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The detection of gravitational waves from compact binary mergers by the LIGO/Virgo collab-
oration has, for the first time, allowed us to test relativistic gravity in its strong, dynamical and
nonlinear regime, thus opening a new arena to confront general relativity (and modifications thereof)
against observations. We consider a theory which modifies general relativity by introducing a scalar
field coupled to a parity-violating curvature term known as dynamical Chern-Simons gravity. In
this theory, spinning black holes are different from their general relativistic counterparts and can
thus serve as probes to this theory. We study linear gravito-scalar perturbations of black holes in
dynamical Chern-Simons gravity at leading-order in spin and (i) obtain the perturbed field equations
describing the evolution of the perturbed gravitational and scalar fields, (ii) numerically solve these
equations by direct integration to calculate the quasinormal mode frequencies for the dominant and
higher multipoles and tabulate them, (iii) find strong evidence that these rotating black holes are
linearly stable, and (iv) present general fitting functions for different multipoles for gravitational
and scalar quasinormal mode frequencies in terms of spin and Chern-Simons coupling parameter.
Our results can be used to validate the ringdown of small-spin remnants of numerical relativity
simulations of black hole binaries in dynamical Chern-Simons gravity and pave the way towards
future tests of this theory with gravitational wave ringdown observations.

I. INTRODUCTION

General Relativity (GR) has passed a plethora of ex-
perimental tests both in the Solar System [1] and in bi-
nary pulsars systems [2, 3] making it one of the most
successful physical theories. These tests probe situations
in which gravitational fields are either weak, as in the
Solar System, or systems where the field is strong but
the system is slowly-varying, as in binary pulsars. How-
ever, the observation of gravitational waves (GW) by
the LIGO/Virgo collaboration offers a new arena, where
the spacetime is highly dynamical and strongly curved,
in which the predictions of Einstein’s theory have being
once more shown to agree with observations [4]. Com-
plementary, GW observations also allow one to constrain
modifications to GR [5–7] and with more ground-based
and space-based detectors in the future, these constraints
will become more stringent (see e.g. [8–12]).
But why one should study modifications to GR? There

are a couple observational and theoretical anomalies that
GR in its simplest form (i.e., without additional “dark”
components or a UV completion) fails to answer. These
include the late-time acceleration of the Universe [13,
14], the anomalous galaxy rotation curves [15, 16], the
matter-antimatter asymmetry of the Universe [17], and
the existence of spacetime singularities, e.g. in the inte-
rior of black holes. A resolution to these anomalies may
reside in a modification to Einstein’s theory that passes
all current tests, yet yields deviations in other extreme
regimes where the gravitational interaction is simultane-
ously strong, non-linear and highly dynamical. On the
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theoretical side, the incompatibility of GR with quantum
mechanics has prompted efforts in a variety of unified the-
ories, including string theory and loop quantum gravity.
On the phenomenological side, the observational anoma-
lies we described have motivated various extensions to
GR [18, 19], such as f(R) gravity and scalar-tensor the-
ories [20, 21], tensor-vector-scalar theories [22], massive
gravity [23] and bi-gravity [24]. Whether these attempts
at modifying GR have any physical implications, requires
one to first derive the predictions of such theories (in a
given scenario) which should be followed by a comparison
of these predictions against observations.

Although the correct completion of GR is yet unknown,
GWs from compact binary coalescence observations can
help in constraining and excluding entire arrays of mod-
ified theories of gravity. For instance, the GWs emitted
in the inspiral of black hole binaries can tell us about
the presence of extra radiative degrees of freedom, which
provide an extra energy sink to which orbital energy and
angular momentum can be extracted from the binary and
hence affecting the systems orbital evolution (see e.g. [7]).
Here we concentrate on GWs emitted when the newly
formed black hole relaxes towards its final equilibrium
state by emitting its last dying GW notes, the so-called
ringdown. The GWs emitted during the ringdown can be
described by a set of quasinormal modes (QNMs) with
complex-valued frequencies whose imaginary part dictate
how fast the mode decays in time. In GR, the observation
of two or more QNMs in the ringdown signal allows one
to uniquely infer the properties of the remnant Kerr black
hole, similarly to how the observation of emission lines
allows one to identify chemical elements [25]. This “black
hole spectroscopy” thus allows one to test the “Kerr hy-
pothesis” [26–28] i.e., that the BHs found in Nature are
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described by the Kerr metric. In general, modified the-
ories of gravity do not admit the Kerr metric as a solu-
tion (see e.g. [19]) and even when they do so [29–31], the
presence of the modifications to GR can be probed by
perturbations to the Kerr metric [32]. This makes BH
spectroscopy a powerful probe into beyond-GR physics.
Here we concentrate on modifications to GR which in-

troduce a scalar field non-minimally coupled to squared
curvature scalars, known as quadratic gravity theo-
ries [33, 34]. One subset of these theories, known as dy-
namical Chern-Simons (dCS) gravity [35], was proposed
as an explanation to the matter-antimatter asymmetry
of the universe by introducing additional parity-violating
gravitational interactions, challenging a fundamental pil-
lar of GR [36, 37]. The theory is poorly constrained by
Solar System experiments (see [38] for an overview), and
remains unconstrained by both binary pulsars [39] and
GWs [40] observations. Nonetheless, first constraints on
dCS were obtained through multi-messenger neutron star
observations in [41].
In dCS, nonrotating BHs are identical to their GR

counterparts, but when spun a nontrivial scalar field con-
figuration arises and whose presence affects the space-
time metric. Perturbations of spherically symmetric BHs
in dCS were first studied in [42] who found the sys-
tem of equation to be coupled and complicated. Later
work decoupled these equations and studied them exten-
sively [43–45]. Here extend all of these results to axisym-
metric, slowly-rotating BHs in dCS gravity and study
their QNM spectra and stability.

