenomenological realization of our n
local generalization of the DFT. In this case the contribut
of the density-dependent part of the effective forces to
DDHF energy functional plays the role of residual corre
tion energyERC . In most of the DDHF schemes~see, for
example, Refs.@2,4#! this contribution~which is ERC in our
notation! has the form

ERC@ n̂#5E dr«RC~r!, ~25!
01432
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where the energy density«RC(r) is just an algebraic function
of the local densities. In the general case this formula is
true for theexact ERC , and must be considered only as a
approximation. However, if we assume that it is possible
represent the functionalERC in such a form, then one could
choose the parameters and the density dependence o
effective forces in the DDHF method in such a way that t
DDHF energy functional would be equal to the exact DF
energy functionalE. As a corollary under these assumptio
the DDHF method is able to reproduce theexact ground-
state energy andexactlocal particle densities.

III. REDUCTION TO THE QUASILOCAL THEORY

The approach described above enables one to introdu
reduced energy functionalE 0

QL which depends on the follow
ing set of local quantities: the local particlenq , kinetic-
energytq , and spinJq densities for neutrons and protons:

nq~r!5(
s

E dx8d~x2x8!r0~x,x8!, ~26!

tq~r!5(
s

E dx8d~x2x8!~“ r“ r 8!r0~x,x8!, ~27!

Jq~r!5 i(
s

E dx8d~r2r8!dq,q8@~s!s8,s3“ r #r0~x,x8!,

~28!

whered(x2x8)5d(r2r8)ds,s8dq,q8 , and the quantitiestq
and Jq are the uncorrelated neutron and proton kinetic
energy and spin densities, respectively. Introducing the s
notation rQL[$np ,nn ,tp ,tn ,Jp ,Jn%, let us define the
quasilocal energy functional as follows:

E QL@rQL#5E 0
QL@rQL#1ERC@ n̂#, ~29!

where

E 0
QL@rQL#5 infr0→rQL

E0@r0#. ~30!

Notice that the many-to-one mappingr0→rQL is established
according to Eqs.~26!–~28!, and that the setn̂5$np ,nn%
entersrQL : n̂PrQL .

From Eqs.~19!, ~20!, ~29!, and~30! we have

infrQL
E QL@rQL#5EGS. ~31!

Using Eq.~10! and the explicit expressions for the remainin
local quantities

tq~r!5(
i 51

N

(
s

u“w i~r,s,q!u2, ~32!

Jq~r!5 i(
i 51

N

(
s,s8

w i* ~r,s8,q!@~s!s8,s3“#w i~r,s,q!,

~33!
4-4
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QUASILOCAL DENSITY FUNCTIONAL THEORY AND . . . PHYSICAL REVIEW C67, 014324 ~2003!
one can apply the variational principle to the energy fu
tional E QL@rQL# with w i , w i* as functional variables. The
resulting single-particle equations are

hqw i5« iw i , ~34!

where

hq52“

\2

2mq* ~r!
“1Uq~r!2 iWq~r!•@“3s#, ~35!

\2

2mq* ~r!
5

dE QL

dtq~r!
, ~36!

Uq~r!5
dE QL

dnq~r!
, ~37!

Wq~r!5
dE QL

dJq~r!
. ~38!

These expressions are general to the exact quasilocal DF
the DDHF energy functional were equal to the exact quas
cal expression~see above! these expressions would corr
spond to those reported in Refs.@5,7#. If the functionalE QL

is known, we would be able to calculate the exact grou
state energyE05EGS and exact local densitiesnq5nq,GS.
The kinetic-energy densitytq and spin densityJq correspond
to the system without correlations and do not coincide w
the exact densities in our approach.

The following remark is in order. As was pointed out
the Introduction, the energy functional dependence on
exact kinetic-energy and spin densities could be introduc
for example, by the application of the above quasilocal
duction procedure to the energy functional of the nonlo
theory developed in Ref.@14#. However, the mapping of the
Slater-determinant wave functionsC0 onto theexactkinetic-
energy and spin densities is not defined, in contrast to
mapping onto theexactlocal density, i.e., Eqs.~32! and~33!
are incorrect for the exact kinetic-energy and spin densit
As a consequence, it is impossible to derive the sing
particle equations such as Eqs.~34!–~38!.

IV. THE EXTENDED THOMAS-FERMI APPROXIMATION
IN THE QUASILOCAL DFT

We would now like to turn our attention to the effectiv
Hamiltonian H̃. It has been mentioned that its choice
rather arbitrary. The operatorH̃ is confined only by the fol-
lowing formal mathematical conditions. First, the ener
functional E0 has to be well defined. While the function
E@ n̂# is always defined, this is not the case for the functio
alsE0@r0# andE0@ n̂#. Indeed, the matrix element of the tru
microscopic Hamiltonian with the bareNN interaction H
over the Slater-determinant wave functions can diverge
to the short-range singularity of the forces, as it happen
standard many-body theory. Thus, we will use a Hamilton
H̃ with an effectivetwo-body NN interaction whose matrix
elements are well defined. Secondly, the local energy fu
01432
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tional E@ n̂# obviously has the minimal property that is ne
essary to apply the variational principle. However, this m
not be true for the nonlocal energy functionalE@r0# @in spite
of the fact that the equality~20! is always true#. Because the
functionalE@r0# depends onH̃ explicitly @see Eqs.~19! and
~15!# one has to chooseH̃ to ensure the minimal property o
the energy functionalE@r0#. Notice that at least in one par
ticular case, whenH̃5T, this condition is fulfilled because
we come to the usual KS theory. Indeed, if one setsH̃5T
then mq* 5m, Wq50, and Eq.~34! coincides with the KS
equation. In this case the residual correlation energy fu
tional ERC@ n̂# corresponds to the sum of the direct~Hartree!
term and the exchange and correlation energies in the
method.

