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Quasinormal Families
of Meromorphic Functions

Xuecheng Pang, Shahar Nevo and Lawrence Zalcman

Abstract

Let F be a family of functions meromorphic on the plane do-
main D, all of whose zeros are multiple. Suppose that f ′(z) �= 1 for
all f ∈ F and z ∈ D. Then if F is quasinormal on D, it is quasinormal
of order 1 there.

1. Introduction

In this paper, we are concerned with the order of quasinormality of families
of meromorphic functions on plane domains, all of whose zeros are multiple.

Recall that a family F of functions meromorphic on a plane domain
D ⊂ C is said to be quasinormal on D [2] if from each sequence {fn} ⊂ F
one can extract a subsequence {fnk

} which converges locally uniformly with
respect to the spherical metric on D\E, where the set E (which may depend
on {fnk

}) has no accumulation point in D. If E can always be chosen to
satisfy |E| ≤ ν, F is said to quasinormal of order ν on D. Thus a family is
quasinormal of order 0 on D if and only if it is normal on D. The family F is
said to (quasi)normal at z0 ∈ D if it is (quasi)normal on some neighborhood
of z0; thus F is quasinormal on D if and only if it is quasinormal at each point
z ∈ D. On the other hand, F fails to be quasinormal of order ν on D precisely
when there exist points z1, z2, . . . , zν+1 in D and a sequence {fn} ⊂ F such
that no subsequence of {fn} is normal at zj, j = 1, 2, . . . , ν + 1.

Our point of departure is the following classical result of Gu.

Theorem A ([3]). Let F be a family of functions meromorphic on D. If for
each f ∈ F and z ∈ D, f(z) �= 0 and f ′(z) �= 1, then F is normal on D.
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Theorem A has been generalized in a number of different directions;
cf., for instance, [1], [4], [7], [8]. In the present work, we are concerned with
the situation in which the condition f �= 0 is replaced by the assumption
that all zeros of f are multiple and F is assumed to be quasinormal on D.
Our main result is that in this case, F must be quasinormal of order 1.

Theorem. Let F be a quasinormal family of meromorphic functions on D,
all of whose zeros are multiple. If for any f ∈ F , f ′(z) �= 1 for z ∈ D,
then F is quasinormal of order 1 on D.

Corollary. Let F be a family of meromorphic functions on D, all of whose
zeros are multiple. Suppose that each f ∈ F has at most K zeros on D and
that f ′(z) �= 1 on D. Then F is quasinormal of order 1 on D.

Indeed, it follows easily from Theorem A that F is quasinormal of order
no greater than K, so the hypotheses of our Theorem are satisfied. That F
need not be normal on D is shown by the following example.

Example 1. Let D = {z : |z| < 1} and F = {fα}, where

fα(z) =
(z + α)2

z + 2α
= z +

α2

(z + 2α)
, α ∈ C \ {0}.

Then all zeros of fα are multiple and f ′
α(z) �= 1. However, fα takes on the

values 0 and ∞ in any fixed neighborhood of 0 if α is sufficiently small, so F
fails to be normal at 0.

In certain generalizations of Gu’s Theorem, the requirement that f ′(z) �= 1
can be weakened to f ′(z) �= a(z), where a(z) is some fixed analytic function
on D [4], [7], which in some cases may be required not to vanish on D.
Unfortunately, no such extension of our theorem is available.

Example 2. Consider the family F = {fn} on D = {z : |z| < 1}, where

fn(z) =

(
z − n+2

2n

)2

z − 1/2
.

Then F fails to be normal at z = 1/2 but is quasinormal of order 1 on D.
Let ϕ(z) = e(z+1)/(z−1). Then ϕ(D) ⊂ D; ϕ′(z) �= 0 on D; and, for each
w ∈ D \ {0}, ϕ−1(w) consists of countably many points of D accumulating
at z = 1. Consider the family F̃ = {Fn} on D, where Fn = fn ◦ ϕ. Then F̃
is a quasinormal family of meromorphic functions on D, all of whose zeros
are multiple. Also, for any F ∈ F̃ , F ′(z) = f ′(ϕ(z))ϕ′(z) �= ϕ′(z) since
f ′(z) �= 1 for any f ∈ F . However, F̃ is not quasinormal of any finite order
on D as no subsequence of F̃ is normal at any point of ϕ−1(1/2).
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2. Notation and preliminary results

Let us set some notation. We denote by ∆ the open unit disc in C. For z0 ∈ C

and r > 0, ∆(z0, r) = {z : |z−z0| < r} and ∆′(z0, r) = {z : 0 < |z−z0| < r}.
We write fn

χ
=⇒ f on D to indicate that the sequence {fn} converges to f

in the spherical metric uniformly on compact subsets of D and fn =⇒ f
on D if the convergence is in the Euclidean metric.