Executive summary

We study the QNM spectra of slowly-rotating BHs in
dCS gravity, generalizing [43, 44] which focused on the
non-rotating case. To do so, we consider as a background
the BH solution obtained in [46, 47]. We analyze the
most general linear perturbations to this solution, tak-
ing into consideration both gravitational and scalar per-
turbations, but limiting ourselves to leading order in the
dimensionless spin a/M and the Chern-Simons (CS) cou-
pling strength α/M2, where M is the BH’s mass. The
outcome of this calculation is a pair of coupled, inho-
mogenous ODEs for the axial gravitational and scalar
perturbations and a single homogeneous equation for the
polar gravitational perturbations. The latter is identical
to that found for slowly-rotating Kerr BHs in GR [48].
With these equations in hand, we numerically calculate

the QNM frequencies ω, exploring their dependence on
spin and coupling strength. We find that the QNM spec-
tra can be split into three categories: (i) the scalar-led
modes, whose frequencies in the limit α/M2 → 0 reduce
to that of a test scalar field on a slowly-rotating Kerr
BH background; (ii) the (axial) gravitational-led modes,
whose frequencies in the limit α/M2 → 0 reduce to that
of the axial-gravitational modes in a slowly-rotating Kerr
background; (iii) the (polar) gravitational modes, with

frequencies identical to that of a slowly-rotating Kerr BH
in GR regardless of α. Our results show that the isospec-
trality existent in GR between axial and polar gravita-
tional modes is broken due to the coupling of the former
with the scalar field. This was first observed in [44] in
the nonrotating limit and is shown here to persist when
small rotation is added.
We found (at fixed spin a/M) that the axial gravita-

tional modes decay fast, but oscillate slower in dCS than
in GR, with the latter being more sensitive to the CS cou-
pling. We also found that these corrections scale with α2

due to the coupling between the scalar and axial modes.
We calculated a large set of QNM frequencies (see Ap-
pendix C) which we used to obtain fitting formulas for
their real and imaginary parts as function of dimension-
less spin and CS coupling [cf. Eqs. (54a) and (54b)]. We
also found the QNMs decay for all values of spin and CS
coupling within the limits of the slow rotation and small
coupling approximation we employ. This is strong evi-
dence that slowly rotating BH solutions in dCS gravity
are linearly stable against gravito-scalar perturbations.
In the rest of this paper we show how these results

were obtained. In Sec. II we give a short overview of dCS
gravity and present the slowly-rotating BH solutions in
this theory, whose QNM frequencies we are interested in
computing. In Sec. III we review some general aspects of
BH perturbation theory and derive the master equations
that govern linear perturbations of our background BH
spacetime. In Sec. IV we explain how these equations can
be integrated numerically and in Sec. V we present our
numerical results. Finally, in Sec. VI we summarize our
main findings and discuss some avenues for future work.
We adopt the following conventions unless stated oth-

erwise: we work in 4-dimensions with metric signature
(−,+,+,+) as in [49]. Greek indices (α, β....) represent
spacetime indices, round brackets around indices repre-
sent symmetrization, ∂µ represents a partial derivative
and ✷ = ∇µ∇µ the d’Alembertian operator. The Ein-
stein summation convention is used throughout and we
work in geometrical units in which G = 1 = c.

II. DYNAMICAL CHERN-SIMONS GRAVITY

A. Basics

Let us start with a brief review of dCS gravity and
establish some notation [37]. In vacuum, the theory is
described by the action

S = SEH + Sϑ + SCS , (1)

where the Einstein-Hilbert term is

SEH = κ

∫

d4x
√−g R , (2)

where κ = (16π)−1, R is the Ricci scalar and g is the
determinant of the metric gab. The action for the scalar
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field is

Sϑ = −1

2

∫

d4x
√−g [gµν(∇µϑ)(∇νϑ) + 2V (ϑ)] , (3)

where ∇µ is the covariant derivative operator compatible
with the metric, while V (ϑ) is a potential for the scalar
that we set to zero. The scalar field is nonminimally
coupled to the Pontryagin density ∗RR as

SCS =
α

4

∫

d4x
√−gϑ ∗RR , ∗RR = ∗Rµ

ν
κδRν

µκδ , (4)

where α is the CS coupling constant with units of
[Length]2 and ∗Rµ

ν
κδ is the dual Riemann tensor

∗Rµ
ν
κδ =

1

2
ǫµναβ Rαβκδ , (5)

and ǫµναβ is the Levi-Civita tensor.
The field equations are obtained by varying the action

in Eq. (1) with respect to the (inverse) metric gµν and
scalar field ϑ. Variation with respect to gµν gives

Gµν +
α

κ
Cµν =

1

2κ
T ϑ
µν , (6)

where Gµν is the Einstein tensor, Cµν is the (trace-free)
C–tensor

Cµν = (∇σϑ)ǫ
σδα(µ∇αR

ν)
δ + (∇σ∇δϑ)

∗Rδ(µν)σ , (7)

which contains derivatives of the scalar field, and T ϑ
µν is

the canonical scalar field stress-energy tensor

T ϑ
µν =

[

(∇µϑ)(∇νϑ)−
1

2
gµν(∇σϑ)(∇σϑ)

]

. (8)

Variation with respect to ϑ gives the inhomogenous wave
equation

✷ϑ = −α

4
∗RR . (9)

One can show that ∗RR vanishes for static, spherically
symmetric spacetimes, resulting in ϑ = const. as the only
regular solutions of dCS in BH spacetimes with these
symmetries [35, 42]. This is no longer the case when
these symmetries are lifted as we will see next.

