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Abstract In this work, we study the black hole light echoes
in terms of the two-photon autocorrelation and explore their
connection with the quasinormal modes. It is shown that
the above time-domain phenomenon can be analyzed by uti-
lizing the well-known frequency-domain relations between
the quasinormal modes and characteristic parameters of
null geodesics. We found that the time-domain correlator,
obtained by the inverse Fourier transform, naturally acquires
the echo feature, which can be attributed to a collective effect
of the asymptotic poles through a weighted summation of the
squared modulus of the relevant Green’s functions. Specifi-
cally, the contour integral leads to a summation taking over
both the overtone index and angular momentum. Moreover,
the dominant contributions to the light echoes are from those
in the eikonal limit, consistent with the existing findings using
the geometric-optics arguments. For the Schwarzschild black
holes, we demonstrate the results numerically by consid-
ering a transient spherical light source. Also, for the Kerr
spacetimes, we point out a potential difference between the
resulting light echoes using the geometric-optics approach
and those obtained by the black hole perturbation theory.
Possible astrophysical implications of the present study are
addressed.

1 Introduction

The shadow of a black hole [1,2] is an extreme manifestation
of the strong gravitational lensing effect in the vicinity of its
horizon. It can be evaluated by analyzing the properties of
unstable fundamental photon orbits (FPO) [3]. The latter is
defined as periodic bound null geodesics, which fall back to
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the light ring and spherical orbit, respectively, in the cases
of the Schwarzschild and Kerr metrics. When perturbed, the
trajectory of a light ray in question will slightly deviate from
its originally bounded but unstable orbit, and subsequently,
a photon will circulate the black hole a multitude of times
before escaping to a distant observer and furnishing a pixel
on the boundary of the black hole silhouette in his (her) local
sky.

While the black hole shadow determines the spatially
asymptotic boundary of increasingly demagnified subrings,
the notion of FPO also gives rise to another intriguing feature
in the time domain, known as light echo or glimmer. Indeed,
for two adjacent light rays simultaneously emanated from the
same source and consecutively captured by a static observer,
they might orbit the hole a different number of times. To be
specific, the arrivals of the two light signals are separated by a
time delay, which should be equal to a multiple of the orbital
period. Therefore, when a transient optically-thin radiation
source intersects a closed orbit, one is led to the conclusion
that different light travel times cause the image of the source
to echo [4]. The above heuristic arguments have been rein-
forced with more realistic simulations. Indeed, in numerical
calculations, echoes of the intensity in the image of a Kep-
lerian hotspot were spotted, where the time delays between
subsequent echoes were found to be essentially identical to
the period of the closed orbits. Moreover, consistent results
have also been obtained for the autocorrelations of the mea-
sured signals [4,5].

It is noted that the above approaches are essentially based
on the properties of the null geodesics. On the other hand, it is
understood that the strong gravitational lensing of light rays
around a black hole is simply the high-energy limit, namely,
the geometric-optics counterpart, of the electromagnetic per-
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turbations in the relevant black hole spacetime. Physically,
at such a limit, the typical scale of spatial variation of the
wavefront, roughly the size of the black hole, is more signif-
icant than the wavelength [6,7]. In this regard, the light echo
signature derived using the properties of null geodesics is
not expected to comprise any information that does not sur-
vive the geometric-optics approximation. For instance, for a
light ring orbit that lies in the equatorial plane, the longitudi-
nal geodesic motion is perpendicular to the zenith degree of
freedom. Therefore, the resulting autocorrelations based on
the null geodesics must be entirely irrelevant to the number
of nodes of the waveform in the latitudinal direction. In this
context, from the perspective of the black hole perturbation
theory, one might argue that it seems more appropriate to cal-
culate the correlation function in terms of fields rather than
light rays.

Indeed, the geometric-optics approximation is a venera-
ble topic in the framework of general relativity [7,8]. Among
others, the specific relations between the quasinormal modes
of field perturbations and the characteristic parameters of the
corresponding null geodesics have been extensively studied
in the literature [9]. Following the initial works by Goebel
[10] and Ferrari and Mashhoon [11], the subject was elab-
orated by Cardoso et al. [12] for Schwarzschild metric, and
then generalized to the Kerr spacetimes by Yang et al. [13].
The above relations are derived in the eikonal limit using
the WKB approximation [14] by collecting the leading and
sub-leading terms of 1/�. It was shown that the real part of
the complex quasinormal frequencies of a specific field per-
turbation is related to the orbital and precession frequencies
of the FPO. The imaginary part, on the other hand, turns
out to be related to the Lyapunov exponent of the orbit [15].
In practice, they provide increasingly accurate estimation as
one goes to larger angular momentum � � 1.

Therefore, it would be interesting to generalize the above
studies and examine the time-domain light echoes using the
black hole perturbation theory. In particular, it would be
meaningful to confirm the existence of light echos in the
resulting correlator and, in particular, verify whether some
particular features might emerge, which were absent from the
geometric-optics approach. A pertinent study in this regard
has been recently initiated by Chesler et al. [16]. In their work,
the authors explore the coherent autocorrelation functions
measured at a single telescope. Specifically, a more straight-
forward setting is employed instead of studying electrody-
namics sourced by fluctuating electric currents: the tempo-
ral two-particle correlation function is evaluated numerically
for a massless scalar sourced by a stochastic field localized
near a Schwarzschild black hole. Light echoes were con-
sequently observed in terms of the peaks attained at times
equal to integer multiples of the photon orbit period. These
results are physically significant and consistent with the exist-
ing geometric-optic analysis. Along this line of thought, in

the present work, we extend the study further to consider a
more realistic scenario: the electromagnetic field. Besides,
it is meaningful to understand analytically how the time-
domain correlator, obtained via the inverse Fourier transform,
acquires the light echo feature. By analyzing the contour inte-
gral, it is observed that the relevant integral can be rewrit-
ten into a weighted summation of the squared modulus of
the Green’s functions, which is taken over both the overtone
index and angular momentum. Moreover, the primary char-
acteristics of the time-domain correlator are essentially gov-
erned by the low-lying poles of the autocorrelation function
along the real axis of the complex frequency. The light echoes
obtained numerically are explained from an analytic view-
point by further employing the well-known relations between
the quasinormal modes and null geodesics mentioned above.