We require the following known results.

Lemma 1. Let F be a family of functions meromorphic on ∆, all of whose
zeros have multiplicity at least k, and suppose that there exists A ≥ 1 such
that |f (k)(z)| ≤ A whenever f(z) = 0. Then if F is not normal at z0, there
exist, for each 0 ≤ α ≤ k,

a) points zn ∈ ∆, zn −→ z0;

b) functions fn ∈ F ; and

c) positive numbers ρn −→ 0

such that
ρ−α

n fn(zn + ρnζ) = gn(ζ)
χ

=⇒ g(ζ) on C,

where g is a nonconstant meromorphic function on C, all of whose zeros
have multiplicity at least k, such that

g#(ζ) ≤ g#(0) = kA + 1.

In particular, g has order at most 2.

Here, as usual, g#(ζ) = |g′(ζ)|/(1 + |g(ζ)|2) is the spherical derivative.

This is the local version of [6, Lemma 2] (cf. [4, Lemma 1], [9, pp. 216-
217]). The proof consists of a simple change of variable in the result cited
from [6]; cf. [5, pp. 299-300].

Lemma 2. Let F be a family of functions meromorphic on D, all of whose
zeros and poles are multiple. If for each f ∈ F , f ′(z) �= 1, z ∈ D, then F is
normal on D.

This is the case n = 2, k = 1 of Theorem 5 in [8].

Lemma 3. Let f be a nonconstant meromorphic function of finite order
on C, all of whose zeros are multiple. If f ′(z) �= 1 on C, then

f(z) =
(z − a)2

z − b

for some a and b ( �= a) in C.

This follows from Lemma 6 (with j = 1 and k = 2) and Lemma 8
(with k = 1) of [8].
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3. Auxiliary lemmas

The proof of the theorem proceeds by a number of intermediate results.

Lemma 4. Let {ak} be a sequence in ∆ which has no accumulation points
in ∆. Let {fn} be a sequence of functions meromorphic on ∆, all of whose
zeros are multiple, such that f ′

n(z) �= 1 for all n and all z ∈ ∆. Suppose that

(a) no subsequence of {fn} is normal at a1;

(b) there exists δ > 0 such that each fn has a single (multiple) zero on
∆(a1, δ); and

(c) fn
χ

=⇒ f on ∆ \ {ak}∞k=1.

Then

(d) there exists η0 > 0 such that for each 0 < η < η0, fn has a single
simple pole on ∆(a1, η) for all sufficiently large n; and

(e) f(z) = z − a1.

Proof. It suffices to prove that each subsequence of {fn} has a subsequence
which satisfies (d) and (e). So suppose we have a subsequence of {fn}, which
(to avoid complication in notation) we again call {fn}.

Since {fn} is not normal at a1, it follows from Lemma 1 that we can
extract a subsequence (which, renumbering, we continue to call {fn}), points
zn −→ a1, and positive numbers ρn −→ 0 such that

(3.1) gn(ζ) =
fn(zn + ρnζ)

ρn

χ
=⇒ g(ζ),

where g is a nonconstant meromorphic function of finite order on C, all of
whose zeros are multiple. Since g′

n(ζ) = f ′
n(zn+ρnζ) �= 1 and g′

n =⇒ g′ on the
complement of the poles of g, either g′ �= 1 or g′ ≡ 1, by Hurwitz’ Theorem.
In the latter case, g(ζ) = ζ + c, which does not have multiple zeros. Thus
g′(ζ) �= 1 on C; so by Lemma 3,