B. Slowly-rotating Black Holes

Slowly-rotating BH solutions in dCS are known both
analytically [46, 47, 50, 51] and numerically [52]. Here
we will consider the solution found in [46, 47], which was
obtained by solving the field equations (6) and (8) per-
turbatively to linear order in spin a and to quadratic
order in the coupling strength α. Following the notation
of [46], the line element of this solution is

ds̄2 = ds2
SR

+
5

4

α2

κ

a

r4

(

1 +
12

7

M

r
+

27

10

M2

r2

)

sin2 θdtdφ ,

(10)

where the bar stands for “background” and where ds2
SR

is the line element for a slowly-rotating Kerr BH, also to
linear order in a,

ds2
SR

= −f(r)dt2 − 4Ma sin2 θ

r
dtdφ+ f(r)−1dr2

+ r2dθ2 + r2 sin2 θdφ2 , (11)

and f(r) = 1 − 2M/r is the Schwarzschild factor. The
solution also contains a nontrivial scalar field,

ϑ̄ =
5

8

aα

M

cos θ

r2

(

1 +
2M

r
+

18M2

5r2

)

. (12)

A far-field analysis shows that the BH has a scalar dipole
charge −(5/8)(aα/M).
We see from Eq. (10) that the metric for slowly-

rotating BHs in dCS gravity has an additional modifica-
tion in the (tφ)-component when compared to the metric
in GR given in Eq. (11). This modifies the horizon angu-
lar frequency ΩH as observed by a zero angular momen-
tum observer at the horizon location rH at first order in
spin and second order in α [46] as

ΩH =
a

4M2
− 709α2a

28672κM6
=

a

4M2

(

1− 709

7168
ζ

)

, (13)

where we defined

ζ = α2/(M4κ). (14)

As we will see later, this α2 term affects the QNMs.

III. BLACK HOLE PERTURBATION THEORY

A. Decomposition of the fundamental fields

We consider linear perturbations

gµν = ḡµν + ǫ δµν , ϑ = ϑ̄+ ǫ δϑ , (15)

to the background BH spacetime [Eqs. (10) and (12)],
where ǫ is a bookkeeping parameter and both δgµν and
δϑ are functions of the coordinates of the metric.
The angular dependence of these perturbations can be

described by scalar, vector and tensor spherical harmon-
ics. The metric decomposition comes from the trans-
formation properties of the ten components of the per-
turbation tensor δgµν under a rotation of the frame of
origin [53]. These quantities transform as three SO(2)
scalars δgMN , two SO(2) vectors δgmN and one SO(2)
second rank tensor δgab which can be expanded into a
complete basis formed by spherical harmonics of differ-
ent corresponding rank. Under a parity transformation,
i.e., the simultaneous shifts θ → π − θ and φ → φ + π,
the above mentioned metric quantities can be classified
into the odd (or “axial”) and even (or “polar”) sectors
which are multiplied by (−1)ℓ+1 and (−1)ℓ respectively,
such that

δgµν(t, r, θ, φ) = δgoddµν (t, r, θ, φ) + δgevenµν (t, r, θ, φ) , (16)

where
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δgoddµν =









0 0 hℓm
0 (t, r)Sℓm

θ (θ, φ) hℓm
0 (t, r)Sℓm

φ (θ, φ)

∗ 0 hℓm
1 (t, r)Sℓm

θ (θ, φ) hℓm
1 (t, r)Sℓm

φ (θ, φ)
∗ ∗ 0 0
∗ ∗ ∗ 0









, (17)

and

δgevenµν =









Hℓm
0 (t, r)Yℓm(θ, φ) Hℓm

1 (t, r)Yℓm(θ, φ) 0 0
∗ Hℓm

2 (t, r)Yℓm(θ, φ) 0 0
∗ ∗ r2Kℓm(t, r)Yℓm(θ, φ) 0
∗ ∗ ∗ r2 sin2 θKℓm(t, r)Yℓm(θ, φ)









, (18)

where the asterisk denotes symmetric components,
Yℓm(θ, φ) are the scalar spherical harmonics, while

Sℓm
θ (θ, φ) = − 1

sin θ
∂φYℓm(θ, φ) , (19)

Sℓm
φ (θ, φ) = sin θ∂θYℓm(θ, φ) , (20)

and a sum over ℓ and m in the usual sense (ℓ > 0 and
|m| 6 ℓ) is implicit. Equations (17) and (18) hold under
the Regge-Wheeler gauge [53], which can be applied in
theories with a massless graviton that support the usual
two polarizations. In certain modified theories, a gravi-
ton can propagate with up to six polarizations, thereby
leaving no residual gauge freedom. However, for the case
of dCS gravity, GWs continue to propagate with only two
polarizations (as measured at future null infinity) [54, 55],
and thus, one retains enough gauge freedom to impose
the Regge-Wheeler gauge. Such a decomposition sep-
arates the axial and polar perturbations with different
harmonic index ℓ, i.e., for a given ℓ, we have two sys-
tems of evolution equations, one for the axial sector and
one for the polar sector. These separate sets of equations
completely characterize the linear response of the system.