The remainder of the present work is organized as follows.
In the next section, we explore the formulae concerning the
two-particle autocorrelation function for the electromagnetic
field and discuss their relation with black hole quasinormal
modes. In Sect. 3, to exam the light echoes in a more realistic
configuration, we numerically investigate the time-domain
two-photon autocorrelation by assuming a spherical radia-
tion source. The analytical analysis is presented in Sect. 4 by
scrutinizing the pole structure of the related Green’s function.
The explanation is illustrated by a toy model, which demon-
strates that it is not a single null geodesic but a collection of
them, represented by a series of asymptotic poles, that even-
tually gives rise to the light echoes. Furthermore, we elabo-
rate on a few aspects, such as the physical implication of the
eikonal limit and the generalization to an anisotropic source.
In Sect. 5, the case of Kerr black holes is briefly discussed,
where we point out some subtlety in the resonance condition
for light echoes in rotating black holes. The last section is
devoted to further discussions and concluding remarks.

2 Two-photon correlation function in Schwarzschild
black holes

In this section, under the black hole perturbation theory
framework, the main results on the two-photon autocorre-
lations are derived. We first define the autocorrelation func-
tion for electromagnetic field in a similar fashion to that for
the scalar field, recently introduced in [16]. The two-particle
correlation function can be formally solved using a generic
Green’s function. By exploiting the spacetime symmetry, one
shows that the latter can be further resolved by the decom-
positions using vector spherical harmonics. However, the
resulting radial equation for the relevant degree of freedom,
inferred from the generic Green function, does not qualify as
an equation for a univariable Green’s function. As a result,
one adopts a second Green’s function G and expresses the
generic Green’s function in terms of G and the vector spheri-
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cal harmonics. Subsequently, the resulting expression for the
autocorrelation function is derived in terms of a summation
w.r.t. different angular components. Interestingly, we point
out that G is nothing but the Green’s function one usually
defines for the black hole quasinormal modes. For concise-
ness, we relegate most of the tedious mathematical details to
the Appendices A and B and only cite the results in the main
text.

The background spacetime of a (3 + 1) Schwarzschild
black hole takes the form

ds2 = − f dt2 + 1

f
dr2 + r2[dθ2 + sin2 θdϕ2],

f = 1 − 2M

r
(1)

where M is the mass of the black hole. The electromagnetic
perturbations are governed by the Maxwell equation

Fμν ;ν = Sμ, (2)

where the electromagnetic tensor Fμν = Aν,μ − Aμ,ν and
the source is governed by the four-current Sμ = 4π Jμ. The
equation of motion for the four-potential Aμ formally reads

Oμν
(
Aμ(x)

) = Sν(x), (3)

where x ≡ xν = (t, r, θ, ϕ), and the operator Oμν is linear
in the four-vector space.

The field equation Eq. (3) is solved by

Aμ(y) =
∫ √−gGμν(y, x)S

ν(x)dx, (4)

where dx ≡ dtdrdθdϕ and the retarded Green’s function
Gμν(x, y) satisfies

Ox
μρ

(
Gμν(x, y)

) = 1√−g
δρ

νδ(x − y), (5)

where the subscript x indicates that the operation is only on
the coordinate variable x .

It is essential to note that the operator O is invariant w.r.t.
the spatial rotation due to the spherical symmetry of the black
hole metric. The symmetry can be exploited by decomposing
both Aμ and Sμ into a suitable basis consisting of scalar
and vector spherical harmonics [17] as given by Eqs. (A.8)
and (A.9). As a result, the angular part of the equation of
motion is entirely governed by the properties of the vector
spherical harmonics, irrelevant to any specific detail of O .

Consequently, the radial part of the master equations
for the expansion coefficients carries the pertinent physics
involved. They are obtained by substituting the decompo-
sition into Eq. (2). Since different angular components are
decoupled, the resulting spatiotemporal evolution of the per-
turbations can be viewed as a superposition of those of
individual harmonics. Moreover, as an Abelian gauge field,
the electromagnetic field consists of only two free degrees
of freedom, corresponding to the two polarization states.

By appropriate combinations of the above expansion coeffi-
cients, one arrives at two independent variables 	i (i = 1, 2)
defined in Eq. (A.10). Accordingly, from the four resultant
radial equations one sorts out two independent master equa-
tions, which possess identical forms [18]

∂2

∂t2 	
�,m
i (t, r∗) +

(
− ∂2

∂r2∗
+ VRW

)
	

�,m
i (t, r∗)

= S�,m
i (t, r∗), (6)

where VRW is the Regge–Wheeler potential

VRW = f

[
�(� + 1)

r2 + (1 − s̄2)
rh
r3

]
, (7)

where r∗ = r∗(r) ≡ r+rh ln
(

r
rh

− 1
)

is the tortoise coordi-

nate, the horizon rh = 2M , and the spin s̄ = 1 for photon so
the second term in the bracket vanishes. The explicit forms of
the source terms Si given in Eq. (A.11) are governed by the
external current Jμ. Also, since the master equations for 	1,2

are identical, their Green’s functions, defined by replacing the
r.h.s. by a point-like source, possess the same pole structure.
For the purpose of our present study, we will restrict outselves
to one independent degree of freedom 	1. Also, similar to
[16], we assume a spherical incoherent source which satisfies

〈S(x)S†(y)〉 = χ(r)ζ(t)√−g
δ(x − y),

(8)

where the functions χ and ζ determine the radial and tem-
poral dependences of the source.

Now we proceed to discuss the two-particle autocorrela-
tion function of a field 	(t, r), defined as

C(t, r) ≡ 〈	(t, r)	†(0, r)〉. (9)

Here,C(t, r) measures the correlation of the signal separated
by time t at a given spatial coordinate r. Besides the ensam-
ble average for the source, an average for the relevant time
duration twin is also implied so that

〈 f (
t) f (0)〉 ≡ 1

twin

∫ twin/2

−twin/2
dt f (t + 
t) f (t).

In practice, the Fourier transform of the correlator is usu-
ally more amenable

C̃(ω, r) =
∫

dtC(t, r)eiωt = 〈|	̂(ω, r|2〉, (10)

where the amplitude 	̂(ω, r) is given by the windowed
Fourier transform of the field, namely,

	̂(ω, r) ≡ 1√
twin

∫ twin/2

−twin/2
dt	(t, r)eiωt . (11)
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We shall consider the limit twin → ∞, in which case Eq. (11)
approaches the Fourier transform, apart from an irrelevant
factor.