Here we consider a more general case, settingH̃ to be the
N-particle Hamiltonian with aneffective NNinteraction:

H̃5T1(
iÞ j

ṽ i j
NN1(

iÞ j
v i j

Coul . ~39!

We will use the effectiveNN forces enteringH̃ in the form

ṽ i j
NN5 v̂ i j

c 1 v̂ i j
so , ~40!

where the central part of the effective forces is given by

v̂ i j
c 5(

n
@wn1bnPi j

s 2hnPi j
t 2mnPi j

s Pi j
t #vn~s!, ~41!

wn ,bn ,hn , and mn are the parameters of the forces (n
51,2, . . . ), Pi j

s and Pi j
t are the spin and isospin exchang

operators, andvn(s) (s5r i2r j ) are the radial form factors o
the central part of the effective forces. The spin-orbit part
the forces is chosen in the form used in the Skyrme a
Gogny interactions@2,4# as follows:

v̂ i j
so5 iW0~si1sj !•@k83d~r i2r j !k#, ~42!

wherek51/2i (“ i2“ j ) denotes the operator acting on th
right andk8521/2i (“ i2“ j ) is the operator acting on th
left.

In our approach this natural, but particular, choice ofH̃ is
compensated for by the addition of the formally defined, b
strictly speaking, unknown residual correlation ener
ERC@ n̂#, which contains all necessary density dependenc
the total energy functional. In the applications of the meth
the functionalERC@ n̂# is parametrized phenomenological
and the parameters are adjusted to describe nuclear gro
state properties. Following this ideology the effective int
actions entering the operatorH̃ are taken to be density inde
pendent. The situation is quite different in the usual DDH
method, where there are no other ingredients apart from
effective forces which are taken to be density dependen
order to ensure nuclear saturation. Thus, we would like
stress that the effective interactions in our DFT approach
not exactly the same as in the DDHF theory. Therefore,
4-5
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effective NN forces~40! enteringH̃ could, for example, be
chosen as the finite-range part of the Gogny forces or
density-independent part of the M3Y@17# interaction.

Let us define the densityH0 of the quasilocal HF energy
functionalE 0

QL@rQL# as follows:

E 0
QL5E drH0~r!. ~43!

According to Eqs.~39!–~42! the energy densityH0 is de-
scribed by six terms,

H05
\2

2m
~tn1tp!1H Dir

Nucl1H Exch
Nucl1H Dir

Coul1H Exch
Coul1H so.

~44!

The direct nuclear energy densityH Dir
Nucl comes from the

central part of theNN forces and is given by

H Dir
Nucl~r!5

1

2E dr8H S w1
b

2Dn~r!n~r8!2S h1
m

2 D
3@np~r!np~r8!1nn~r!nn~r8!#J v~ ur2r8u!.

~45!

The density of the Coulomb direct energy is

H Dir
Coul~r!5

e2

2 E dr8
np~r!np~r8!

ur2r8u
. ~46!

These direct energies give the contribution to the so-ca
Hartree functional. Up to now we have developed theexact
theory. In the following step we will make some approxim
tions that are similar to those used in Refs.@5,7#. To calculate
the exchange terms that come from the central part of theNN
forces we use the recently proposed ETF approximation
the DM up to\2 order @9#. Notice that there are other pos
sible options to obtain the quasilocal energy functional ba
on the Negele-Vautherin and Campi-Bouyssy DM exp
sions @5–7#. In our approach for spin-saturated nuclei t
nuclear exchange energy density is given by two terms,

H Exch
Nucl5H Exch,0

Nucl 1H Exch,2
Nucl . ~47!

The first term is calculated to\0 order~which corresponds to
the Slater approximation for the DM!:

H Exch,0
Nucl ~r!5E dsv~s!H 1

2
Xe1(

q
@nq~r! ĵ 1~kqs!#2

1Xe2nn~r! ĵ 1~kns!np~r! ĵ 1~kps!J , ~48!

wherekq(r)5@3p2nq(r)#1/3 is the Fermi momentum,ĵ 1(x)
53 j 1(x)/x, j 1(x) is the spherical Bessel function, andXe1
5m1h/22b2w/2, Xe25m1h/2. The second term corre
sponds to the\2 correction:
01432
e

d

-

r

d
-

H Exch,2
Nucl ~r!5(

q

\2

2m H ~ f q21!S tq2
3

5
kq

2nq2
1

4
DnqD

1kqf q8F 1

27

~“nq!2

nq
2

1

36
DnqG J . ~49!

In this equationf q5 f q(r,kq), f q85(] f q(r,k)/]k)k5kq
. The

function f q(r,k) is the inverse of the position- an
momentum-dependent effective mass and is defined in
ETF approximation by

f q~r,k!511
m

\2k

]VExch,q
Nucl ~r,k!

