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Abstract. This article is devoted to the quantization of the Lagrangian sub-
manifold in the context of geometric quantization. The objects we define are
similar to the Lagrangian distributions of the cotangent phase space theory.
We apply this to construct quasimodes for the Toeplitz operators and we state
the Bohr-Sommerfeld conditions under the usual regularity assumption. To
compare with the Bohr-Sommerfeld conditions for a pseudodifferential operator
with small parameter, the Maslov index, defined from the vertical polarization,
is replaced with a curvature integral, defined from the complex polarization.
We also consider the quantization of the symplectomorphisms, the realization
of semi-classical equivalence between two different quantizations of a symplec-
tic manifold and the microlocal equivalences.

Let (M,ω) be a symplectic compact manifold of dimension 2n endowed with a
prequantization bundle, that is a complex line bundle L → M with a Hermitian
structure h and a covariant derivation ∇ whose curvature is ω. To quantize these
data, we assume that M is endowed with a complex structure J which is integrable
and compatible with −iω. The quantum space Hk is defined as the space of the
holomorphic sections of Lk → M . k is any positive integer and the semi-classical
limit is k → ∞. The quantum semi-classical observables are the Berezin-Toeplitz
operators (cf. [2], [3], [4], [5]). The purpose of this article is to quantize the
Lagrangian manifolds of M , by generalising the ansatz for the Schwartz kernel of a
Toeplitz operator that we proposed in [5]. We will apply this to produce quasimodes
of Toeplitz operators and deduce the Bohr-Sommerfeld conditions.

Let us state this last result in the case M is 2-dimensional. Consider the Toeplitz
operator

Tk := ΠkMf0+k−1f1 : Hk → Hk

where Πk is the orthogonal projector of L2(M,Lk) onto Hk, f0 and f1 are some
functions of C∞(M) and Mf0+k−1f1 is the multiplication operator by f0 + k−1f1.
Assume that E0 is a regular value of the principal symbol f0 of (Tk) and that
f−1
0 (E0) is connected. Then if E belongs to some neighborhood U of E0, the level

set f−1(E) = ΛE is a circle.

ΛE = f
−1
0

(E)

M

Theorem 0.1. For all sequences (Eα, kα) of U × N,

Eα ∈ Spec(Tkα
) +O(k−2

α ) ⇔ g−1(Eα) + k−1
α g0(Eα) ∈ k−1

α Z +O(k−2
α )(1)

where
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• g−1(E) is the holonomy of ΛE for the prequantization bundle L,
• g0(E) is the sum of the integral of the geodesic curvature of ΛE and the

integral over ΛE of the Weyl subsymbol fw1 = f1 + 1
2∆f0.

We refer the reader to section 3 for a more precise statement. Let us compare this
with the known result for a pseudodifferential operator with a small parameter. In
that case, the phase space is a cotangent bundle T ∗C and the action of ΛE replaces
its holonomy. Actually, this action can be interpreted as a holonomy for the trivial
bundle T ∗C×C endowed with the connection form −ipdq. The second order term is
more unexpected. It involves the Riemannian metric ofM defined by the symplectic
and complex structures. Its analog for the pseudodifferential operator is the Maslov
index, an invariant of the cotangent bundles. Hence in the language of geometric
quantization, these second order invariants come from the polarizations: the vertical
polarization in the cotangent case, the complex polarization in the Kählerian case.

For the proof we construct quasimodes, that is Lagrangian sections (uα) associ-
ated to the circles ΛEα

such that

uα ∈ Hkα
and Tkα

uα = Eαuα +O(k−∞
α )

The quantization condition to define these quasimodes is the Bohr-Sommerfeld con-
dition and this will prove the converse of (1). To show the direct sense, we will
prove by using microlocal equivalence that the eigenvectors of Tk are necessarily
Lagrangian sections associated to the ΛE.

Let us briefly explain how we will construct the Lagrangian sections. In the
usual semi-classical theory, the semi-classical observables are the pseudodifferential
operators with a small parameter ~. The Schwartz kernel of these operators is of
the form

( 1

2π~

)n
∫

ei~
−1(x−y).ξa(x, ξ, ~)|dξ|(2)

Our main result in [5] was to give a similar expression for the Schwartz kernel of a
Toeplitz operator:

Tk(xl, xr) =
( k

2π

)n

Ek(xl, xr)a(xl, xr, k) +O(k−∞)(3)

where E is a section of L�L−1 →M ×M and (a(., k)) a sequence of C∞(M ×M)
which correspond respectively to ei(x−y).ξ and a(x, ξ, ~).

The oscillatory integrals, as (2), can also be used to define the Lagrangian func-
tions or the Fourier integral operators (cf. [7]). In a similar way, we extend (3) to
define sequence of holomorphic sections associated to a closed Lagrangian subman-
ifold Λ of M . Assume that Λ satisfies the following quantization condition: the flat
bundle (L|Λ,∇) is trivial. Then a Lagrangian section associated to Λ is a sequence
(uk) such that

uk ∈ Hk, ∀k and uk(x) =
( k

2π

)m

F k(x)a(x, k) +O(k−∞)(4)

where m is a real constant and

• F is a section of L→ M which restricts on Λ to a flat section with a constant
norm equal to 1 and such that ∇X−iJXF vanishes to order ∞ along Λ for
every vector field X of M .

• (a(., k)) is a sequence of C∞(M) which admits an asymptotic expansion
∑

l k
−lal(x) for the C∞ topology.

The symbol of (uk) is the formal series
∑

l ~
lal|Λ of C∞(Λ)[[~]]. This is a full symbol,

meaning that it vanishes if and only if (uk) is O(k−∞). There is an associated
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symbolic calculus corresponding to the estimate of the norm of a Lagrangian section.
If (Tk) is a Toeplitz operator we can also compute the symbol of the Lagrangian
section (Tkuk) in terms of the symbols of (uk) and (Tk).

We will also define quantum maps by quantizing the Lagrangian manifolds of
M2. We proved in [6] that the quantum propagator of a Toeplitz operator is an
operator whose Schwartz kernel is a Lagrangian section associated to the graph of
the Hamiltonian flow of its principal symbol. Another application is to prove that
the quantization is independent of the complex structure in a semi-classical sense:
we introduce unitary operators (Uk : Ha

k → Hb
k), where Ha

k and Hb
k are the quantum

spaces associated to two complex structures Ja and Jb. These maps have good semi-
classical properties: they send the Lagrangian sections into the Lagrangian sections,
the Toeplitz operators of Ha

k into the Toeplitz operators of Hb
k, etc... Using a local

version of these maps, we can also realize microlocal equivalences, which leads to
some normal forms and can be used to apply the usual techniques of microlocal
analysis in this context.

To end this introduction let us mention some previous results. Lagrangian sec-
tions were already introduced by Borthwick, Paul and Uribe [2]. Their approach
consists in using the homogeneous theory of the Toeplitz operator of Boutet de
Monvel and Guillemin [4]. Let us identify the sections of Lk to functions defined on
the circle principal bundle P →M associated to L. Then the Lagrangians sections
are obtained by projecting the usual Lagrangian distributions defined on P onto
⊕Hk. The quantum maps considered by Zelditch [11] are defined in a similar way
from the Fourier integral operators C∞(P ) → C∞(P ). These objects are viewed as
Hermite distributions, which leads to the definition of their principal symbol. The
symbolic calculus is then a consequence of the symbolic calculus of the Hermite
distributions.

To compare, our definition is more concrete and leads to the definition of a
full symbol map, from which we control the Lagrangian sections modulo O(k−∞).
Furthermore, the products and the symbolic calculus are obtained by a direct ap-
plication of the stationary phase lemma. Also, we have an explicit description of
the subsymbolic calculus, which involves Riemannian invariants, whereas the sub-
symbolic calculus in the homogeneous theory of the Toeplitz operators has never
been achieved.

Finally, let us mention that the main part of the article [2] is devoted to the
Lagrangian sections of the Riemann surfaces with genus > 2. In the article [11], the
quantization of some symplectomorphisms of the torus illustrates the results about
the quantum maps.
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1. Preliminaries

First we present some general notations and conventions. We state some technical
lemmas that we need to apply the complex stationary phase lemma. Finally we
define the Weyl symbol of a Toeplitz operator, which will be useful for the Bohr-
Sommerfeld conditions.

1.1. Geometric notations. Let (M,ω) be a symplectic manifold endowed with a
complex structure which is integrable and compatible with ω, that is

ω(JX, JY ) = ω(X,Y ), ω(X, JX) > 0 and (ω(X, JX) = 0 ⇒ X = 0).

In other words M is a Kähler manifold with fundamental 2-form ω. We denote by
g the Riemannian metric induced by the symplectic and complex structures

g(X,Y ) = ω(X, JY )

and by µM the measure induced by g . µM is also the Liouville measure 1
n! |ω∧n|.

Let (L → M,h,∇) be a prequantization bundle. We denote by |u| the norm of
u ∈ Lx and by h(u, v) the scalar product of u, v ∈ Lx. The scalar product (s, t) of
two sections s, t ∈ C∞(M,L) is defined in the usual way by

(s, t) =

∫

M

h(s, t)µM .

We denote by L� L−1 → M2 the bundle π#
l L⊗ π#

r L
−1 → M ×M , where πl and

πr are the projections M2 →M onto the first and the second factor. Observe that
L � L−1 endowed with the induced Hermitian structure and covariant derivation
is a prequantization bundle, whose symplectic structure of the base M 2 is given
by π∗

l ω − π∗
rω. We identify the Schwartz kernel of an operator T : C∞(M,L) →

C∞(M,L) with a section (xl, xr) → T (xl, xr) of L � L−1 → M2 by the following
formula

(Ts)(xl) =

∫

M

T (xl, xr).s(xr)µM (xr), ∀s ∈ C∞(M,L).

We use the same notations and definitions for the induced data on the bundle
Lk →M , where k is any positive integer.

1.2. Admissible and negligible sequences. Let (uk)k be a sequence such that
uk ∈ C∞(M,Lk) for every k. We say that (uk) is admissible if for every positive
integer l, for every vector fields X1, ..., Xl of M and for every compact set K of M ,
there exists C and an integer N such that

∣

∣∇X1 ...∇Xl
sk(x)

∣

∣ 6 Ck−N on K.(5)

We say that (uk) is negligible if for every positive integers l, N , for every vector
fields X1, ..., Xl of M and for every compact K of M , there exists C such that (5)
holds. We say that (uk) is negligible over an open set U if the previous estimates are
verified for every compact set of U . We denote by O∞(k−∞) any negligible sequence
or the set of negligible sequences. The microsupport of (uk) is the complementary
set of

{

x ∈M/(uk) is negligible on a neighborhood of x
}

.

Recall that the Toeplitz operators reduce microsupport.

We will also consider some sequences (uα, kα)α such that uα ∈ C∞(M,Lkα) for
every α. We will always assume that kα → ∞ even if we do not mention it. As
previously we may say that (uα) is admissible or negligible over an open set U when
in the previous estimates k, uk are replaced by kα, uα. The microsupport is defined
in the same way.
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1.3. Asymptotic and Taylor expansions. If X is any manifold, the space S0(X)
consists of the sequences (f(., k)) of C∞(X) which admit an asymptotic expansion
of the form

f(., k) =
∞
∑

l=0

k−lfl +O(k−∞)

for the C∞ topology. By the Borel process, if
∑

~lfl is a formal series of C∞(X)[[~]],
there exists a symbol of S0(X) which admits the asymptotic expansion

∑

k−lfl and
this symbol is unique modulo O(k−∞).

Let Y be a closed submanifold of X of codimension k. We denote by IN (Y ) the
ideal of C∞(X) which consists of the functions which vanish to order N along Y
and by I∞(Y ) the ideal ∩NIN (Y ) whose functions vanish to any order along Y .

Let ∂1, ..., ∂k be vector fields of X such that on an open set U of X

• [∂i, ∂j ] = 0 on U
• 〈∂1|x, ..., ∂k|x〉 ⊕ (TxY ⊗ C) = TxX ⊗ C, ∀ x ∈ U ∩ Y .

To solve some equations, we will use the following lemma.

Lemma 1.1. There exists functions Z1, ..., Zk of C∞(U) such that

Zj |Y ∩U= 0, ∂l.Z
j ≡ δjl mod I∞(Y ∩ U).

These functions are unique modulo I∞(Y ∩ U). If f ∈ C∞(U ∩ Y ), there exists
F ∈ C∞(U) such that

F |Y ∩U= f, ∂l.F ≡ 0 mod I∞(Y ∩ U).

F is unique modulo I∞(Y ∩ U).

To deal with the Taylor expansions along a submanifold, we will use the following
result which can be proved by the Borel process.