For electromagnetic four-potential, the two-particle cor-
relation function takes the general form

Cμν(t, r) ≡ 〈Aμ(t, r)A∗
ν(0, r)〉. (12)

As discussed above, in the present study, we will focus on
the degree of freedom related to 	1. Moreover, the calcula-
tion of Eq. (12) can be facilitated by employing the formal
solution in Green’s function, Eq. (4). Also, by considering
the incoherent source Eq. (8), one finds

C(t, r)

=
∫ √−gdt ′dr ′dθ ′dϕ′G1(t, t

′, r, r′)

×G1
†(0, t ′, r, r′)χ(r ′)ζ(t ′)

=
∫ √−gdt ′dr ′dθ ′dϕ′G1(t − t ′, r, r′)

×G1
†(−t ′, r, r′)χ(r ′)ζ(t ′), (13)

where G1 is the Green function associated with 	1. As the
metric is static, Green’s function is translational invariant in
time. Subsequently, Green’s function only depends on the
time difference, and therefore one replaces (t, t ′) by their
difference. Again, one resorts to its Fourier transform, which
yields

C̃(ω, r) =
∫ √−gdω′dr ′dθ ′dϕ′

× G̃1(ω, r, r′)G̃†
1(ω − ω′, r, r′)ζ̃ (ω′)χ(r ′), (14)

where ζ̃ (ω) is the Fourier transform of ζ(t). The frequency-
domain correlator can be further simplified by making use of
the explicit form of the Green’s function Eq. (A.18) derived
in the Appendix B and orthonormal condition Eq. (A.7). One
finally obtains the desired result

C̃(ω, r) =
∑

�,m

∣∣∣V �,m
(2) (θ, ϕ)

∣∣∣
2
∫

dω′r ′−2dr ′

× G�,m(ω, r, r ′)G�,m†
(ω − ω′, r, r ′)ζ̃ (ω′)χ(r ′)

= 1

4π

∑

�

(2� + 1)

∫
dω′r ′−2dr ′

× G�,m(ω, r, r ′)G�,m†
(ω − ω′, r, r ′)ζ̃ (ω′)χ(r ′),

(15)

where � and m are the angular momentum and magnetic
quantum number. To derive it, the orthonormal relation
Eq. (A.7) and Unsöld’s theorem for vector spherical harmon-
ics were utilized on the last line.

It is important to note that G�,m(ω, r, r ′) satisfies
Eq. (A.15) with appropriate boundary conditions. Therefore,
by construction, it is precisely the Green’s function of the

Fig. 1 The frequency-domain Green’s function integrated by the
source

∫
dr ′G(ω, r, r ′)S(ω, r ′), for a given angular momentum com-

ponent � = 2. Here the radial coordinate is expressed in x̄ = (r −rh)/r

radial master equation for the quasinormal modes. Up to this
point, we have established our main result of this section,
which expresses the two-particle autocorrelation function
in terms of Green’s function of the black hole quasinormal
modes. In the frequency domain, the resultant correlator is
expressed as a weighted sum of the squared modulus of the
Green’s functions, where the summation is carried out w.r.t.
different angular components. Moreover, the present case is
different from the scenario where an initial pulse is planted
to the system in order to assess the stability of the underlying
black hole metric. To be specific, a transient external source,
rather than some initial condition, is assigned to the r.h.s. of
the wave equation, which manifests itself in Eq. (15) by the
term ζ̃ (ω′)χ(r ′).

Now, one may also notice that the above derivation resides
in the somewhat unrealistic assumption on the simple form
of the incoherent source. We will postpone discussions in this
regard until Sect. 4, where we justify that the main features
of the autocorrelation function, such as light echoes, should
not depend on such simplifications.

In the next section, we proceed to evaluate the two-photon
autocorrelation function Eq. (9) by considering a spherical
source. It is obtained numerically by the inverse Fourier
transform wave function in the frequency domain. As will
be shown shortly, the resulting time-domain profile is char-
acterized by light echoes.

3 Light echoes from a transient spherical emission
source

In order to evaluate the autocorrelation function, we employed
the scheme proposed in [19]. We will relegate the detail of
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the numerical approach to Appendix C and present the main
idea and result in this section.

First, one obtains the correlator in the frequency domain
for a given external source using the matrix method [20,21].
The following source will be utilized

S�,m(ω, r) = 1

ω2 + 1
eiωr VRW(r), (16)

where the factor eiωr VRW(r) is to ensure that the source
satisfies appropriate boundary conditions. The factor 1

ω2+1
corresponds to a transient pulse in the time domain, which
also effectively suppresses the numerical integral on the
real axis of ω. The resultant frequency-domain wave func-
tion for a given angular momentum � = 2 is shown in
Fig. 1. As pointed out in [16], the Regge–Wheeler poten-
tial given by Eq. (7) implies that there is a turning point
at ω2

c = f �(�+1)

r2 . The region |ω| < ωc is thus classically
forbidden, and therefore, its contribution becomes exponen-
tially small. In Fig. 1, this corresponds to the valley alone
ω ∼ 0. As dictated by the Wronskian in the denominator
[9], the Green’s function approaches zero as G ∼ 1

ω
when

ω → ±∞. However, usually accompanied by strong oscil-
lations, the convergence occurs slowly, which potentially
poses a difficult task for numerical integration on the real
axis. Here, the apparent quick suppression shown in the plot
is owing to the assumed factor 1

ω2+1
from the frequency-

dependent source. Moreover, the stripes of maxima shown
as the “double shoulder” in Fig. 1 are related to the real part
of the corresponding fundamental mode ωn=0,�=2. This is
expected since the nearest pole in the complex plane will
largely affect the value of an analytic function on the real
axis. Apparently, such characteristics are attached to particu-
lar low overtone fundamental quasinormal mode. Therefore,
they are sensitively dependent on the spin of the perturbation
field s̄ as well as the specific metric in question. As discussed
above and will be further elaborated in the next section,
the light echoes are not directly caused by these particular
features.

The resultant time-domain two-photon correlation func-
tion can be obtained through the momentum space waveform

	̃(ω, r)=
∑

�,m

V �,m
(2) (θ, ϕ)

∫
dr ′G�,m(ω, r, r ′)S�,m(ω, r ′),

(17)

which includes an summation over different angular com-
ponents. Subsequently, the correlator is obtained by numeri-
cally taking the inverse Fourier transform using Eq. (10). In
our calculations, we assume that the observer sits at the north
pole θ = ϕ = 0 at an arbitrary radial coordinate r = 7.2, and
the term V �,m

(2) (θ, ϕ) is thus evaluated numerically. The sum-
mation is evaluated for the angular components up to � ≤ 20.
In Fig. 2 we show the resultant two-particle autocorrelations.
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Fig. 2 The calculated time-domain two-photon autocorrelation func-
tion. The light echoes (indicated by black arrows) are observed at inte-
ger multiples of the light ring orbital period. The inset shows the same
results without using the logarithmic scale
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- 0.6

- 0.4

- 0.2

Fig. 3 The quasinormal mode spectrum of electromagnetic perturba-
tions for different overtone numbers n and angular momenta �. For
the electromagnetic perturbations in the Schwarzschild black hole, an
extensive study was performed in [22]

It is observed that both functions peak at integer multiple of
the light ring orbital period T = 2πrLR√

f
= 6π

√
3M = 3π

√
3,

where we have assumed rh = 1 in our calculations. Phys-
ically, these peaks are identified to be the light echoes dis-
cussed in [16] for scalar perturbations and the black hole
glimmer investigated in [4].