(3.2) g(ζ) =
(ζ − a)2

(ζ − b)

for distinct complex numbers a and b. It now follows from the argument
principle that there exist sequences ξn −→ a and ηn −→ b such that, for
sufficiently large n, gn(ξn) = 0 and gn(ηn) = ∞. Thus, writing

zn,0 = zn + ρnξn, zn,1 = zn + ρnηn,

we have zn,j −→ a1 (j = 0, 1), fn(zn,0) = 0 and fn(zn,1) = ∞.
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Let us now assume that (d) has been shown to hold. It follows from
Lemma 2 that the pole of fn at zn,1 is simple. The limit function f from (c)
is either meromorphic on ∆ \ {ak}∞k=1 or identically infinite there. Suppose
first that it is meromorphic on ∆ \ {ak}∞k=1. Then there exists δ0 > 0 such
that f has no poles on Γ = {z : |z − a1| = δ0} and f ′

n converges uniformly
to f ′ on Γ. We claim that f ′ ≡ 1 on ∆′(a1, δ0). Indeed, otherwise by Hur-
witz’ Theorem, f ′ �= 1. Now 1/(f ′

n−1) is analytic on ∆(a1, δ0) and converges
uniformly on Γ to 1/(f ′−1). By the maximum principle, 1/(f ′

n−1) converges
uniformly on ∆(a1, δ0), so {f ′

n} is normal at a1. However, since f ′
n(zn,0) = 0

and f ′
n(zn,1) = ∞ and zn,j −→ a1 (j = 0, 1), {f ′

n} is not equicontinuous at
a1, a contradiction.

Thus f has no poles on ∆′(a1, δ0) and f ′
n =⇒ 1 on ∆′(a1, δ0). Hence for

any z, z0 ∈ ∆′(a1, δ0)

fn(z) − fn(z0) =

∫ z

z0

f ′
n(ζ) dζ −→ z − z0.

Taking a subsequence if necessary, we may suppose that fn(z0) − z0 −→ α.
We claim that α = −a1. For otherwise, taking r < min{|α + a1|, δ0}, we
have, for large n,

1

2πi

∫
|z−a1|=r

f ′
n(z)

fn(z)
dz =

1

2πi

∫
|z−a1|=r

dz

z − a1 + (fn(z0) − z0 + a1)
= 0.

However, by the argument principle, the left hand side is the number of
zeros minus the number of poles (counting multiplicities) of fn in ∆(a1, r),
which for large n is at least 2 − 1 = 1. It follows that f(z) = z − a1.

Suppose now that f ≡ ∞ on ∆ \ {ak}∞k=1. Let

Fn(z) = fn(z)
z − zn,1

(z − zn,0)2
.

By (b), Fn(z) �= 0 on ∆(a1, δ). Applying the maximum principle to the
sequence {1/Fn} of analytic functions, we see that Fn =⇒ ∞ on ∆(a1, δ).
We have

(3.3)

fn(zn + ρnζ)

ρn

=
Fn(zn + ρnζ)

ρn

(ρnζ + zn − zn,0)
2

(ρnζ + zn − zn,1)

= Fn(zn + ρnζ)
(ζ − ξn)2

ζ − ηn
.

It follows from (3.1), (3.2) and (3.3) that Fn(zn + ρnζ) −→ 1, which contra-
dicts Fn =⇒ ∞ near a1. Thus the possibility f ≡ ∞ may be ruled out.
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We have shown that when (d) obtains, (e) does as well. Now let us
show that (d) must hold. Suppose not. Then, taking a subsequence and
renumbering, we may assume that on any neighborhood of a1, fn has at
least two poles for sufficiently large n. Keeping the notation established
above, let zn,2 �= zn,1 be such that fn(zn,2) = ∞ and fn has no poles in
∆′(zn,1, |zn,1 − zn,2|). Write zn,2 = zn + ρnη∗

n. Then zn,2 −→ a1 but η∗
n −→ ∞

since the right hand side of (3.2) has but a single simple pole. Set

Gn(ζ) =
fn(zn,1 + (zn,2 − zn,1)ζ)

zn,2 − zn,1

.