Additional fields in the system, such as vectors and
scalars, can be decomposed into spherical harmonics of
the corresponding type. For scalar fields, we use scalar
spherical harmonics and the perturbed scalar field reads

δϑ(t, r, θ, φ) =
Rℓm(r, t)

r
Yℓm(θ, φ) . (21)

B. Evolution equations for perturbations of a

slowly rotating black hole

Having established the background spacetime and ex-
plained how the linear perturbations can be decomposed
into scalar and tensor harmonics, we can now derive the
perturbed form of the field equations in dCS gravity. The
procedure is as follows:

• Substitute the linear perturbations (15) into the
field equations Eq. (6) and (9) and expand to linear
order in ǫ.

• Expand the perturbed field equations to linear or-
der in the spin parameter a (slow-rotation approx-
imation) and in the coupling parameter α (small-
coupling approximation). Even though the met-
ric (10) is of order O(α2) we only evaluate the
field equation up to linear-order in α for reasons
explained later.

• Use the orthogonality properties of the spherical
harmonics presented in Appendix A to eliminate
the angular dependence of the functions Aa ∈
{h0, h1, H0, H1, H2,K,R}, making them functions
of t and r only. Moreover, assume an harmonic
time-dependence in time, i.e.,

Aa
ℓm(t, r) = e−iωtAa

ℓm(r) . (22)

• The previous steps yields a system of 11 equations;
10 from the metric field equation (6) and one from
the scalar field equation (9). The latter gives the
evolution equation for the scalar field perturba-
tions, whereas 3 of the metric equations reduce to
the axial gravitational perturbation equation and
the remaining 7 give an expression for the polar
gravitational perturbation equation.

• This system of equations can then be expressed in
general by an equation of the form

DΨj + VjΨj = Sj [Ψk, ∂rΨk] , (23)

where j ∈ {R, RW, ZM}, k ∈ {{R, RW, ZM} − j} with
{R, RW, ZM} denoting the scalar, axial and polar
gravitational perturbations respectively, D is a
second-order radial differential operator, which in
tortoise coordinates (r∗) reduces to d2/dr2∗, and Vj

is the effective potential. The source term Sj is
found to be a linear combination of the Ψk master
functions and its first radial derivatives, e.g. when
j = R, the master function ΨR = Rℓm, and the
source term SR is a function of ΨRW and ΨZM and
their first radial derivatives.

In the next subsections, we provide the final expres-
sions for the perturbation equations for the scalar and
gravitational sectors. A derivation these equation can be
found in a Mathematica notebook which will be made
available upon request.



5

1. Scalar sector

The full equation describing the scalar field perturba-
tion Rℓm is given by

f(r)2∂rrRℓm +
2M

r2
f(r)∂rRℓm +

[

ω2 − V S
eff(r, a)

]

Rℓm

= αf(r) {[g(r) + amh(r)] ΨRW

ℓm + amj(r)∂rΨ
RW

ℓm}
+ αa

{

qℓm
[

k1(r)Ψ
ZM

ℓ−1,m + k2(r)∂rΨ
ZM

ℓ−1,m

]

+ qℓ+1,m

[

k3(r)Ψ
ZM

ℓ+1,m + k4(r)∂rΨ
ZM

ℓ+1,m

]}

, (24)

where f(r) = 1− 2M/r,

qℓm =

√

ℓ2 −m2

4ℓ2 − 1
, (25)

and ∂r denotes radial derivatives. In Eq. (24), the func-
tions g, h, j and ki (i = 1, . . . , 4) also depend on ℓ and the
mass of the black hole M in addition to the radial coordi-
nate. Their explicit forms are shown in Appendix B and
in a Mathematica notebook available upon request. We
also followed [48] and defined the Regge-Wheeler function
ΨRW

ℓm, which to leading order in a is given by

ΨRW

ℓm =
f(r)

r

(

1 +
2mMa

r3ω

)

hℓm
1 , (26)

where hℓm
1 comes from Eq. (17). Similarly, we introduced

the Zerilli-Moncrief function ΨZM

ℓm, which to leading order
in a is given by

ΨZM

ℓm = (z1/z2)− a(z3/z4) , (27)

where

z1 = −2iHℓm
1 (r − 2M) + 2Kℓmr2ω , (28a)

z2 = (6M + λℓr)ω , (28b)

z3 = −4imMω
[

Hℓm
1 (r − 2M) + iKℓmr2ω

]

×
{

48M3 − 24M2r + λℓr
3(λℓ + 2r2ω2)

+ 2Mr2
(

λ2
ℓ + 6r2ω2

)}

, (28c)

z4 = ℓ(ℓ+ 1)r4z32 , (28d)

with λℓ = (ℓ+2)(ℓ− 1), and Hℓm
1 and Kℓm coming from

Eq. (18).

