QUASIMODES AND BOHR-SOMMERFELD CONDITIONS FOR
THE TOEPLITZ OPERATORS

L. CHARLES

ABSTRACT. This article is devoted to the quantization of the Lagrangian sub-
manifold in the context of geometric quantization. The objects we define are
similar to the Lagrangian distributions of the cotangent phase space theory.
We apply this to construct quasimodes for the Toeplitz operators and we state
the Bohr-Sommerfeld conditions under the usual regularity assumption. To
compare with the Bohr-Sommerfeld conditions for a pseudodifferential operator
with small parameter, the Maslov index, defined from the vertical polarization,
is replaced with a curvature integral, defined from the complex polarization.
We also consider the quantization of the symplectomorphisms, the realization
of semi-classical equivalence between two different quantizations of a symplec-
tic manifold and the microlocal equivalences.

Let (M,w) be a symplectic compact manifold of dimension 2n endowed with a
prequantization bundle, that is a complex line bundle L — M with a Hermitian
structure h and a covariant derivation V whose curvature is w. To quantize these
data, we assume that M is endowed with a complex structure J which is integrable
and compatible with —iw. The quantum space Hj is defined as the space of the
holomorphic sections of L*¥ — M. k is any positive integer and the semi-classical
limit is kK — oco. The quantum semi-classical observables are the Berezin-Toeplitz
operators (cf. [2], [3], [4], [5]). The purpose of this article is to quantize the
Lagrangian manifolds of M, by generalising the ansatz for the Schwartz kernel of a
Toeplitz operator that we proposed in [5]. We will apply this to produce quasimodes
of Toeplitz operators and deduce the Bohr-Sommerfeld conditions.

Let us state this last result in the case M is 2-dimensional. Consider the Toeplitz

operator
Tk = HkaO_;’_k—lfl . Hk — Hk

where II}, is the orthogonal projector of L?(M,L*) onto Hy, fo and f; are some
functions of C*°(M) and My, 4x-1y, is the multiplication operator by fo + k= f1.
Assume that E° is a regular value of the principal symbol fo of (T%) and that
fo L(E®) is connected. Then if E belongs to some neighborhood U of E°, the level
set f71(E) = Ag is a circle.

M

Theorem 0.1. For all sequences (Eqa, ka) of U X N,
(1)  E, €Spec(Ty,) +0(k?) &  g-1(Es) +k  g0(Es) € k' Z + O(k,?)

where
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e g_1(F) is the holonomy of Ag for the prequantization bundle L,
o go(E) is the sum of the integral of the geodesic curvature of Ag and the
integral over Ag of the Weyl subsymbol f{’ = fi1 + %Afo,

We refer the reader to section 3 for a more precise statement. Let us compare this
with the known result for a pseudodifferential operator with a small parameter. In
that case, the phase space is a cotangent bundle 7*C' and the action of Ag replaces
its holonomy. Actually, this action can be interpreted as a holonomy for the trivial
bundle T*C x C endowed with the connection form —ipdq. The second order term is
more unexpected. It involves the Riemannian metric of M defined by the symplectic
and complex structures. Its analog for the pseudodifferential operator is the Maslov
index, an invariant of the cotangent bundles. Hence in the language of geometric
quantization, these second order invariants come from the polarizations: the vertical
polarization in the cotangent case, the complex polarization in the Kahlerian case.

For the proof we construct quasimodes, that is Lagrangian sections (u,,) associ-
ated to the circles Ag, such that

Uo € Hi, and Ty, uq = Equa + Ok, )

The quantization condition to define these quasimodes is the Bohr-Sommerfeld con-
dition and this will prove the converse of (1). To show the direct sense, we will
prove by using microlocal equivalence that the eigenvectors of Ty are necessarily
Lagrangian sections associated to the Ag.

Let us briefly explain how we will construct the Lagrangian sections. In the
usual semi-classical theory, the semi-classical observables are the pseudodifferential
operators with a small parameter 7. The Schwartz kernel of these operators is of
the form

) ()" [ <ata & e

Our main result in [5] was to give a similar expression for the Schwartz kernel of a
Toeplitz operator:

3) Ty(z1,2,) = (%)nEk(ml, z)a(z1, zr, k) + O(k—)

where F is a section of LK L™t — M x M and (a(., k)) a sequence of C°°(M x M)
which correspond respectively to e*=¥)-¢ and a(z, £, h).

The oscillatory integrals, as (2), can also be used to define the Lagrangian func-
tions or the Fourier integral operators (cf. [7]). In a similar way, we extend (3) to
define sequence of holomorphic sections associated to a closed Lagrangian subman-
ifold A of M. Assume that A satisfies the following quantization condition: the flat
bundle (L|5, V) is trivial. Then a Lagrangian section associated to A is a sequence
(uk) such that

(4) we € Hi, ¥k and  up(z) = (%)ka(x)a(ac, k) + O(k=°)

where m is a real constant and

e F'is asection of L — M which restricts on A to a flat section with a constant
norm equal to 1 and such that Vx_;;x F vanishes to order oo along A for
every vector field X of M.

e (a(.,k)) is a sequence of C°°(M) which admits an asymptotic expansion
>, k7 lay(x) for the C* topology.

The symbol of (uy) is the formal series Y, hla; s of C°°(A)[[R]]. This is a full symbol,
meaning that it vanishes if and only if (ug) is O(k~°°). There is an associated
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symbolic calculus corresponding to the estimate of the norm of a Lagrangian section.
If (T}) is a Toeplitz operator we can also compute the symbol of the Lagrangian
section (Txuy) in terms of the symbols of (uy) and (T}).

We will also define quantum maps by quantizing the Lagrangian manifolds of
M?. We proved in [6] that the quantum propagator of a Toeplitz operator is an
operator whose Schwartz kernel is a Lagrangian section associated to the graph of
the Hamiltonian flow of its principal symbol. Another application is to prove that
the quantization is independent of the complex structure in a semi-classical sense:
we introduce unitary operators (Uy, : H{ — H?), where H¢ and H? are the quantum
spaces associated to two complex structures J, and J,. These maps have good semi-
classical properties: they send the Lagrangian sections into the Lagrangian sections,
the Toeplitz operators of H{ into the Toeplitz operators of Hg, etc... Using a local
version of these maps, we can also realize microlocal equivalences, which leads to
some normal forms and can be used to apply the usual techniques of microlocal
analysis in this context.

To end this introduction let us mention some previous results. Lagrangian sec-
tions were already introduced by Borthwick, Paul and Uribe [2]. Their approach
consists in using the homogeneous theory of the Toeplitz operator of Boutet de
Monvel and Guillemin [4]. Let us identify the sections of L¥ to functions defined on
the circle principal bundle P — M associated to L. Then the Lagrangians sections
are obtained by projecting the usual Lagrangian distributions defined on P onto
@ Hi. The quantum maps considered by Zelditch [11] are defined in a similar way
from the Fourier integral operators C°°(P) — C°°(P). These objects are viewed as
Hermite distributions, which leads to the definition of their principal symbol. The
symbolic calculus is then a consequence of the symbolic calculus of the Hermite
distributions.

To compare, our definition is more concrete and leads to the definition of a
full symbol map, from which we control the Lagrangian sections modulo O(k~).
Furthermore, the products and the symbolic calculus are obtained by a direct ap-
plication of the stationary phase lemma. Also, we have an explicit description of
the subsymbolic calculus, which involves Riemannian invariants, whereas the sub-
symbolic calculus in the homogeneous theory of the Toeplitz operators has never
been achieved.

Finally, let us mention that the main part of the article [2] is devoted to the
Lagrangian sections of the Riemann surfaces with genus > 2. In the article [11], the
quantization of some symplectomorphisms of the torus illustrates the results about
the quantum maps.
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1. PRELIMINARIES

First we present some general notations and conventions. We state some technical
lemmas that we need to apply the complex stationary phase lemma. Finally we
define the Weyl symbol of a Toeplitz operator, which will be useful for the Bohr-
Sommerfeld conditions.

1.1. Geometric notations. Let (M,w) be a symplectic manifold endowed with a
complex structure which is integrable and compatible with w, that is

w(JX,JY)=w(X,Y), w(X,JX)>0 and (w(X,JX)=0= X =0).

In other words M is a Kahler manifold with fundamental 2-form w. We denote by
g the Riemannian metric induced by the symplectic and complex structures
9(X,Y) =w(X,JY)
and by pas the measure induced by g . pas is also the Liouville measure ;1!|wA"|.
Let (L — M, h,V) be a prequantization bundle. We denote by |u| the norm of
u € L, and by h(u,v) the scalar product of u,v € L,. The scalar product (s,t) of
two sections s,t € C*°(M, L) is defined in the usual way by

(5,) = /M h(s, i

We denote by L X L~! — M? the bundle 7rl#L @n# L' — M x M, where 1, and
7, are the projections M? — M onto the first and the second factor. Observe that
L X L~! endowed with the induced Hermitian structure and covariant derivation
is a prequantization bundle, whose symplectic structure of the base M? is given
by mfw — miw. We identify the Schwartz kernel of an operator T : C*°(M,L) —
C>(M, L) with a section (z;,2,) — T(z;,z,) of LK L™ — M? by the following
formula

(Ts)(z1) = /M T(x, xp).s(zr)pprs(xr), Vs € C®(M,L).

We use the same notations and definitions for the induced data on the bundle
L¥ — M, where k is any positive integer.

1.2. Admissible and negligible sequences. Let (ug)x be a sequence such that
ur, € C°(M, LF) for every k. We say that (uy) is admissible if for every positive
integer [, for every vector fields X7y, ..., X; of M and for every compact set K of M,
there exists C' and an integer N such that

(5) |Vx,...Vx,sk(x)] <Ck™Y on K.

We say that (uy) is negligible if for every positive integers I, N, for every vector
fields X7, ..., X; of M and for every compact K of M, there exists C' such that (5)
holds. We say that (uy) is negligible over an open set U if the previous estimates are
verified for every compact set of U. We denote by O, (k™) any negligible sequence
or the set of negligible sequences. The microsupport of (u) is the complementary
set of

{x € M/(uy) is negligible on a neighborhood of z}.

Recall that the Toeplitz operators reduce microsupport.