In [16], the light echoes in the two-particle autocorrelation
function were also observed. The calculations were carried
out for the scalar perturbations, and the authors have adopted
a different approximate approach. In the following section,
we elaborate on an explanation of the emergence of echoes
by analyzing the properties of the Green’s functions C̃(ω, r)
and G�,m(ω, r, r ′).
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4 Collective behavior of asymptotic quasinormal modes
at the eikonal limit

In this section, we explore the origin of the light echoes in
terms of analyzing the pole structures of the relevant Green’s
functions. We argue that the resultant light echoes in the time
domain can be attributed to a collective effect of the low-lying
asymptotic quasinormal modes at the eikonal limit. This is
shown by primarily employing the well-known results in the
literature about the relations between the quasinormal modes
and null geodesics.

Formally, the time-domain autocorrelation function can
be obtained by the inverse Fourier transform of Eq. (10).
Using the specific form of Eq. (15), one has

C(t, r) =
∫

dωe−iωt C̃(ω, r)

= i

2

∑

n,�

e−iωn,�t (2� + 1)A(ωn,�, t, r)

× Res
[
G�,m(ω, r, r ′), ω

]
, (18)

where n and � are the overtone index and angular momentum,
and ωn,� corresponds to the spinor quasinormal frequency of
the black hole metric. The weight,

A(ωn,�, t, r)

=
∫

dω′r ′−2dr ′G�,m†
(ωn,� − ω′, r, r ′)ζ̃ (ω′)χ(r ′),

(19)

results from the convolution of the initial condition and
the conjugate of the Green’s function G�,m†

. The relevant
residues are those from G�,m . This is because, according to
Jordan’s lemma, one should close the contour by an infi-
nite semi-circle in the lower half-plane, which gives rise to
a summation of the enclosed residues. For a stable space-
time configuration, the poles of G�,m lie below the real axis.
On the other hand, the complex conjugate mirrors all the
poles of G�,m w.r.t. to the real axis and, consequently, shifted
along the real axis. As a result, the latter will no longer be
counted when evaluating the residues in Eq. (19), even though
these reflected poles still affect the value of convolution in
A. In other words, the relevant pole structure of C̃(ω, r) and
G�,m(ω, r, r ′) are identical. As a result, the resultant correla-
tor can be written as a summation, mainly proportional to the
squared modulus of Green’s function. Moreover, the summa-
tion is taken over all possible overtone indices and angular
momenta, n and � that, in principle, involves the entire quasi-
normal mode spectrum.

In fact, one can show that individual modes are mani-
festly present in the resultant time profile. A straightforward
way to see this is to numerically perform the integration
on the first line of Eq. (18) and then try to extract the dis-

crete frequencies using the Prony method [23] from the time
domain profile. One may then compare the obtained com-
plex frequencies against the values of the black hole quasi-
normal modes, as carried out in [19]. By considering the
term � = 2 shown in Fig. 1, we numerically obtain the time-
domain profile and then extract the most dominant modes.
The first two are numerically found to be 0.9169−0.193653i
and 0.889359 − 0.439647i , which are consistent with the
values for the quasinormal modes of the lowest overtones,
namely, ωn=0,�=2 = 0.915191−0.190009i and ωn=1,�=2 =
0.873084 − 0.581421i .

It is appearant that the most dominant contributions in
Eq. (18) are from the lowest-lying states with n = 0, as the
high-overtone ones are significant suppressed due to e−iωn,�t .
Moreover, the asymptotic distribution of quasinormal modes
at the eikonal limit is featured by a uniform distribution [11–
13]. To be specific, for Schwarzschild black holes, one has

ωSch
n,� ≡ ωSch

R + iωSch
I =

(
� + 1

2

)
�LR + i

(
n + 1

2

)
γL,

(20)

where �LR and γL are the angular velocity and Lyapunov
exponent of the light ring obit. In particular, the multipli-
ers

(
� + 1

2

)
and

(
n + 1

2

)
in Eq. (20) indicate the poles are

uniformly distributed parallel to the real axis, at large angu-
lar momentum number but for a given overtone number, as
illustrated in Fig. 3.

To see intuitively how such uniform distribution of the
quasinormal modes in the frequency domain gives rise to
the time-domain light echoes, one devises the following toy
model. Let us construct a mathematically simple form of the
Green function, which contains a series of poles governed by
Eq. (20) given by

G̃(ω) ∼ F̃(ω)H̃(ω), (21)

where

F̃(ω) ≡ 1

1 − e−iωT B
, (22)

and T ∈ R and B ∈ C are constants. For our convenience,
one further denotes �LR ≡ 2π/T .

It is obvious that if ω0 + 1
2�LR corresponds to one of its

poles, then ω0 + (
j + 1

2

)
�LR (for j ∈ Z) must be another.

In other words, compared with the first term on the r.h.s. of
Eq. (20), these poles uniformly line up parallel to the real
axis with an interval �LR, thus the factor F(ω) mimics the
asymptotic behavior at the eikonal limit. The inverse Fourier
transform of Eq. (22) gives

F(t) = √
2π

[
δ(t) + Bδ(t + T )

+B2δ(t + 2T ) + B3δ(t + 3T ) + · · ·
]
. (23)
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As a result, the time-domain Green’s function takes the form

G(t) ∼
∫

dτ F(τ )H(t − τ)

= √
2π

[
H(t) + BH(t + T ) + B2H(t + 2T ) + · · ·

]
,

(24)

where H(t) is the inverse Fourier transform of H̃(ω). Equa-
tion (24) indicates that the resultant time-domain wave form
is characterized by modulated pulses separated by the inter-
val T = 2π/�LR. By Eq. (20), it is nothing but the period of
the light ring orbit, as predicted by the null geodesic analysis.

We note that one may readily use the residue theorem to
recover the above result, which indicates the emergence of
light echoes is independent of the specific function forms
assumed by the toy model. Besides, the essential part of the
preceding derivation is not the absolute locations but the
spacing between the poles. This is in accordance with the
fact that, for a static metric, the correlator Eq. (18) is trans-
lational invariance in time. For instance, one may rewrite the
frequency integral on the r.h.s. of Eq. (15) as

∫
dω′G�,m(ω − ω′, r, r ′)G�,m†

(ω, r, r ′)ζ̃ (ω′). (25)

Now, the convolution
∫
dω′G�,m(ω − ω′, r, r ′)ζ̃ (ω′) shifts

the poles of G�,m , with a weight determined by the exter-
nal source ζ̃ , along the real axis. However, the rest of the
derivation that leads to the light echoes remains unchanged.