2. Metric sector

The full equation describing the axial gravitational
perturbation λℓm is given by

f(r)2∂rrΨ
RW

ℓm +
2M

r2
f(r)∂rΨ

RW

ℓm +
[

ω2 − V A
eff(r, a)

]

ΨRW

ℓm

= αf(r) {[v(r) + amn(r)]Rℓm + amp(r)∂rR
′
ℓm}

+a
{

qℓm
[

p1(r)Ψ
ZM

ℓ−1,m + p2(r)∂rΨ
ZM

ℓ−1,m

]

+ qℓ+1,m

[

p3(r)Ψ
ZM

ℓ+1,m + p4(r)∂rΨ
ZM

ℓ+1,m

]}

, (29)

where the functions v, n, p and pi (i = 1, . . . , 4) also
depend on ℓ and M in addition to the radial coordinate.
Their explicit forms are given in Appendix B and in a
Mathematica notebook available upon request.
Finally, the polar gravitational perturbation Zℓm sat-

isfies the equation

f(r)2∂rrΨ
ZM

ℓm +
2M

r2
f(r)∂rΨ

ZM

ℓm +
[

ω2 − V P
eff(r, a)

]

ΨZM

ℓm

= αaf(r) {qℓm (s1(r)Rℓ−1,m + s2(r)∂rRℓ−1,m)

+ qℓ+1,m (s3(r)Rℓ+1,m + s4(r)∂rRℓ+1,m)}
+ a

{

qℓm
(

r1(r)Ψ
RW

ℓ−1,m + r2(r)∂rΨ
RW

ℓ−1,m

)

+ qℓ+1,m

(

r3(r)Ψ
RW

ℓ+1,m + r4(r)∂rΨ
RW

ℓ+1,m

)}

, (30)

where the functions si and ri (i = 1, . . . , 4) depend on r,
ℓ and M . Their explicit forms are shown in Appendix B
and in a Mathematica notebook available upon request.

3. Selection Rule and Propensity Rule

The perturbation equations [Eqs. (24), (29) and (30)]
explicitly show that ℓ modes couple to ℓ modes and ℓ± 1
modes. As in GR for slowly-rotating BHs, however, these
equations possess a selection rule [56, 57]. In GR and
at linear order in spin, the selection rule is that the ℓ-
th axial (polar) mode couples to the ℓ ± 1 polar (axial)
mode; at second order in spin, this simple selection rule
needs to be modified [57]. Similarly, in dCS gravity and
at linear order in spin, the same selection rule applies
to the perturbation equations. The only modification is
that in dCS gravity we have two fields with axial parity:
the scalar field (encoded in Rℓm) and the Regge-Wheeler
function (encoded in ΨRW

ℓm). Thus, in dCS gravity, Rℓm

(ΨRW

ℓm) couples to ΨRW

ℓm (Rℓm) and to ΨZM

ℓ±1,m, while ΨZM

ℓm
couples to both Rℓ±1,m and ΨRW

ℓ±1,m.
In addition to this selection rule, the perturbation

equations also suggest a propensity rule. More specifi-
cally, we see that when ℓ = |m|, which dominates the
linear response of the system, Eq. (25) yields qℓm = 0,
and thus the coupling of ℓ modes with ℓ−1 modes is sup-
pressed. This is similar in nature to the propensity rule
of atomic physics, which states that transitions involving
ℓ → ℓ+1 are favored over those involving ℓ → ℓ− 1 [56].
Thus, we expect that the dominant modes are coupled
only to the ℓ or the ℓ + 1 modes, after imposing the se-
lection rule.

C. Simplification of the Perturbation Equations

Mode coupling between perturbation of different ℓ
mode leads to a rich spectrum of solutions, but this paper
is concerned with the QNM frequencies, which, as it turns
out, are not affected by mode coupling to leading order in
spin. Indeed, in GR this has been known since the 1990s,
thanks to the work of Kojima and others [57–60]. Let us
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then establish the same result in dCS gravity to leading
order in spin and in coupling parameter. Without loss of
generality, let us rewrite the perturbation equations as

Aℓm +maÃℓm + a(qℓP̂ℓ−1,m + qℓ+1P̂ℓ+1,m) = 0 , (31)

Pℓm +maP̃ℓm + a(qℓÂℓ−1,m + qℓ+1Âℓ+1,m) = 0 . (32)

In these equations, Aℓm, Ãℓm and Âℓ±1,m are linear com-
binations of odd (axial) perturbations, which include the
Regge-Wheeler function ΨRW

ℓm and its derivatives, and also
the scalar field perturbation Rℓm and its derivatives; we
remind the reader that the scalar field perturbations are
of odd (axial) parity as seen from Eq. (9). The prefac-
tors of α0 and α1 have also been suppressed in the above
functions for simplicity of notation. Similarly, Pℓm, P̃ℓm

and P̂ℓ±1,m are linear combinations of polar perturba-
tions encoded in the Zerilli-Moncrief function ΨZM

ℓm and
its derivatives.
In GR, Kojima [58] showed using symmetry arguments

for the m = 0 mode that the terms P̂ℓ±1,m and Âℓ±1,m in
Eqs. (31) and (32) make no contribution to the QNMs.
This argument was later extended to other values of m
in [57] for massive vector field perturbations of the slowly-
rotating Kerr metric in GR. Following [57], we now ex-
tend this argument to slowly rotating BHs in dCS gravity.
Consider a simultaneous transformation,

xℓ,m →∓ xℓ,−m , yℓ,m →± yℓ,−m ,

m →−m, a →− a , (33)

where xℓm and yℓm represent the axial and polar pertur-
bation variables respectively, with indices (ℓ,m) given in
Eqs. (31) and (32) which remain invariant under such
a transformation. The boundary conditions for QNMs
of slowly rotating BHs in dCS are also invariant under
such transformation. Then, in the slow rotation limit,
the QNM frequencies can be expanded as