We will also consider some sequences (tq, ko )a such that u, € C*(M, L*«) for
every a. We will always assume that k, — oo even if we do not mention it. As
previously we may say that (u,) is admissible or negligible over an open set U when
in the previous estimates k, uy are replaced by k,, ty. The microsupport is defined
in the same way.
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1.3. Asymptotic and Taylor expansions. If X is any manifold, the space S°(X)
consists of the sequences (f(., k)) of C*°(X) which admit an asymptotic expansion
of the form

FOR) =Dk i+ O(k™)
=0

for the C™ topology. By the Borel process, if 3 Al f; is a formal series of O (X)[[A]],
there exists a symbol of S(X) which admits the asymptotic expansion Y k! f; and
this symbol is unique modulo O(k~°).

Let Y be a closed submanifold of X of codimension k. We denote by Z%V (Y the
ideal of C*°(X) which consists of the functions which vanish to order N along Y
and by Z°°(Y') the ideal NyZ™ (V) whose functions vanish to any order along Y.

Let 01, ..., 0x be vector fields of X such that on an open set U of X

e [0;,,0;] =00nU
o Dzy s Okle)® (1Y C) =T, X®C, VzelUnNY.

To solve some equations, we will use the following lemma.
Lemma 1.1. There exists functions Z', ..., Z" of C>°(U) such that
Zynu=0, 0.Z° =65 mod I®(Y NU).

These functions are unique modulo Z(Y NU). If f € C*({U NY), there exists
F e C>=(U) such that

F|YﬁU: 1 0. F =0 mod IOO(Y N U)
F is unique modulo (Y NU).

To deal with the Taylor expansions along a submanifold, we will use the following
result which can be proved by the Borel process.

Lemma 1.2. The map which sends f € C>°(U) into the formal series
ZafaZa, with fo = 8af|YﬁU

induces an algebra isomorphism from C(U)/I>°(Y NU) onto the space C*°(Y N
U)[ZY, ..., Z*]]. The inverse of this isomorphism sends the formal series Y., goZ®
into [g] with g € C=(U) such that

9= Z|a\gNGaZa mod IN—H(YQU), VN

where the functions G, € C*®(U) restrict on Y to the functions g, and satisfy
0,Go =0 modulo T (Y NU) for every L.

With respect to the notation, 0¢ is the differential operator 8?(1)...8,?(16). Finally

we recall the following result proved in [5].

Lemma 1.3. Let d € C®(X,R") be a positive function outside Y which van-
ishes to order 2 along Y and whose kernel of its Hessian is T,Y for every x in
Y. Let (a(.,k)) be a sequence of C>(X) which admits the asymptotic expansion
Yoo a(@)k™t for the C° topology. Let N be a mon negative integer. Then the
following two assertions are equivalent.

1.V compact subset K of X, 3 C such that ‘ e‘kd(m)a(aj, k:)‘ <C k=% on K.
1. a € IN_QI(Y), for every | such that 21 < N.
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1.4. Toeplitz operators. A Toeplitz operator is a sequence (T}) of the form
Ty =My gy + O(k™>) : Hy — Hy,

where (f(.,k)) is a symbol of SO(M), My ) is the multiplication by f(.,k) and
II;, is the orthogonal projector of L?(M, L*) onto Hj. The big O is for the uniform
norm of operators. Recall that the Schwartz kernel of a Toeplitz operator is of the
form

(6) Tk(xlaxr) = (%)nEk($l7xT)g(xlﬂ Lr, k) + Ooo(kioo)

where

e F is a section of L X L~! such that E(z,z) =1, |E(z,z,)| < 1 if 7, # ,
and V;E = 0 mod Z°°(diag M) for every holomorphic vector field Z of
(M2, J x —J),
e (g(.,k)) is a symbol of S°(M?) with asymptotic expansion > k~'g, such
that Z.g; = 0 mod Z°°(diag M), for every holomorphic vector field Z of
(M2, % —J).
The o symbol of (T}) is the formal series Y hlg;(z,z) of C°°(M)[[h]]. Here it is
convenient to introduce the Weyl symbol:
(7) ow(Tk) = go + h(g1 — 37.90 — Ago) + O(h?)

where r is the scalar curvature of (M, g) and A the holomorphic Laplacian. The
product of the Weyl symbols induced by the composition of the Toeplitz operators
is

f*wh=fh+ %{f, R} + O(h?).

The formulas describing the spectrum of (7% ) in the semi-classical limit are simpler
when we write them in terms of this symbol. As instance, assume that T} is self-
adjoint for every k and denote by

Ei <E}<..<EX

its eigenvalues. Then using the functional calculus of the Toeplitz operators (cf.
[5]), we can prove that for every C* function ¢

dy, .
> wlE) = (%) /M (p(fo+ k72 f1)) (L + k7 D) uns + O(K™2)
=1

where fo + Aif; is the Weyl symbol of (T}).
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2. LAGRANGIAN SECTIONS

In this part, we consider a symplectic manifold (M,w) endowed with a pre-
quantization bundle and an integrable positive complex structure J. Let A be a
Lagrangian submanifold of M.

The first subsection is devoted to the construction and the properties of a sec-
tion F' (cf. equation (4)) associated to A. Then we give a local definition of the
Lagrangian sections associated to A and of their symbol. In the following subsec-
tions, we compute the norm of the Lagrangian sections and describe the action of
the Toeplitz operators. Finally, we introduce Lagrangian sections associated to a
fibration by Lagrangian tori, the motivation is to construct the quasimodes of a
Toeplitz operator.

2.1. The section F'. Both of the next propositions give the main local properties
of the section F' associated to A. Observe that L restricts on A to a flat fiber bundle,
that is the curvature of the induced connection vanishes.

Proposition 2.1. Let x € A. There exists a neighborhood U C M of x and a
section F : U — L such that F|anu is flat with a constant norm equal to 1 and

VzF=0 modZI®(ANU), V holomorphic vector field Z.

If F' : U" — L satisfies the same assumption and U N U is connected, then there
exists a real number a such that e'*F = F' modulo Z®°(ANUNU’).

Proof. Since L|, is flat, there exists a flat section of L| defined on a neighborhood
of z with constant norm equal to 1. It is locally unique modulo a multiplicative
constant of modulus 1. Extend this section to a local section s of L defined on
a neighborhood of z in M. We look for a section F of the form e?s, where ¢
vanishes over A. Write Vs = —i8 ® s where 8 € QY(U). 93%! = 0 because
w=dp € QV(M). So there exists p € C°(U) such that dp + i3> = 0. Let us
write ¢ = i(p — p). We have to solve

fla=pla and 95=0 mod I(A).

These equations have a unique solution modulo Z°°(A N U) by lemma 1.1, because
the distribution 7% M is integrable and (T,A ® C) ® TO'M = T, M ® C. Indeed,
if X € (T,A®C)NTY'M, then w(X, X) = 0 since T,A ® C is a Lagrangian space,
so X = 0 since J is positive. O

The Taylor expansion of F' along A is determined by A and the Kéahlerian struc-
ture. We compute the first and second derivatives in terms of these data.

Proposition 2.2. Let F : U — L be a section defined as in proposition 2.1. Denote
by ap the 1-form defined by VF = ap @ F and by § the function § = —21n|F)|.

o ap vanishes at every x € A and its derivative Tap : Ty M — TiM ® C is
given by

(8) (Txarp,Y)=—-iw(@X),Y), VX YeT.M

where q is the projection of T, M ® C onto Tg?’lM whose kernel is T,A @ C.
e 0 wvanishes along A with its first derivatives. Its Hessian is the bilinear
symmetric form of T, M whose kernel is T, A and which restricts on JT,A

to glir.A-



8 L. CHARLES

Hence § = —21In|F| is positive on a neighborhood of A minus A. By modifying
F outside this neighborhood, we may assume that
(9) |F|(z) < 1if z ¢ A.

In the following we will always assume that the section F' satisfies this condition
even if we do not mention it.

Proof. Recall first that (T,A @ C) @ T%'M = T, M @ C (cf. proof of proposition
2.1). If X is an anti-holomorphic vector field, then (ap, X) vanishes to order oo
along A. If X € T, A, then (ap, X) = 0 since F|, is flat. Consequently, ap vanishes
at x € A and the derivative Tar is well-defined.

If X € T, A, the two sides of equation (8) vanish. Hence it suffices to prove
equation (8) with X € TO'M. Assume that X and Y are vector fields and X is
anti-holomorphic. Using that ap vanishes along A, we obtain on A

VxVyF = VyVxF —Vixy|F = ({(Txar,Y) — (Tyar, X)) F.

The second term of the right side vanishes. Since the curvature of V is —iw, we
have (Txap,Y) = 2w(X,Y), and this proves (8).

|E||]a= 1, so 0 vanishes along A, and the same holds with its first derivatives
since dd = —ap — ap. So the Hessian of § at x € A is well-defined. Its kernel
contains T, A. Furthermore (8) implies

Hess§(X,Y) = — (20) 'w(q(X) —q(X),Y), VX,Y €T, M

and if X € JT A, then ¢(X) = X +4JX. So Hessd(X,Y) = —w(JX,Y) =
9(X,Y). O

Remark 2.3. Let F be the section associated to the kernel of the Toeplitz operators
(cf. (6)). If VE = ag ® E on a neighborhood of diag M, we can prove that ag
vanishes at (z,z) € diag(M) and its first derivative is given by

(10) (Tix xyam, (Y1,Y2)) = 2o(X] = X9 V) + do (X7 - X0, V)
where X0 = £(X + iJX) is the holomorphic part of X and X®! = (X —iJX)

its anti-holomorphic part. O

2.2. Definition of Lagrangian sections. Let U be an open set of M, such that
there exists a section F' : U — L which satisfies the assumptions of proposition
2.1 and condition (9). We are interested in admissible sequences (tq, kq )aen Of the
following form over U

(11) Uo = FFa(., k) + Oco (k™)
where a(., k) is a symbol of S(U), whose asymptotic expansion Y k~!a; satisfies
(12) Z.a;=0 mod Z°(U NA), V holomorphic vector field Z.

If moreover u, € Hy, for every a, we will say that (uq, ko) is a Lagrangian section
over U.

Proposition 2.4. Let (uq,ka)a be an admissible sequence of the form (11) over
U. Then

Ik, e = taq + Oco (k™) over U.

Let (ul,, ko) be an admissible sequence of the form (11) over U with a section F’
and a symbol a'(., k). Assume that F|yna= F'|luna. Then

Uy = Ul + O (k) over U & ailuna= ajluna for every l.
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We will call the formal series

SR =30 harluna

the symbol of the Lagrangian section (uq, ko). The function fy is the principal
symbol.