It is a good place to pause for a comment on the phys-
ical interpretation of the geometric-optics approximation.
In the framework of the present study, one may intuitively
understand why the eikonal limit is in tune with a high-
frequency radiation source. To be specific, for a given high-
frequency source, the momentum integration of Eq. (25) will
receive more contributions from the region where the dis-
tribution ζ̃ (ω) is centered. According to the above discus-
sions, this is the same region where the quasinormal modes
are equidistantly distributed, which eventually leads to more
pronounced light echoes. The arguments given above are not
straightforwardly equivalent to the discussions from the null
geodesic motivated analysis [4,5]. For the latter, it is feasible
that the light echoes are triggered by the perturbations of a
single geodesic located on the light ring. Indeed, the infinites-
imal perturbation to a single geodesic on the light rings suf-
fices to give rise to echoes. These geodesics are essentially
not distinguishable because they carry very similar conserved
numbers (e.g., energy, angular momentum in the z direction,
and Carter constant).

The source considered in Eq. (8) is spherical, and a real-
istic radiation source is likely to be localized and therefore
possesses other angular components. By taking the latter into

consideration, the angular part of Eq. (15) will become more
complicated. To be specific, one has

∑

�,m

V �,m
(2)

†
(θ, ϕ)V �,m

(2) (θ, ϕ)

→
∑

�1,�2,�3
m1,m2,m3

V �1,m1
(2)

†
(θ, ϕ)V �2,m2

(2) (θ, ϕ)S�3,m3(ω′, r ′)

×
∫

d�′ V �2,m2
(2)

†
(θ ′, ϕ′)V �1,m1

(2) (θ ′, ϕ′)V �3,m3
(2) (θ ′, ϕ′).

Subsequently, Eq. (15) should be modified to read

C̃(ω, r)

=
∫

dω′r ′−2dr ′G�,m(ω, r, r ′)G�,m†
(ω − ω′, r, r ′)ζ̃ (ω′)χ(r ′)

×
∑

�1,�2,�3
m1,m2,m3

V �1,m1
(2)

†
(θ, ϕ)V �2,m2

(2) (θ, ϕ)S�3,m3(ω′, r ′)

×
∫

d�′ V �2,m2
(2)

†
(θ ′, ϕ′)V �1,m1

(2) (θ ′, ϕ′)V �3,m3
(2) (θ ′, ϕ′).

(26)

In the place of the orthonormal relation, through which we
once found an immediate simplification in deriving Eq. (15),
one has to resort to the Clebsch–Gordan coefficients. Also,
Unsöld’s theorem becomes irrelevant. The resulting factor
for the angular part still turns out to be analytic but rather
lengthy, as the summations in angular quantum numbers,
and consequently, an explicit angular dependence, remain. It
is observed that the resulting angular dependence of the two-
particle correlation function is expected from an anisotropic
radiation source. Now, instead of giving the explicit expres-
sion, we heuristically justify why such a complication will not
affect our main results. First, the coupling between different
angular momenta will significantly simplify the summation
in terms of the Clebsch–Gordan coefficients. In other words,
the angular factor will eventually furnish some combinatorial
coefficients for the frequency-dependent sector of the corre-
lator. Therefore, the resulting correlator can still be viewed
as a superposition of contributions from individual angular
components. Second, once the source possesses a spherical
component (�3 = m3 = 0), one always receives the corre-
sponding contribution similar to that given by Eq. (15).

5 Generalization to the Kerr black holes

Owing to the sophisticated nature of its quasinormal modes
[13] as well as null geodesics [24], a full-fledged general-
ization to the Kerr black holes lies beyond the scope of the
present study. In this section, we make a preliminary attempt
to address some of the key features of light echoes in rotating
black holes.
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From the geometric-optics arguments, a comprehensive
analysis in this regard was recently given by Wong [4]. In
terms of null geodesics, the light echoes occur for specific
FPOs whose trajectory intersects with itself. For the Kerr
black holes, the relevant null geodesics, namely, the spherical
orbits, are usuallynot closed. The resonance condition, which
guarantees that the light ray eventually passes through the
source again after a few revolutions, dictates that the ratio
of the period of azimuthal motion to that of zenith one must
be a rational number. As discussed in [4], for rotating black
holes with arbitrary spin, it turns out that echoes always take
place. Specifically, there are infinitely many spherical orbits
that meet the resonance condition, whose importance can be
classified by the Stern–Brocot tree.

From the viewpoint of the black hole perturbation theory,
the physical interpretation of light echoes does not necessar-
ily reside in the notion of closed null geodesics. Specifically,
based on the discussions in previous sections, the light echoes
originate from the collective contributions from the asymp-
totic quasinormal modes. Moreover, as we argue below, light
echoes do not always occur due to the quantized nature of
quasinormal modes.

The black hole quasinormal modes for Kerr black holes
at the eikonal limit were found [13] to possess the form

ωKerr
n,�,m ≡ ωKerr

R + iωKerr
I

=
[(

� + 1

2

)
�θ + mωprec

]
+ i

(
n + 1

2

)
γL, (27)

where the angular velocity �θ = 2π
Tθ

is defined in terms of
Tθ , the period of latitudinal oscillation in the zenith-angle
θ , ωprec = 
ϕprec

Tθ
gives the precession frequency in the

azimuthal-angle ϕ, and the Lyapunov exponent γL is defined
by averaging over the period of a complete latitudinal oscil-
lation.

By following the arguments given in Sect. 4, the rele-
vant quasinormal modes are the fundamental ones (n = 0).
Eq. (27) indicates that the spectrum is governed by two
indices, namely, � and m. When compared against the analy-
sis by the geometric-optics approach, the index m can be
associated with the role of the free parameter r0, which
denotes different spherical orbits. It is straightforward to
observe that the quasinormal spectrum will give rise to light
echoes when the spectrum becomes degenerate, namely, the
ratio between �θ and ωprec being a rational number. Such a
phenomenon of frequency degeneracy in the spectrum was
first pointed out by Yang et al. [13]. Here we proceed further
to argue that such degeneracy furnishes the resonance con-
dition for the light echoes. To be specific, when the above
condition is satisfied for rotating black holes with a specific
spin, light echoes will only occur since the quasinormal spec-
trum is then featured by a uniform distribution in the eikonal
limit. On the other hand, when the resonance condition fails,

the distribution of the spectrum will become irregular, and
therefore the arguments which lead to the light echoes are
no longer valid. We note that the latter usually is the case
for a rotating black hole of arbitrary spin. Here, the essential
difference between the two rationalizations is that r0 changes
continuously whilem is quantized. In other words, such a dis-
tinctive feature is naturally attributed to the discrete nature of
quasinormal frequencies. Also, the different feature in light
echoes is in accordance with what was pointed out in [13],
that a quasinormal mode can be mapped to a null geodesic,
but not vice versa.