Lemma 1.2. The map which sends f ∈ C∞(U) into the formal series
∑

αfαZ
α, with fα = ∂αf |Y ∩U

induces an algebra isomorphism from C∞(U)/I∞(Y ∩ U) onto the space C∞(Y ∩
U)[[Z1, ..., Zk]]. The inverse of this isomorphism sends the formal series

∑

α gαZ
α

into [g] with g ∈ C∞(U) such that

g ≡∑|α|6NGαZ
α mod IN+1(Y ∩ U), ∀ N

where the functions Gα ∈ C∞(U) restrict on Y to the functions gα and satisfy
∂lGα ≡ 0 modulo I∞(Y ∩ U) for every l.

With respect to the notation, ∂α is the differential operator ∂
α(1)
1 ...∂

α(k)
k . Finally

we recall the following result proved in [5].

Lemma 1.3. Let d ∈ C∞(X,R+) be a positive function outside Y which van-
ishes to order 2 along Y and whose kernel of its Hessian is TxY for every x in
Y . Let

(

a(., k)
)

be a sequence of C∞(X) which admits the asymptotic expansion
∑∞

l=0 al(x)k
−l for the C0 topology. Let N be a non negative integer. Then the

following two assertions are equivalent.

i. ∀ compact subset K of X, ∃ C such that
∣

∣ e−kd(x)a(x, k)
∣

∣ 6 C k−
N
2 on K.

ii. al ∈ IN−2l(Y ), for every l such that 2l 6 N.
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1.4. Toeplitz operators. A Toeplitz operator is a sequence (Tk) of the form

Tk := ΠkMf(.,k) +O(k−∞) : Hk → Hk

where (f(., k)) is a symbol of S0(M), Mf(.,k) is the multiplication by f(., k) and

Πk is the orthogonal projector of L2(M,Lk) onto Hk. The big O is for the uniform
norm of operators. Recall that the Schwartz kernel of a Toeplitz operator is of the
form

Tk(xl, xr) =
( k

2π

)n

Ek(xl, xr)g(xl, xr, k) +O∞(k−∞)(6)

where

• E is a section of L� L−1 such that E(x, x) = 1, |E(xl, xr)| < 1 if xl 6= xr
and ∇Z̄E ≡ 0 mod I∞(diagM) for every holomorphic vector field Z of
(M2, J ×−J),

• (g(., k)) is a symbol of S0(M2) with asymptotic expansion
∑

k−lgl such
that Z̄.gl ≡ 0 mod I∞(diagM), for every holomorphic vector field Z of
(M2, J ×−J).

The σ symbol of (Tk) is the formal series
∑

~
lgl(x, x) of C∞(M)[[~]]. Here it is

convenient to introduce the Weyl symbol:

σw(Tk) = g0 + ~(g1 − 1
2r.g0 − ∆g0) +O(~2)(7)

where r is the scalar curvature of (M, g) and ∆ the holomorphic Laplacian. The
product of the Weyl symbols induced by the composition of the Toeplitz operators
is

f ∗w h = f.h+
~

2i
{f, h}+O(~2).

The formulas describing the spectrum of (Tk) in the semi-classical limit are simpler
when we write them in terms of this symbol. As instance, assume that Tk is self-
adjoint for every k and denote by

E1
k 6 E2

k 6 ... 6 Edk

k

its eigenvalues. Then using the functional calculus of the Toeplitz operators (cf.
[5]), we can prove that for every C∞ function ϕ

dk
∑

i=1

ϕ(Eik) =
( k

2π

)n
∫

M

(

ϕ(f0 + k−1f1)
)

(1 + k−1 r
2 )µM +O(kn−2)

where f0 + ~f1 is the Weyl symbol of (Tk).
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2. Lagrangian sections

In this part, we consider a symplectic manifold (M,ω) endowed with a pre-
quantization bundle and an integrable positive complex structure J . Let Λ be a
Lagrangian submanifold of M .

The first subsection is devoted to the construction and the properties of a sec-
tion F (cf. equation (4)) associated to Λ. Then we give a local definition of the
Lagrangian sections associated to Λ and of their symbol. In the following subsec-
tions, we compute the norm of the Lagrangian sections and describe the action of
the Toeplitz operators. Finally, we introduce Lagrangian sections associated to a
fibration by Lagrangian tori, the motivation is to construct the quasimodes of a
Toeplitz operator.

2.1. The section F . Both of the next propositions give the main local properties
of the section F associated to Λ. Observe that L restricts on Λ to a flat fiber bundle,
that is the curvature of the induced connection vanishes.

Proposition 2.1. Let x ∈ Λ. There exists a neighborhood U ⊂ M of x and a
section F : U → L such that F |Λ∩U is flat with a constant norm equal to 1 and

∇Z̄F ≡ 0 mod I∞(Λ ∩ U), ∀ holomorphic vector field Z.

If F ′ : U ′ → L satisfies the same assumption and U ∩ U ′ is connected, then there
exists a real number a such that eiaF ≡ F ′ modulo I∞(Λ ∩ U ∩ U ′).

Proof. Since L|Λ is flat, there exists a flat section of L|Λ defined on a neighborhood
of x with constant norm equal to 1. It is locally unique modulo a multiplicative
constant of modulus 1. Extend this section to a local section s of L defined on
a neighborhood of x in M . We look for a section F of the form eiϕs, where ϕ
vanishes over Λ. Write ∇s = −iβ ⊗ s where β ∈ Ω1(U). ∂̄β0,1 = 0 because
ω = dβ ∈ Ω1,1(M). So there exists ρ ∈ C∞(U) such that ∂̄ρ + iβ0,1 = 0. Let us
write ϕ = i(ρ− ρ̃). We have to solve

ρ̃|Λ= ρ|Λ and ∂̄ρ̃ ≡ 0 mod I∞(Λ).

These equations have a unique solution modulo I∞(Λ ∩ U) by lemma 1.1, because
the distribution T 0,1M is integrable and (TxΛ ⊗ C) ⊕ T 0,1

x M = TxM ⊗ C. Indeed,
if X ∈ (TxΛ⊗C) ∩ T 0,1

x M , then ω(X, X̄) = 0 since TxΛ⊗C is a Lagrangian space,
so X = 0 since J is positive. �

The Taylor expansion of F along Λ is determined by Λ and the Kählerian struc-
ture. We compute the first and second derivatives in terms of these data.

Proposition 2.2. Let F : U → L be a section defined as in proposition 2.1. Denote
by αF the 1-form defined by ∇F = αF ⊗ F and by δ the function δ = −2 ln |F |.

• αF vanishes at every x ∈ Λ and its derivative TαF : TxM → T ∗
xM ⊗ C is

given by

〈TXαF , Y 〉 = −iω(q(X), Y ), ∀ X,Y ∈ TxM(8)

where q is the projection of TxM ⊗C onto T 0,1
x M whose kernel is TxΛ⊗C.

• δ vanishes along Λ with its first derivatives. Its Hessian is the bilinear
symmetric form of TxM whose kernel is TxΛ and which restricts on JTxΛ
to g|JTxΛ.
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Hence δ = −2 ln |F | is positive on a neighborhood of Λ minus Λ. By modifying
F outside this neighborhood, we may assume that

|F |(x) < 1 if x /∈ Λ.(9)

In the following we will always assume that the section F satisfies this condition
even if we do not mention it.

Proof. Recall first that (TxΛ ⊗ C) ⊕ T 0,1
x M = TxM ⊗ C (cf. proof of proposition

2.1). If X is an anti-holomorphic vector field, then 〈αF , X〉 vanishes to order ∞
along Λ. If X ∈ TxΛ, then 〈αF , X〉 = 0 since F |Λ is flat. Consequently, αF vanishes
at x ∈ Λ and the derivative TαF is well-defined.

If X ∈ TxΛ, the two sides of equation (8) vanish. Hence it suffices to prove
equation (8) with X ∈ T 0,1

x M . Assume that X and Y are vector fields and X is
anti-holomorphic. Using that αF vanishes along Λ, we obtain on Λ

∇X∇Y F −∇Y∇XF −∇[X,Y ]F =
(

〈TXαF , Y 〉 − 〈TY αF , X〉
)

F.

The second term of the right side vanishes. Since the curvature of ∇ is −iω, we
have 〈TXαF , Y 〉 = 1

iω(X,Y ), and this proves (8).

|E||Λ= 1, so δ vanishes along Λ, and the same holds with its first derivatives
since dδ = −αF − ᾱF . So the Hessian of δ at x ∈ Λ is well-defined. Its kernel
contains TxΛ. Furthermore (8) implies

Hess δ(X,Y ) = − (2i)−1ω(q(X) − q(X), Y ), ∀ X,Y ∈ TxM

and if X ∈ JTxΛ, then q(X) = X + iJX . So Hess δ(X,Y ) = −ω(JX, Y ) =
g(X,Y ). �

Remark 2.3. Let E be the section associated to the kernel of the Toeplitz operators
(cf. (6)). If ∇E = αE ⊗ E on a neighborhood of diagM , we can prove that αE
vanishes at (x, x) ∈ diag(M) and its first derivative is given by

〈T(X1,X2)αE , (Y1, Y2)〉 = 1
iω(X0,1

1 −X0,1
2 , Y1) + 1

iω(X1,0
1 −X1,0

2 , Y2)(10)

where X1,0 = 1
2 (X + iJX) is the holomorphic part of X and X0,1 = 1

2 (X − iJX)
its anti-holomorphic part. �

2.2. Definition of Lagrangian sections. Let U be an open set of M , such that
there exists a section F : U → L which satisfies the assumptions of proposition
2.1 and condition (9). We are interested in admissible sequences (uα, kα)α∈N of the
following form over U

uα = F kαa(., kα) +O∞(k−∞
α )(11)

where a(., k) is a symbol of S0(U), whose asymptotic expansion
∑

k−lal satisfies

Z̄.al ≡ 0 mod I∞(U ∩ Λ), ∀ holomorphic vector field Z.(12)

If moreover uα ∈ Hkα
for every α, we will say that (uα, kα) is a Lagrangian section

over U .

Proposition 2.4. Let (uα, kα)α be an admissible sequence of the form (11) over
U . Then

Πkα
uα = uα +O∞(k−∞

α ) over U.

Let (u′α, kα) be an admissible sequence of the form (11) over U with a section F ′

and a symbol a′(., k). Assume that F |U∩Λ= F ′|U∩Λ. Then

uα = u′α +O∞(k−∞
α ) over U ⇔ al|U∩Λ= a′l|U∩Λ for every l.
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We will call the formal series
∑

l~
lfl :=

∑

l~
lal|U∩Λ

the symbol of the Lagrangian section (uα, kα). The function f0 is the principal
symbol.

From the first assertion of the previous proposition, the existence of a Lagrangian
section over U with an arbitrary symbol

∑

~lfl is equivalent to the existence of an
admissible sequence (uα, kα) of the form (11) where the asymptotic expansion of
the symbol a(., k) restricts to

∑

k−lfl over U∩Λ. If (uα, kα) is a Lagrangian section
over U with symbol

∑

~
lfl, observe that (uα) is O∞(k−∞

α ) over U if and only if its
symbol vanishes. More precisely, we deduce from lemma 1.3 that

|uα| = O
(

k−Nα
)

over U ⇔ f0 = ... = fN−1 = 0.

To define a global Lagrangian section, we need a quantization condition. As
instance assume that (L|Λ,∇) is trivial. Then there exists a flat section

t : Λ → L

of constant norm equal to 1. Using a partition of unity, we can obtain a global
section F : M → L which restricts to t over Λ and satisfies the assumptions of
proposition 2.1 over a neighborhood of Λ. Define the space S(Λ, t) of Lagrangian
sections (uα) such that uα ∈ Hα for every α, (uα) is of the form (11) over a
neighborhood of Λ with kα = α and is negligible outside this neighborhood. Then
proposition 2.4 implies that the symbol map S(Λ, t) → C∞(Λ)[[~]],

(uα) →∑

l~
lfl such that uk|Λ= tk

∑

lk
−lfl +O(k−∞)(13)

is onto. Its kernel consists of the negligible sequences. This quantization condition
will be used to define the kernel of the quantum maps. To define the quasimodes
we will need a more complicated condition (cf. section 2.6).

Proof of proposition 2.4. We begin with the second assertion. By proposition 2.1,
F and F ′ are equal modulo I∞(Λ ∩ U). Hence it follows from lemma 1.3 and the
properties of the Hessian of ln |F | (cf. proposition 2.2) that uα = u′α + O∞(k−∞

α )
over U if and only if al and a′l have the same Taylor expansion along U ∩ Λ, for
every l. By (12), this is satisfied if and only if al and a′l are equal over U ∩ Λ. The
first assertion is a consequence of the following lemma.