From the first assertion of the previous proposition, the existence of a Lagrangian
section over U with an arbitrary symbol 3 Al f; is equivalent to the existence of an
admissible sequence (uq, ko) of the form (11) where the asymptotic expansion of
the symbol af(., k) restricts to > k! f; over UNA. If (uq, ko) is a Lagrangian section
over U with symbol > A'f;, observe that (u,) is Ou(k; *°) over U if and only if its
symbol vanishes. More precisely, we deduce from lemma 1.3 that

|| = O(k;N) over U &  fo=..=fn_1=0.

To define a global Lagrangian section, we need a quantization condition. As
instance assume that (L|a, V) is trivial. Then there exists a flat section

t:AN— L

of constant norm equal to 1. Using a partition of unity, we can obtain a global
section F' : M — L which restricts to ¢ over A and satisfies the assumptions of
proposition 2.1 over a neighborhood of A. Define the space S(A,t) of Lagrangian
sections (uq) such that u, € H, for every a, (uo) is of the form (11) over a
neighborhood of A with k, = « and is negligible outside this neighborhood. Then
proposition 2.4 implies that the symbol map S(A,t) — C°°(A)[[A]],

(13) (Ua) — Zlhlfl such that ug|a= tkzlk*lfl + O(k=)

is onto. Its kernel consists of the negligible sequences. This quantization condition
will be used to define the kernel of the quantum maps. To define the quasimodes
we will need a more complicated condition (cf. section 2.6).

Proof of proposition 2.4. We begin with the second assertion. By proposition 2.1,
F and F' are equal modulo Z*°(A NU). Hence it follows from lemma 1.3 and the
properties of the Hessian of In|F| (cf. proposition 2.2) that us = ul, + Oc (k)
over U if and only if a; and a] have the same Taylor expansion along U N A, for
every l. By (12), this is satisfied if and only if a; and a] are equal over U N A. The
first assertion is a consequence of the following lemma.

Lemma 2.5. Let (uq, ko) be an admissible sequence of the form (11) over U with
a symbol (b(.,k)) . Then (Ily, uqa, ko) is of the same form over U with a symbol
(c(., k)) such that co is equal to by over U N A.

Let z € ANU. Applying the previous remarks, we can obtain from lemma 2.5
an admissible sequence (w,, ko) satisfying (11) and such that

(14) Mk, wa = ta + O(k,™)

on a neighborhood of x. Indeed we can construct the symbol of (w,) by successive
approximations. Now applying IIx, to (14), it follows that Iy uq = ue + O(k,>°)
on a neighborhood of x. O

Proof of lemma 2.5. We use the ansatz (6) for the Schwartz kernel of II;. Hence

0 (FEb(., b)) (21) = (%)n/UEk(ml,xg).Fk(a:g)f(xl,xg,k)b(xl,k)uM(a:Q)
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modulo O (k~°°), where U is an arbitrary small neighborhood of 1. We compute
this integral by applying stationary phase lemma. Introduce a section s : U — L
with constant norm equal to 1 and such that s|p= F|s. Write

(15) E(x1,32).F(xs) = @172 g(z1), F(xy) = @) g(zy)

where ¢ vanishes along A and ¢ along diag(A). With these notations, we have to
estimate

. 1
/ elk¢(w1’w2) f(xla X2, k)b(‘rlv k) (det[gjk](irQ)) 2 |d$2|
U

as k — oo. First we prove that d,,¢ vanishes on diag(A) and d0202¢ is definite on
diag(A). By proposition 2.2 and remark 2.3, ap vanishes along diag(M) and ap
along A. So derivating the first equation in (15) we obtain d;,¢ = 0 on diag(A).
Derivating again, we deduce from (8) and (10) that

(16) d2,0(X,Y) =w(X"? = ¢(X),Y) on diag(A).

Hence d2_ ¢ is definite on diag(A). Indeed d2_¢(X,.) = 0 implies X0 = ¢(X).
Since ¢(X) € TO'M, X1 =0. So X € (TA®C)NT"'M = (0). Consequently we
can apply the stationary phase lemma (chapter 7.7 of [8]).

Since the phase ¢ takes complex values, we do not consider its critical set, but
the ideal generated by the family (9,x¢)k. Introduce a coordinates system (x%) on
the second factor of U x U and a complex coordinates system (2%) on the first factor.
Derivating F~1(x1)E (21, x2).F(x2), we obtain
(17) Oz ¢(x1,22) = Ozip(x1) mod I (diag A).

Hence 0;; 0,1 ¢ vanishes to any order along diag(A). We will deduce from this that
the ideal generated by the family (89015 @) is the set J which consists of the functions
f(x1,x2) such that

fldiaga= 0, 9z f =0 mod I (diagA).

We consider the vector fields 855 , 8955 (1<i<mnandl<k<2n). They generate
a distribution transversal to diag(A). Working as in lemma 1.1, we associate to them
the functions Z;, X5. We will prove that every function of 7 is a linear combination
of the X 15 with C*° coefficients and conversely. If f € J, then the formal series (cf.
lemma 1.2) associated to the Taylor expansion of f belongs to the ideal generated

by the X% and consequently f is a linear combination of the X' ]5 modulo a function
of Z°°(diag A). We verify that

(dX}, ... dX2 dX5, .., dX3)" = diag(TA) ® C.

So XX ; is transversally elliptic to diag(A), every function of Z°°(diag A) can
be divided by 3> X5 X ’; and can be written as a linear combination of the X%. The
converse is easy since the X 15 belong to J.

The functions 800;2«;5 belong to J, so they are of the form
J
If « € diag(A), we have

Jii () = 0,,0,50(x).

Hence, fi; is invertible on a neighborhood of diag(A), the X % are linear combination
of the 800;5 ¢. This proves that the ideal generated by the 8w§¢ is J.
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From (17) we deduce that ¢(x1,22) = ¢(x1) mod J. We obtain
I (F*b(., k) (z) = F¥(z)c(z, k) + O(k™>)

where (c(., k)) is a symbol of S°(M). Derivating the previous equality with respect
to any antiholomorphic vector field, we deduce from lemma 1.3 that ¢(., k) satisfies
(12). Furthermore if x € A, since f(z,z,k) =1+ O(k~!) we have

=

co(x) = bo(x).(det[—iargawgﬂ(x, z)) %.(det[gjk](x))

where the g;; are the coefficient of the Riemannian metric g =3~ gjkdxg ® dak.

Since ¢o(z) does not depend on the coordinates (2 ), we can choose them to compute
easily the two determinants. If (8xé)i:17,,,7n is an orthonormal base of T, A and

%M = J0O,; at x, then gji(x) = d;x. And it follows from (16) that the matrix
—i@mgﬁwgqb(x,x) is :

1 ( Id —ild )

2\ —ild 3Id
We deduce from this that co(z) = bo(x). O

2.3. Norm of the Lagrangian sections. The following proposition is a conse-
quence of the stationary phase lemma.

Proposition 2.6. Let (uq, ko) and (va, ko) be Lagrangian sections over U with the
same section F' and principal symbols fo, go € C°(U NA). Then

1

[ i = ()7 [ agona+ 06
U ANU

ka

where pp is the measure of A induced by the Riemannian structure g.

More generally, we can estimate the integral of h(uq,va)ar, where (uq, ko) and
(va, ko) are Lagrangian sections over U associated to Lagrangian manifolds A and
A’ respectively such that the intersection of A with A’ is non-degenerate (cf. [2]).
For example, when the dimension is n = 1, assume that ANA’ = {z} C U and that
this intersection is transversal. If F(x) = F'(x), we have

| P vdins = () fole)-aola) T+ 7+ 0(k2%)

where fy and go are the principal symbols of (us) and (vs) and a = cotan @ if 6 is
the angle between T, A and T, A’. The square root is chosen so as to be continuous
with respect to a and to take the value 1 when a = 0.

Proof of proposition 2.6. Recall the notation |F|? = e™% (cf. proposition 2.2). We
estimate the integral

/ e @ a2, k)b(x, k) s ().
U

Choose a coordinates system (z7,y7) such that A = {y! = ... = y" = 0}. We may
assume that the orthogonal set of T, A is (9,1, ..., 0yn )|, for every x € ANV. Then
the metric is given along A by

g(z',0) = Gk (z!,0)dz’ @ dx* + g;-k(a:l, 0)dy’ ® dy*.
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Furthermore by proposition 2.2, § = g;,k(xl’ 0)yy* mod Z3(A). We have
[ bt Rpne(w) = [ 2] [t et |
T 2 ~ b L
:(E) fo-go(det[g; x]) % |da?| + O(k=2")

by the stationary phase lemma. O

2.4. Action of the Toeplitz operators. We consider now the action of the
Toeplitz operators on the Lagrangian sections.

Proposition 2.7. If (T}) is a Toeplitz operator and (uq, ko) a Lagrangian section
over U, then (Ty, uq,ka) is a Lagrangian section over U. Furthermore, there exists
a sequence of bilinear operators Ly : C°(M) x C®(A) — C*®(A) such that the

symbol of (T, ua) is
Zhl Z Lll(flgagls)

l1+la+13=l

if o(Ty) = S_hLfi and the symbol of (uy) is > hlg;. The operators L; depend only
on A, M and its Kdhlerian structure, and

e Ly is the map which sends f € C*(M), g € C>®(A) into f|a.g.

o [y, Lo, ... are locally on the form
(18) Ll(.f7 g)|AﬂV: Z aa,’ya?f|/\ﬂv'8;ga Vf S COO(M)v [AS COO(A)
o] +|v]<2l

where V' is an open set of M, (2%) a complex coordinates system defined on
V, (2") a coordinates system of A defined on ANV and aq~ € CC(ANV).

Proof. The proof is the same as the proof of lemma 2.5 except that we replace (IIj)
with (T}) and that we have to compute the full asymptotic expansion. As in the
proofs of proposition 2.1 and lemma 2.5, we introduce a local section s with constant
norm equal to 1 such that F|y= s|s and a function p such that Vs = (0p —9p) ® s.
We have to estimate
k‘ n . B
(19) (52) st ) [ e far, mg(aa)dpas )
as k tends to oco. From the proof of proposition 2.1 and [5], the phase ¢ is given by
¢(x1,22) = i(p(x1) + plx2) — (p+ p) (21, Z2) + p(a2) — p(z2)).

Let us explain the notations : if f € C%°(U), f(z1,%) is a function f defined on
U x U such that f(xmc) = f(z) and the derivatives 0z 1, 8zéf vanish to any order
along diag(U). In the same way, if g € C°°(A) then g(z) is a function g defined on
U which restricts on A to g and such that the derivatives 05§ vanish to any order
along A.