Since zn,2 − zn,1 −→ 0, Gn(ζ) is defined for any ζ ∈ C if n is sufficiently
large; and G′

n(ζ) �= 1. Now

Gn(0) = ∞ Gn

(
zn,0 − zn,1

zn,2 − zn,1

)
= 0

and
zn,0 − zn,1

zn,2 − zn,1
=

ξn − ηn

η∗
n − ηn

−→ 0,

so {Gn} is not normal at 0.
On the other hand, for n sufficiently large, Gn has only a single zero

(which tends to 0 as n −→ ∞) on any compact subset of C. Since G′
n(ζ) �= 1,

it follows from Theorem A that {Gn} is normal on C \ {0}. Taking a subse-

quence and renumbering, we may assume that Gn
χ

=⇒ G on C\{0}. Since G
has only a single pole on ∆, conditions (a), (b), (c), and (d) hold for the
sequence {Gn} (defined, say, on ∆(0, 2)) with a1 = 0 and δ = 1. Thus, by
the first part of the proof, G(ζ) = ζ. But this contradicts G(1) = ∞. This
completes the proof of Lemma 4. �
Definition. Let z1, z2 ∈ C and put z̃ = (z1 + z2)/2. We say that (z1, z2) is
a nontrivial pair of zeros of f if

(i) f(z1) = f(z2) = 0 and

(ii) there exists z3 such that |z3 − z̃| < |z1 − z2| and |f ′(z3)| > 1.

Note that (ii) is equivalent to

(ii′) there exists z∗ such that |z∗| < 1 and |h′(z∗)| > 1, where

h(z) =
f(z̃ + (z1 − z2)z)

z1 − z2
.

Since |h′(z)| ≥ h#(z), it suffices to have h#(z∗) > 1 in (ii′).
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Our next result deals with the situation in which the functions fn have
more than a single zero in each neighborhood of a point of non-normality.

Lemma 5. Let {fn} be a sequence of functions meromorphic on ∆, all
of whose zeros are multiple, such that f ′

n(z) �= 1 for all n and all z ∈ ∆.
Suppose that

(a) no subsequence of {fn} is normal at z0, and

(b) for each δ > 0, fn has at least two distinct zeros on ∆(z0, δ) for suffi-
ciently large n.

Then for each δ > 0, fn has a nontrivial pair (an, cn) of zeros on ∆(z0, δ)
for sufficiently large n, and{

fn(dn + (an − cn)ζ)

an − cn

}

is not normal on ∆. Here dn = (an + cn)/2.

Proof. As in the proof of the previous lemma, it follows from (a) and
Lemmas 1 and 3 that for each subsequence of {fn} there exists a (sub)subse-
quence (which, renumbering, we continue to denote by {fn}), points zn → z0,
numbers ρn → 0+, and distinct a, b ∈ C such that

(3.4) gn(ζ) =
fn(zn + ρnζ)

ρn

χ
=⇒ g(ζ) =

(ζ − a)2

ζ − b
on C.

Thus there exist ξn −→ a, ηn −→ b so that an = zn + ρnξn −→ z0, bn =
zn + ρnηn −→ z0 and gn(ξn) = fn(an) = 0, gn(ηn) = fn(bn) = ∞ for n
sufficiently large.

By assumption, there also exists cn �= an, cn −→ z0, such that fn(cn) = 0.
Thus cn = zn + ρnξ∗n and ξ∗n −→ ∞ by (3.4). Setting dn = (an + cn)/2, we
see that the function

hn(ζ) =
fn(dn + (an − cn)ζ)

an − cn

is defined for any ζ ∈ C if n is sufficiently large.
We claim that {hn} is not normal at ζ = 1/2. Indeed, we have

an − dn

an − cn
−→ 1

2
,

bn − dn

an − cn
−→ 1

2
,

hn

(
an − dn

an − cn

)
= fn(an) = 0, hn

(
bn − dn

an − cn

)
= fn(bn) = ∞,

so {hn} fails to be equicontinuous in a neighborhood of 1/2.
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It follows from Marty’s Theorem that

lim
n−→∞

sup
|ζ− 1

2
|≤ 1

4

h#
n (ζ) = ∞.

Thus (an, cn) is a nontrivial pair of zeros of fn for n sufficiently large. �

Lemma 6. Let {fn} be a sequence of functions meromorphic on ∆, all of
whose zeros are multiple, such that f ′

n(z) �= 1 for all n and all z ∈ ∆.
Suppose that

(a) there exist d ∈ ∆, an −→ d, cn −→ d, and z0 ∈ C such that for every
δ > 0,

hn(z) =
fn(dn + (an − cn)z)

an − cn

has at least two distinct zeros on ∆(z0, δ) for sufficiently large n, where
dn = (an + cn)/2; and

(b) no subsequence of {hn} is normal at z0.