]k
, ~50!

whereVExch,q
Nucl is the Wigner transform of the exchange p

tential in the Thomas-Fermi approximation

VExch,p
Nucl ~r,k!5E dse2 iksv~s!@Xe1np~r! ĵ 1~kps!

1Xe2nn~r! ĵ 1~kns!# ~51!

and analogously forVExch,n
Nucl with the permutation of indices

p and n ~see Ref.@9# for details!. It is worth noting that
within the semiclassical ETF approximation the kinet
energy density is a functional of the local density. Thus,
energy functional obtained would only depend on the lo
particle density and spin density. However, it was found
Ref. @9# that the use of the quantal kinetic energy in Eq.~49!,
which yields the radial-dependent effective mass, sign
cantly improves agreement with results of the full HF calc
lation. This has led us to use the ansatz~32! for tq in the
present paper.

The Coulomb exchange energy consists of the Slater t
and the second-order correction, which in the ETF appro
mation, is written as@9,18#

H Exch
Coul~r!52

3

4 S 3

p D 1/3

np
4/32

7

432p~3p2!1/3

~“np!2

np
4/3

.

~52!

Finally, the spin-orbit energy density is given by

H so~r!52
1

2
W0@n~r!“J1nn~r!“Jn1np~r!“Jp#,

~53!

whereJ5Jp1Jn .
It is important to point out that in this section we repla

the exact quasilocal functionalE 0
QL by the approximate func-

tional calculated within the ETF approximation. The diffe
ence between them gives a very small contribution~see the
following sections!, but it cannot be totally included within
the residual correlation term because this difference depe
on therQL ~due to thetn , tp , Jn , and Jp dependencies!,
while the latter only depends on then̂.

The formulas~45! and ~47!–~51! are valid for any radial
form factorv(s) of the central part of the effective forces. I
4-6
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this paper we use the effective interaction with a Gauss
form factor. The reason for this is the following. It wa
pointed out that under some assumptions the DDHF ene
functional may coincide with the exact DFT functiona
Thus, if the effective forces, which provide a sufficient
good description of the nuclear ground-state proper
within the framework of the DDHF approach, are known~as
in the case of the Gogny forces!, it is reasonable to use them
to construct the energy functionalE in our theory. The DDHF
effective forces can be split into two parts: the densi
independent and the density-dependent expressions. The
part can be used to construct the HF energy functionalE0 of
our theory. The functionalERC is then simply the DDHF
energy functional calculated with the density-dependent
of the forces. In the applications of the method, which
presented in the next section, we employ the well-kno
parameter set of the D1S Gogny forces@19# which is suc-
cessfully used in the DDHF calculations of the nuclear pr
erties. The radial dependence of the Gogny forces is de
mined by the Gaussian form factor, which explains o
choice. These considerations enable the use of the den
dependent part of the Gogny forces in order to approxim
the residual correlation energy entering our energy fu
tional. We therefore takeERC in the form of the phenomeno
logical ansatz

ERC@ n̂#5
t3

4E drna~r!$~21x3!n2~r!

2~2x311!@np
2~r!1nn

2~r!#%. ~54!

Although this form is probably too simplistic, it enables th
saturation mechanism to be reproduced. We also would
to point out that the formula~54! is a standard ansatz whic
does not only enter the density-dependent part of the Go
forces, but is also used in, for example, the dens
dependent part of the Skyrme forces. The explicit expr
sions for the above-defined energy densities and for the
in the case of a Gaussian form factorv(s)5exp(2s2/a2) are
given in Appendix A.

The parameters enteringERC and H̃ should be chosen in
such a way that our quasilocal ETF approach would rep
duce finite nuclei experimental data. However, in the num
cal applications of our model presented in this paper,
parameterst3 , x3, anda in Eq. ~54! together with the pa-
rameters of the effective two-body HamiltonianH̃, are cho-
sen to be equal to the corresponding parameters of the
D1S. In this way, rather than reproducing the experimen
data in the best way possible, we are examining whether
quasilocal ETF approach is able to reproduce the full DD
results obtained with the D1S forces.

The Gogny forces are purely phenomenological in
sense that these interactions have a predetermined
whose parameters are fitted to reproduce global propertie
nuclei and nuclear matter. The Gaussian form factor is c
sen due to its computational advantages in the full DD
calculations of deformed nuclei. However, these forces
multaneously provide a good description of the mean-fi
and the pairing properties. From a more fundamental poin
01432
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view, an effective interaction could be derived from aG ma-
trix calculation, as in the case of the density-dependent M
forces used in Ref.@5#. However, the contributions of the
different spin-isospin channels to the binding energy
nuclear matter calculated with the Gogny D1 forces co
pared with the same values obtained with the Brueckn
Hartree-Fock theory with a realistic two-body interactio
show reasonable agreement in the even parts (S50, T51
andS51, T50) at least for momenta from zero to 1.5 fm21

~see Fig. 1 of Ref.@4#!. Although these forces are phenom
enological, they can be considered to be a reasonable pa
etrization of theG matrix which provides the correct satura
tion properties@4#. On the other hand, a study of the equati
of state for cold asymmetric nuclear matter@20# shows that at
low densities and moderate asymmetries, which are rele
for the description of terrestrial finite nuclei, the Gogny D
forces agree reasonably well with the results obtained w
the realistic UV141TNI interaction @21#, although agree-
ment fails at high densities and asymmetries.