We introduce some notations to handle the Taylor expansion along diag(A) and
the Taylor expansion along A. Following lemmas 1.1 and 1.2, we identify the Taylor
expansion along A of the functions of C*°(U) with the formal series of C*°(A)[[Z"]]
(the functions Z) are associated to the vector fields 9.:). In the same way we
identify the Taylor expansion along diag(A) of the functions of C*°(U x U) with
the formal series of C>(A)[[Z, Z&, Z3]], (the functions Z;, Zb, Zy are associated to
the vector fields 85{ , 825 , 85;'). Observe that the functions Z, are not conjugated to
2.
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As we saw in the proof of lemma 2.5, the ideal generated by the 9.;¢ and 0;; ¢
is the set J which consists of the functions whose Taylor expansion belongs to the
ideal generated by the Zi, Zi. If the Taylor expansion of f € C®°(U x U) is

Z fouB,WZlaZzBZ;

then the Taylor expansion of a function g € C*°(U) such that g(z1) = f(z1,22)

mod J is
> fa00Z".

We have F(z) = €@ s(x) with p(z) = i(p(x)—p(z)). Let us compute the Taylor
expansion of ¢(x1,72) — ¢(x1). Introduce the functions G, g = 9292 (p + p)|a. We
have

Ga

p(ﬂfg)—f-[)(l‘g) NZ O['ﬁ' Zéa? p(Zl)Npo,
B
O Gos s Po o
(p+p)(21,22) ~ 3l 2y p(z2) ~ o 22
i — a

where the p, are the restrictions on A of the successive derivatives of p(z) with
respect to 0,i. We deduce from this that

) G,
¢(x1,72) — p(w1) ~ 1 Z |5| 25 Z) +i Z TZQ
la|>0,|8|>0 la|>0

From the proof of lemma 2.5, ¢(z1,22) — ¢(x1) vanishes to the second order along
diag(A), so G0 = p;. This can also be directly checked using that (X, dp—9p) =0
if X is tangent to A. If € A, the matrice of —id3,¢(z, ) in the base 0.1, 0 s

Gijo —pij Gij

From (16), Gijo — pij = iw(q(d.:),0.5) = ¢'G,;. The inverse of this matrix is

0 GY
Gii —giGh )

Applying theorem 7.7.12 of [8], we obtain that (19) is equal to
s* (21)e®P (@1, k) + Ouo (k™)
where (h(.,k)) admits an asymptotic expansion >, k~'h; for the C*° topology.

Furthermore, the Taylor expansion along A of the coefficients is given by

-k
(20) hy ~ [det(G; Z% [AMRFIF.G.D)] i g1y -
Zt= Z‘

F, G are the formal series associated to the Taylor expansion of f(z1, Z2) and g(z2):

1 7 Yo @
F:Z@a?fhzgﬂ, G= 522
B

[e3

where the g, are the restrictions on A of the successive derivatives of g(z) with
respect to 9.

Ga
R= Z 151 ZB+Z

|| >0,]|8]|>0, |a| >3
la|+]823
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D is the formal series associated to the Taylor expansion of det[d,:0_; (p + p)](x2)
and A is the operator

A=) G050, - %qul’J(?Zé@Zg.
i,j
Since the formal variables Z do not enter in the computation, the derivatives with
respect to 9z of the functions h; vanish to every order along A. The restriction of
the functions h; to A is given by the above formula. To prove that the operators
L; are locally of the form (18), it suffices to prove that g, = P.g where P is a
differential operator C*°(A) — C°°(A). The differential of g(z) at © € A vanishes
on T9'M and its restriction on T, A is dg. Consequently,

(21) 9i =(0.:19(2))[a= ¢°(9.1).9.

This gives the result for g;. We generalize to the functions g, by induction on |«|
by using that d,:g(z) is also a function whose derivatives with respect to 9z vanish
to any order along A. The computation of Lo(f, g) was done in the proof of lemma
2.5. O

2.5. Subsymbolic calculus. As we saw in the previous subsection, every Toeplitz
operator induces a map T : C*®(A)[[A]] — C*(A)[[A]] of the form

Th = fola.h + h(fi|a.h + Li(fo, h)) + O(h?)

where o (T},) = fo+hf1+O(h?). The purpose of this section is to compute L1 (fo, k).
From this result, we will deduce the following theorem that we will use to compute
the Bohr-Sommerfeld conditions modulo O(h?).

Theorem 2.8. If the Weyl symbol of (Tk) is fo+ hfi + O(h?) and A C {fo = E}
where E is a real number, then

Th= Eh—ih(Lx, .h+ (ifi’ — $H.fo+ 3 diva,(Xy,)) h) + O(h?)
where

e Xy, is the Hamiltonian vector field of fo (i.e. dfo +tx, w=0),

e H e C™®(A,JTA) is the mean curvature vector field of A,

o divy : C°(A, TA) — C°°(A) is the divergence with respect to the measure
ua induced by the Riemannian metric.

To state the result about Li(fo, h), we need to define an operator O : C* (M) —
C*(A). First let P2 be the operator

1,0 5pf

92 P2 (M) 2 oo, AV Y oo (v, AYOM @ AM
v

where VA"’M is the covariant derivation of the holomorphic Hermitian bundle
A9M. Denote the conjugate operator by P2 : C°°(M) — C*>°(M,A\%'M @ AM).
If x € A, recall that g|, is the projection of T, M ® C with image T9"* M and kernel
T,A ® C. The restriction of ¢ on T1OM defines a tensor

qldz* © 0z € C®(A, AYOM @ TO'M).
By contracting with G= = G7*9,; ® 0, this gives the tensor
q]G"*dz; @ O € C°(A, TOTM @ TO'M).
Finally we set

Of = ¢/ GY* f;1.|a where P2 f = fjrdZ @ dz".
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Proposition 2.9. If f € C>°(M), g € C*(A) then
Li(f,g9) = _%(T-f”Ag - %(Df).g - i['qc(Xf)'g

where 1 is the scalar curvature of M and |, is the projection of TyM ® C with
image Ty A @ C and kernel TO1 M.

Proof. We start from the proof of proposition 2.7. Choose a coordinates system on
a neighborhood of z € M, such that G; jx(z) = Gijr(x) = 0. From (20) a direct
computation gives
1 [y i
hi = 5Gija5-f-9 = 54 GY9(0::0z f).9 + G (921 f)g;

at  where g; :(Bzig(z))h\. We recognize the scalar curvature r and P2 f, which
are given at x by

r=Gijij,  Paf=(0:0.f)dz @dZ.
To recognize the last term of the sum, observe that
Xg = —iGM(0.5 )00 +iG7F (021 )0,
So ¢¢(X¢) = iq°(G¥*5x £O.5). Then the results follows from (21). O

We will give another formulation of this result when the Hamiltonian vector field
of f is tangent to A. Recall that the second fundamental form of A is the section

o€ C®(\T*A®T*A ® JTA) such that o(X,Y) = ViMy — vity

where V'™ and VT are the Levi-Civita connections of (M, g) and (A, g|7a). The
mean curvature vector field is H € C*°(A, JTA) defined by H =tro.

Proposition 2.10. If the Hamiltonian vector field of f € C°°(M) is tangent to A,
then

(Of)a= (Af)|a+H.f + idiva(Xy)
and consequently

Li(f,g9) = —%(r.f+Af)|Ag— %diVA(Xf).g — %(H.f).g—iﬁxf.g.

From the definition of the Weyl symbol (7), we obtain theorem 2.8 as a corollary
of this proposition.

Proof. Let (X;) be an orthonormal base of T;A. Let ¥; = JX,;. So (X;,Y;) is an
orthonormal base of T, M. Let (£7,77) be the dual base (77 = —J!¢7). The family
Z; = %(le— z}@) is a base of TQ}’OZW whose dual base is (¢/ = \/ié(fj + znﬁ)) We
have G = (¢ ® (7, so G~ = Z; ® Z;. The restriction of ¢ at T"°M is —¢’ ® Z;.
Contracting with G~1, this gives

—Zj®Z;= —%(Xj@’Xj —Yj®Yj)+%(Xj®Yj+Yj ® X;)-
Recall that on a Kihler manifold, the Levi-Civita connection V™ preserves 710 M
and T%1 M, is compatible with G and restricts on T"°M to the covariant deriva-
tion of the holomorphic Hermitian bundle T%°M (cf. [1]). So, VI™M preserves
AYOM and A% M, is compatible with G~! and restricts on AM°M to the covariant
derivation of the holomorphic Hermitian bundle AMOM.
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We extend the (X;) on a neighborhood U of x so that they give an orthonormal
base of TyA when y € ANU. Define as above the vector and covector fields
Y}, Z;,&9,m7,¢7. Then we have on U N A

Of =—(VT'Mdf, 2, 0 7)),  Af =T Mdf, 7; ® Z;)
(23) = 0f = Af = (VM X; © X;) + (VT MY @ X5).
Write df = (X; )& + (Y;f)n’, and observe that X;.f vanishes on A since X; is
tangent to A. We have then on U N A
(VIMAf, X; @ X;) = (Y f)(VE,Mn", X;)
= - ) (", VA X;) since d(n*, X;) = 0
= -V /)", ViV X; - VA X))
since VA X is tangent to A. Consequently, (VI"™Mdf X;® X;) = —H.f. We treat
now the second term of (23)
(VML Y @ X;) =X;(Y ) + (%)M, Y)
=X;(Y;f) = (Ve F)(n*, ViY;)

on U NA. Recall that divy X = —tr VTAY (cf [1]). From Xy = —(Y;f)X) on A,
we deduce that

diva Xy = X;(Y; /) + (Ve /)€, VI Xi)
= X;(Y; f) — V)€, VERX;)
since <§j,V§?Xk> = g(Xj, Vif(]@Xk) = _Q(V;F(?Xj,Xk) = —(¢k, V};?Xﬁ. But
ViAX, - VEM X, € JTA.

We obtain that (VT Mdf,Y; ® X;) = diva X;. O

2.6. Lagrangian sections associated to a fibration by Lagrangian Tori. Let
us consider an open set of M diffeomorphic to the product B, x T", where B, C R™
is the open ball of radius r with center 0 and T" = R"/Z". Denote by &' and
the usual coordinates of B, C R™ and T". We assume that

(24) w|B, xTn= d&* A dz’.
We are interested in the family of Lagrangian submanifolds
A = {(&2)/€ =1, ¥i} C M
where v belongs to I' = B,. /5. Denote by 7 the projection I' x B, x T" — B, x T".