Then for n sufficiently large, fn has a nontrivial pair of zeros (z∗
n,1, z

∗
n,2) such

that z∗
n,j −→ d (j = 1, 2) and |z∗

n,1 − z∗
n,2| < |an − cn|.

Proof. As before, it follows from Lemmas 1 and 3 that to each subse-
quence of {hn} there corresponds a subsequence (which we continue to write
as {hn}), zn −→ z0, and ρn −→ 0+ such that

gn(ζ) =
hn(zn + ρnζ)

ρn

χ
=⇒ (ζ − a)2

ζ − b
on C.

Thus there exist ξn,0 −→ b, ξn,1 −→ a so that

zn,j = zn + ρnξn,j −→ z0 (j = 0, 1)

and gn(ξn,0) = hn(zn,0) = ∞, gn(ξn,1) = hn(zn,1) = 0. By (a), there exist
zn,2 −→ z0, zn,2 �= zn,1, such that hn(zn,2) = 0. Setting zn,2 = zn + ρnξn,2, we
have ξn,2 −→ ∞.

Now put

z∗
n,j = dn + (an − cn)zn + ρn(an − cn)ξn,j j = 0, 1, 2.

Clearly z∗
n,j −→ d, j = 0, 1, 2. Define

Gn(ζ) =
fn

(
z∗n,1+z∗n,2

2
+ (z∗

n,1 − z∗
n,2)ζ

)
z∗

n,1 − z∗
n,2

.
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Then {Gn} is not normal at ζ = 1/2. Indeed,

Gn

(
2ξn,0 − ξn,1 − ξn,2

2(ξn,1 − ξn,2)

)
= ∞, Gn(1/2) = 0.

Since
2ξn,0 − ξn,1 − ξn,2

2(ξn,1 − ξn,2)
−→ 1/2,

{Gn} is not equicontinuous at ζ = 1/2. As before, it follows from Marty’s
Theorem that (z∗

n,1, z
∗
n,2) is a nontrivial pair of zeros of fn. Now

|z∗
n,1 − z∗

n,2| = |an − cn| |zn,1 − zn,2|;
therefore, since zn,j −→ z0 (j = 1, 2), we have |z∗

n,1 − z∗
n,2| < |an − cn| for

large enough n, as required. �

Lemma 7. Let {fn} be a sequence of functions meromorphic on ∆, all
of whose zeros are multiple, such that f ′

n(z) �= 1 for all n and all z ∈ ∆.
Suppose that

(a) {fn} is normal on ∆′(0, 1), but no subsequence of {fn} is normal at 0;

(b) there exists δ > 0 such that fn has a single (multiple) zero on ∆(0, δ)
for all sufficiently large n.

Then there exists a subsequence of {fn} (which we continue to call {fn})
such that for any a ∈ C, fn−a has at most two zeros (counting multiplicity)
on ∆(0, 1/2).

Proof. Taking a subsequence and renumbering, we may assume that

fn
χ

=⇒ f on ∆′(0, 1).

By Lemma 4, f(z) = z. Suppose that |a| ≤ 2/3. Taking Γ to be the circle
{|z| = 3/4} traversed once in the positive direction, we have

1

2πi

∫
Γ

f ′
n(z)

fn(z) − a
dz −→ 1

2πi

∫
Γ

1

z − a
dz = 1.

However, the left hand side is the number of a-points of fn minus the num-
ber of poles of fn inside Γ, counting multiplicities. By Lemma 4, there
exists 0 < δ < 3/4 such that fn has a single simple pole on ∆(0, δ) for n
sufficiently large.

Since fn converges uniformly to z on {z : δ ≤ |z| ≤ 3/4}, there ex-
ists N1 such that if n ≥ N1 fn has a single simple pole in ∆(0, 3/4). Hence
for n ≥ N1, fn takes on the value a (counting multiplicities) exactly twice
on ∆(0, 3/4).
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Suppose now that |a| > 2/3. Let Γ′ be the circle {|z| = 5/9} traversed
in the positive direction. Then

1

2πi

∫
Γ′

f ′
n(z)

fn(z) − a
dz −→ 1

2πi

∫
Γ′

1

z − a
= 0,

so the number of a-points minus the number of poles of fn (counting mul-
tiplicity) inside Γ′ is 0 for large n. It follows as before that there exists N2

such that fn takes on the value a exactly once (counting multiplicities) on
∆(0, 5/9) if n ≥ N2. Dropping the elements fn with n < max(N1, N2) and
renumbering, we obtain the desired sequence. �

Lemma 8. Let f be a meromorphic function on C, all of whose zeros are
multiple, such that f ′(z) �= 1, z ∈ C. Then either

(i) f is rational; or

(ii) there exist nontrivial pairs (an, cn) of zeros of f such that |an−cn| −→ 0
and a sequence of functions

hn(ζ) =
f(dn + (an − cn)ζ)

an − cn

which is not normal on ∆; here dn = (an + cn)/2.