V. NUMERICAL RESULTS

In this section we check our quasilocal DFT approxim
tion as compared with the full DDHF method using finit
range Gogny forces. First of all, we compare the exact
ground-state binding energies as well as the rms radii of
neutron and proton densities of some magic nuclei compu
with the Gogny D1S forces@19# with our DFT results. In this
comparison we use two different quasilocal functiona
DFT-\0, where the exchange energy coming from the fini
range part of the interaction is taken at a pure Thomas-Fe
level ~Slater approach!, and DFT-\2, where the ETF-\2 con-
tributions have been added to the Slater part. Notice tha
this DFT-\2 approach the semiclassical kinetic-energy de
sity entering Eq.~49! has been replaced by the correspond
quantal density for reasons pointed out above. In both D
calculations we solve the local Schro¨dinger Eq.~34! for neu-
trons and protons with the potentials and effective mas
reported in Appendix A. Table I collects all these bindin
energies and radii which have been computed taking
account the two-body center-of-mass correction. In our c
culation we take into account this correction as explained
Appendix C. We would like to say in passing that the n
merical value of this two-body center-of-mass correcti
along the whole Periodic Table is very well reproduced
using the pocket formula based on the harmonic oscilla
and derived in Ref.@22#.

From Table I we can see that the DFT-\2 binding energies
reproduce the HF values fairly well. The differences betwe
HF and DFT-\2 are smaller than 1% for all the considere
nuclei from 40Ca to 208Pb and in the case of16O the relative
difference is only 1.8%. The DFT-\0 binding energies show
larger discrepancies with the full HF results. The relati
differences range from 7% in16O to 1% in the heavies
nucleus considered,208Pb. As regards the rms radii of th
neutron and proton densities, the full HF values are ag
better reproduced by the DFT-\2 approximation than by the
DFT-\0 approach. These results show the importance of
\2 corrections in the local approximation to the HF exchan
4-7
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energy. It should be pointed out that the eigenvalues« i in Eq.
~34! have no rigorous physical sense in the DFT except
the energy of the last filled level, which corresponds to
neutron or proton separation energy~chemical potential!.
Table I also displays the neutron and proton chemical po
tials obtained using the DFT-\0, DFT-\2, and HF approxi-
mations. The DFT-\2 chemical potentials differ from the HF
chemical potentials by less than 1 MeV, while the shift
the DFT-\0 separation energies with respect to the full H
values is larger and can be approximately 3 MeV for lig
nuclei.

It is important to note that the agreement of the propo
DFT approximations with the full HF results is determin
by the treatment of the nonlocal effects. The contribution
the pointed effects can be quantified in terms of the effec
mass in nuclear matter. The results of Table I show that
effective forces with an effective mass of approximately 0
as in the case of the Gogny forces@23#, the nonlocal effects
can be very well accounted for by the DFT-\2 functional
proposed in this paper. However, for forces where the n
local effects are larger, the result of our DFT-\2 approxima-
tion is worse when compared with the HF results, but is s
better than other suitable choices of the exchange-energ
calization such as the Negele-Vautherin or Campi-Bouy
approaches~see Ref.@9# for more details on this point!.

Figures 1 and 2 display the neutron and proton dens
for 40Ca and208Pb obtained using the D1S forces in the fu
HF ~solid lines! as well as in the DFT-\2 ~dashed lines! and
DFT-\0 ~dotted lines! calculations. The DFT proton and neu
tron densities nicely reproduce the surface and the tail of
full HF densities. In the region near the center of the nuc

TABLE I. Total binding energiesB ~in MeV!, neutronr n and
proton r p rms radii ~in fm!, and separation energies of neutronsSn

and protonsSp ~in MeV! of some magic nuclei computed with th
D1S Gogny forces using the DFT-\0 and DFT-\2 approaches com
pared with the full HF results.

16O 40Ca 48Ca 90Zr 132Sn 208Pb

B DFT-\0 120.2 329.6 407.5 772.1 1092.9 1623
DFT-\2 127.3 341.9 415.0 783.9 1101.2 1636

HF 129.6 344.6 416.7 785.6 1103.0 1638
experiment 127.6 342.1 416.0 783.9 1102.9 1636

r n DFT-\0 2.72 3.41 3.62 4.29 4.87 5.59
DFT-\2 2.69 3.39 3.61 4.28 4.86 5.58

HF 2.65 3.37 3.58 4.27 4.84 5.57
r p DFT-\0 2.75 3.46 3.47 4.24 4.66 5.44

DFT-\2 2.71 3.44 3.46 4.23 4.66 5.44
HF 2.67 3.41 3.44 4.21 4.65 5.44

Sn DFT-\0 12.20 13.21 9.31 11.87 7.49 7.45
DFT-\2 14.55 15.36 9.52 12.02 7.59 8.03

HF 15.08 16.04 9.66 11.88 7.68 7.80
experiment 15.66 15.64 9.95 11.97 7.31 7.3

Sp DFT-\0 8.98 6.43 14.07 7.43 15.52 8.17
DFT-\2 11.24 8.45 16.51 8.25 15.94 9.29

HF 12.53 9.27 17.09 8.36 16.23 9.51
experiment 12.13 8.33 15.81 8.36 15.34 8.0
01432
r
e

n-

f

t

d

f
e
r
,

-

ll
lo-
y

s

e
i,

the DFT density follows the full HF density profile ver
well, although a small shift between the full HF and DF
proton and neutron densities appears in this central reg
These differences can be attributed to the fact that our D
description of thes orbitals, whose wave functions mainl
provide the proton and neutron densities at the center of
nuclei, show some small differences with the correspond
HF s orbitals. Comparing the DFT-\0 and DFT-\2 densities,
it can be seen that by including the\2 contributions in our
local approximation, we obtain better agreement with the
HF densities.