ω = ω0 +maω1 + aω2 +O(a2) , (34)

where ω0 is the eigenfrequency of the non-rotating BH in
dCS gravity, which in our case is just a Schwarzschild BH.
The effective potential presented in Sec. III B is propor-
tional to a0 and ma, but not to a alone (see Appendix B).
Hence, ω2 = 0, because the above potential would not
source such a term1.
The only terms that could source ω2, at least in prin-

ciple, are (P̂ℓ±1,m, Âℓ±1,m). This is because the sec-
ond terms in Eqs. (31) and (32) are explicitly propor-

tional to m, and because (Ãℓm, P̃ℓm) cannot be inversely

1 Another (more physical) way to see this is by considering the
a → −a transformation of Eq. (33). Such a transformation would
physically correspond to inverting the direction of the BH’s spin
angular momentum. However, the QNM frequencies should not
change due to the spin orientation. Hence, in general, ω2 = 0
making Eq. (34) invariant under the symmetry in Eq. (33).

proportional to m. Whether (P̂ℓ±1,m, Âℓ±1,m) source
ω2 depends on if they are independent of m or not.
However, since the second and third terms in Eqs. (31)

and (32) are linear in a, both the functions (Ãℓm, P̃ℓm)

and (P̂ℓ±1,m, Âℓ±1,m) must be kept only to O(a0). There-
fore, they correspond to perturbations of a non-rotating
BH, which is necessarily spherically symmetric, implying
in particular that (P̂ℓ±1,m, Âℓ±1,m) are actually indepen-
dent of m. But since ω2 vanishes by the arguments pre-
sented above, it follows that (P̂ℓ±1,m, Âℓ±1,m) need not
be included when computing the QNM spectrum.
Since the mode coupling terms can be neglected, our

perturbation equations reduce to

f(r)2∂rrRℓm +
2M

r2
f(r)∂rRℓm +

[

ω2 − V S
eff(r, a)

]

Rℓm

= αf(r) {[g(r) + amh(r)] ΨRW

ℓm + amj(r)∂rΨ
RW

ℓm} ,

(35a)

f(r)2∂rrΨ
RW

ℓm +
2M

r2
f(r)∂rΨ

RW

ℓm +
[

ω2 − V A
eff(r, a)

]

ΨRW

ℓm

= αf(r) {[v(r) + amn(r)]Rℓm + amp(r)∂rRℓm} ,

(35b)

f(r)2∂rrΨ
ZM

ℓm +
2M

r2
f(r)∂rΨ

ZM

ℓm +
[

ω2 − V P
eff(r, a)

]

ΨZM

ℓm

= 0 , (35c)

where the values of all these functions are the same as
before and are given in Appendix B.
Equations (35) can be recast in a Schrödinger-like form

by introducing tortoise coordinates r∗,

r∗ = r + 2M log
( r

2M
− 1
)

. (36)

However, when solving these equations, we will stick to
the form given above to avoid confusion. Note in pass-
ing that the tortoise coordinate is typically used to map
Schwarzschild coordinates to a horizon-penetrating (typ-
ically ingoing Eddington-Finkelstein) coordinate system,
which is well adapted to imposing boundary conditions
at the BH horizon. The standard transformation known
in GR, however, may need to be modified by terms of
O(α2a2) to transform a dCS BH to horizon-penetrating
coordinates. Since we are here working to a lower order
in perturbation theory, we do not need to worry about
such details.

D. dCS coupling dependence of ω through a Fermi

estimate

As seen from the previous section, for the calculation
of the QNM frequencies, the perturbed equations take
the form in Eqs. (35). In this section, we discuss the de-
pendence of the QNM frequency ω on the dCS coupling
parameter α. We see that for the polar gravitational
sector Eq. (35c) is entirely independent of the CS cou-
pling parameter, whereas Eqs. (35a) and (35b) have a
non-vanishing linear-in-α source term.
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What does this imply on the dCS corrections to the
QNM frequencies ω? We can answer this question with a
Fermi estimate in which we replace any radial derivative
by a characteristic radius ∂r → 1/R and evaluate the
equation at this characteristic radius. Doing this in the
perturbation equations (35a) and (35b) gives

[

G(R) + ω2 − V S
eff(R)

]

Rlm = αH(R)Ψlm
RW

, (37a)
[

G(R) + ω2 − V A
eff(R)

]

Ψlm
RW

= αI(R)Rlm , (37b)

where G(R), H(R), I(R) are polynomials in the radial
coordinate r evaluated at r = R, namely

G(R) =
f(R)2

r2
+

2Mf(R)

R3
, (38)

H(R) = f(R)

[

g(R) + am

(

h(R) +
j(R)

R

)]

, (39)

I(R) = f(R)

[

v(R) + am

(

n(R) +
p(R)

R

)]

. (40)

Equations (37a) can be solved for Rℓm and then inserted
into Eq. (37b), which renders an equation for ω since ΨRW

ℓm
cancels and the ω dependence in H(R) and I(R) cancels
when they are multiplied together, and one finds

[

G+ ω2 − V S
eff

] [

G+ ω2 − V A
eff

]

= α2I H , (41)

where we have suppressed the argument of the functions.
This is a quadratic equation for ω2, which we can solve
perturbatively in α ≪ 1 to find

ω = ωGR + ζ δω +O(α3) , (42)

where, recall, ζ = α2/(M4κ) and

ωGR =
(

V A
eff −G

)1/2
, (43)

δω = ± I H

2
(

V A
eff −G

)1/2
(V A

eff − V S
eff)

. (44)

If we evaluate these expressions at R = 3M , which is
close to where the effective potentials V A

eff and V S
eff are

extremized, we find for the ℓ = 2 mode at a = 0 that
MωGR = 1/3 (≈ 0.333) and Mδω = −2/81 (≈ −0.025),
both of which are close to the real part of the correct
numerical answers we will find later. The precise numer-
ical factors, however, do not matter here. What matters
is that the above Fermi estimate shows explicitly that
the dCS corrections to the QNM frequencies will be of
O(α2). If we had included terms proportional to α2 in
the perturbation equations, they would have only gener-
ated corrections of O(α3) in the QNM frequencies. This
is why it suffices to keep only terms up to O(α) in the
perturbation equations.