Lemma 2.5. Let (uα, kα) be an admissible sequence of the form (11) over U with
a symbol (b(., k)) . Then (Πkα

uα, kα) is of the same form over U with a symbol
(c(., k)) such that c0 is equal to b0 over U ∩ Λ.

Let x ∈ Λ ∩ U . Applying the previous remarks, we can obtain from lemma 2.5
an admissible sequence (wα, kα) satisfying (11) and such that

Πkα
wα = uα +O(k−∞

α )(14)

on a neighborhood of x. Indeed we can construct the symbol of (wα) by successive
approximations. Now applying Πkα

to (14), it follows that Πkα
uα = uα +O(k−∞

α )
on a neighborhood of x. �

Proof of lemma 2.5. We use the ansatz (6) for the Schwartz kernel of Πk. Hence

Πk

(

F kb(., k)
)

(x1) =
( k

2π

)n
∫

U

Ek(x1, x2).F
k(x2)f(x1, x2, k)b(x1, k)µM (x2)
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modulo O∞(k−∞), where U is an arbitrary small neighborhood of x1. We compute
this integral by applying stationary phase lemma. Introduce a section s : U → L
with constant norm equal to 1 and such that s|Λ= F |Λ. Write

E(x1, x2).F (x2) = eiφ(x1,x2)s(x1), F (x1) = eiϕ(x1)s(x1)(15)

where ϕ vanishes along Λ and φ along diag(Λ). With these notations, we have to
estimate

∫

U

eikφ(x1,x2) f(x1, x2, k)b(x1, k)
(

det[gjk](x2)
)

1
2 |dx2|

as k → ∞. First we prove that dx2φ vanishes on diag(Λ) and d2
x2
φ is definite on

diag(Λ). By proposition 2.2 and remark 2.3, αE vanishes along diag(M) and αF
along Λ. So derivating the first equation in (15) we obtain dx2φ = 0 on diag(Λ).
Derivating again, we deduce from (8) and (10) that

d2
x2
φ
(

X,Y ) = ω(X1,0 − q(X), Y ) on diag(Λ).(16)

Hence d2
x2
φ is definite on diag(Λ). Indeed d2

x2
φ
(

X, .) = 0 implies X1,0 = q(X).

Since q(X) ∈ T 0,1M , X1,0 = 0. So X ∈ (TΛ⊗C)∩ T 0,1M = (0). Consequently we
can apply the stationary phase lemma (chapter 7.7 of [8]).

Since the phase φ takes complex values, we do not consider its critical set, but
the ideal generated by the family (∂xk

2
φ)k . Introduce a coordinates system (xi2) on

the second factor of U×U and a complex coordinates system (zi1) on the first factor.
Derivating F−1(x1)E(x1, x2).F (x2), we obtain

∂z̄i
1
φ(x1, x2) ≡ ∂z̄i

1
ϕ(x1) mod I∞(diag Λ).(17)

Hence ∂z̄i
1
∂xk

2
φ vanishes to any order along diag(Λ). We will deduce from this that

the ideal generated by the family (∂xk
2
φ)k is the set J which consists of the functions

f(x1, x2) such that

f |diagΛ= 0, ∂z̄i
1
f ≡ 0 mod I∞(diag Λ).

We consider the vector fields ∂z̄i
1
, ∂xk

2
(1 6 i 6 n and 1 6 k 6 2n). They generate

a distribution transversal to diag(Λ). Working as in lemma 1.1, we associate to them

the functions Z̄
i
1, X

k
2 . We will prove that every function of J is a linear combination

of the Xk
2 with C∞ coefficients and conversely. If f ∈ J , then the formal series (cf.

lemma 1.2) associated to the Taylor expansion of f belongs to the ideal generated

by the Xk
2 and consequently f is a linear combination of the Xk

2 modulo a function
of I∞(diag Λ). We verify that

〈dX1
2, ..., dX

n
2 , dX̄

1
2, ..., dX̄

n
2 〉⊥ = diag(TΛ) ⊗ C.

So
∑

Xj
2X̄

j
2 is transversally elliptic to diag(Λ), every function of I∞(diag Λ) can

be divided by
∑

Xk
2X̄

k
2 and can be written as a linear combination of the Xk

2 . The

converse is easy since the Xk
2 belong to J .

The functions ∂xk
2
φ belong to J , so they are of the form

∂xk
2
φ =

∑

j

fkjX
j
2.

If x ∈ diag(Λ), we have

fkj(x) = ∂xj
2
∂xk

2
φ(x).

Hence, fkj is invertible on a neighborhood of diag(Λ), the X j
2 are linear combination

of the ∂xk
2
φ. This proves that the ideal generated by the ∂xk

2
φ is J .
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From (17) we deduce that φ(x1, x2) = ϕ(x1) mod J . We obtain

Πk

(

F kb(., k)
)

(x) = F k(x)c(x, k) +O(k−∞)

where (c(., k)) is a symbol of S0(M). Derivating the previous equality with respect
to any antiholomorphic vector field, we deduce from lemma 1.3 that c(., k) satisfies
(12). Furthermore if x ∈ Λ, since f(x, x, k) = 1 +O(k−1) we have

c0(x) = b0(x).
(

det[−i∂xj
2
∂xk

2
φ](x, x)

)− 1
2 .
(

det[gjk](x)
)

1
2

where the gjk are the coefficient of the Riemannian metric g =
∑

j,k gjkdx
j
2 ⊗ dxk2 .

Since c0(x) does not depend on the coordinates (xj2), we can choose them to compute
easily the two determinants. If (∂xi

2
)i=1,...,n is an orthonormal base of TxΛ and

∂xi+n
2

= J∂xi
2

at x, then gjk(x) = δjk. And it follows from (16) that the matrix

−i∂xj
2
∂xk

2
φ(x, x) is :

1

2

(

Id −i Id
−i Id 3 Id

)

We deduce from this that c0(x) = b0(x). �

2.3. Norm of the Lagrangian sections. The following proposition is a conse-
quence of the stationary phase lemma.

Proposition 2.6. Let (uα, kα) and (vα, kα) be Lagrangian sections over U with the
same section F and principal symbols f0, g0 ∈ C∞(U ∩ Λ). Then

∫

U

h(uα, vα)µM =
( π

kα

)
n
2

∫

Λ∩U
f0.ḡ0 µΛ +O(k

− n
2 −1

α )

where µΛ is the measure of Λ induced by the Riemannian structure g.

More generally, we can estimate the integral of h(uα, vα)µM , where (uα, kα) and
(vα, kα) are Lagrangian sections over U associated to Lagrangian manifolds Λ and
Λ′ respectively such that the intersection of Λ with Λ′ is non-degenerate (cf. [2]).
For example, when the dimension is n = 1, assume that Λ∩Λ′ = {x} ⊂ U and that
this intersection is transversal. If F (x) = F ′(x), we have

∫

U

h(uα, vα)µM =
( π

kα

)

f0(x).ḡ0(x)
√

1 + ia+O
(

k−2
α

)

where f0 and g0 are the principal symbols of (uα) and (vα) and a = cotan θ if θ is
the angle between TxΛ and TxΛ

′. The square root is chosen so as to be continuous
with respect to a and to take the value 1 when a = 0.

Proof of proposition 2.6. Recall the notation |F |2 = e−δ (cf. proposition 2.2). We
estimate the integral

∫

U

e−kδ(x)a(x, k)b̄(x, k)µM (x).

Choose a coordinates system (xj , yj) such that Λ = {y1 = ... = yn = 0}. We may
assume that the orthogonal set of TxΛ is 〈∂y1 , ..., ∂yn〉|x for every x ∈ Λ ∩ V . Then
the metric is given along Λ by

g(xl, 0) = gjk(x
l, 0)dxj ⊗ dxk + g′jk(x

l, 0)dyj ⊗ dyk.
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Furthermore by proposition 2.2, δ ≡ g′jk(x
l, 0)yjyk mod I3(Λ). We have

∫

e−kδ(x)a(x, k)b̄(x, k)µM (x) =

∫

|dxj |
∫

e−kδ(x)a(x, k)b̄(x, k)
(

det[g]
)

1
2 |dyj |

=
(π

k

)
n
2

∫

f0.ḡ0
(

det[gj,k]
)

1
2 |dxj | +O(k−

n
2 −1)

by the stationary phase lemma. �

2.4. Action of the Toeplitz operators. We consider now the action of the
Toeplitz operators on the Lagrangian sections.

Proposition 2.7. If (Tk) is a Toeplitz operator and (uα, kα) a Lagrangian section
over U , then (Tkα

uα, kα) is a Lagrangian section over U . Furthermore, there exists
a sequence of bilinear operators Ll : C∞(M) × C∞(Λ) → C∞(Λ) such that the
symbol of (Tkα

uα) is
∑

~
l

∑

l1+l2+l3=l

Ll1(fl2 , gl3)

if σ(Tk) =
∑

~
lfl and the symbol of (uα) is

∑

~
lgl. The operators Ll depend only

on Λ, M and its Kählerian structure, and

• L0 is the map which sends f ∈ C∞(M), g ∈ C∞(Λ) into f |Λ.g.
• L1, L2, ... are locally on the form

Ll(f, g)|Λ∩V =
∑

|α|+|γ|62l

aα,γ∂
α
z̄ f |Λ∩V .∂

γ
xg, ∀f ∈ C∞(M), g ∈ C∞(Λ)(18)

where V is an open set of M , (zi) a complex coordinates system defined on
V , (xi) a coordinates system of Λ defined on Λ∩V and aα,γ ∈ C∞(Λ∩V ).

Proof. The proof is the same as the proof of lemma 2.5 except that we replace (Πk)
with (Tk) and that we have to compute the full asymptotic expansion. As in the
proofs of proposition 2.1 and lemma 2.5, we introduce a local section s with constant
norm equal to 1 such that F |Λ= s|Λ and a function ρ such that ∇s = (∂̄ρ−∂ρ̄)⊗ s.
We have to estimate

( k

2π

)n

sk(x1)

∫

eikφ(x1,x2)f(z1, z̄2)g(z2)dµM (x2)(19)

as k tends to ∞. From the proof of proposition 2.1 and [5], the phase φ is given by

φ(x1, x2) = i
(

ρ(x1) + ρ̄(x2) − (ρ+ ρ̄)(z1, z̄2) + ρ(x2) − ρ(z2)
)

.

Let us explain the notations : if f ∈ C∞(U), f(z1, z̄2) is a function f̃ defined on

U × U such that f̃(x, x) = f(x) and the derivatives ∂z̄i
1
f̃ , ∂zi

2
f̃ vanish to any order

along diag(U). In the same way, if g ∈ C∞(Λ) then g(z) is a function g̃ defined on
U which restricts on Λ to g and such that the derivatives ∂z̄i g̃ vanish to any order
along Λ.

We introduce some notations to handle the Taylor expansion along diag(Λ) and
the Taylor expansion along Λ. Following lemmas 1.1 and 1.2, we identify the Taylor
expansion along Λ of the functions of C∞(U) with the formal series of C∞(Λ)[[Zi]]

(the functions Zi1 are associated to the vector fields ∂zi). In the same way we
identify the Taylor expansion along diag(Λ) of the functions of C∞(U × U) with

the formal series of C∞(Λ)[[Z̄i1, Z
i
2, Z̄

i
2]], (the functions Z̄

i
1, Z

i
2, Z̄

i
2 are associated to

the vector fields ∂z̄i
1
, ∂zi

2
, ∂z̄i

2
). Observe that the functions Z̄

i
2 are not conjugated to

Zi2.
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As we saw in the proof of lemma 2.5, the ideal generated by the ∂zi
2
φ and ∂z̄i

2
φ

is the set J which consists of the functions whose Taylor expansion belongs to the
ideal generated by the Zi2, Z̄

i
2. If the Taylor expansion of f ∈ C∞(U × U) is

∑

fα,β,γZ̄
α
1 Z

β
2 Z̄

γ
2

then the Taylor expansion of a function g ∈ C∞(U) such that g(x1) = f(x1, x2)
mod J is

∑

fα,0,0Z̄
α.

We have F (x) = eiϕ(x)s(x) with ϕ(x) = i(ρ(x)−ρ(z)). Let us compute the Taylor
expansion of φ(x1, x2)−ϕ(x1). Introduce the functions Gα,β = ∂αz ∂

β
z (ρ+ ρ̄)|Λ. We

have

ρ(x2) + ρ̄(x2) ∼
∑

α,β

Gα,β
α!β!