We will define Lagrangian section (uq, ka,7Ya), where u, € Hy,, is associated to
A, for every a. Locally, they are of the following form

Ko\ % _
(25) U = (7) FE (va, )av (Yoo - ko) + Ooo (k™) on By x V

where V' is an open contractible set of T™ and

e Fy is a section of 77 L defined on I' x B, x V, such that Fy(v,.) is flat
along A, and VzFy vanishes at every order along {(v,§,z)/y = &} for
every vector field Z € C*°(T" x B, x T", T4%(B,. x T")).

e ay is a symbol of SO(T x B, x V), with asymptotic expansion Y k~‘ay,
such that Z.ay, vanishes at every order along {(v,&,x)/y = &} for every
vector field Z € C°(T x B, x T, T*9(B, x T")).
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Locally the symbol will be defined as the formal series Y ! fy; of C°°(T' x V)[[A]]
such that

(26) fvalv, @) = ava(v, 7, 2).
Globally, it will be natural to consider it as a section of a flat C[[A]]-bundle.

First let us introduce the notion of a flat C[[#]]-bundle K — T™ of rank 1 with
structural group {e¥" / (k) € R[[A]]}. Such a bundle is locally isomorphic to
K|y~ V x CJ[[h]] and the transition functions are of the form

(VW) x Cl[H] = (VW) x I, (@) — (@, c(m)eie®)
where ¢(f) € R[[A]] and e**(") is defined by

e = eieo N L (i hlen) ™, if p(h) = 3 k.
Using the flat structure we can introduce the parallel transport K|so)— K|s0)
along a path § : [0,1] — T™. Let 4y, ...,d, be loops with the same base point x
such that ([0;]) is a base of H1(T",Z). The parallel transport along §; is a map
K|,— K|, of the form c(h) — €27’ (")c(h). The holonomy of the loop §; is by
definition ¢ (k) € R[[h]]/Z.

Now let K — T x T™ be a C[[h]]-bundle of rank one with transition functions of
the form

Dx (VAW)xC[H] =T x (VW) xC[[H], (v,2,c(h) — (v,z,c(h)e M)

where (v, h) € C°(T',R)[[i]]. For every v € T, this bundle restricts on {7y} x
T" ~ A, to a flat bundle K, as we considered below. A C* section of K is map
f:T'xT" — K, locally of the form

(27) IxV —=TxVxClh,  (v,2) = (2 fv(y,zh)

where fyy € C*°(T' x V)[[A]]. These sections will be the symbols of the Lagrangian
sections.

Finally let us give the quantization condition. Fix a base ([0;]) of H1(T"™,Z) such
that 41, ..., 6, have the same base point z. Denote by > hl¢i(v) the holonomy of
§* for the bundle K|, and by ¢’ () the holonomy of §* for the bundle L|5 . We
assume that the sequence (Va, ko) of T' x N satisfies

(28) ©-1(Va) — k3 ' 0(Va, ka) € k' Z" + O(k;>)
where (v, k) = 350k oi () + O(k™>).

Let f be a section of K and let us define a sequence (uq,kaq, Vo) associated.
Fix two sections ty, : I' x {0} — L and ¢tk : I' x {0} — K with constant norms
equal to 1. If V is an open contractible set of T™, choose a path § : [0,1] — T"
with §(0) = 0 and §(1) € V. Then define the section Fy in (25) in such a way
that Fy (v,7,4d(1)) is the parallel transport of ¢y, (v, 0) along {7} x §. Consider the
trivialization K|rxyv~ T x V x C[[A]] such that the parallel transport along {7} x &
sends tx (7y,0) into (7,0(1),1). This defines the formal series fy by (27) and we can
introduce a symbol ay (., k) which satisfies (26).

Hence we defined the left hand side of (25) for every open contractible set V' of
T™. The point is that these expressions patch together modulo O (k, *°) because
of the quantization condition (28). So using a partition of unity, we can introduce
an admissible sequence (vq, k) which restricts over every B, x V to these local
expressions. Then we set uy = Il vo. By proposition 2.4 that we can generalize
with parameters, we know that u, = v + O (k).
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It is straightforward to generalize the propositions 2.6 et 2.7. We just state the
results. The norm |f|? is a formal series of C°°(I' x T", R)[[A]]. The norm of the
section u,, is estimated by

(29) (s 1) = / 9(tar) i, (%) + O(kY)

A"r’a

with |f|2 = g+ O(h).

If (T}) is a Toeplitz operator, we can describe the sequence (T} 1) in the follow-
ing way: as we saw in proposition 2.7, (T%) induces an action on the space of symbol
C>(A)[[R]], for every ~. Since K, is flat, this gives a map T, : C*(A,, K,) —
C*(A,, K), and consequently a map

T:C®(T x T", K) — C=(T x T", K).

Applying this operator to the symbol f, we obtain a symbol T'f and so a Lagrangian
section (Wq, ko, Va) (we define it using the same sections ¢;, and ¢k as we chose to
define (uy)). Then the result is that

Wo = Tk, uq + Ok, ).

To end this section, we discuss the quantization condition (28). First, observe
that it does not depend on the choice of the base ([§;]). Furthermore, using (24)
and that the curvature of L is %w, we prove that the maps <pj_ , are affine

() =91 0+ 2
- - 2m
Hence the map ¢_; is a diffeomorphism of B, onto its image, the same holds
with the functions ¢ _; — k~tp(., k) if k is sufficiently large. The inverse 7(., k) of
01—k~ Yp(., k) is well-defined on ¢_1(0) + (27) "1 B,_. and admits an asymptotic
expansion Y, k~!r; with ro() = 27 (5 — ¢’ 1(0)). We have

Vo € kJ1Z" + Ok ™) iff Yo = 7(Ya, ko) satisfies (28).

Hence (28) says that 7, takes its values in the deformed lattices r(k;1Z", ko) +
O(ky™)-
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3. THE BOHR-SOMMERFELD CONDITIONS

Let (T}}), ..., (T}) be Toeplitz operators which commute. The joint spectrum of
these operators is the sequence of subsets of R™:

Sp(Tx) ={(E",...,E™) / 3v € Hj, such that v # 0 and (T{v = E'v, Vi)}.
The multiplicity of E € Sp(T}%) is the dimension of N; Ker(T{ — E?).
Let hy and hj be the principal and subprincipal Weyl symbols of (T}). Denote
by ho : M — R" the map whose components are the hy. By assumption,
{Rhi, h)} =0, for every i and j.

Let E° € R™ be a regular value of hg such that hal(EO) is connected. From
Arnold-Liouville theorem, there exists a neighborhood U of E° such that hy ' (U) is
diffeomorphic to U x T", with the level sets h ! (E) diffeomorphic to the Lagrangian
tori {E} x T™.

In the first subsection, we state the Bohr-Sommerfeld conditions and discuss
them. The second subsection is devoted to the local solutions of T{uy = Ejug. In
the third subsection, we construct global solutions modulo O(k~°°) and prove the
Bohr-Sommerfeld conditions.

3.1. Statement of the results. If E € U, we denote the torus hy ' (E) by Ag and
the restriction of the Hamiltonian vector fields X,,; on Ag by Xi. We need also
the following notations:

o Br € Q' (Ag) is the 1-form of Ag such that (3g, X&) = hi for every i.
e 6p € QY (Ag) is the 1-form of Ag such that (6, X) = w(Hg, X) for every
X € TAg, where Hg is the mean curvature vector field of Ag.

Choose a family of loops %, ...,I% in Ag which depends continuously of E and
such that ([I%]) is a base of Hi(Ag,Z).

Theorem 3.1. There exists a formal series 2971 Rlg;, with coefficients g; in
C>(U,R"™) such that :

for every open set O C R™ with compact closure O C U and for every sequences
(ka,Ea), (ka,E;) of N x O, we have

i. Eo €Sp(Th,) + O(k,>°) <= g(Ea, ka) € k2" 4+ O(k_>).
ii. If Eo € Sp(Tk,), E. € Sp(T},) and E, = E,, + O(k_,*°), then when
ke is sufficiently large, E, = E., and the multiplicity of E, is 1.
where (g(., k)) is a sequence of maps U — R"™ such that
o (B k) =k klgi(E) + O(k™>)
e g',(E) is the holonomy of I%, in L, that is the parallel transport in L along

¢ is the multiplication by exp(2img’ |(E)).
* 90(E) = 3z fi, —Be + 305

Let us precise the sense of the estimations: if (S%) is a sequence of subsets of R™
and (kq, Eo)aen a sequence of N x R™, the notation F, € Si, + O(k,*°) means
that for every IV, there exists C' such that

Infpes, |E — Eo| < Cky N

when k, is sufficiently large.
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Remark 3.2. Assume that M is 2-dimensional. So we consider a unique Toeplitz
operator T}, with Weyl symbol hg + hihy + O(h?). Then

Be = e,

where vg is the one-form of Ag such that (yg, X) = 1 if X is the Hamiltonian
vector field of hg. Introduce a vector field ¢ tangent to Ag such that |[¢| = 1 and a
normal vector field n such that (¢,n) is an oriented orthonormal base of T, M for
every x € A, that is n = Jt. The geodesic curvature is the function 75 € C*°(Ag)
defined by
TE = g(Vtt, Tl)
The mean curvature vector field is
HE = TEMN.

So if v is the one-form of Ag such that (v, t) =1, then 65 = —7g7f. Hence

go(E /hl'YE+ / TE%/E)

where the orientation of Ag is chosen as to compute the holonomy of L. Theorem
0.1 of the introduction follows. O

Remark 3.3. If M = R? is endowed with the usual Riemann structure, then

1

/
— T
o EVE

is the degree d of the tangent map
Ap~S; — S z—t@)

where we identify T, M with R? and the set of vectors whose norm is equal to 1
with the circle S!. Since Ag — M is an embedding, d = £1 and this leads to :t%
in the definition of ¢g;. Furthermore, the Maslov index of Ag is 2d and the function
h1, that we called the Weyl subsymbol of (T}), is the usual Weyl subsymbol of

U 'T.U

where U is the Bargmann transform. Consequently, we obtain the usual Bohr-
Sommerfeld condition. More generally, if M = C" is endowed with the usual
Riemannian structure, dg is closed and its cohomology class is the Maslov class (cf.
[9))- O

Remark 3.4. The Maslov index and the integral of §g differ in some aspects. As
instance, let M be the sphere (M = CP!) with volume 27 endowed with its metric
of constant curvature. If A — M is an embedding, it is the boundary of a domain
D and Gauss-Bonnet formula yields

/ 7y =27 — 2 Area(D).
A

In this example, it is clear that | ATY is not constant when we deform A. To the
contrary the Maslov index is locally constant. Furthermore, as we will see in the
proof of proposition 3.5,

Be + lCSE

is closed. But if the dimension of M is > 4, the 1-form dg is not necessarily closed.
In the usual Bohr Sommerfeld conditions on a cotangent phase space, Gg + 25 E
is replaced by a sum of two closed forms, the first one is obtained as §g from the
subsymbols and the second one is the Maslov form (cf. theorem 4.5.8 of [10]). O
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3.2. Local solutions. By theorem 2.8, the Toeplitz operators (7}) induce opera-
tors C°(Ag)[[h]] — C=(Ag)[[h]] of the form

(30)  ThLf=E'f—ih(X})f+ (ih] — LHp.h)+ L diva,(X})) f) + h2SLf
where S% = D0 hleE’l and the ng’l are differential operators which act on
C*(Ag).