6 Further discussions and concluding remarks

The studies [4,5] based on geometric-optics indicated that
black hole glimmer, or light echoes, associated with the peri-
odic bound geodesics, can be used to infer important prop-
erties of the underlying compact object. On the other hand,
in terms of the black hole perturbation theory, one can tackle
the same problem via the two-particle autocorrelation of the
electromagnetic field while adopting appropriate geometric-
optics approximation. As it is commonly understood, geo-
metric optics is implied when the wavelength of the radia-
tion is sufficiently small compared to the scale of the black
hole. Therefore, intuitively, the results on light echoes are
expected to be deducible from the pole structure of Green’s
function defined in the context of the black hole perturbation
theory. The present study was motivated by the above con-
siderations and aimed to clarify a few aspects. While rein-
forcing the recent findings reported in [16], we investigate
the connection between the two approaches by focusing on
the role of the geometric-optics approximation. By analyz-
ing the pole structure on the complex plane and employing
the well-known relations between black hole quasinormal
modes and null geodesics, we argue that the echo of the
black hole image can be explained as a collective effect of
low-lying quasinormal excitations in the eikonal limit. In this
context, the mechanism of the light echoes is reminiscent of
how regular distribution of lattice structure leads to quan-
tized wave vectors, known as the Bloch wave. For Kerr black
holes, light echoes occur when the resonance condition is sat-
isfied. Unlike the results from geometric-optics approaches,
we pointed out that light echoes are most pronounced for
rotating black holes of a particular spin. It is understood that
such a distinct feature is due to quasinormal frequencies’
quantized nature.

As mentioned in the introduction, the relations between
black hole quasinormal modes and null geodesics have
been extensively explored in the literature. In this work, we
have pushed forward along this line of research and further
extended such investigation to the time-domain two-particle
autocorrelation functions. The geometric-optics approxima-
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tion plays an essential role in bridging two physically per-
tinent approaches: the black hole perturbations in terms of
fields and the geometric-optics in terms of null geodesics. The
topic regarding the optics limit of field perturbations in terms
of the Green’s function was also investigated by Nambu and
Noda [25], where analysis was carried out for the massless
scalar field in Schwarzschild spacetime. In the study, Green’s
function is represented by the sum over the partial waves,
which is, in turn, approximated by the residues of the Regge
poles. Besides the type of perturbations and the spacetime
background, the main difference is that Ref. [25] primarily
focused on the spatial dependence of the waveform at a given
frequency. We note that the mechanism of light echoes dis-
cussed in the present study is somewhat similar to a model
recently proposed for gravitational wave echoes [26]. How-
ever, as the latter concerns mostly the high overtone modes
of a given angular momentum [27], we understand that the
underlying physics of the two studies is rather different. For
the case of gravitational perturbations, the merger taken place
for a more significant system does not necessarily emanate
gravitational waves of higher frequency. Therefore, the low-
frequency signals, aimed by various ongoing space-borne
detector projects, might be more relevant for gravitational
radiations. On the other hand, it is plausible for electromag-
netic radiation to be emanated from a high-frequency source.
As a result, the image and the glimmer of a black hole could
be captured and reasonably described in terms of a geometric-
optics approach.

It is also worth noting the particular case pointed out by
Konoplya and Stuchlík [28] for which the relation Eq. (20)
is violated. This seems to lead to the following dilemma that
deserves further investigation. On the one hand, light echoes
are naturally implied as long as bound unstable null geodesic
exists. On the other, while the distribution of the poles is still
regular, it apparently indicates a resonance period “incom-
patible” with that deduced from the light ring orbit.

Recently, many exciting features of the black hole shadow
have received much attention. Intriguing speculations include
cuspy [29,30], fractured [30], and open [31] shadows. In par-
ticular, the black hole shadow has also been analyzed from the
viewpoint of dynamical system [32]. Specifically, the physi-
cally pertinent FPOs constitute a particular family of periodic
bound orbits, which subsequently inherit the stability struc-
ture of the fixed point from which they emanate. Moreover,
the unstable manifold attached to them, in turn, furnishes
the boundary of the black hole silhouette. It is intriguing
whether such features can be revisited from the perspective
of the black hole perturbation theory.

Last but not least, we make a short comment on the possi-
ble astrophysical relevance of the black hole echoes. Based
on the very long baseline interferometry technique, the spa-
tial correlations of the complex electromagnetic fields have
been recorded by an array of synchronized millimeter tele-

scopes. The latter effectively acts as a single giant virtual tele-
scope, namely, the Event Horizon Telescope [33–35], whose
aperture is nearly the same as the diameter of Earth. As the
culmination of decades-long efforts, the first released black
hole image indicated that a novel avenue had been opened up
for direct observation of the black holes in the electromag-
netic channel. As pointed out by some authors [4,5,16], in the
light of progressively better images of more black holes, the
observation of black hole glimmer might become feasible,
and therefore it is rather inviting for detailed predictions on
the theoretical side. In connection with the empirical observa-
tions, it would be of interest to further analyze the following
aspects along the line of the present study. First, we have
not investigated the effects of the relative location among
the emission source, the black hole, and the observer. For
instance, for a unidirectional radiation source located on the
equatorial plane, it was found [4,5] that the correlation func-
tion of the intensity fluctuations peaks at half of the light ring
orbit period. Also, if the observer sits at the north pole, most
modes with nonvanishing magnetic quantum numbers will
not be accessible, which, in turn, will significantly modify
the observed correlation strength. Second, the two-particle
correlation function investigated in the present work is pri-
marily related to the flux density, but not their correlations.
A direct comparison with the latter quantity in the relevant
studies would require evaluating the four-particle correla-
tions. Also, the subtle difference in the light echoes in Kerr
black hole potentially leads to nontrivial implications on the
experimental side. We plan to explore these subjects further
in future studies.
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Appendix

In Appendices A and B, we give a more detailed account of
the decomposition of the electromagnetic four-potential in
terms of the scalar and vector spherical harmonics, as well
as derive the expressions for the Green’s functions follow-
ing essentially Refs. [16,18]. In Appendix C, we present the
numerical approach given in Sect. 3, where the scheme [19]
is based on the matrix method [20,21].