Zα2 Z̄
β
2 , ρ(z1) ∼ ρ0,

(ρ+ ρ̄)(z1, z̄2) ∼
∑

β

G0,β

β!
Z̄β2 , ρ(z2) ∼

∑

α

ρα
α!
Zα2

where the ρα are the restrictions on Λ of the successive derivatives of ρ(z) with
respect to ∂zi . We deduce from this that

φ(x1, x2) − ϕ(x1) ∼ i
∑

|α|>0,|β|>0

Gα,β
α!β!

Zα2 Z̄
β
2 + i

∑

|α|>0

Gα,0 − ρα
α!

Zα2 .

From the proof of lemma 2.5, φ(x1, x2) − ϕ(x1) vanishes to the second order along
diag(Λ), so Gi,0 = ρi. This can also be directly checked using that 〈X, ∂̄ρ−∂ρ̄〉 = 0
if X is tangent to Λ. If x ∈ Λ, the matrice of −id2

x2
φ(x, x) in the base ∂zi

2
, ∂z̄i

2
is

(

Gij,0 − ρij Gi,j
Gj,i 0

)

.

From (16), Gij,0 − ρij = iω(q(∂zi), ∂zj ) = qliGj,l. The inverse of this matrix is
(

0 Gi,j

Gj,i −qilGl,j
)

.

Applying theorem 7.7.12 of [8], we obtain that (19) is equal to

sk(x1)e
ikϕ(x1)h(x1, k) +O∞(k−∞)

where (h(., k)) admits an asymptotic expansion
∑

l k
−lhl for the C∞ topology.

Furthermore, the Taylor expansion along Λ of the coefficients is given by

hl ∼ [det(Gij)]
−1

3l
∑

k=l

(−1)l−k

k!(k − l)!

[

∆k(Rk−lF.G.D)
]

Zi
2=Z̄i

2=0

Z̄i=Z̄i
1

.(20)

F , G are the formal series associated to the Taylor expansion of f(z1, z̄2) and g(z2):

F =
∑

β

1

β!
∂βz̄ f |ΛZ̄β2 , G =

∑

α

gα
α!
Zα2

where the gα are the restrictions on Λ of the successive derivatives of g(z) with
respect to ∂zi .

R =
∑

|α|>0,|β|>0,
|α|+|β|>3

Gα,β
α!β!

Zα2 Z̄
β
2 +

∑

|α|>3

Gα,0 − ρα
α!

Zα2 .
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D is the formal series associated to the Taylor expansion of det[∂zi∂z̄j (ρ + ρ̄)](x2)
and ∆ is the operator

∆ =
∑

i,j

Gi,j∂Zi
2
∂Z̄j

2
− 1

2
qilG

l,j∂Z̄i
2
∂Z̄j

2
.

Since the formal variables Z̄i1 do not enter in the computation, the derivatives with
respect to ∂z̄i of the functions hl vanish to every order along Λ. The restriction of
the functions hl to Λ is given by the above formula. To prove that the operators
Ll are locally of the form (18), it suffices to prove that gα = P.g where P is a
differential operator C∞(Λ) → C∞(Λ). The differential of g(z) at x ∈ Λ vanishes
on T 0,1

x M and its restriction on TxΛ is dg. Consequently,

gi =
(

∂zig(z)
)

|Λ= qc(∂zi).g.(21)

This gives the result for gi. We generalize to the functions gα by induction on |α|
by using that ∂zig(z) is also a function whose derivatives with respect to ∂z̄i vanish
to any order along Λ. The computation of L0(f, g) was done in the proof of lemma
2.5. �

2.5. Subsymbolic calculus. As we saw in the previous subsection, every Toeplitz
operator induces a map T : C∞(Λ)[[~]] → C∞(Λ)[[~]] of the form

Th = f0|Λ.h+ ~(f1|Λ.h+ L1(f0, h)) +O(~2)

where σ(Tk) = f0+~f1+O(~2). The purpose of this section is to compute L1(f0, h).
From this result, we will deduce the following theorem that we will use to compute
the Bohr-Sommerfeld conditions modulo O(~2).

Theorem 2.8. If the Weyl symbol of (Tk) is f0 + ~fw1 +O(~2) and Λ ⊂ {f0 = E}
where E is a real number, then

Th = Eh− i~
(

LXf0
.h+

(

ifw1 − i
2H.f0 + 1

2 divΛE
(Xf0)

)

h
)

+O(~2)

where

• Xf0 is the Hamiltonian vector field of f0 (i.e. df0 + ιXf0
ω = 0),

• H ∈ C∞(Λ, JTΛ) is the mean curvature vector field of Λ,
• divΛ : C∞(Λ, TΛ) → C∞(Λ) is the divergence with respect to the measure
µΛ induced by the Riemannian metric.

To state the result about L1(f0, h), we need to define an operator � : C∞(M) →
C∞(Λ). First let P 2

∇ be the operator

P 2
∇ : C∞(M)

∂−→ C∞(M,Λ1,0M)
∇Λ1,0M

−−−−−→ C∞(M,Λ1,0M ⊗ ΛM)(22)

where ∇Λ1,0M is the covariant derivation of the holomorphic Hermitian bundle
Λ1,0M . Denote the conjugate operator by P̄ 2

∇ : C∞(M) → C∞(M,Λ0,1M ⊗ ΛM).
If x ∈ Λ, recall that q|x is the projection of TxM ⊗C with image T 0,1

x M and kernel
TxΛ ⊗ C. The restriction of q on T 1,0M defines a tensor

qjkdz
k ⊗ ∂z̄j ∈ C∞(Λ,Λ1,0M ⊗ T 0,1M).

By contracting with G−1 = Gjk∂zj ⊗ ∂z̄k , this gives the tensor

qjlG
l,k∂z̄j ⊗ ∂z̄k ∈ C∞(Λ, T 0,1M ⊗ T 0,1M).

Finally we set

�f = qjlG
l,kfjk|Λ where P̄ 2

∇f = fjkdz̄
j ⊗ dz̄k.
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Proposition 2.9. If f ∈ C∞(M), g ∈ C∞(Λ) then

L1(f, g) = − 1
2 (r.f)|Λg − 1

2 (�f).g − iLqc(Xf ).g

where r is the scalar curvature of M and qc|x is the projection of TxM ⊗ C with
image TxΛ ⊗ C and kernel T 0,1

x M .

Proof. We start from the proof of proposition 2.7. Choose a coordinates system on
a neighborhood of x ∈ M , such that Gi,jk(x) = Gij,k(x) = 0. From (20) a direct
computation gives

h1 =
1

2
Gij,ij .f.g −

1

2
qilG

l,j(∂z̄i∂z̄jf).g +Gi,j(∂z̄if)gj

at x where gi =
(

∂zig(z)
)

|Λ. We recognize the scalar curvature r and P̄ 2
∇f , which

are given at x by

r = Gij,ij , P̄ 2
∇f = (∂z̄i∂z̄jf)dz̄i ⊗ dz̄j .

To recognize the last term of the sum, observe that

Xf = −iGj,k(∂zjf)∂z̄k + iGj,k(∂z̄kf)∂zj .

So qc(Xf ) = iqc(Gj,k∂z̄kf∂zj ). Then the results follows from (21). �

We will give another formulation of this result when the Hamiltonian vector field
of f is tangent to Λ. Recall that the second fundamental form of Λ is the section

σ ∈ C∞(Λ, T ∗Λ ⊗ T ∗Λ ⊗ JTΛ) such that σ(X,Y ) = ∇TM
X Y −∇TΛ

X Y

where ∇TM and ∇TΛ are the Levi-Civita connections of (M, g) and (Λ, g|TΛ). The
mean curvature vector field is H ∈ C∞(Λ, JTΛ) defined by H = trσ.

Proposition 2.10. If the Hamiltonian vector field of f ∈ C∞(M) is tangent to Λ,
then

(�f)|Λ= (∆f)|Λ+H.f + i divΛ(Xf )

and consequently

L1(f, g) = − 1
2 (r.f + ∆f)|Λg − i

2 divΛ(Xf ).g − 1
2 (H.f).g − iLXf

.g.

From the definition of the Weyl symbol (7), we obtain theorem 2.8 as a corollary
of this proposition.

Proof. Let (Xj) be an orthonormal base of TxΛ. Let Yj = JXj . So (Xj , Yj) is an
orthonormal base of TxM . Let (ξj , ηj) be the dual base (ηj = −J tξj). The family
Zj = 1√

2
(Xj − iYj) is a base of T 1,0

x M whose dual base is
(

ζj = 1√
2
(ξj + iηj)

)

. We

have G = ζj ⊗ ζ̄j , so G−1 = Zj ⊗ Z̄j . The restriction of q at T 1,0M is −ζ̄j ⊗ Zj .
Contracting with G−1, this gives

−Zj ⊗ Zj = −1

2
(Xj ⊗Xj − Yj ⊗ Yj) +

i

2
(Xj ⊗ Yj + Yj ⊗Xj).

Recall that on a Kähler manifold, the Levi-Civita connection ∇TM preserves T 1,0M
and T 0,1M , is compatible with G and restricts on T 1,0M to the covariant deriva-
tion of the holomorphic Hermitian bundle T 1,0M (cf. [1]). So, ∇T∗M preserves
Λ1,0M and Λ0,1M , is compatible with G−1 and restricts on Λ1,0M to the covariant
derivation of the holomorphic Hermitian bundle Λ1,0M .
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We extend the (Xj) on a neighborhood U of x so that they give an orthonormal
base of TyΛ when y ∈ Λ ∩ U . Define as above the vector and covector fields
Yj , Zj , ξ

j , ηj , ζj . Then we have on U ∩ Λ

�f = −〈∇T∗Mdf, Zj ⊗ Zj〉, ∆f = 〈∇T∗Mdf, Zj ⊗ Z̄j〉
⇒ �f − ∆f = −〈∇T∗Mdf,Xj ⊗Xj〉 + i〈∇T∗Mdf, Yj ⊗Xj〉.(23)

Write df = (Xjf)ξj + (Yjf)ηj , and observe that Xj .f vanishes on Λ since Xf is
tangent to Λ. We have then on U ∩ Λ

〈∇T∗Mdf,Xj ⊗Xj〉 = (Ykf)〈∇T∗M
Xj

ηk, Xj〉
= −(Ykf)〈ηk ,∇TM

Xj
Xj〉 since d〈ηk, Xj〉 = 0

= −(Ykf)〈ηk ,∇TM
Xj

Xj −∇TΛ
Xj
Xj〉

since ∇TΛ
Xj
Xj is tangent to Λ. Consequently, 〈∇T∗Mdf,Xj⊗Xj〉 = −H.f . We treat

now the second term of (23)

〈∇T∗Mdf, Yj ⊗Xj〉 =Xj(Yjf) + (Ykf)〈∇T∗M
Xj

ηk, Yj〉
=Xj(Yjf) − (Ykf)〈ηk,∇TM

Xj
Yj〉

on U ∩ Λ. Recall that divΛX = − tr∇TΛY (cf [1]). From Xf = −(Ykf)Xk on Λ,
we deduce that

divΛXf = Xj(Yjf) + (Ykf)〈ξj ,∇TΛ
Xj
Xk〉

= Xj(Yjf) − (Ykf)〈ξk ,∇TΛ
Xj
Xj〉

since 〈ξj ,∇TΛ
Xj
Xk〉 = g(Xj ,∇TΛ

Xj
Xk) = −g(∇TΛ

Xj
Xj , Xk) = −〈ξk,∇TΛ

Xj
Xj〉. But

∇TΛ
Xj
Xj −∇TM

Xj
Xj ∈ JTΛ.

We obtain that 〈∇T∗Mdf, Yj ⊗Xj〉 = divΛXf . �

2.6. Lagrangian sections associated to a fibration by Lagrangian Tori. Let
us consider an open set of M diffeomorphic to the product Br×Tn, where Br ⊂ Rn

is the open ball of radius r with center 0 and Tn = Rn/Zn. Denote by ξi and xi

the usual coordinates of Br ⊂ R
n and T

n. We assume that

ω|Br×Tn= dξi ∧ dxi.(24)

We are interested in the family of Lagrangian submanifolds

Λγ = {(ξ, x)/ξi = γi, ∀i} ⊂M

where γ belongs to Γ = Br/2. Denote by π the projection Γ×Br ×Tn → Br ×Tn.

We will define Lagrangian section (uα, kα, γα), where uα ∈ Hkα
is associated to

Λγα
for every α. Locally, they are of the following form

uα =
(kα
π

)
n
4

F kα

V (γα, .)aV (γα, ., kα) +O∞(k−∞
α ) on Br × V(25)

where V is an open contractible set of Tn and

• FV is a section of π#L defined on Γ × Br × V , such that FV (γ, .) is flat
along Λγ and ∇Z̄FV vanishes at every order along {(γ, ξ, x)/γ = ξ} for
every vector field Z ∈ C∞(Γ ×Br × Tn, T 1,0(Br × Tn)).