Figure 3 displays the radial dependence of the neut
and proton effective masses calculated with the DFT-\2 ap-
proach@see Eq.~A13!# for the 208Pb nucleus~solid lines!.
Because there is no explicit radial-dependent effective m
in the full HF calculation of finite nuclei using the Gogn
forces, we compare the DFT-\2 results with the neutron and
proton effective masses obtained using the Skyrme
forces @24# ~dashed lines!. We find that the DFT-\2 results
exhibit similar trends to those of the Skyrme effecti
masses. The differences between the two calculations are
sically due to the different values of the nucleon effecti
mass in nuclear matter which arem* /m50.70 for the Gogny
D1S forces andm* /m50.76 for the Skyrme SIII interaction

The neutron and proton SPP of the nucleus208Pb calcu-

FIG. 1. Neutron and proton densities of the nucleus40Ca calcu-
lated with the D1S Gogny forces using the DFT-\0 ~dotted lines!
and DFT-\2 ~dashed lines! approaches compared with the full H
densities~solid lines!.
4-8



d.
f

ea
re
ia
es
al
m

n
n
e
er
ca
-
si
le
as

er
il

eon

ms.
HF
nc-
la-
re-

the
al
nd
o-

ted
ite-
ated
as

lear
our
ns.

the
gle-
ton

ur
od

dent

tive
s

ces

QUASILOCAL DENSITY FUNCTIONAL THEORY AND . . . PHYSICAL REVIEW C67, 014324 ~2003!
lated within the framework of the DFT-\2 approximation are
presented in Fig. 4. The contributions of the direct (UDir ,q

Nucl )
and exchange (UExch,q

Nucl ) nuclear potentials are displaye
Note that the total SPPUq also includes the contribution o
the residual correlation potentialUq

RC according to Eq.~A4!.
The results show that contributions from the direct nucl
and residual correlation potentials are large, whereas the
only a small contribution from exchange nuclear potent
This is due to the particular structure of the Gogny forc
Modern effective interactions derived from a Brueckner c
culation @5# give a strong exchange contribution when co
pared with the direct part.

VI. SUMMARY

In the present paper we propose a nonlocal extensio
the DFT and its quasilocal reduction. To this end we defi
an energy functional which depends on the Slat
determinant DM where the occupation numbers are eith
or 0. This enables us to avoid the difficulties of the nonlo
DFT reported in Ref.@14#. Defining the uncorrelated kinetic
energy densities and spin densities, we construct the qua
cal energy functional and rigorously derive the sing
particle equations with the radial-dependent effective m
and the spin-orbit potential.

In order to define the energy functional of the Slat
determinant DM one has to introduce an effective Ham

FIG. 2. Same as in Fig. 1 for the nucleus208Pb.
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tonian which ensures its existence. This feature of nucl
systems arises from the specific properties of the bareNN
forces in contrast to the Coulomb force in electron syste
In our approach the total energy functional consists of the
part and the residual correlation energy. The HF energy fu
tional can be calculated directly, while the residual corre
tion energy is considered phenomenologically. Using the
cently proposed semiclassical ETF approximation for
DM @9#, we obtain a quasilocal energy density function
which only depends on the local particle, kinetic-energy a
spin densities. The resulting single-particle equations of m
tion contain the local mean-field potential, the uncorrela
effective mass, and the spin-orbit potential. Using the fin
range density-dependent Gogny forces they are calcul
analytically. The use of the different effective forces such
M3Y will be reported in the future.

Our method has been used to calculate some nuc
ground-state properties using the Gogny D1S forces and
results are compared with those of the exact HF calculatio
Very good agreement is obtained in the description of
binding energies and root mean square radii. The sin
particle energies of the highest occupied neutron and pro
levels in the full HF calculation are well reproduced by o
local approximation. The particle densities are also in go
agreement with the exact HF densities. The radial-depen

FIG. 3. Radial dependence of the neutron and proton effec
masses of the nucleus208Pb calculated with the D1S Gogny force
using the DFT-\2 approach~solid lines! compared with the corre-
sponding HF effective masses obtained with the Skyrme SIII for
~dashed lines!.
4-9
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effective mass and SPP have also been analyzed within
approach.

In conclusion, our approach has the following advantag
it handles local differential equations in contrast to the in
grodifferential equations in the HF approach and the qua
of the obtained results is sufficiently high; our method e
ables one to construct a quasilocal energy density functio
on the basis of effective forces with arbitrary radial for
factors; and the method can be straightforwardly general
to the nonspherical case.
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FIG. 4. Neutron and proton single-particle potentials of t
nucleus 208Pb calculated with the D1S Gogny forces within th
framework of the DFT-\2 approximation: the total SPPUq without
the Coulomb contribution for protons~solid lines!, the direct
nuclear SPPUDir ,q

Nucl ~dashed lines!, and the exchange nuclear SP
UExch,q

Nucl ~dotted lines!. See Eqs.~A4!–~A8! for details.
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APPENDIX A

In this appendix we present the formulas for the ene
densities and for the SPP in the case of the single Gaus
form factorv(s)5exp(2s2/a2). Assuming spherical symme
try of the particle densities, we obtain from Eqs.~45!
and ~48!