IV. CALCULATION OF THE QUASINORMAL

MODES

The late-time GW signal from a perturbed BH is gen-
erally dominated by a sum of exponentially damped si-
nusoids known as the QNMs. These correspond to the

characteristic vibrational modes of the spacetime [61] and
are complex valued. The real part represents the tem-
poral oscillations whereas the imaginary part represents
an exponentially decaying temporal part of the oscilla-
tions. Using the slowly-rotating approximation for find-
ing QNMs of BHs allows us to use well-established nu-
merical methods for their calculation. In this section, we
show the boundary conditions and the numerical integra-
tion technique that will be used to calculate the QNMs.

A. Boundary conditions

The QNMs are solutions of the inhomogeneous wave
equations [Eqs. (35a) to (35c)] with appropriate bound-
ary conditions. For the case of slowly-rotating BHs, we
have two boundaries: one at spatial infinity and the other
at the horizon rH. The horizon of the BH described by the
metric of Eq. (10) coincides with the Schwarzschild hori-
zon (they are both located at r = 2M in Schwarzschild-
like coordinates) at leading order in spin.
A QNM represents waves which are of purely ingoing

at the horizon rH and purely outgoing at spatial infin-
ity, which are characterized by complex frequency ω with
Re(ω) > 0. These boundary conditions are,

Ψj ∝
{

e−iωHr∗ , r → rH ,
eiωr∗ , r → ∞ ,

(45)

where recall that Ψj = {Rℓm,ΨRW

ℓm,ΨZM

ℓm}, r∗ is the tor-
toise coordinate and ωH = ω −mΩH, with ΩH, given by
Eq. (13), is the horizon angular frequency for the BH
under consideration.

B. Evaluation of the QNMs: direct integration

To compute the QNMs, we use the direct integration
method. In this method, we integrate the equations
twice, once from finite distance outside the horizon to-
wards spatial infinity, and once from a finite distance far
from the horizon but inwards towards the event horizon.
The integrations are started using the boundary condi-
tions presented above, with a given choice of ω. We then
compare the two numerical solutions at a matching point
rm that is somewhere between the horizon and spatial
infinity, to check whether the master functions and their
radial derivatives are continuous at rm. Typically, this
is not the case, so we then iterate this process over var-
ious values of ω until one finds a choice of the complex
frequency that leads to continuous and differentiable so-
lutions. In practice, this can be done by finding the value
of ω for which the WronskianW of the two solutions van-
ishes at rm [62].
However, as simple as this approach appears, it is nu-

merically difficult to implement due to inherent numer-
ical instabilities. If one chooses the wrong value for ω
then the trial integrations will tend to diverge as one ap-
proaches spatial infinity (for the outward solution) or as
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one approaches the BH horizon (for the inward solution).
Also, since numerically we cannot start the integrations
exactly at the horizon or at spatial infinity, the boundary
conditions are not sufficiently accurate in general.
To improve numerical stability, one can improve the

boundary conditions by finding analytic asymptotic solu-
tions to the perturbation equations about spatial infinity
and the horizon. More specifically, we can write [63],

Ψj ∝
{

e−iωHr∗
∑∞

k=0(γk)j(r − rH)
k , r → rH ,

eiωr∗
∑∞

k=0(ηk)jr
−k , r → ∞ ,

(46)

where the coefficients γk and ηk can be determined or-
der by order in a series expansion of the perturbation
equations around spatial infinity or the horizon. These
coefficients can all be written entirely in terms of (γ0)j
and (η0)j , but they are long and not illuminating, so
we will not present them in the paper, and instead they
will be made available through a Mathematica notebook
upon request. We will use these boundary conditions for
our numerical integrations.
We will here compute the QNMs adapting the proce-

dure in [64] to our case. We begin by constructing two
square matrices Wo and We, which is four dimensional
for the axial case due to the coupling between ΨRW

ℓm and
Rℓm, and two dimensional for the polar case due to the
lack of coupling. The columns of Wo,e are independent
solutions of the perturbation equations, so

Wo =

















HΨ
RW (1)
ℓm IΨ

RW (1)
ℓm HΨ

RW (2)
ℓm IΨ

RW (2)
ℓm

∂rHΨ
RW (1)
ℓm ∂r IΨ

RW (1)
ℓm ∂rHΨ

RW (2)
ℓm ∂r IΨ

RW (2)
ℓm

HR
(1)
ℓm IR

(1)
ℓm HR

(2)
ℓm IR

(2)
ℓm

∂rHR
(1)
ℓm ∂r IR

(1)
ℓm ∂rHR

(2)
ℓm ∂r IR

(2)
ℓm

















,

(47)

We =

(

HΨ
ZM

ℓm IΨ
ZM

ℓm

∂rHΨ
ZM

ℓm ∂r IΨ
ZM

ℓm

)