• aV is a symbol of S0(Γ × Br × V ), with asymptotic expansion
∑

k−laV,l
such that Z̄.aV,l vanishes at every order along {(γ, ξ, x)/γ = ξ} for every
vector field Z ∈ C∞(Γ ×Br × Tn, T 1,0(Br × Tn)).
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Locally the symbol will be defined as the formal series
∑

~lfV,l of C∞(Γ × V )[[~]]
such that

fV,l(γ, x) = aV,l(γ, γ, x).(26)

Globally, it will be natural to consider it as a section of a flat C[[~]]-bundle.

First let us introduce the notion of a flat C[[~]]-bundle K → Tn of rank 1 with
structural group {eiϕ(~) / ϕ(~) ∈ R[[~]]}. Such a bundle is locally isomorphic to
K|V' V × C[[~]] and the transition functions are of the form

(V ∩W ) × C[[~]] → (V ∩W ) × C[[~]], (x, c(~)) → (x, c(~)eiϕ(~))

where ϕ(~) ∈ R[[~]] and eiϕ(~) is defined by

eiϕ(~) = eiϕ0

∑

m

1
m!

(

i
∑l=∞
l=1 ~lϕl

)m
, if ϕ(~) =

∑

~lϕl.

Using the flat structure we can introduce the parallel transport K|δ(0)→ K|δ(1)
along a path δ : [0, 1] → T

n. Let δ1, ..., δn be loops with the same base point x
such that ([δj ]) is a base of H1(T

n,Z). The parallel transport along δj is a map

K|x→ K|x of the form c(~) → e2πiϕ
j(~)c(~). The holonomy of the loop δj is by

definition ϕj(~) ∈ R[[~]]/Z.

Now let K → Γ × T
n be a C[[~]]-bundle of rank one with transition functions of

the form

Γ × (V ∩W ) × C[[~]] → Γ × (V ∩W ) × C[[~]], (γ, x, c(~)) → (γ, x, c(~)eiϕ(γ,~))

where ϕ(γ, ~) ∈ C∞(Γ,R)[[~]]. For every γ ∈ Γ, this bundle restricts on {γ} ×
Tn ' Λγ to a flat bundle Kγ as we considered below. A C∞ section of K is map
f : Γ × Tn → K, locally of the form

Γ × V → Γ × V × C[[~]], (γ, x) → (γ, x, fV (γ, x, ~))(27)

where fV ∈ C∞(Γ × V )[[~]]. These sections will be the symbols of the Lagrangian
sections.

Finally let us give the quantization condition. Fix a base ([δi]) of H1(T
n,Z) such

that δ1, ..., δn have the same base point x. Denote by
∑

~lϕil(γ) the holonomy of
δi for the bundle K|γ and by ϕi−1(γ) the holonomy of δi for the bundle L|Λγ

. We
assume that the sequence (γα, kα) of Γ × N satisfies

ϕ−1(γα) − k−1
α ϕ(γα, kα) ∈ k−1

α Z
n +O(k−∞

α )(28)

where ϕ(γ, k) =
∑

l>0 k
−lϕil(γ) +O(k−∞).

Let f be a section of K and let us define a sequence (uα, kα, γα) associated.
Fix two sections tL : Γ × {0} → L and tK : Γ × {0} → K with constant norms
equal to 1. If V is an open contractible set of Tn, choose a path δ : [0, 1] → Tn

with δ(0) = 0 and δ(1) ∈ V . Then define the section FV in (25) in such a way
that FV (γ, γ, δ(1)) is the parallel transport of tL(γ, 0) along {γ} × δ. Consider the
trivialization K|Γ×V' Γ×V ×C[[~]] such that the parallel transport along {γ}× δ
sends tK(γ, 0) into (γ, δ(1), 1). This defines the formal series fV by (27) and we can
introduce a symbol aV (., k) which satisfies (26).

Hence we defined the left hand side of (25) for every open contractible set V of
Tn. The point is that these expressions patch together modulo O∞(k−∞

α ) because
of the quantization condition (28). So using a partition of unity, we can introduce
an admissible sequence (vα, kα) which restricts over every Br × V to these local
expressions. Then we set uα = Πkα

vα. By proposition 2.4 that we can generalize
with parameters, we know that uα = vα +O∞(k−∞

α ).
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It is straightforward to generalize the propositions 2.6 et 2.7. We just state the
results. The norm |f |2 is a formal series of C∞(Γ × Tn,R)[[~]]. The norm of the
section uα is estimated by

(uα, uα) =

∫

Λγα

g(γα, x) µΛγα
(x) +O(k−1

α )(29)

with |f |2 = g +O(~).

If (Tk) is a Toeplitz operator, we can describe the sequence (Tkα
uα) in the follow-

ing way: as we saw in proposition 2.7, (Tk) induces an action on the space of symbol
C∞(Λγ)[[~]], for every γ. Since Kγ is flat, this gives a map Tγ : C∞(Λγ ,Kγ) →
C∞(Λγ ,Kγ), and consequently a map

T : C∞(Γ × T
n,K) → C∞(Γ × T

n,K).

Applying this operator to the symbol f , we obtain a symbol Tf and so a Lagrangian
section (wα, kα, γα) (we define it using the same sections tL and tK as we chose to
define (uα)). Then the result is that

wα = Tkα
uα +O(k−∞

α ).

To end this section, we discuss the quantization condition (28). First, observe
that it does not depend on the choice of the base ([δi]). Furthermore, using (24)

and that the curvature of L is 1
iω, we prove that the maps ϕj−1 are affine

ϕj−1(γ) = ϕj−1(0) +
γj

2π
.

Hence the map ϕ−1 is a diffeomorphism of Br onto its image, the same holds
with the functions ϕ−1 − k−1ϕ(., k) if k is sufficiently large. The inverse r(., k) of
ϕ−1 − k−1ϕ(., k) is well-defined on ϕ−1(0) + (2π)−1Br−ε and admits an asymptotic

expansion
∑

l k
−lrl with r0(γ̄) = 2π(γ̄ − ϕj−1(0)). We have

γ̄α ∈ k−1
α Z

n +O(k−∞
α ) iff γα = r(γ̄α, kα) satisfies (28).

Hence (28) says that γα takes its values in the deformed lattices r(k−1
α Zn, kα) +

O(k−∞
α ).
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3. The Bohr-Sommerfeld conditions

Let (T 1
k ), ..., (Tnk ) be Toeplitz operators which commute. The joint spectrum of

these operators is the sequence of subsets of Rn:

Sp(Tk) =
{

(E1, ..., En) / ∃ v ∈ Hk such that v 6= 0 and (T ikv = Eiv, ∀i)
}

.

The multiplicity of E ∈ Sp(Tk) is the dimension of ∩i Ker(T ik −Ei).

Let hi0 and hi1 be the principal and subprincipal Weyl symbols of (T ik). Denote
by h0 : M → Rn the map whose components are the hi0. By assumption,

{hi0, hj0} = 0, for every i and j.

Let E0 ∈ Rn be a regular value of h0 such that h−1
0 (E0) is connected. From

Arnold-Liouville theorem, there exists a neighborhood U of E0 such that h−1
0 (U) is

diffeomorphic to U×Tn, with the level sets h−1
0 (E) diffeomorphic to the Lagrangian

tori {E} × Tn.

In the first subsection, we state the Bohr-Sommerfeld conditions and discuss
them. The second subsection is devoted to the local solutions of T ikuk = Eikuk. In
the third subsection, we construct global solutions modulo O(k−∞) and prove the
Bohr-Sommerfeld conditions.

3.1. Statement of the results. If E ∈ U , we denote the torus h−1
0 (E) by ΛE and

the restriction of the Hamiltonian vector fields Xhi
0

on ΛE by X i
E . We need also

the following notations:

• βE ∈ Ω1(ΛE) is the 1-form of ΛE such that 〈βE , X i
E〉 = hi1 for every i.

• δE ∈ Ω1(ΛE) is the 1-form of ΛE such that 〈δE , X〉 = ω(HE , X) for every
X ∈ TΛE, where HE is the mean curvature vector field of ΛE .

Choose a family of loops l1E , ..., l
n
E in ΛE which depends continuously of E and

such that ([liE ]) is a base of H1(ΛE ,Z).

Theorem 3.1. There exists a formal series
∑

l>−1 ~lgl, with coefficients gl in

C∞(U,Rn) such that :

for every open set O ⊂ Rn with compact closure Ō ⊂ U and for every sequences
(

kα, Eα
)

,
(

kα, E
′
α

)

of N ×O, we have

i. Eα ∈ Sp(Tkα
) +O(k−∞

α ) ⇐⇒ g(Eα, kα) ∈ k−1
α Z

n +O(k−∞
α ).

ii. If Eα ∈ Sp(Tkα
), E′

α ∈ Sp(Tkα
) and Eα = E′

α +O(k−∞
α ), then when

kα is sufficiently large, Eα = E′
α and the multiplicity of Eα is 1.

where (g(., k)) is a sequence of maps U → Rn such that

• g(E, k) = k−1
∑

l>−1 k
−lgl(E) +O(k−∞)

• gi−1(E) is the holonomy of liE in L, that is the parallel transport in L along

liE is the multiplication by exp(2iπgi−1(E)).

• gi0(E) = 1
2π

∫

li
E

−βE + 1
2δE.

Let us precise the sense of the estimations: if (Sk) is a sequence of subsets of Rn

and (kα, Eα)α∈N a sequence of N × Rn, the notation Eα ∈ Skα
+ O(k−∞

α ) means
that for every N , there exists C such that

InfE∈Sk
|E −Eα| 6 Ck−Nα

when kα is sufficiently large.
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Remark 3.2. Assume that M is 2-dimensional. So we consider a unique Toeplitz
operator Tk with Weyl symbol h0 + ~h1 +O(~2). Then

βE = h1γE ,

where γE is the one-form of ΛE such that 〈γE , X〉 = 1 if X is the Hamiltonian
vector field of h0. Introduce a vector field t tangent to ΛE such that |t| = 1 and a
normal vector field n such that (t, n) is an oriented orthonormal base of TxM for
every x ∈ ΛE , that is n = Jt. The geodesic curvature is the function τE ∈ C∞(ΛE)
defined by

τE = g(∇tt, n).

The mean curvature vector field is

HE = τEn.

So if γ′E is the one-form of ΛE such that 〈γ′E , t〉 = 1, then δE = −τEγ′E . Hence

g0(E) = − 1

2π

(

∫

ΛE

h1 γE + 1
2

∫

ΛE

τE γ′E

)

where the orientation of ΛE is chosen as to compute the holonomy of L. Theorem
0.1 of the introduction follows. �

Remark 3.3. If M = R2 is endowed with the usual Riemann structure, then

1

2π

∫

ΛE

τEγ
′
E

is the degree d of the tangent map

ΛE ' S1 → S1, x → t(x)

where we identify TxM with R2 and the set of vectors whose norm is equal to 1
with the circle S1. Since ΛE → M is an embedding, d = ±1 and this leads to ± 1

2
in the definition of g1. Furthermore, the Maslov index of ΛE is 2d and the function
h1, that we called the Weyl subsymbol of (Tk), is the usual Weyl subsymbol of

U−1TkU

where U is the Bargmann transform. Consequently, we obtain the usual Bohr-
Sommerfeld condition. More generally, if M = Cn is endowed with the usual
Riemannian structure, δE is closed and its cohomology class is the Maslov class (cf.
[9]). �

Remark 3.4. The Maslov index and the integral of δE differ in some aspects. As
instance, let M be the sphere (M = CP 1) with volume 2π endowed with its metric
of constant curvature. If Λ → M is an embedding, it is the boundary of a domain
D and Gauss-Bonnet formula yields

∫

Λ

τγ′ = 2π − 2 Area(D).

In this example, it is clear that
∫

Λ τγ
′ is not constant when we deform Λ. To the

contrary the Maslov index is locally constant. Furthermore, as we will see in the
proof of proposition 3.5,

βE + 1
2δE

is closed. But if the dimension of M is > 4, the 1-form δE is not necessarily closed.
In the usual Bohr Sommerfeld conditions on a cotangent phase space, βE + 1

2δE
is replaced by a sum of two closed forms, the first one is obtained as βE from the
subsymbols and the second one is the Maslov form (cf. theorem 4.5.8 of [10]). �
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3.2. Local solutions. By theorem 2.8, the Toeplitz operators (T ik) induce opera-
tors C∞(ΛE)[[~]] → C∞(ΛE)[[~]] of the form

T jEf = Ejf − i~
(

Xj
E.f +

(

ihj1 − i
2HE .h

j
0 + 1

2 divΛE
(Xj

E)
)

f
)

+ ~
2SjEf(30)

where SjE =
∑

l>0 ~lSjE,l and the SjE,l are differential operators which act on

C∞(ΛE).