H Dir
Nucl~r!5

pa2

2r E
0

`

dr8r 8H expF2
~r 2r 8!2

a2 G
2expF2

~r 1r 8!2

a2 G J H S w1
b

2Dn~r !n~r 8!

2S h1
m

2 D @np~r !np~r 8!1nn~r !nn~r 8!#J ,

~A1!

H Exch,0
Nucl ~r!5

2

3p5/2a3 H Xe1(
q

FAp

2
a3kq

3erf~akq!

1S a2kq
2

2
21Dexp~2a2kq

2!2
3a2kq

2

2
11G

1Xe2 (
h561

hFAp

2
a3~kn1hkp!

3~kn
21kp

22hknkp!erfS a

2
~kn1hkp! D

1~a2~kn
21kp

22hknkp!22!

3expS 2
a2

4
~kn1hkp!2D G J . ~A2!

The second-order correction to the exchange nuclear en
density~49! can be rewritten in the following way:

H Exch,2
Nucl ~r!5(

q
FFqS tq2

3

5
kq

2nq2
1

4
DnqD

1GqS 1

27

~“nq!2

nq
2

1

36
DnqD G , ~A3!

where the explicit formulas for the functionsFq and Gq in
the case of a Gaussian form factor are given below in A
pendix B.

The SPP is defined following Eq.~37!. According to Eqs.
~29!, ~43!, and~44! it is split into six parts:

Uq5UDir ,q
Nucl 1UExch,q

Nucl 1UDir ,q
Coul 1UExch,q

Coul 1Uq
so1Uq

RC ,
~A4!

where the direct nuclear SPP is given by
4-10



w

a

, w

er
in

E
cit

gy
al

is

gy

to

ass
ian

for

to
nge

QUASILOCAL DENSITY FUNCTIONAL THEORY AND . . . PHYSICAL REVIEW C67, 014324 ~2003!
UDir ,q
Nucl ~r!5

pa2

r E
0

`

dr8r 8H expF2
~r 2r 8!2

a2 G
2expF2

~r 1r 8!2

a2 G J F S w1
b

2Dn~r 8!

2S h1
m

2 Dnq~r 8!G . ~A5!

The exchange nuclear potential consists of two parts follo
ing Eq. ~47!:

UExch,q
Nucl 5UExch,q,0

Nucl 1UExch,q,2
Nucl , ~A6!

where, for example, the Slater part of the exchange SPP
ing on the protons is given by

UExch,p,0
Nucl 5

2

Apa3kp
3 H Xe1FAp

2
a3kp

3erf~akp!

1a2kp
2exp~2a2kp

2!2a2kp
2G

12Xe2 (
h561

hFAp

4
a3kp

3erfS a

2
~kp1hkn! D

1
1

2
a2kp

2expS 2
a2

4
~kp1hkn!2D G J . ~A7!

For the second-order contribution to the exchange SPP
have

UExch,p,2
Nucl 5p2H 1

kp
FFp

pS tp2
3

5
kp

2npD1
1

27S 3Gp

kp
2

2Gp
pD

3
~“np!2

np
2

1

36S 8Gp

kp
2

1Gp
p19Fp

pD Dnp

1Fn
pS tn2

3

5
kn

2nnD1
1

27
Gn

p ~“nn!2

nn
2

1

36
~Gn

p

19Fn
p!DnnG2

2

27kn
Gp

n ~“np!~“nn!

np
J 2Fpkp

2

2
1

4
DFp2

1

36
DGp , ~A8!

where the functionsFq
q8 , Gq

q8 , DFq , andDGq used in Eq.
~A8! are given in Appendix B. The formulas for the Slat
and\2 contributions to the nuclear exchange potential act
on neutrons are obtained by replacingn by p andp by n in
Eqs.~A7! and ~A8!.

The Coulomb direct and exchange potentials, entering
~A4!, are only not equal to zero for protons. In the expli
form we have
01432
-

ct-

e

g

q.

UDir ,p
Coul ~r!5e2E dr8

np~r8!

ur2r8u
, ~A9!

UExch,p
Coul ~r!52F 3

p
np~r!G1/3

. ~A10!

Including the\2 correction to the Coulomb exchange ener
@second term in Eq.~52!# in the SPP leads to the unphysic
behavior of the potential atr→`. Its contribution to the
binding energy is thus calculated as a perturbation.

The contribution of the spin-orbit energy to the SPP
given by

Uq
so52

1

2
W0~“J1“Jq!. ~A11!

Finally, the contribution of the residual correlation ener
into the SPP is defined by Eqs.~37! and~54!. Thus according
to the notation~A4! we have

Uq
RC5

t3

4
na21$~21a!~21x3!n2

2~2x311!@a~np
21nn

2!12nqn#%. ~A12!