Proof. Suppose f is not rational. Then by Lemma 3, f has infinite order,
so there exist zn → ∞ and εn → 0 such that

(3.5) S(∆(zn, εn), f) =
1

π

∫∫
|z−zn|≤εn

[f#(z)]2dxdy −→ ∞.

Indeed, otherwise there would exist ε > 0 and M > 0 such that

S(∆(ζ, ε), f) ≤ M

for all ζ ∈ C. From this follows

S(r) =
1

π

∫∫
|z|<r

[f#(z)]2 dxdy = O(r2),

so that (cf. [9, p. 217]) f would have order at most 2, a contradiction. In
particular, there exist z∗

n ∈ ∆(zn, εn) such that f#(z∗
n) −→ ∞. Let fn(z) =

f(z + z∗
n). Then no subsequence of {fn} is normal at 0.

Suppose there exists δ > 0 such that fn has only a single (multiple)
zero ξn on ∆(0, δ). Since no subsequence of {fn} is normal at 0, ξn −→ 0 by
Theorem A. Thus, again by Theorem A, {fn} is normal on ∆′(0, δ). It follows
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from Lemma 7 that there exist n1 < n2 < · · · such that for any a ∈ C, fnk
−a

has at most two zeros (counting multiplicity) on ∆(0, δ/2). Thus, for large
enough k,

S(∆(znk
, εnk

), f) ≤ S(∆(0, δ/2), fnk
) ≤ 2

which contradicts (3.5).
Thus, for each δ > 0, fn has at least two distinct zeros on ∆(0, δ) for

sufficiently large n. The result now follows immediately from Lemma 5. �

4. Proof of the Theorem

Suppose the Theorem is false. Then there exists a sequence {a∗
k} ⊂ D with

no accumulation point in D and such that a∗
1 �= a∗

2 and a sequence {fn} ⊂ F
such that fn

χ
=⇒ f on D \ {a∗

k} but no subsequence of {fn} is normal at a∗
1

or a∗
2. We may assume that a∗

1 = 0 and D = ∆. The argument given in the
proof of Lemma 4 shows that f ′

n =⇒ 1 on ∆ \ {a∗
k}, so f �≡ 0.

If there exists δ > 0 such that fn has only a single (multiple) zero on
each ∆(a∗

j , δ) (j = 1, 2) for large enough n, it follows from Lemma 4 that
f(z) = z − a∗

j (j = 1, 2) on ∆ \ {a∗
k}. Thus a∗

1 = a∗
2, a contradiction.

Therefore, one may suppose that for any δ > 0, fn has at least two
distinct zeros on ∆(0, δ) for sufficiently large n. By Lemma 5, fn has a
nontrivial pair of zeros in ∆(0, δ) for n large enough. Therefore, some sub-
sequence of {fn} (which, as usual, we continue to call {fn}) has a nontrivial
pair of zeros (zn, wn) such that |zn| < 1/n, |wn| < 1/n. There exist δ0 > 0

and 1 < s < 2 such that fn
χ

=⇒ f on ∆′(0, 2δ0) and f does not vanish
for δ0 ≤ |z| ≤ sδ0. For 1/n < δ0, let (an, cn) be a nontrivial pair of zeros
of fn in ∆(0, δ0) whose distance is minimal. Clearly, an − cn −→ 0. Set
dn = (an + cn)/2. Then dn ∈ ∆(0, δ0); and, passing to a subsequence, we
may assume that dn −→ a, so |a| ≤ δ0. Since f and fn have no zeros on
{z : δ0 ≤ |z| ≤ sδ0} if n is large enough, (an, cn) is a nontrivial pair of zeros
of fn on ∆(0, sδ0) whose distance is minimal.

Set

hn(ζ) =
fn(dn + (an − cn)ζ)

an − cn
.