Proposition 3.5. If V is an open contractible set of ΛE, x0 ∈ V and C(~) ∈ C[[~]],
then the equations

{

T iEf(., ~) = Eif(., ~), for every i = 1, ..., n

f(x0, ~) = C(~)
(31)

admit a unique solution f(., ~) ∈ C∞(V )[[~]]. Furthermore there exists a formal
series αE =

∑

~
lαE,l ∈ Ω1(ΛE)[[~]], with

α0,E = βE − 1
2δE

and whose coefficients αl,E are closed 1-forms which depends in a C∞ way of E
and do not depend on V , such that the solution of (31) is given by

f(., ~) = C(~)
aE(x0)

aEe
iϕ0ei

P

l>1 ~
lϕl

where the functions ϕl ∈ C∞(V ) are determined by ϕl(x0) = 0 and dϕl = αl, and
aE ∈ C∞(ΛE) is the positive function defined by

a−2
E = µΛE

(X1
E ∧ ... ∧Xn

E).

Let Ē ∈ U and Γ be a sufficiently small neighborhood of Ē. Identify h−1
0 (Γ) with

Γ × T
n and introduce an open contractible set V of T

n and x0 ∈ V . By choosing

C(~) = aE(x0)

in the previous proposition, we obtain functions fV,l ∈ C∞(Γ × V ) such that
∑

~lfV,l(E, .) is the solution of equations (31). Introduce as in the beginning of
section 2.6 a section FV and a symbol aV (., k) defined on U ×V and such that (26)
is verified.

If (uα, kα) is an admissible sequence such that

uα =
(kα
π

)
n
4

F kα

V (Eα, .)aV (Eα, ., kα) +O∞(k−∞) over U × V(32)

where Eα takes its values in Γ, then

T ikα
uα = Eiαuα +O∞(k−∞)

over U × V .

The following proposition is a converse of this. It will be proved at the end of
section 4.4 by using microlocal equivalences.

Proposition 3.6. Let (uα, kα) be an admissible sequence such that uα ∈ Hkα
for

every α and

T ikα
uα = Eiαuα +O∞(k−∞

α ) on U × V

where (Eα) takes its values in Γ. Then there exists a sequence (cα) of complex
numbers such that

uα = cα

(kα
π

)
n
4

F kα

V (Eα, .)aV (Eα, ., kα) +O∞(k−∞
α ) on U × V.
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Proof of proposition 3.5. First we prove that βE − 1
2δE is closed. Observe that

〈βE − 1
2δE , X

i
E〉 = hi1 − 1

2HE .h
i
0.

Since the vector fields X i
E commutes and (X i

E |x) is a base of TxΛE for every x ∈ ΛE ,
it suffices to prove that

Xj
E .(h

i
1 − 1

2HE .h
i
0) = X i

E .(h
j
1 − 1

2HE .h
j
0).

From (30), we deduce by using [X i
E , X

j
E ] = 0 that

[T iE, T
j
E ]f = i~2

(

Xj
E .(h

i
1 − 1

2HE .h
i
0) −X i

E.(h
j
1 − 1

2HE .h
j
0)
)

f +O(~3).

[T ik, T
j
k ] = 0 implies [T iE , T

j
E] = 0, and this proves the result.

Consequently, if V is an open contractible set and x0 ∈ V , there exists a function
ϕ0 ∈ C∞(V ) such that ϕ0(x0) = 0 and dϕ0 = −βE + 1

2δE , that is

X i
Eϕ0 = −hi1 + 1

2HE .h
i
0.(33)

We have

X i
EaE = − 1

2aE divΛE
(X i

E).

So we deduce from (30) that

(T iE −Ei)aEe
iϕ0f(., ~) = aEe

iϕ0(−i~X i
E + ~

2RiE)f(., ~)(34)

where RiE(f) = a−1
E e−iϕ0SiE(aEe

iϕ0f).

Now we prove by induction that equations (31) with C(~) = aE(x0) admit a
unique solution. From (34), we see that aEe

iϕ0 is the unique function such that

(T iE −Ei)aEe
iϕ0 = 0 + O(~2).

Let N be a non negative integer. Assume that we have proved that equations (31)
modulo O(~N+2) admit a unique solution modulo O(~N+1) and that this solution
is aEe

i(ϕ0+~ϕ) with

ϕ = ϕ1 + ~ϕ2 + ...+ ~
N−1ϕN .

We have

(T iE −Ei)aEe
i(ϕ0+~ϕ)h(., ~) = aEe

i(ϕ0+~ϕ)(−i~X i
E + ~

2U iE)h(., ~)

where U iE(f) = (X i
E .ϕ)f + e−i~ϕRiE(ei~ϕf). By assumption

U iE(1) = ~
Nri +O(~N+1).

We look for a solution modulo O(~N+3) of the form

aEe
i(ϕ0+~ϕ)(1 + i~N+1ϕN+1).

So we have to solve

X i
E .ϕN+1 + ri = 0, ϕN+1(x0) = 0

These equation admit a unique solution because X i
E .r

j = Xj
E .r

i. Indeed

[T iE −Ei, T jE −Ej ] = 0

and we have

[T iE −Ei, T jE −Ej ]aEe
iϕ0ei~ϕ = −iaEeiϕ0ei~ϕ~

N+3(X i
E .r

j −Xj
E .r

i) +O(~N+4).

Consequently,

aEe
i(ϕ0+~ϕ+~

N+1ϕN+1)

is the unique solution modulo O(~N+2) of equations (31) modulo O(~N+3). By
iterating this we obtain that (31) admit a unique solution and this solution is of the

form aEe
iϕ0ei

P

l>1 ~
lϕl .
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A solution of equations (31) with a general initial condition C(~) is given by

C(~)a−1
E (x0)aEe

iϕ0ei
P

l>1 ~
lϕl .

It is unique because of the uniqueness of the solution with initial condition aE(x0).
Indeed it is clear if C(~) is invertible, i.e. C(~) = C0 +O(~l) with C0 6= 0, because
we can obtain a solution with initial condition aE(x0) from a solution with initial
condition C(~) by multiplying it by (C(~))−1aE(x0). In the case

C(~) = ~
mCm + O(~m+1)

with Cm 6= 0, we deduce from (34) that a solution with this initial condition is
necessarily of the form ~mCmaE(x0)

−1aEe
iϕ0 + O(~m+1). So multiplying by ~−m

we obtain a solution with initial condition ~−mC(~) and we are in the previous case.

Finally the 1-forms dϕl ∈ Ω1(U) extend to global one-forms αl ∈ Ω1(ΛE), which
do not depend on the choice of V . Indeed if we consider two open contractible set
V and V ′ with solutions of equation (31) of the form

aEe
iϕ0ei

P

l>1 ~
lϕl , aEe

iϕ0ei
P

l>1 ~
lϕ′

l .

Then we deduce form the uniqueness, that on each component of V ∩V ′, ϕl−ϕ′
l is

a constant and so dϕl = dϕ′
l. �

3.3. Quasimode. For every positive integer l, we set

gil(E) =
1

2π

∫

li
E

ReαE,l.

and this define the functions gl in theorem 3.1. Concerning the imaginary part of
αE,l, we have the following lemma.

Lemma 3.7. The imaginary part of αE,l is exact.

Using this, we can construct a flat C[[~]]-bundle KE → ΛE of rank one with a
section fE such that

T iEfE = EifE , ∀i and |fE | = aE +O(~)

and the holonomy of the loop liE in KE is −∑l>0 ~lgil(E). Then the equation

g(Eα, kα) ∈ k−1
α Z

n +O(k−∞
α )(35)

where the sequence (g(., k)) is defined as in theorem 3.1, is the quantization condi-
tion (28). If (kα, Eα) satisfies it and (Eα) takes its values in a compact set C ⊂ U ,
following section 2.6 we construct a Lagrangian section (uα) with symbol fE . We
have

Tkα
uα = Eαuα +O∞(k−∞

α )

and (uα, uα) =

∫

ΛEα

νEα
+O(k−1

α )
(36)

where νE ∈ |Ω|(ΛE) is defined by

νE(X1 ∧ ... ∧Xn) = 1.

So
∫

νE does not vanish. It follows that Eα ∈ Sp(Tkα
) + O(k−∞

α ). Hence we have
proved the converse of assertion i. of theorem 3.1.

In section 2.6, we assume that the parameter γ takes its values in a sufficiently
small open set, to obtain a uniform control. Here, we can introduce a finite cover
of C by arbitrary small open sets to apply the results of section 2.6.
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Proof. We explain how we can construct the bundle KE → ΛE and compute its
holonomy. Choose angle coordinates (xi) on ΛE such that

∫

li
E

dxj = δij .

We use these coordinates to identify ΛE with Tn. Let p : Rn → ΛE be the associated
projection. Let ϕl ∈ C∞(Rn) be such that dϕl = p∗αE,l and ϕl(0) = 0. Consider

the section f̃E of R
n × C[[~]] → R

n defined by

f̃E = (p∗aE)ei
P

l>0 ~
lϕl .

Now define the bundle KE → ΛE by dividing Rn×C[[~]] → Rn by the action of Zn

Z
n × (Rn × C[[~]]) → R

n × C[[~]], (ε, x, c(~)) → (x+ ε, c(~)eiε
j .2πφj(E,~))

with 2πφj(E, ~) =
∑

l ~
lϕl(nj) where nj = (δ1j , ..., δnj). By lemma 3.7, ϕl(nj) is

real. We obtain the section fE from the section f̃E and the holonomy of the loop
ljE is −φj(E, ~). �

Proof of lemma 3.7. Assume that the imaginary parts of α1,E ,...,αm,E are exact.
Define the real numbers

ri(E) =

∫

liE

Im αm+1,E .

Choose angle coordinates xi as in the previous proof, define the 1-form

α′
m+1,E = αm+1,E − iri(E)dxi

whose imaginary part is exact. If V is a contractible set of ΛE and x ∈ V , then
define the functions ϕl such that dϕl = αl,E for l = 0, ...,m, dϕm+1 = α′

m+1,E and

ϕl(x) = 0. As in the proof of proposition 3.5, we obtain that

T iEf = (Ei − i~m+1rj(E)M i
j (E))f +O(~m+2), if f = aEe

iϕ0ei
Pm+1

l=1
~

lϕl

where M i
j(E) = 〈X i

E , dx
j〉. (M i

j(E)) is invertible. As we did before, we can asso-
ciate to this symbol a Lagrangian section (uα) such that

T ikα
uα =

(

Eiα − ik−m−1
α M i

j(Eα)rj(Eα)
)

uα +O(k−m−2
α ).

Furthermore the estimate of (uα, uα) is the same as before. The previous equation
implies

(T ikα
uα, uα) − (uα, T

i
kα
uα) = −2ik−m−1

α M i
j (Eα)rj(Eα)(uα, uα) +O(k−m−2

α ).

Since the T ik are self-adjoint, we obtain by choosing various sequences (kα, Eα) that
ri vanishes on a dense set. �

Proposition 3.8. Let (vα, kα, Eα) be a sequence such that vα ∈ Hkα
for every α

and

T ikα
vα = Eiαvα +O(k−∞

α ), (vα, vα) = 1.(37)

Assume that (Eα) takes its values in a compact C ⊂ U , then (Eα) satisfies the
quantization condition (35). Furthermore, if (uα) is a Lagrangian section defined
as in (36), then there exists a sequence (cα) of complex numbers such that

vα = cαuα +O∞(k−∞).

Hence the Lagrangian sections we constructed approximate modulo O(k−∞) the
eigenvectors. So they are rather modes than quasimodes. This comes from the
assumption that h−1

0 (E) is connected when E ∈ U .
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As it is proved in section 5 of [5], the assumption (vα, vα) = 1 implies that (vα)
is an admissible sequence. In the same way a sequence of sections O(k−∞

α ) for the
L2 norm is negligible.

To prove the proposition we will use proposition 3.6 to determine (vα) over
h−1

0 (U). Outside this domain, (vα) is negligible. Indeed, we can prove that the
microsupport of (vα) is a subset of h−1

0 (C) (cf. proposition 4.4.6 of [10] for a proof
in the case of pseudodifferential operators with a small parameter that we can easily
adapt to our situation).