The radial-dependent effective massmq* (r) and the form fac-
tor Wq(r) of the spin-orbit potential are defined according
Eqs.~36!, ~38!, ~43!, ~44!, ~53!, and~A3! by the relations

\2

2mq* ~r!
5

\2

2m
1Fq , ~A13!

Wq~r!5
1

2
W0~“n1“nq!. ~A14!

A similar expression for the radial-dependent effective m
~A13! also appears in the independent particle Hamilton
obtained in Refs.@5,7#.

APPENDIX B

In this appendix we present the explicit expressions

the functionsFq , Gq , Fq
q8 , Gq

q8 , DFq , andDGq calculated
with a Gaussian form factor. These functions are used
obtain the second-order contributions to the excha
nuclear energy density~A3! and the corresponding SPP~A8!.
In the following, with the exception of Eqs.~B4! and ~B5!,
we assume thatq8Þq:

Fq52
a2

2Ap
H Xe1zq

3expS 2
zq

2

2 DQ1S zq
2

2 D
1Xe2zq8

3 expS 2
zq

21zq8
2

4
DQ1S zqzq8

2 D J , ~B1!
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Gq5
a2

4Ap
zq

2H Xe1zq
3expS 2

zq
2

2 D FQ1S zq
2

2 D 2zq
2Q2S zq

2

2 D G
1Xe2zq8

3 expS 2
zq

21zq8
2

4
D FQ1S zqzq8

2 D
2zq8

2 Q2S zqzq8
2 D G J , ~B2!

wherezq5akq and the functionsQm(x) are defined by

Q0~x!5
sinh~x!

x
, Qm115

1

2x

dQm~x!

dx
. ~B3!

The functionsFq
q8 , Gq

q8 , Fq
q8q9 , and Gq

q8q9 ~the last two
functions needed to obtainDFq and DGq , see below! are
defined as

Fq
q85

1

kq8

]Fq

]kq8

, Fq
q8q95

]2Fq

]kq8]kq9

, ~B4!

Gq
q85

1

kq8

]Gq

]kq8

, Gq
q8q95

]2Gq

]kq8]kq9

, ~B5!

and their explicit form is

Fq
q52

a4

4Ap
$2Xe1eqzq@~32zq

2!Q1~xq!1zq
4Q2~xq!#

1Xe2e0zq8
3

@zq8
2 Q2~x0!2Q1~x0!#%, ~B6!

Fq
q852

a4

4Ap
Xe2e0zq8@~62zq8

2
!Q1~x0!1zq

2zq8
2 Q2~x0!#,

~B7!

Fq
qq52

a4

8Ap
$4Xe1eqzq@~22zq

2!~322zq
2!Q1~xq!

2zq
4~112zq

2!Q2~xq!#2Xe2e0zq8
3

@~22zq
22zq8

2
!

3Q1~x0!12zq8
2

~41zq
2!Q2~x0!#%, ~B8!

Fq
q8q852

a4

8Ap
Xe2e0zq8@~24214zq8

2
1zq

2zq8
2

1zq8
4

!Q1~x0!

12zq
2zq8

2
~22zq8

2
!Q2~x0!#, ~B9!

Fq
qq85

a4

8Ap
Xe2e0zqzq8

2
@~622zq8

2
!Q1~x0!

1zq8
2

~zq
21zq8

2
!Q2~x0!#, ~B10!
01432
Gq
q5

a4

8Ap
$2Xe1eqzq

3@~522zq
2!Q1~xq!1zq

2~3

12zq
2!Q2~xq!#1Xe2e0zq8

3
@~42zq

22zq8
2

!Q1~x0!

12zq8
2

~31zq
2!Q2~x0!#%, ~B11!

Gq
q85

a4

8Ap
Xe2e0zq

2zq8@~622zq8
2

!Q1~x0!

1zq8
2

~zq
21zq8

2
!Q2~x0!#, ~B12!

Gq
qq5

a4

16Ap
$8Xe1eqzq

3@~1027zq
212zq

4!Q1~xq!

2zq
2~61zq

212zq
4!Q2~xq!#

1Xe2e0zq8
3

@~8210zq
214zq8

2

13zq
2zq8

2
1zq

4!Q1~x0!

2zq8
2

~48110zq
21zq

2zq8
2

13zq
4!Q2~x0!#%, ~B13!

Gq
q8q85

a4

16Ap
Xe2e0zq

2zq8@~24222zq8
2

13zq8
4

1zq
2zq8

2
!Q1~x0!

1zq8
2

~4zq
212zq8

2
23zq

2zq8
2

2zq8
4

!Q2~x0!#, ~B14!

Gq
qq85

a4

16Ap
Xe2e0zqzq8

2
@~2426zq

228zq8
2

13zq
2zq8

2
1zq8

4
!

3Q1~x0!1zq8
2

~4zq
226zq8

2
23zq

2zq8
2

2zq
4!Q2~x0!#,

~B15!

where zq5akq , xq5zq
2/2, x05zpzn/2, eq5exp(2xq), and

e05exp(2(xp1xn)/2). Finally, DFq andDGq are given by

DFq5
p2

3 H 1

kq
F ~Fq

qq22Fq
q!

~“nq!2

nq
13Fq

qDnqG
1

1

kq8
F ~Fq

q8q822Fq
q8!