Then for each ζ ∈ C, hn(ζ) is defined if n is sufficiently large. Clearly,
all zeros of hn are multiple and h′

n(ζ) �= 1. We claim that no subsequence
of {hn} is normal on C. Otherwise, taking a subsequence and renumbering,

we would have hn
χ

=⇒ h on C. Since (an, cn) is a nontrivial pair of zeros
of fn,

hn(±1/2) = h′
n(±1/2) = 0 and sup

∆
|h′

n(z)| > 1.
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It follows easily that h′(ζ) �= 1 on C and that h is nonconstant. Since all
zeros of h are multiple, Lemma 3 shows that h must be transcendental. It
then follows from Lemma 8 that there exist infinitely many nontrivial pairs
(ξk, ηk) of zeros of h such that ξk −→ ∞ and ξk − ηk −→ 0, and z∗

k with

∣∣∣z∗
k −

ξk + ηk

2

∣∣∣ < |ξk − ηk| and h#(z∗
k) −→ ∞.

Fix k such that h#(z∗
k) ≥ 2 and |ξk−ηk| < 1. Then there exist ξn,k −→ ξk

and ηn,k −→ ηk such that for n sufficiently large,

hn(ξn,k) = hn(ηn,k) = 0

and
|z∗

k − (ξn,k + ηn,k)/2| < |ξn,k − ηn,k|.
Put

ξ∗n,k = dn + (an − cn)ξn,k

η∗
n,k = dn + (an − cn)ηn,k

z∗
n,k = dn + (an − cn)z∗

k.

Then ∣∣∣∣z∗
n,k −

ξ∗n,k + η∗
n,k

2

∣∣∣∣ = |an − cn|
∣∣∣∣z∗

k −
ξn,k + ηn,k

2

∣∣∣∣
< |an − cn| |ξn,k − ηn,k| = |ξ∗n,k − η∗

n,k|,

where ξ∗n,k −→ a, η∗
n,k −→ a and |a| < sδ0; also, for n sufficiently large,

|f ′
n(z∗

n,k)| = |h′
n(z∗

k)| ≥ h#
n (z∗

k) > 1.

We conclude that (ξ∗n,k, η
∗
n,k) is a nontrivial pair of zeros of fn on ∆(0, sδ0).

However,
|ξ∗n,k − η∗

n,k| = |an − cn| |ξn,k − ηn,k| < |an − cn|
if n is sufficiently large. This contradicts the fact that (an, cn) is a nontrivial
pair of zeros of fn in ∆(0, sδ0) whose distance is minimal.

Thus no subsequence of {hn} is normal on C. Let E be the set on
which {hn} is not normal. Suppose that for each ζ ∈ E, there is a neighbor-
hood on which hn has only a single (multiple) zero for sufficiently large n.
Then by Theorem A, {hn} is quasinormal at each point of E and hence on all
of C. Let ζ0 ∈ E. Taking a subsequence, we may assume that no subsequence
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of {hn} is normal at ζ0 and that {hn} converges locally spherically uniformly
on C \ E0, where E0 ⊂ E is a discrete set containing ζ0. By Lemma 4,

hn
χ

=⇒ ζ − ζ0 on C \ E0.

Taking additional subsequences and diagonalizing, we may assume that no
subsequence of {hn} is normal at any point of E0. We claim that E0 = {ζ0}.
Indeed, otherwise there exists ζ1 ∈ E0, ζ1 �= ζ0; then, as before, it follows
from Lemma 4 that

hn(ζ)
χ

=⇒ ζ − ζ1 on C \ E0,

so that ζ1 = ζ0, E0 = {ζ0}, and

hn(ζ)
χ

=⇒ ζ − ζ0 on C \ {ζ0}.
But this contradicts hn(±1/2) = 0. Hence there exists ζ0 ∈ E such that for
each δ > 0, there is a subsequence of {hn} (which we continue to call {hn})
such that each hn has at least two distinct zeros in ∆(ζ0, δ) for sufficiently
large n. Then by Lemma 6, for n sufficiently large, fn has a nontrivial pair
of zeros (w∗

n,1, w
∗
n,2) such that

w∗
n,j −→ a (j = 1, 2) and |w∗

n,1 − w∗
n,2| < |an − cn|.

This contradicts the fact that (an, cn) is a nontrivial pair of zeros of fn

in ∆(0, sδ0) whose distance is minimal.
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