Proof. Assume that d(g(Eα, kα), k−1
α Zn) 6= O(k−∞

α ). By replacing (vα, kα, Eα) by
a subsequence, we may assume that for some i0 and positive integer N ,

d(kαg
i0(Eα, kα),Z) > k−N .

So
∣

∣eikαg
i0 (Eα,kα) − 1

∣

∣ > Ck−Nα .(38)

We will prove that this leads to a contradiction. By replacing (vα, kα, Eα) by a

subsequence, we may assume that Eα → Ẽ as α tends to ∞. Let V and V ′ be
two contractible sets such that V ∩ V ′ 6= ∅. We may introduce as in (32) the
sections FV (E, .), FV ′(E, .) and the symbols aV (E, ., k), aV ′(E, ., k). Furthermore
if x̃ ∈ V ∩ V ′, we can choose them so as to have

FV (Ẽ, Ẽ, x̃) = FV ′(Ẽ, Ẽ, x̃)

and

aV (Ẽ, Ẽ, x̃, k) = aV ′(Ẽ, Ẽ, x̃, k) +O(k−∞).

By proposition 3.6,

vα = cα

(kα
2π

)
n
4

F kα

V (Eα, .)aV (Eα, ., kα) +O(k−∞
α ) on U × V

= c′α

(kα
2π

)
n
4

F kα

V ′ (Eα, .)aV ′(Eα, ., kα) +O(k−∞
α ) on U × V ′.

By taking the limit at (Ẽ, x̃) as α → ∞, we obtain that cα = c′α + O(k−∞). Now

applying this to an open covering of li0
Ẽ

, we obtain that

cα = cαe
ikαg

i0 (Eα,kα) +O(k−∞
α ).

Using (38), it follows that |cα| = O(k−∞
α ). Using that Tn is connected, we deduce

that the cα associated to every V is O(k−∞
α ). Hence (vα) is negligible on a neigh-

borhood of ΛẼ. By the remark before the proof, it is also negligible outside this
neighborhood. Consequently

(vα, vα) = O(k−∞
α ),

a contradiction. We prove in the same way the second assertion by identifying
locally the sequence (uα) and (vα). �

Proof of assertion ii. of theorem 3.1. Let (vα, kα, Eα) and (v′α, kα, E
′
α) be sequen-

ces satisfying (37) and such that

Eα = E′
α +O(k−∞

α ).

Assume that (vα, v
′
α) = 0. From proposition 3.8 there exists a Lagrangian section

(uα) such that vα = cαuα + O(k−∞
α ) and v′α = c′αuα + O(k−∞

α ). Computing the
norms, we obtain that

|cα|, |c′α| > C,
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where C is positive constant. On the other hand,

(vα, v
′
α) = cαc

′
α

∫

ΛEα

νEα
+O(k−1

α )

which contradicts (vα, v
′
α) = 0. �
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4. Quantum maps

4.1. Definitions and symbolic calculus. Let (M,ω) be a compact symplectic
manifold endowed with a prequantization bundle L → M . Let us introduce two
complex structures Ja and Jb of M which are integrable and compatible with ω.
So we obtain two Kählerian structures and two quantizations Ha

k and Hb
k.

We are interested in the operators Tk : Hb
k → Ha

k. As we did with the Toeplitz
operators, we identify them with the operators

Tk : C∞(M,Lk) → C∞(M,Lk) such that Πa
kTkΠ

b
k = Tk.

Their Schwartz kernels are sections of Lk � L−k → M2. We will define them as
Lagrangian sections.

Let ϕ : M → M be a symplectomorphism. A prequantization lift of ϕ is a lift
ϕ̃ : L→ L of ϕ such that

i. ϕ̃ restricts on Lx to a unitary map ϕ̃x : Lx → Lϕ(x)

ii. ∇ϕ∗s = ϕ∗∇s, ∀s ∈ C∞(M,L)

where ϕ∗s is the section of L defined by (ϕ∗s)(x) = ϕ̃−1
x .s(ϕ(x)). Denote by Λ the

Lagrangian submanifold {(ϕ(x), x) / x ∈ M} ⊂M 2.

Definition 4.1. The set of quantum maps F(ϕ, Ja, Jb, ϕ̃) consists of the sequences
(Tk) of operators such that Πa

kTkΠ
b
k = Tk for every k and

Tk(xl, xr) =
( k

2π

)
n
2

Ek(xl, xr)a(xl, xr , k) +O(k−∞)

where

• E is a section of L� L−1 → M2 such that E(ϕ(x), x) = ϕ̃x and ∇Z̄E ≡ 0
modulo I∞(Λ) for every holomorphic vector field Z of (M 2, Ja ×−Jb).

• (a(., k)) is a symbol of S0(M2) whose coefficients of its asymptotic expansion
∑

k−lal satisfy Z̄.al ≡ 0 modulo I∞(Λ) for every holomorphic vector field
Z of (M2, Ja ×−Jb).

Let us define the full symbol map

σ : F(ϕ, Ja, Jb, ϕ̃) → C∞(M)[[~]], (Tk) →
∑

~
lal(ϕ(x), x).

It is onto and its kernel consists of the smoothing operators.

Proof. Consider that M2 is a Kähler manifold with the complex structure

Ja ×−Jb

and the fundamental 2-form

π∗
l ω − π∗

rω,

where πr and πl are the projections M2 → M on the first and second factor. We
denote by

Πab
k : C∞(M2, Lk � L−k) → C∞(M2, Lk � L−k)

the associated Szegö projector and by Hab
k its image. Consider an operator

Tk : C∞(M,Lk) → C∞(M,Lk).

Then Πa
kTkΠ

b
k = Tk if and only if its Schwartz kernel Tk(xl, xr) ∈ Hab

k . Observe
that Λ satisfies a quantization condition as in section 2.2. Indeed the section

t : Λ → L� L−1
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defined by t(ϕ(x), x) = ϕ̃x ∈ Lϕ(x) ⊗L−1
x , is flat with constant norm equal to 1. So

the kernels of the quantum maps are exactly the Lagrangian sections introduced in
section 2.2 and the symbol map is the same as (13). �

If (Tk) belongs to F(ϕ, Ja, Jb, ϕ̃) with symbol
∑

l ~
lfl, then the adjoint (T ∗

k ) is

a quantum map of F(ϕ−1, Jb, Ja, ϕ̃
−1). Its symbol is

∑

l ~
l(ϕ−1)∗f̄l. The next

proposition describes the product of two quantum maps.

Proposition 4.2. The product of operators defines a bilinear map

F(ϕ, Ja, Jb, ϕ̃) ×F(ψ, Jc, Jd, ψ̃) → F(ϕ ◦ ψ, Ja, Jd, ϕ̃ ◦ ψ̃).

This induces a products on the symbols C∞(M)[[~]] × C∞(M)[[~]] → C∞(M)[[~]]
which is of the form

B
(
∑

~lfl,
∑

~lgl
)

=
∑

l ~
l
∑

l1+l2+l3=l
Bl1(ψ

∗fl2 , gl3)

where

• the Bl are bidifferential operators,

• if Jb = Jc, then B0(f, g) = ψ∗(det(qϕ−1(Ja),Jb
+ q̄ψ(Jd),Jc

)
)− 1

2 fg.

Let us explain the last notation: If Ja is a complex structure and ϕ a symplec-
tomorphism, then ϕ(Ja) is the complex structure

ϕ(Ja) := ϕ∗ ◦ Ja ◦ ϕ−1
∗ .

Furthermore, if Ja and Jb are two complex structures, then qJa,Jb
|x is the projection

of TxM ⊗ C onto T
(1,0)b
x M with kernel T

(0,1)a
x M .

We can also consider the action of a quantum map on a Lagrangian section.

Proposition 4.3. Let (Tk) be a quantum map of F(ϕ, Ja, Jb, ϕ̃). Let Λ be a La-
grangian manifold and (uα, kα) a Lagrangian section associated over an open set U
such that uα ∈ Hb

kα
. Then (Tkα

.uα) is a Lagrangian section over ϕ(U) associated
to ϕ(Λ). Furthermore, there exists a sequence of operators Cl : C∞(M)×C∞(Λ) →
C∞(ϕ(Λ)) such that the symbol of (Tkα

uα) is

C
(
∑

~lfl,
∑

~lgl
)

=
∑

l ~
l
∑

l1+l2+l3=l Cl1(fl2 , gl3)

if
∑

~lfl and
∑

~lgl are the symbols of (Tk) and (uα). The operators Cl depend
only on Ja, Jb, Λ and ϕ and

• they are locally such that

ϕ∗Cl(f, g)|U∩Λ=
∑

|α|+|γ|62l

aα,γ .∂
α
x f |U∩Λ.∂

γ
y g, with aα,γ ∈ C∞(U ∩ Λ)

if (xj) is a coordinates system of M defined on an open set U and (yk) a
coordinates system of Λ defined on U ∩ Λ,

• if Jb = Jc, then C0 is given by

ϕ∗C0(f, g) =
(

det(qϕ−1(Ja),Jb
+ qJb

)
)− 1

2 .f |Λ.g

where qJb
|x is the projection of TxM ⊗ C onto T

(0,1)b
x M with kernel TxΛ.

Let us specify that the section Fϕ(Λ) used to define (Tkα
uα) has to be chosen in

such a way that Fϕ(Λ)(ϕ(x)) = ϕ̃x.FΛ(x) for every x ∈ U ∩ Λ, if FΛ is the section
used to define (uα).
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4.2. Proof of proposition 4.2. Let φ : M → M be a symplectomorphism of M
and φ̃ a prequantization lift. Define as above the maps

φ∗ : C∞(M,Lk) → C∞(M,Lk).

If (Tk) ∈ F(ϕ, Ja, Jb, ϕ̃), then we have

(φ∗ ◦ Tk) ∈ F(φ−1 ◦ ϕ, φ−1(Ja), Jb, φ̃
−1 ◦ ϕ̃), σ(φ∗ ◦ Tk) =

∑

l

~
lfl,

(Tk ◦ Φ∗) ∈ F(ϕ ◦ φ−1, Ja, φ(Jb), ϕ̃ ◦ φ̃−1), σ(Tk ◦ φ∗) =
∑

l

~
l(φ−1)∗fl.

Using this, we have just to prove the proposition with ϕ = ψ = Id and ϕ̃ = ψ̃ = Id,
and then writing:

TkUk = (ϕ−1)∗ ◦
(

(ϕ∗ ◦ Tk) ◦ (Uk ◦ ψ∗)
)

◦ (ψ−1)∗

if (Tk) ∈ F(ϕ, Ja, Jb, ϕ̃) and (Uk) ∈ F(ψ, Jc, Jd, ψ̃). So assume that ϕ = ψ = Id

and ϕ̃ = ψ̃ = Id. The Schwartz kernel of TkUk is of the form

(TkUk)(x1, x3) =
( k

2π

)n
∫

M

Ekab(x1, x2)E
k
cd(x2, x3)f̃(x1, x2)g̃(x2, x3) µM (x2)

where Eab and Ecd are sections of L � L−1 → M ×M defined by proposition 2.1.
Their norms are < 1 outside the diagonal, so we can localize the product on a
neighborhood of Trig(M) = {x1 = x2 = x3}.

Let s be a local section of L defined on an open set U endowed with a com-
plex coordinates system (zi1) (resp. (zi3)) associated to Ja (resp. Jd) and a real

coordinates system (xj2). Write

Eab(x1, x2).Ecd(x2, x3) = eiφ(x1,x2,x3)s(x1) ⊗ s−1(x3),

Ead(x1, x3) = eiψ(x1,x3)s(x1) ⊗ s−1(x3).

From ∇∂
z̄i
1

Ea,b ≡ ∇∂
z̄i
1

Ea,d ≡ 0 modulo I∞(Trig(M)), we deduce that

∂z̄i
1
(φ − ψ) ≡ 0 mod I∞(Trig(M)).

In the same way, we prove that

∂zi
3
(φ − ψ) ≡ 0 mod I∞(Trig(M)).

Later we will prove that ∂xi
2
φ vanishes along Trig(M) and that

(

∂xi
2
∂xj

2
φ
)

ij
is in-

vertible along Trig(M). Then using the same method as in the proof of lemma 2.5,
we obtain that the ideal J generated by the functions ∂xj

2
φ consists of the functions

f(x1, x2, x3) which satisfy

f |Trig(M)= 0, ∂z̄i
1
f ≡ ∂zi

3
f ≡ 0 mod I∞(Trig(M)).