~“nq8!
2

nq8

13Fq
q8Dnq8G

1
6p2

kq
2kq8

2 Fq
qq8~“nq!~“nq8!J , ~B16!

DGq5
p2

3 H 1

kq
F ~Gq

qq22Gq
q!

~“nq!2

nq
13Gq

qDnqG
1

1

kq8
F ~Gq

q8q822Gq
q8!

~“nq8!
2

nq8

13Gq
q8Dnq8G

1
6p2

kq
2kq8

2 Gq
qq8~“nq!~“nq8!J . ~B17!
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APPENDIX C

In this appendix we briefly describe the method to cal
late the center-of-mass correction to the ground-state ene
As is well known, the general idea consists of subtracting
quantity

Ec.m.5 K Cg.s.U P2

2M UCg.s.L ~C1!

from Eg.s.. HereP is the total momentum operator, andM is
the total mass of a nucleus. Usually the quantityEc.m. is
represented as a sum of two terms:

Ec.m.5E1
c.m.1E2

c.m., ~C2!

whereE1
c.m. is the one-body andE2

c.m. is the two-body center-
of-mass kinetic energy. The quantityE1

c.m. is defined by the
following formulas:

E1
c.m.5(

q
E1,q

c.m., E1,q
c.m.5

1

2M
Sp~p2rq!, ~C3!

where in accordance with the definition~6! the following
notation is introduced:

rq5rq~r ,r 8!5(
s

r~r ,s,q, r 8,s,q!. ~C4!

Hereinafter the symbol Sp denotes the trace over the s
variables. The subtraction ofE1

c.m. leads to the simple renor
malization of the nucleon mass in the single-particle Ham
tonianhq : mq→m̄1,q ,

m̄1,q /mq5M /~M2mq!. ~C5!

The most reasonable method for the evaluation of the qu
tity E2

c.m. is the Hartree-Fock approximation for the groun
state wave functionCg.s. in Eq. ~C1!. In addition, we adopt
the following approximation for the single-particle DM:

r~r ,s,q, r 8,s8,q!5
1

2
ds,s8rq~r ,r 8!. ~C6!

With these assumptions we have

E2
c.m.5(

q
E2,q

c.m., E2,q
c.m.52

1

2
Sp~K2,q

c.m.rq!, ~C7!

where the single-particle operatorK2,q
c.m. is defined as

K2,q
c.m.5

1

2M
prqp. ~C8!

In contrast to the one-body contribution, the subtraction
E2

c.m. leads to additional nonlocality in thehq , since in the
01432
-
gy.
e

ce

-

n-

f

self-consistent approach we have to add the nonlocal op
tor K2,q

c.m. to the single-particle kinetic-energy operator. Th
the total correction tohq is

p2

2mq
→ p2

2m̄1,q

1K2,q
c.m.. ~C9!

In the local or quasilocal DFT and in similar approach
nonlocality ofK2,q

c.m. in Eq. ~C9! leads to unpleasant difficul
ties. We therefore use the simplified method, proposed
Ref. @25#, in which we take the contribution of the operat
K2,q

c.m. in the single-particle equations into account.
Let us write the density matrixrq in the form

rq~r , r 8!52E dk

~2p!3
n̄q~R, k!eiks, ~C10!

whereR5(r1r 8)/2, s5r 82r , andn̄q(R, k) is the momen-
tum distribution function. The approximation consists of r
placing the functionn̄q(R, k) in Eq. ~C10! by some effective
constant valuen̄q

c.m.. Substituting Eq.~C10! with n̄q(R, k)
5n̄q

c.m. into Eq. ~C8! we get

K̃2,q
c.m.5n̄q

c.m.p
2

M
. ~C11!

The value ofn̄q
c.m. is defined by the substitution ofK̃2,q

c.m. into
Eq. ~C7! instead ofK2,q

c.m.. Taking into account Eqs.~C3! and
~C11! we obtain

n̄q
c.m.52E2,q

c.m./E1,q
c.m.. ~C12!

The quantitiesE1,q
c.m. andE2,q

c.m. are defined everywhere by Eq
~C3! and~C7! which can be rewritten in the following form
making use of Eq.~21! for the Slater-determinant densit
matrix:

E1,q
c.m.5

\2

2M (
i 51

N

(
s

E dr u“w i~r , s, q!u2, ~C13!

E2,q
c.m.52

\2

2M (
i 51

N

(
i 851

N U(
s

E drw i* ~r , s, q!

3“w i 8~r , s, q!U2

. ~C14!

It is easy to prove, using Eqs.~C13! and~C14! and the com-
pleteness of the set of functionsw i , that uE2,q

c.m.u,uE1,q
c.m.u and

consequently

0,n̄q
c.m.,1. ~C15!
4-13
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One can also prove that in the limiting cases (n̄q
c.m.→0 and

n̄q
c.m.→1) the action of the approximate operatorK̃2,q

c.m. upon
the wave functions of the occupied orbitalsw i coincides with
the action of the initial operatorK2,q

c.m. as defined by Eq.~C8!.
Thus Eq. ~C11! can be considered as the interpolati
formula.
a

ry

01432
The total center-of-mass correction tohq in this method is
reduced to the renormalization of the nucleon mass, as in
one-body case:

p2

2mq
→ p2

2m̄q

,
m̄q

mq
5

M

M1~2n̄q
c.m.21!mq

. ~C16!
e,

un.
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