Proposition 3.5. IfV is an open contractible set of Ag, xo € V and C(h) € C[[h]],
then the equations

(31) {T}Ef( h) = E'f(.,h), for everyi=1,...,n

f(wo, h) = C(h)

admit a unique solution f(.,h) € C*(V)[[h]]. Furthermore there exists a formal
series ag = ZhlaEl € QY (Ap)[[R]], with

a0, = Pe — 308

and whose coefficients oy g are closed 1-forms which depends in a C* way of E
and do not depend on V', such that the solution of (31) is given by

f(., h)= ﬁ% ageioet Tz i

where the functions ¢, € C*° (V) are determined by pi(xo) = 0 and dp; = oy, and
ap € C*(Ag) is the positive function defined by

apt = pag(Xp Ao AXR).
Let E € U and T be a sufficiently small neighborhood of E. Identify hy (") with
I' x T™ and introduce an open contractible set V' of T™ and xy € V. By choosing
C(h) = ap(wo)

in the previous proposition, we obtain functions fy; € C®(T' x V) such that
S hlfy(E,.) is the solution of equations (31). Introduce as in the beginning of
section 2.6 a section Fy and a symbol ay (., k) defined on U x V and such that (26)
is verified.

If (uq, ko) is an admissible sequence such that
ko\ %
(32) o= (72) "B (Ba, Jav(Bas ko) + Ose (k™) over U x V
7r
where FE, takes its values in I', then
T,ﬁaua = Egua + O (k™)
over U x V.

The following proposition is a converse of this. It will be proved at the end of
section 4.4 by using microlocal equivalences.

Proposition 3.6. Let (uq, ko) be an admissible sequence such that u., € Hy,, for
every a and

T} ta = Elug + Oos (k) on U x V

where (E,) takes its values in I'. Then there exists a sequence (co) of complex
numbers such that

ua:ca(ljr)sz (Ea, )av (Ba, - ka) + O (k) on U x V.
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Proof of proposition 3.5. First we prove that g — %5 g is closed. Observe that
(Be — 508, Xi) = hi — $Hp.hj.

Since the vector fields X% commutes and (X%|,) is a base of T, A for every x € Ap,
it suffices to prove that

X%.(h — Hp.hy) = Xi.(h] — 1Hp.h).
From (30), we deduce by using [X%, X4] = 0 that
[T, Th)f = il (Xgp.(hy — 3Hp.hi) = Xjp.(h] = 3Hp 1)) f + O(1?).
[T}, T!] = 0 implies [T}, T%] = 0, and this proves the result.

Consequently, if V' is an open contractible set and ¢ € V, there exists a function
@ € C°°(V) such that ¢go(z¢) =0 and dpg = —fg + 16p, that is

(33) Xppo = —hi + 2Hg.hj.
We have
Xpag = —tapdiva, (Xp).
So we deduce from (30) that
(34) (Th — ENage™° f(.,h) = ape™ (—ihX 5 + h*R%) (., h)

where Ry (f) = a'e 0 SL (ape° f).
Now we prove by induction that equations (31) with C'(h) = ag(zo) admit a
unique solution. From (34), we see that age’#° is the unique function such that
(T, — EYage™® =0+ O(h?).

Let N be a non negative integer. Assume that we have proved that equations (31)
modulo O(AN*+2) admit a unique solution modulo O(AV*1) and that this solution
is aget(Poti9) with

=1 +hpy+ ...+ BV on.
We have

(Th — EVape’ ot h( h) = apel Pt (—in X, + h2Ug)h(., h)
where UL(f) = (X5L.p)f + e~ Ry (e f). By assumption

E EP E

Ui(1) = BVrt 4 O(RN ).
We look for a solution modulo O(AN*2) of the form
aEei(<P0+h<P)(1_~_ihN+1(pN+1)'
So we have to solve
Xppni1 +77 =0, onii(o) =0
These equation admit a unique solution because X% = X7,.7%. Indeed
[Ty — E, T}, — E/] =0
and we have
[TE — E°, Té — Efage®0e™ = —jape0em RN (XL 0 — X;E.ri) + O(RNTY).

Consequently,

aEei(¢o+ﬁ<P+ﬁN“s@N+1)

is the unique solution modulo O(AV+2) of equations (31) modulo O(RN*3). By
iterating this we obtain that (31) admit a unique solution and this solution is of the

. - l
form agei#oe’ 2z oL,
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A solution of equations (31) with a general initial condition C'(h) is given by
C(h)ag' (zo)ape#oe’ Xz ler

It is unique because of the uniqueness of the solution with initial condition ag(xo).
Indeed it is clear if C(h) is invertible, i.e. C(h) = Co + O(R') with Cy # 0, because
we can obtain a solution with initial condition ag(zo) from a solution with initial
condition C(h) by multiplying it by (C'(h)) " tag(xo). In the case
C(h) = h™Cy, + O(™ )

with Cy, # 0, we deduce from (34) that a solution with this initial condition is
necessarily of the form " C,,ap(xo) tage®® + O(A™*T1). So multiplying by A=™
we obtain a solution with initial condition =™ C(h) and we are in the previous case.

Finally the 1-forms dg; € Q'(U) extend to global one-forms oy € Q!(Ag), which
do not depend on the choice of V. Indeed if we consider two open contractible set
V and V' with solutions of equation (31) of the form

. . l . . L7
aEeuﬁoezzlglh‘Pl’ aEe“POeiZl;lhﬂpl.

Then we deduce form the uniqueness, that on each component of VNV', ¢ — ¢ is
a constant and so dy; = dyj. O

3.3. Quasimode. For every positive integer [, we set
; 1
glz(E) = —/ ReaE,l.
2T l%}
and this define the functions g; in theorem 3.1. Concerning the imaginary part of
ag,;, we have the following lemma.

Lemma 3.7. The imaginary part of ag; is exact.

Using this, we can construct a flat C[[i]]-bundle K — Ag of rank one with a
section fg such that

Tpfe=E'fg, Yi and  |fg|=agr+ O(h)
and the holonomy of the loop I%, in Kp is — Zz;o h'gi(E). Then the equation
(35) 9(Eas ko) € kg 2" + O (k™)

where the sequence (g(., k)) is defined as in theorem 3.1, is the quantization condi-
tion (28). If (ka, Eo) satisfies it and (E,) takes its values in a compact set C C U,
following section 2.6 we construct a Lagrangian section (u,) with symbol fr. We
have

Tkaua - Eauoz + Ooo(kz;m)
and  (Uq,Uq) = / vE, + O(k;l)
AE(X

where vg € |Q|(Ag) is defined by
VE(Xl AN Xn) =1.

(36)

So [vg does not vanish. It follows that E, € Sp(T%,) + O(k,°°). Hence we have
proved the converse of assertion 7. of theorem 3.1.

In section 2.6, we assume that the parameter 7 takes its values in a sufficiently
small open set, to obtain a uniform control. Here, we can introduce a finite cover
of C' by arbitrary small open sets to apply the results of section 2.6.



24 L. CHARLES

Proof. We explain how we can construpt the bundle K — Ag and compute its
holonomy. Choose angle coordinates (z*) on Ag such that

/ dij = 5%7
U

We use these coordinates to identify Ag with T™. Let p : R™ — Ag be the associated
projection. Let ¢; € C*°(R™) be such that dg; = p*ag,; and ¢;(0) = 0. Consider
the section fg of R™ x C[[A]] — R™ defined by

fe = (P*aE)eiz@Dhlw.
Now define the bundle Kg — Ag by dividing R™ x C[[A]] — R™ by the action of Z"
Z" x (R™ x C[[A]]) = R™ x C[[H]], (e,z,c(h)) — (z + €, c(h)eie 27 (B:h)

with 2r¢/ (E, h) = Y, hloi(n;) where nd = (61, ...,0,7). By lemma 3.7, ¢;(n;) is
real. We obtain the section fg from the section fr and the holonomy of the loop
15, is —¢/ (E, h). a

Proof of lemma 3.7. Assume that the imaginary parts of ay g,...,m E are exact.
Define the real numbers

T‘l(E) :/ Im &1, E-
U
Choose angle coordinates x? as in the previous proof, define the 1-form
a{erLE = Qp1,p — ir'(B)da’

whose imaginary part is exact. If V is a contractible set of Ag and = € V, then
define the functions ; such that dy; = oy g for [ = 0,...,m, dpmi1 = o/erLE and
wi(z) = 0. As in the proof of proposition 3.5, we obtain that

Thf = (B — ™9 (E)MI(E))f + O(™?),  if f = ape™re! XI5 Mo
where M!(E) = (X}, da’). (M](E)) is invertible. As we did before, we can asso-
ciate to this symbol a Lagrangian section (u) such that

T} ua = (El, — ik ™ '\ M} (Eq)r’ (Eq))ua + O(k,™2).

Furthermore the estimate of (4, u,) is the same as before. The previous equation
implies

(T} tasta) — (U, T}, ta) = —Qik;m_lM;(Ea)rj (Eo)(ta,ua) + Ok ™).

Since the T, 13 are self-adjoint, we obtain by choosing various sequences (ko, F) that
r vanishes on a dense set. O

Proposition 3.8. Let (va,ka, Eo) be a sequence such that v, € Hy,, for every «
and

(37) T,ﬁava = Eéva +Ok;®), (Va,va)=1.