By applying stationary phase lemma (cf. [8]), we obtain that

(TkUk)(x1, x3) =
( k

2π

)
n
2

eikψ(x1,x3) h̃(x1, x3, k)s
k(x1) ⊗ s−k(x3) +O∞(k−∞)

where (h̃(., k)) is a symbol. For the details, let us precise that the computation can
be done easily by writing the Taylor expansions of the functions f(x1, x2, x3) (resp.
f(x1, x3)) along {x1 = x2 = x3} (resp. {x1 = x3}) as in the lemma 1.2 by using
the vector fields ∂z̄i

1
, ∂xj

2
, ∂zi

3
(resp.∂z̄i

1
, ∂zi

3
).

Let us prove that dx2φ vanishes along Trig(M) and compute d2
x2
φ. Let αab be

the 1-form defined by

∇Eab = αab ⊗Eab.
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By proposition 2.2, αab vanishes along the diagonal, and the same holds with αcd.
From this we deduce that dx2φ vanishes along Trig(M). Let qab be the projection
of TxM ⊗ C onto

T (1,0)b
x M = {X − iJbX / X ∈ TxM}

with kernel

T (0,1)a
x M = {X + iJaX / X ∈ TxM}.

Observe that q̄ba + qab = Id. Let us write

(0, X2) = (−q̄ba(X2), qab(X2)) + (q̄ba(X2), q̄ba(X2)),

(X1, 0) = (q̄ba(X1),−qab(X1)) + (qab(X1), qab(X1)).

Then we deduce from (8) that if X1, X2, Y1, Y2 ∈ Tx(M),

〈T(X1,X2)αab, (Y1, Y2)〉 =
1

i
ω(q̄ba(X1 −X2), Y1) +

1

i
ω(qab(X1 −X2), Y2)

which generalizes equation (10). From this we obtain that for every X,Y ∈ TxM

d2
x2
φ(X,Y ) = ω(qab(X) − q̄dc(X), Y ).(39)

Consequently, d2
x2
φ(X, .) = 0 implies that

qab(X) = q̄dc(X) = 0

because T (1,0)bM ∩ T (0,1)cM = (0). So X ∈ T (0,1)bM ∩ T (1,0)dM = (0), hence
X = 0.

Finally assume that Jb = Jc and let us compute B0(f, g). We have

B0(f, g) = f0(x).g0(x).

(

det[−i∂xj
2
∂xk

2
φ](x, x, x)

det[gbij ](x)

)− 1
2

where we have used that µM = 1
n! |ωn| is the measure induced by the Riemannian

metric gb(X,Y ) = ω(X, JbY ). Indeed gb = gbijdx
i ⊗ dxj implies

µM = (det[gbij ])
1
2 |dx1...dx2n|.

Now the quotient of the determinants can be view as the determinant of

TxM
−id2x2

φ
−−−−−→ T ∗

xM
(gb)−1

−−−−→ TxM

From (39), we deduce that

−id2
x2
φ(X,Y ) =ω(−iqab(X) + iq̄db(X), Y )

=ω(−Jbqab(X) − Jbq̄db(X), Y )

since the image of qab is T (1,0)bM = Ker(Jb − i) and that of q̄db is T (0,1)bM =
Ker(Jb + i). Finally we obtain that

−id2
x2
φ(X,Y ) =gb(qab(X) + q̄db(X), Y ).

Consequently, (gb)−1 ◦ −id2
x2
φ = qab + q̄db. This completes the proof.

4.3. Applications. Following Kostant, Blattner and Sternberg, the quantization
of M should not depend on the choice of the complex structure. First, by the
Riemann-Roch-Hirzebruch theorem, the dimensions of (Ha

k) and (Hb
k) are equals

when k is sufficiently large. So in these cases there exists a unitary operator

Uk : Hb
k → Ha

k.

To obtain such an operator with good semi-classical properties, we may choose it
in F(Id, Ja, Jb, Id).
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Proof. First consider an operator (Vk) ∈ F(Id, Ja, Jb, Id) with non-vanishing prin-
cipal symbol f0. From proposition 4.2, (V ∗

k Vk) is a Toeplitz operator with principal
symbol

g0 = |f0|2. det−
1
2 (qJa,Jb

+ q̄Ja,Jb
).

g0 takes real positive values. Hence if k is sufficiently large, the spectrum of (V ∗
k Vk)

is a subset of (ε,∞) where ε > 0 does not depend on k. Applying proposition 12 of

[5], we obtain that (V ∗
k Vk)

− 1
2 is a Toeplitz operator. Now

Uk := Vk(V
∗
k Vk)

− 1
2

belongs to F(Id, Ja, Jb, Id). It satisfies U∗
kUk = Id and UkU

∗
k = Id, if k is sufficiently

large. �

The semi-classical properties of (Uk) are consequences of propositions 4.2 and
4.3. Indeed (Uk) sends a Lagrangian section of Hb

k into a Lagrangian section of Ha
k

associated to the same Lagrangian submanifold. Furthermore, sending (Tk) into
(U∗

kTkUk), we obtain an isomorphism between the algebra of Toeplitz operators of
(Hb

k) and the algebra of Toeplitz operators of (Ha
k). This induces an equivalence of

star-products.

Another application is the quantization of the symplectomorphisms. We con-
sider only one complex structure. If ϕ̃ : L → L is a prequantization lift of a
symplectomorphism ϕ, we can show as above that there exist unitary operators in
F(ϕ, J, J, ϕ̃). We say that such an operator quantizes ϕ. In [11], Zelditch quantizes
the data (ϕ, ϕ̃) in the following way. He consider first the operator

(Πk(ϕ
−1)∗Πk),

which belongs to F(ϕ, ϕ(J), J, ϕ̃). Then by the same method we used above, he
constructs a unitary operator of the form (Πk(ϕ

−1)∗Tk) where (Tk) is a Toeplitz
operator. By proposition 4.2, this operator belongs to F(ϕ, J, J, ϕ̃).

Finally in [6], it is proved that the quantum propagator Uk(t) = e−iktTk of a self-
adjoint Toeplitz operator (Tk) quantizes the Hamiltonian flow ϕt of the principal
symbol of (Tk).

4.4. Proof of proposition 3.6. Consider n Toeplitz operators (T 1
k , ..., T

n
k ) which

commute. Denote by hi0 the principal symbol of T ik and assume that h0 : M → Rn

has maximal rank at ȳ ∈M .

Let Mt be the torus
(

R/2πZ
)n×

(

R/Z
)n3 (ξi, xi) with symplectic form

ω =
∑

dξi ∧ dxi

and complex coordinates zj = (
√

2)−1(ξj+ixj). Introduce a prequantization bundle
Lt →Mt and define the associated quantum spacesHt

k. Finally introduce n Toeplitz
operators

S1, ..., Sn

such that σ(Si) = ξi on a neighborhood of 0 ∈Mt.

Then there exists a symplectomorphism ϕ : U → Ut, where U and Ut are neigh-
borhood of ȳ and 0, such that ϕ(ȳ) = 0 and

hi0 = ϕ∗(ξi + hi0(ȳ)).

Using a variant of the quantum maps, we may quantize this local equivalence.
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Proposition 4.4. There exists an admissible sequence of operators

Uk : C∞(Mt, L
k
t ) → C∞(M,Lk)

such that ΠkUkΠ
t
k = Uk, MS(Uk) ⊂ {(y, ϕ(y)) / y ∈ U} and

UkU
∗
k ∼ Πk on a neighborhood of (ȳ, ȳ),

U∗
kUk ∼ Πt

k on a neighborhood of (0, 0),

U∗
kT

i
kUk ∼ Sik + hi0(ȳ)Π

t
k on a neighborhood of (ȳ, 0).

Proof. We assume that M ×Mt is endowed with the complex structure J × −Jt.
On a neighborhood of ȳ (resp. 0) we may introduce a local gauge s of L (resp. st
of Lt) such that ∇s = iϕ∗α⊗ s if ∇st = iα⊗ st. Let us define a local section E of
L� L−1

t on U × Ut such that

E(x, ϕ(x)) = s(x) ⊗ s−1
t (ϕ(x))

and ∇Z̄E vanishes to any order along the graph of ϕ, if Z is a holomorphic vector
field of (M×Mt, J×−Jt). Consider the operators Ht

k → Hk whose Schwartz kernel
are of the form

( k

2π

)n

Ek(xl, xr)a(xl, xr , k) +O∞(k−∞)

where (a(., k)) is a symbol of S0(M × Mt), whose coefficients of its asymptotic
expansion have their support included in a fixed compact K ⊂ U × Ut. All the
properties of the quantum maps generalize to these operators by identifying U with
Ut and s with st. Let (Vk) be such an operator with a principal symbol a0(x, ϕ(x))
which does not vanish. Then (V ∗

k Vk) and (V ∗
k T

i
kVk) are Toeplitz operators with

principal symbols f0 and f0(ξ
i+hi0(ȳ)) where f0 takes real positive values. Following

a standard argument, we may choose a Toeplitz operator Pk such that Uk = VkPk
satisfies the assumptions of the proposition. Indeed the proof just uses the symbolic
calculus which is the same as in the case of pseudodifferential operators with a small
parameter. �

Furthermore, generalizing proposition 4.3, we may prove that (Uk) sends a La-
grangian section associated to the local fibration ξ =cst to a Lagrangian section
associated to the local fibration h0 =cst. So to prove proposition 3.6, we just need
to check the results in the case of the torus.

Chose a section s of Lt defined on a neighborhood of 0 ∈ Mt and such that

|s|2 = e−|z|2 and ∇s = −z̄jdzj ⊗ s. Consider the operator (Rik) defined by

f.sk → φ√
2
(zi.f + k−1∂zif)sk

where φ ∈ C∞
o (U) is equal to 1 on a neighborhood of 0. Let us prove that there

exists a neighborhood V of 0 such that the kernel of (Sik) restricts on V ×Mt to the
kernel of (RikΠ

t
k) modulo a smoothing operator. Since the microsupports of (Sik)

and (Πt
k) are subsets of the diagonal, it suffices to prove this on a neighborhood of

(0, 0). The kernel of (Πt
k) is determined modulo a smoothing operator by the local

data, so

Πt
k(xl, xr) =

( k

2π

)n

e−k|zr|2+kzj

l
.z̄j

r sk(xl) ⊗ s−k(xr) +O∞(k−∞)

on a neighborhood of (0, 0). Consequently,

(RikΠ
t
k)(xl, xr) =

( k

2π

)n

e−k|zr|2+kzj

l
.z̄j

r
φ(xl)√

2
(zl + z̄r) s

k(xl) ⊗ s−k(xr)

modulo O∞(k−∞). We recognize on a neighborhood of (0, 0) the kernel of S ik.
Hence in the following we may replace the operator Sik with RikΠ

t
k.
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Consider the family of Lagrangian tori ΛE = {(ξi, xi) / ξi = Ei, ∀i}. The
associated section is

F (E, ξ, x) = e
1
4

P

i −(
√

2zi−Ei)2−i2
√

2ziEi−(Ei)2s(ξ, x).

Indeed, we have

|F |2 = e−
P

i(ξ
i−Ei)2 and ∇F =

√
2(Ei − ξi)dzi ⊗ F.

We may check that SikF
k(E, .) = EiF k(E, .) + O∞(k−∞) on a neighborhood of 0.

Hence the Lagrangian sections solution of

Sikα
vα = Eiαvα +O∞(k−∞

α )

on a neighborhood of 0 are of the form vα = F kα(Eα, .).

Let (uα, kα, Eα) be a sequence such that uα ∈ Hkα
for every α and

Sikα
uα = Eiαuα +O∞(k−∞

α )(40)

on a neighborhood of 0. Let us prove that uα = cαF
kα(Eα, .) + O∞(k−∞) on

a neighborhood of 0. Define the complex numbers cα to obtain an equality at
(ξ, x) = (Eα, 0). Introduce the functions fα such that

uα(ξ, x) − cαF
kα(Eα, ξ, x) = fα(ξ, x)F kα (Eα, ξ, x)

So fα(Eα, 0) = 0. Furthermore ∂z̄jfα = 0 since the uα are holomorphic sections.
From (40), it follows that

(∂zjfα)(ξ, x)F kα (Eα, ξ, x) = O∞(k−∞
α )

on a neighborhood of 0. From all of this, we deduce that

fα(x, y)F kα(Eα, ξ, x) = O∞(k−∞
α )

on a neighborhood of 0 and this completes the proof.
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Poincaré, Section A: Phys. théor., Vol. 38, pp 349-370, 1983.
[10] S. Vu Ngoc, Bohr-Sommerfeld conditions for integrable systems with critical manifolds of

focus-focus type, Comm. Pure and Applied Math , Vol. 53, pp 143-217, 1999.
[11] S. Zelditch, Index and dynamics of quantized contact transformations, Ann.Inst. Fourier, Vol

47, pp 305-363, 1997.
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