A. Electromagnetic perturbations in Schwarzschild metric
with external source

The equation of motion of the electromagnetic perturbation
can be formally given by Eq. (3)

Oμν
(
Aμ(x)

) = Sν(x),

where the operator Oμν is invariant w.r.t. the spatial rotation,
namely,
(
M−1

)σ

μ
OμνMν

ρ = Oσρ, (A.1)

where Mμ
ν is the matrix representation of the SO(3) group,

which is a little group of the Lorentz group SO(1,3). For the
specific case at hand, the operation transforms the indices of
the vector field according to the direct sum D0 ⊕ D1, while
the coordinate arguments rotate reversely [36]. By construc-
tion, M is reducible. The invariance Eq. (3) indicates that it
would be beneficial to decompose both the perturbation and
source into relevant bases in accordance with irreducible rep-
resentations of the SO(3) group. Besides the scalar functions,
which are intuitively chosen to be the spherical harmonics
Y �,m(θ, ϕ), one may also introduce the following two vector
spherical harmonics

(
V �,m

(1)

)

a
= 1√

�(� + 1)

(
S �,m

)

;a

= 1√
�(� + 1)

∂

∂xa
Y �,m(θ, ϕ),

(
V �,m

(2)

)

a
= 1√

�(� + 1)
εa

b
(
S �,m

)

;b

= 1√
�(� + 1)

εacγ
cb ∂

∂xb
Y �,m(θ, ϕ), (A.2)

where we have adopted the notation utilized in [9]. Here,
xa = (θ, ϕ) with the indices a, b, c take 2 or 3,

γab =
(

1 0
0 sin2 θ

)
(A.3)

is the projected metric and

εab = sin θ

(
0 −1
1 0

)
(A.4)

is the totally antisymmetric tensor on the two-sphere. On
the one hand, by construction, these quantities transform as
vector fields as required. Moreover, it is straightforward to
observe that they furnish representations of the SO(3) group,
which can be further shown to be irreducible [17]. On the
other hand, an arbitrary four-vector Bμ accomodates two
scalar components and one vectorial piece, namely,

Bμ(t, r, θ, ϕ) =
⎛

⎝
s
s
v

⎞

⎠ . (A.5)

Therefore, the most general form of decomposition of a four-
vector Bμ consists of four terms. Two coefficients are for the
scalar ones associated with the time and radial components,
namely,
(
S �,m

(1)

)

μ
= δμ0Y

�,m(θ, ϕ),

(
S �,m

(2)

)

μ
= δμ1Y

�,m(θ, ϕ). (A.6)

Another two coefficients constitute a linear combination of
the two vector spherical harmonics Eq. (A.2) related to the
angular part. It is readily verified the four basis-harmonics
defined above are orthonormal
∫

S �,m
(i)

†
(θ, ϕ)S �′,m′

( j) (θ, ϕ)d� = δi jδ�,�′δm,m′ ,
∫

V �,m
(i)

†
(θ, ϕ)V �′,m′

( j) (θ, ϕ)d� = δi jδ�,�′δm,m′ ,
∫

S �,m
(i)

†
(θ, ϕ)V �′,m′

( j) (θ, ϕ)d� = 0. (A.7)

It is important to note that the above four-component har-
monic bases only represent the factorized angular part of a
covariant four-vector, but they are not covariant themself. For

instance,V �,m
(i)

†
indicates a row matrix of complex functions,

as the conjugate transpose of V �,m
(i) .

Following the convention in [18], one denotes the coeffi-
cients for Aμ and Sμ by ( f, h, a, k) and (ψ, η, α, χ), respec-
tively. The resultant decompositions read

Aμ(t, r, θ, ϕ)

=
∑

�,m

[
f �,m(t, r)S �,m

(1) (θ, ϕ) + h�,m(t, r)S �,m
(2) (θ, ϕ)

+k�,m(t, r)V �,m
(1) (θ, ϕ) + a�,m(t, r)V �,m

(2) (θ, ϕ)
]
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=
∑

�,m

⎛

⎜⎜⎜
⎜
⎝

0
0

a�,m (t,r)√
�(�+1)

1
sin θ

∂Y �,m (θ,ϕ)
∂ϕ

− a�,m (t,r)√
�(�+1)

sin θ
∂Y �,m (θ,ϕ)

∂θ

⎞

⎟⎟⎟
⎟
⎠

+

⎛

⎜⎜⎜⎜
⎝

f �,m(t, r)Y �,m(θ, ϕ)

h�,m(t, r)Y �,m(θ, ϕ)
k�,m (t,r)√

�(�+1)

∂Y �,m (θ,ϕ)
∂θ

k�,m (t,r)√
�(�+1)

∂Y �,m (θ,ϕ)
∂ϕ

⎞

⎟⎟⎟⎟
⎠

(A.8)

and

Jμ(t, r, θ, ϕ) =
∑

�,m

[
ψ�,m(t, r)S �,m

(1) (θ, ϕ)

+η�,m(t, r)S �,m
(2) (θ, ϕ) + χ�,m(t, r)V �,m

(1) (θ, ϕ)

+α�,m(t, r)V �,m
(2) (θ, ϕ)

]
. (A.9)

By substituting Eqs. (A.8) and (A.9) into Eq. (2), one
obtains the equations of motion for the four expansion coef-
ficients ( f, h, a, k). As shown in [18], the current conserva-
tion Sμ;μ = 0 removes the dependence of one of the vari-
ables, and a particular choice of gauge eliminates another.
The resultant two radial master equations are given by Eq. (6),
which possess identical forms in terms of the variables

	1(t, r) = a�,m(t, r),

	2(t, r) = r2

�(� + 1)

(
h�,m

,0(t, r) − f �,m
,r (t, r)

)
, (A.10)

and the corresponding source terms are given by

S1(t, r) = α�,m(t, r),

S2(t, r) = 1

�(� + 1)

[(
r2ψ�,m

)

,r
(t, r) − η�,m

,0(t, r)

]
.

(A.11)

The two master equations for 	1 and 	2 are decoupled and
can be interpreted as a photon’s two polarization states. It
is also noted that they correspond to given parities, (−1)�+1

and (−1)�, respectively. The associated Green’s functions
will be denoted as G1 and G2.

B. The Green’s functions

The arguments employed above to decompose the field in
vector spherical harmonics can also be readily applied to
Green’s function defined by Eq. (5). In what follows, we
simplify and derive the equation satisfied by Green’s function
Eq. (5)

Ox
μρ

(
Gμν(x, y)

) = 1√−g
δρ

νδ(x − y).

We first note that the angular decomposition for the l.h.s. of
Eq. (5) remains unchanged for the case of Green’s function.

As a result, the l.h.s. of the equation is obtained straight-
forwardly by replacing 	

�,m
1,2 (t, r) with G�,m

1,2 (t, t ′, r, r ′) in
Eq. (6). On the other hand, the δ function on the r.h.s. of the
equation can be simplified using the completeness condition.
To be specific, for the angular part of δ(x − x ′), we have

∑

i,�,m

S �,m
(i) (θ, ϕ)S �,m

(i)
†
(θ ′, ϕ′) + V �,m

(i) (θ, ϕ)V �,m
(i)

†
(θ ′, ϕ′)

= 14×4 δ(θ − θ ′)δ(ϕ − ϕ′) 1

sin θ
. (A.12)

It is noted that the above relation is for 4 × 4 matrices in
terms of the vector indices. By comparing against Eqs. (A.11)
and (5), one finds1

S�,m
G1 = S�,m

G1 (r, r ′, θ ′, ϕ′) = δ(r − r ′)
r2 V �,m

(2)

†
(θ ′, ϕ′),

S�,m
G2 = S�,m

G2 (r, r ′, θ ′, ϕ′) = 2

�(� + 1)r
δ(r − r ′)S �,m

(1)

†
(θ ′, ϕ′).