Assume that (Eo) takes its values in a compact C C U, then (E,) satisfies the
quantization condition (85). Furthermore, if (uq) is a Lagrangian section defined
as in (36), then there exists a sequence (cq) of complex numbers such that

Vo = Calla + Ooo (k™).
Hence the Lagrangian sections we constructed approximate modulo O(k~°°) the

eigenvectors. So they are rather modes than quasimodes. This comes from the
assumption that hy'(E) is connected when E € U.
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As it is proved in section 5 of [5], the assumption (v4,vq) = 1 implies that (vq)
is an admissible sequence. In the same way a sequence of sections O(k_>°) for the
L? norm is negligible.

To prove the proposition we will use proposition 3.6 to determine (v,) over
hy'(U). Outside this domain, (v,) is negligible. Indeed, we can prove that the
microsupport of (v,) is a subset of hy*(C) (cf. proposition 4.4.6 of [10] for a proof
in the case of pseudodifferential operators with a small parameter that we can easily
adapt to our situation).

Proof. Assume that d(g(Ea, ka), k' Z") # O(k,*°). By replacing (va,ka, Ea) by
a subsequence, we may assume that for some ¢g and positive integer NV,
d(kag™ (B, ko), Z) = k~N.
So
(38) |eikad®® Bake) _ 1| > V.

We will prove that this leads to a contradiction. By replacing (vq, ko, Fo) by a
subsequence, we may assume that F, — FE as a tends to co. Let V and V’ be
two contractible sets such that VNV’ # (. We may introduce as in (32) the
sections Fy(E,.), Fy/(E,.) and the symbols ay (E, ., k), av/(E, ., k). Furthermore
if £ € VNV’', we can choose them so as to have

Fy(E,E,%) = Fy.(E,E, i)

and

By proposition 3.6,

va—ca( )% Jay (Ea, ko) + O(k=®) on U x V

»I:

( ) 5 (B, Yav:(Ba, ., ko) + O(k;™) on U x V.

By taking the limit at (F,Z) as o — 0o, we obtain that ¢, = ¢, + O(k~>°). Now
applying this to an open covering of lg, we obtain that

Co = Caeikag’io(Ea,ka) _’_O(k;OO)

Using (38), it follows that |co| = O(k,>°). Using that T™ is connected, we deduce
that the ¢, associated to every V is O(k_,>°). Hence (v,) is negligible on a neigh-
borhood of Ag. By the remark before the proof, it is also negligible outside this
neighborhood. Consequently

(Ua, ’Ua) = O(kojoo)v

a contradiction. We prove in the same way the second assertion by identifying
locally the sequence (uq) and (vq). O

Proof of assertion ii. of theorem 3.1. Let (va, ko, Eq) and (v), kq, E.,) be sequen-
ces satisfying (37) and such that
E, = E., +0(k,*>).

Assume that (v,,v,) = 0. From proposition 3.8 there exists a Lagrangian section
(uq) such that v, = coua + O(k;°°) and v!, = cuq + O(k,>°). Computing the
norms, we obtain that

lcal, lcal = C,
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where C' is positive constant. On the other hand,
(Va,vh) = caE;/ ve, +O0(k;h)
AEQ

which contradicts (ve,v),) = 0.
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4. QUANTUM MAPS

4.1. Definitions and symbolic calculus. Let (M,w) be a compact symplectic
manifold endowed with a prequantization bundle L — M. Let us introduce two
complex structures J® and J® of M which are integrable and compatible with w.
So we obtain two Kahlerian structures and two quantizations H{ and 'Hz.

We are interested in the operators T : H} — H{. As we did with the Toeplitz
operators, we identify them with the operators

Ty : C°(M, LF) — C>(M, L*) such that I¢TRI1% = T.

Their Schwartz kernels are sections of L* K L=% — M?2. We will define them as
Lagrangian sections.

Let ¢ : M — M be a symplectomorphism. A prequantization lift of ¢ is a lift
@ : L — L of ¢ such that

1. @ restricts on L, to a unitary map ¢, : L, — L
ii. Ve*s=p*Vs, Vs € C*(M, L)

»(x)

where *s is the section of L defined by (¢*s)(z) = @, 1.s((x)). Denote by A the
Lagrangian submanifold {(¢(x),z) / z € M} C M?2.

Definition 4.1. The set of quantum maps F (@, Jq, Jy, ¢) consists of the sequences
(T%) of operators such that H%TkHb =T}, for every k and

n
2

k
Tk(xla xT) = (%) Ek(xla xT)a(‘rla Ly, k) + O(k*OO)
where

e Eis a section of L X L™1 — M? such that E(¢(z),2) = ¢, and VzE =0
modulo Z°°(A) for every holomorphic vector field Z of (M2, J, x —Jp).

e (a(.,k)) is a symbol of S°(M?) whose coefficients of its asymptotic expansion
> k~la; satisfy Z.a; = 0 modulo Z°°(A) for every holomorphic vector field
Z of (M2,J, x —J).

Let us define the full symbol map
o F(p, Jas b, @) — COO(M)[[h]]7 (T) — Zhlal(@(fv%f)'

It is onto and its kernel consists of the smoothing operators.

Proof. Consider that M? is a Kihler manifold with the complex structure
J*x —J°
and the fundamental 2-form
W — Thw,

where 7, and 7; are the projections M? — M on the first and second factor. We
denote by

e . c*(M?* L*RL7*) - C°(M?* LFR L7F)
the associated Szegb projector and by Hﬁb its image. Consider an operator
Ty : C(M, L*) — C*°(M, L*).
Then HszHb = Ty, if and only if its Schwartz kernel Ty (z;, x,) € 'Hgb. Observe

that A satisfies a quantization condition as in section 2.2. Indeed the section

t:A—LXL!
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defined by t(p(z), 2) = @z € Ly ® L', is flat with constant norm equal to 1. So
the kernels of the quantum maps are exactly the Lagrangian sections introduced in
section 2.2 and the symbol map is the same as (13). O

If (T}) belongs to F(p, Ja, o, ) with symbol >, Al f;, then the adjoint (7}) is
a quantum map of F(o~ 1, Jy, Ja, 7 1). Its symbol is >, A'(¢~1)*f;. The next
proposition describes the product of two quantum maps.

Proposition 4.2. The product of operators defines a bilinear map

F (@, Jas Ios @) X F(, Jey Jas ) — Flp 04, Ja, Ja, @ 0 9).
This induces a products on the symbols C°(M)[[A]] x C(M)[[A]] — C°°(M)[[R]]
which is of the form

B(Zhlfla Ehlgl) = Zl h le+l2+l3:l By, (¢*flg ) gl3)

where

e the By are bidifferential operators,
_1
o if Jy = Jo, then Bo(f,g) = ¥* (det(qp-1(s0),0, + To(a)0.)) 2 J9-

Let us explain the last notation: If J, is a complex structure and ¢ a symplec-
tomorphism, then ¢(J,) is the complex structure

©(Ja) =0 Jg0 ot
Furthermore, if .J, and Jj, are two complex structures, then ¢, j,|» is the projection
of T,M ® C onto T M with kernel TV M.

We can also consider the action of a quantum map on a Lagrangian section.

Proposition 4.3. Let (Ty) be a quantum map of F(p, Ja, Jp, p). Let A be a La-
grangian manifold and (uq, ko) a Lagrangian section associated over an open set U
such that ue € M} . Then (Tk,.ua) is a Lagrangian section over o(U) associated
to @(A). Furthermore, there ezists a sequence of operators C; : C*° (M) x C*°(A) —
C>®(p(A)) such that the symbol of (Tk, uq) is

C(Zhlflv Zhlgl) = Zl hl Zl1+l2+l3:l Cvl1 (flzagls)

if SSRUf and Y- hlg; are the symbols of (Ty) and (ue). The operators C; depend
only on Ju, Jp, A and @ and

e they are locally such that

(p*cl(f7 g)|UﬂA: Z aa,’y-agf|UﬂA-a:’yygv with Aoy, S COO(U M A)
o+ <2t

if (27) is a coordinates system of M defined on an open set U and (y*) a
coordinates system of A defined on U N A,
o if J, = J., then Cy is given by

1
2

©*Co(f,9) = (det(QAp—l(Ja),Jb + QJb)) fla-g

where qy, |2 s the projection of T, M & C onto ngo’l)bM with kernel T, A.
Let us specify that the section F,(5y used to define (Ty,uq) has to be chosen in

such a way that F,(p)(¢(z)) = Pz Fa(x) for every x € U N A, if F is the section
used to define (uq).
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4.2. Proof of proposition 4.2. Let ¢ : M — M be a symplectomorphism of M
and ¢ a prequantization lift. Define as above the maps

¢* 1 C=(M, L*) — C>=(M, L").
If (Tx) € F(p, Ja, Jp, §), then we have
(¢" 0 Ty) € F(¢™ 09,67 (Ju), Jps & 0 @), 0(¢™0Ty) = Zhlfl,

(Tho®") € Flpod ' Ju, (o) @od ), o(Tiog™) =S h(o~
l

Using this, we have just to prove the proposition with ¢ =1 =1d and ¢ = )=
and then writing:
TiU = (1) o ((¢* o Ti) o (Ur 0 ¢*)) o (1)

if (Tk) € F(p, Ja; Jo, ) and (Ux) € F(t, Je, Ja,1). So assume that ¢ = ¢ = Id
and ¢ =1 = Id. The Schwartz kernel of T} Uy, is of the form

U = (52)" [ Pl an)Bla(a. o) far. it 0) par(e2)

where E,, and E.4 are sections of L X L™! — M x M defined by proposition 2.1.
Their norms are < 1 outside the diagonal, so we can localize the product on a
neighborhood of Trig(M) = {z1 = z2 = z3}.

Let s be a local section of L defined on an open set U endowed with a com-
plex coordinates system (zj) (resp. (z3)) associated to J, (resp. Jg) and a real
coordinates system (z7). Write

Eap(1,22) . Beq(22, 13) = e ?@172:73) 5(21) @ 571 (z3),
Eoq(x1,x3) = @173 5(21) @ 571 (23).
From Vazi, E.p = Vazi E, 4 = 0 modulo Z°°(Trig(M)), we deduce that
0.6 — ) =0 mod T (Trig(M)).
In the same way, we prove that
9.i(¢ — 1) =0 mod I (Trig(M)).

Later we will prove that d,; ¢ vanishes along Trig(M) and that (8% arg ¢)1,j is in-
vertible along Trig(M). Then using the same method as in the proof of lemma 2.5,
we obtain that the ideal J generated by the functions Bw% ¢ consists of the functions
f(x1, 22, x3) which satisfy

[l rrig(ary= 0, Oz f =0, f =0 mod I (Trig(M)).
By applying stationary phase lemma (cf. [8]), we obtain that

k

(L) 1.23) = (57

where (h(., k)) is a symbol. For the details, let us precise that the computation can
be done easily by writing the Taylor expansions of the functions f(x1,x2,x3) (resp.
f(z1,23)) along {21 = 22 = x3} (vesp. {1 = x3}) as in the lemma 1.2 by using
the vector fields agi,arg,azé (resp.0z:,0.:).