(A.13)

Subsequently, one obtains the radial sector of the equation
satisfied by the Green’s function

∂2

∂t2 G
�,m
i (t; r, r ′) +

(
− ∂2

∂r2 + VRW

)
G�,m

i (t; r, r ′)

= δ(t)S�,m
Gi (r, r ′, θ ′, ϕ′). (A.14)

Also, since the metric is static, the Green’s function is transla-
tional invariant in time, we have replaced the temporal argu-
ments by their difference

(t, t ′) → (t − t ′) → t.

Due to the specific forms of Eq. (A.13), we note that
Eq. (A.14), by itself, does not qualify as an equation for a
univariable “Green’s function”. Therefore, in order to solve
it, one may further introduce a second Green’s function G
tailored for the radial equation. In the frequency domain, it
reads

−ω2G�,m(ω, r, r ′) +
(

− ∂2

∂r2 + VRW

)
G�,m(ω, r, r ′)

= δ(r − r ′). (A.15)

We observe it is precisely the definition of Green’s function
for the radial master equation of the black hole quasinormal
mode. This is because it satisfies not only the appropriate
wave equation for a point source but also the outgoing wave

1 In case that one might wonder the role of the implied vector index ν

in V �,m
(2)

†
, it is simply a discrete degree of freedom associated with the

point-like external source, similar to θ ′, a continuous degree of freedom.
As the latter will be integrated out when the Green’s function is applied
to a given external source, ν will be contracted.
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boundary conditions. Subsequently, the solution of the mas-
ter equation Eq. (6) can be written as

	
�,m
i (ω; r, r ′) =

∫
dr ′G�,m(ω, r, r ′)S�,m

i (r, r ′, θ ′, ϕ′).

(A.16)

To process with Eq. (A.14), one has

G�,m
i (ω; r, r ′) =

∫
dr ′′G�,m(ω, r, r ′′)S�,m

Gi (r ′′, r ′, θ ′, ϕ′).

(A.17)

By putting all the pieces together, we finally arrive at the
formal expression for the Green’s function defined in Eq. (5)
by making use of G�,m(ω, r, r ′). In particular, the Green’s
function for 	1 defined in Eq. (A.10) reads

G̃1(ω; r, r′) =
∑

�,m

G�,m(ω, r, r ′)
r ′2 V �,m

(2) (θ, ϕ)V �,m
(2)

†
(θ ′, ϕ′).

(A.18)

Apart from that the factor 1/r ′2, the resultant expression is
reminiscent of Eq. (14) of [16] for the case of scalar pertur-
bations.

Also, we clarify the notations adopted for the source terms
in the above derivations. We have introduced two different
layers of Green’s functions to solve the equation of motion
for electromagnetic perturbations. The term Sμ in Eqs. (2)
or (3) is the source term of the original Maxwell equation.
In terms of vector spherical harmonics, the equation is then
simplified by separating the angular sector, and the resultant
radial equations are Eqs. (6) or (A.14). The corresponding
source terms denoted by S�,m and S�,m

i are related to Sμ and
can be evaluated in terms of those of the original Maxwell
equation using, for instance, the relations Eqs. (A.11). When
comparing Eq. (A.14) to Eq. (6), the former is a specific case
where its source terms are tailored for the Green’s function
defined by Eq. (5). Therefore, the subscripts of the source
terms in the two cases are denoted, respectively, by Gi and i .
The radial master equations Eq. (A.14) and Eq. (6) involve
two independent degrees of freedom. However, since they
possess similar form, and subsequently, identical quasinor-
mal frequencies, they are often presented as a single equation
in most literature, where the subscript Gi or i is omitted.

C. The numerical scheme to calculate the time-domain
correlator

Similar to Ref. [16], one aims to evaluate the inverse Fourier
transform of Eq. (17) without resorting to Jordan’s lemma.
The calculation consists of an integral of a strongly oscillat-
ing complex function and an infinite summation. To achieve
this, one may utilize the freedom to choose a specific form
of the emission source to their advantage. In particular, the

authors of Ref. [16] consider a static spherical source that
possesses a specific spatial distribution. Green’s function is
approximated using the asymptotic (and analytic) form of the
two solutions of the corresponding homogeneous equation.
Then the inverse Fourier transform is performed for the given
source. The summation for angular momentum is carried out
by truncating at a given order.

On the other hand, in Sect. 3, we adopt the approach intro-
duced in [19] by numerically evaluating the Green’s func-
tion with appropriate boundary conditions using the matrix
method [20,21]. To be specific, the main idea is first to intro-
duce some appropriate change of variables for both the spa-
tial coordinate and wavefunction of Eq. (6). As a result, the
frequency-domain wavefunction is defined on the interval
x̄ = r−rh

r ∈ [0, 1] (see Fig. 1) and its boundary condi-
tions at horizon and infinity are taken care of, similar to
Leaver’s continued fraction method. The resulting second-
order ordinary differential equation is then discretized and
rewritten into a matrix equation, where the wavefunction and
its derivatives are replaced by properly linear combinations
of the (unknown) function values on the grids. The first and
last rows of the matrix are no longer physically relevant as
they do not provide meaningful information on the boundary,
thus replaced by (1, 0, . . . , 0) and (0, . . . , 0, 1). Now, since
the r.h.s. of Eq. (6) does not vanish, the obtained matrix is
not singular, and its inverse corresponds to the Green func-
tion. To be more specific, although the determinant of the
matrix indeed vanishes when the frequency takes the (com-
plex) values of the quasinormal frequencies ω = ωn,�, our
numerical integration only involves the real axis of ω. In
other words, by inverting the matrix, one obtains the con-
volution of the Green’s function and the external source,
namely, Eq. (17). Now, in order to facilitate the numerical
integration of the frequency, we choose the form Eq. (16).
As explained in the text, it corresponds to a transient rather
than a static source while effectively suppressing the contri-
butions from the high-frequency part where Green’s function
oscillates significantly. Also, we consider a truncation in the
summation of the angular momentum. More detailed dis-
cussions regarding the descritization process of the matrix
method can be found in Refs. [20,21] and its adaptation to
deal with inhomogeneous differential equation is discussed
in Ref. [19].
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