) ) Ry, g, ks (1) @ 5 (@3) + Ono (k)

Let us prove that d,,¢ vanishes along Trig(M) and compute di2¢. Let aqp be
the 1-form defined by
VEab = Qqb @ Eab-
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By proposition 2.2, «,;, vanishes along the diagonal, and the same holds with 4.
From this we deduce that d,,¢ vanishes along Trig(M). Let g, be the projection
of T, M ® C onto

T M = (X —iJyX /| X € T,M}
with kernel
TOVe M ={X +iJ,X | X € T,M}.

x

Observe that Gpq + gup = Id. Let us write

(0,X2) = (=@a(X2), qap(X2)) + (@a(X2), Gpa(X2)),
(X1,0) = (@ba(X1), —qab(X1)) + (¢ab(X1), gab(X1))-
Then we deduce from (8) that if X, Xo,Y1,Ys € T,.(M),

(T x,,x5)0abs (Y1,Y2)) = %W(Qba(Xl - X), Y1) + %W(Qab(Xl - X3),Ys)
which generalizes equation (10). From this we obtain that for every X|Y € T, M
(39) d2,0(X,Y) = w(qap(X) — Gac(X),Y).

Consequently, d2,¢(X,.) = 0 implies that
qab(X) = Gac(X) =0

because T M N TODM = (0). So X € TOVspr nTEDap = (0), hence
X =0.

Finally assume that J, = J. and let us compute By(f,g). We have
det[—i@z%@gﬂ(x,x,x) :
det[g};] ()

where we have used that py = %|w”| is the measure induced by the Riemannian
metric ¢°(X,Y) = w(X, J,Y). Indeed ¢° = gfjdxi ® dz’ implies

Bo(f;9) = fo(x).go (). (

par = (det[gh)])® [dat...dz?".
Now the quotient of the determinants can be view as the determinant of

—idi 1) by—1
oM 2 e Wy

From (39), we deduce that
—id3, p(X,Y) =w(—igap(X) + igap(X),Y)
=w(=Jpgab(X) — Jpqar(X),Y)
since the image of qqp is TP M = Ker(J, — i) and that of gy, is TV M =
Ker(Jp +4). Finally we obtain that
—id2, (X, Y) =¢"(qap(X) + qup(X),Y).

Consequently, (¢°)~" o —id2_ ¢ = qap + gap- This completes the proof.

4.3. Applications. Following Kostant, Blattner and Sternberg, the quantization
of M should not depend on the choice of the complex structure. First, by the
Riemann-Roch-Hirzebruch theorem, the dimensions of (H¢) and (H}) are equals
when k is sufficiently large. So in these cases there exists a unitary operator

Uy : HY — HE.

To obtain such an operator with good semi-classical properties, we may choose it
in F(Id, Jg, Jp, Id).
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Proof. First consider an operator (Vi) € F(Id, J,, Jp, Id) with non-vanishing prin-
cipal symbol fy. From proposition 4.2, (V*V}) is a Toeplitz operator with principal
symbol

_1 _
go = | fol?. det™ % (g, 5, + @ua,0,)-

go takes real positive values. Hence if k is sufficiently large, the spectrum of (V;Vy)
is a subset of (¢,00) where € > 0 does not depend on k. Applying proposition 12 of
[5], we obtain that (Vk*Vk)_% is a Toeplitz operator. Now

Ui := Vi (Vi Vi) "2

belongs to F(1d, Jg, Jp, Id). It satisfies U;Uy = Id and U U} = 1d, if k is sufficiently
large. O

The semi-classical properties of (Uy) are consequences of propositions 4.2 and
4.3. Indeed (Uy) sends a Lagrangian section of H? into a Lagrangian section of H{
associated to the same Lagrangian submanifold. Furthermore, sending (T%) into
(UiTyUy), we obtain an isomorphism between the algebra of Toeplitz operators of
(H?) and the algebra of Toeplitz operators of (H¢). This induces an equivalence of
star-products.

Another application is the quantization of the symplectomorphisms. We con-
sider only one complex structure. If ¢ : L. — L is a prequantization lift of a
symplectomorphism ¢, we can show as above that there exist unitary operators in
F(p, J,J, ). We say that such an operator quantizes . In [11], Zelditch quantizes
the data (¢, @) in the following way. He consider first the operator

(I (0™ 1) T,

which belongs to F(p,o(J),J, ). Then by the same method we used above, he
constructs a unitary operator of the form (Ilx(¢~1)*T}) where (T}) is a Toeplitz
operator. By proposition 4.2, this operator belongs to F (g, J, J, ).

Finally in [6], it is proved that the quantum propagator U (t) = e~k of a self-
adjoint Toeplitz operator (T}) quantizes the Hamiltonian flow ¢, of the principal
symbol of (T}).

4.4. Proof of proposition 3.6. Consider n Toeplitz operators (T}, ..., T;*) which
commute. Denote by hj the principal symbol of T} and assume that hg : M — R"
has maximal rank at § € M.

Let M; be the torus (R/27TZ)nX (R/Z)na (€%, 2%) with symplectic form
w=>_d¢" A dat
and complex coordinates 27 = (v/2) 7! (& +iz7). Introduce a prequantization bundle

L; — M, and define the associated quantum spaces H},. Finally introduce n Toeplitz
operators

St..,sm
such that o(S?) = £ on a neighborhood of 0 € M;.

Then there exists a symplectomorphism ¢ : U — Uy, where U and U; are neigh-
borhood of § and 0, such that ¢(g) = 0 and

o= (& + hi())

Using a variant of the quantum maps, we may quantize this local equivalence.
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Proposition 4.4. There exists an admissible sequence of operators
Uk : C°(My, L) — C=(M, L¥)
such that T URITE = Uy, MS(Ug) C {(y,¢(y)) / y € U} and
UpUp ~ I, on a neighborhood of (g,7),
UiU, ~ 11, on a neighborhood of (0,0),
UrTiUy ~ Si + hi(9)ITL, on a neighborhood of (g,0).

Proof. We assume that M x M; is endowed with the complex structure J x —J;.
On a neighborhood of § (resp. 0) we may introduce a local gauge s of L (resp. s¢
of L;) such that Vs = ip*a ® s if Vs; = ia ® s;. Let us define a local section E of
LR L; " on U x Uy such that

E(z,¢(x)) = s(z) @ s, ' (p())
and V z F vanishes to any order along the graph of ¢, if Z is a holomorphic vector
field of (M x My, J x —J;). Consider the operators H} — Hj whose Schwartz kernel
are of the form

kN? .
(%) E*(xy, x,)a(ar, 2, k) + Ose (k™)

where (a(.,k)) is a symbol of SY(M x M;), whose coefficients of its asymptotic
expansion have their support included in a fixed compact K C U x U;. All the
properties of the quantum maps generalize to these operators by identifying U with
U; and s with s;. Let (V}) be such an operator with a principal symbol ag(z, ¢(x))
which does not vanish. Then (Vi*Vy) and (V;*T}Vj) are Toeplitz operators with
principal symbols fo and fo(£'+h{ (7)) where fo takes real positive values. Following
a standard argument, we may choose a Toeplitz operator Py such that Uy = Vi, Py
satisfies the assumptions of the proposition. Indeed the proof just uses the symbolic
calculus which is the same as in the case of pseudodifferential operators with a small
parameter. U

Furthermore, generalizing proposition 4.3, we may prove that (Uy) sends a La-
grangian section associated to the local fibration £ =cst to a Lagrangian section
associated to the local fibration hg =cst. So to prove proposition 3.6, we just need
to check the results in the case of the torus.

Chose a section s of L; defined on a neighborhood of 0 € M; and such that
|s|2 = e~#I” and Vs = —zdz7 @ s. Consider the operator (R%) defined by

f.s® — %(zlf + k710, f)s"

where ¢ € C5°(U) is equal to 1 on a neighborhood of 0. Let us prove that there
exists a neighborhood V' of 0 such that the kernel of (S}) restricts on V x M; to the
kernel of (R:II}) modulo a smoothing operator. Since the microsupports of (S})
and (IT) are subsets of the diagonal, it suffices to prove this on a neighborhood of
(0,0). The kernel of (II%) is determined modulo a smoothing operator by the local
data, so
k n i =j
(. 2,) = (5= ) e M3 b @) @ 574 (2,) + Onc(h™)
™
on a neighborhood of (0,0). Consequently,
i kKN pie?aked g b _ -
(B (i, zy) = (5= ) e Mol ot 2 2 (4 2) (@) © 574 @)

modulo O (k™). We recognize on a neighborhood of (0,0) the kernel of S}.
Hence in the following we may replace the operator Sj with RiIIf.



BOHR-SOMMERFELD CONDITIONS FOR THE TOEPLITZ OPERATORS 33

Consider the family of Lagrangian tori Ap = {(¢',2%) / & = E% Vi}. The
associated section is
F(E,& z) = et i —(\/izi_Ei)2_¢2\/§ziEi_(Ei)28(6’ 2).
Indeed, we have
|F|? =e” LY and VEF = V2(E' - €)dz' ® F.
We may check that SiFF(E,.) = E'FF(E,.) + O (k™) on a neighborhood of 0.
Hence the Lagrangian sections solution of
SkoVa = Eqva + Ooo(k3™)
on a neighborhood of 0 are of the form v, = Fka(E,,.).
Let (uq, ka, Eq) be a sequence such that u, € Hy,, for every o and
(40) Sp e = Eluq + Oo (k™)
on a neighborhood of 0. Let us prove that u, = coF* (E,,.) + Ou(k™>°) on

a neighborhood of 0. Define the complex numbers ¢, to obtain an equality at
(&, x) = (E4,0). Introduce the functions f,, such that

Ua(f,ﬂf) - COlea (Ea,f,ﬂf) = fa(fvx)Fka (Ea,f,ﬂf)

So fo(F«,0) = 0. Furthermore 9s; f, = 0 since the u, are holomorphic sections.
From (40), it follows that

(021 fa) (& @) Fr (Ba. &, ) = Oco (k™)
on a neighborhood of 0. From all of this, we deduce that
fal@,y) F** (Ea, &, 2) = O (k3 ™)
on a neighborhood of 0 and this completes the proof.
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