, (48)

where, the pre-subscript to the perturbation function

H,IΨ denote whether the solutions is obtained by inte-
gration from the horizon to rm, or from spatial infinity
to rm, while the superscripts Ψ(1),(2) denote two solutions
evaluated with different initial conditions at the bound-
aries.
In principle, any set of independent solutions will do

for the calculation of these Wo,e matrices, but in this pa-
per we make the following choices. For the even sector,
we choose the solution to be that obtained by integrating
the perturbation equations with the boundary conditions
in Eq. (46) and [(γ0)ZM, (η0)ZM] = (1, 1). For the odd sec-
tor, we choose the two solutions to be those obtained by
integrating with the boundary conditions in Eq. (46) and
with [(γ0)RW, (η0)RW, (γ0)R, (η0)R] = (1, 1, 0, 0) or with
[(γ0)RW, (η0)RW, (γ0)R, (η0)R] = (0, 0, 1, 1). In general,
these solutions are linearly independent, unless ω is the

correct QNM frequency, in which case

det(W )|r=rm = 0 . (49)

We can use a root-finding algorithm to find the ω such
that the Wronskian vanishes at the matching point.
Using this method, we have calculated the QNMs of a

slowly-rotating BH in dCS gravity. In practice, all nu-
merical integrations that start at the horizon are initi-
ated at rinitial,r+ = (2 + 10−4)M , while those that start
at spatial infinity are initiated at rinitial,i0 = 60M , with
the matching always performed at rm = 30M . We have
checked the numerical stability of the QNM frequencies
against changes in the values of rinitial,r+ , rinitial,i0 and
rm. All numerical integrations are done with the ND-
Solve package of Mathematica, with accuracy and preci-
sion set to 10 digits.

V. NUMERICAL RESULTS

In this section, we present our numerical results for
the QNM frequencies. For clarity, we have divided this
section into three parts. First, we take the GR limit
(i.e., α/M2 = 0) of our equation and discuss the associ-
ated QNMs of a slowly-rotating Kerr BH with the metric
expanded to leading-order in spin. We compare these re-
sults with the exact Kerr QNMs obtained using Leaver’s
continued fraction method [65]. This preliminary step
will give us an estimate of where the slow-rotation ap-
proximation breaks down and how the numerical errors
due to this approximation compare against the modifi-
cations to the QNM frequencies due to the CS coupling.
Second, we consider a nonzero CS coupling α/M2 and
study in detail how the QNMs behave as functions of
this coupling and of the BH spin. Third, we construct
fitting formulas for the real and imaginary parts of the
QNMs, valid within the errors associated to the slow-
rotation approximation.
In the main body of this paper, we will show numerical

results for the fundamental n = 0, ℓ = m = 2 frequencies
since these are dominant for tensorial perturbations. We
leave our results for the QNM frequencies for the funda-
mental mode with ℓ = 2, ℓ = 3 and ℓ = 4 modes, and all
m modes to Appendix C. To aid in the presentation of
these numerical results, we will work with dimensionless
parameters by rescaling a, α and ω as

a → a/M, α → α/M2, and ω → ωM . (50)

In our numerical calculations, we work in code units, in
which M = 1, thus making the code quantities a, α and
ω dimensionless.

A. Slow rotation: GR

The calculation of the QNMs of a slow-rotating Kerr
BH in GR were presented in [48], but to our knowledge
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FIG. 1. Comparison between the fundamental dominant ℓ = m = 2 gravitational and scalar QNMs calculated using the exact
Kerr metric and its expansion to leading-order in a. The dependence of the real (imaginary) part of the frequency on the
spin a is shown in the left (right) top panel. The left (right) bottom panel shows the relative error defined by Eq. (52). The
colors distinguish the scalar (green) and gravitational (blue) QNMs. Unsurprisingly, we see that the relative percent error δω
increases with spin a/M , doing so faster for the imaginary part of the frequency, although the absolute error is O(a2). The
legends shown in the left panels apply to the corresponding right panels as well.

a comparison between these results and those obtained
using the exact Kerr metric has not appeared in the lit-
erature. See [66, 67] for complementary studies. This
comparison is important for our purposes for two reasons.
First, it will tell us up to what values of a we can trust
our slow-rotation approximation. Second, it will tell us
whether the errors due to this approximation are degen-
erate with modifications to the GR QNMs introduced by
the CS coupling. We refer the interested reader to [68]
for a similar analysis, but in a different context.
In the GR limit (α/M2 = 0) the perturbation equa-

tions [Eqs. (24), (29) and (30)] decouple and each of them
reduces to equations of the form

f(r)2y′′ℓm+(2/r2)f(r)y′ℓm+[ω2+veff(r, a)]yℓm = 0 , (51)

for the field variables and effective potential pairs
{yℓm, veff} = {Rℓm, V S

eff}, {ΨRW

ℓm, V A
eff} and {ΨZM

ℓm, V P
eff}.

For the gravitational perturbations these equations agree
with those in [48], whereas for the scalar perturbation
they agree with the small-a limit of that in [69]. More-
over, in this limit, the axial and the polar gravitational
equation become isospectral.
As a benchmark for our numerical code, we calculated

the gravitational and scalar QNMs of a Schwarzschild
BH by taking the nonrotating limit (a = 0). We find
excellent agreement with the well-known result summa-
rized e.g. in [70, 71]. Next, we computed the QNMs as-
sociated with Eq. (51) and compared them against the
QNMs obtained using the exact Kerr metric (i.e., with-

out performing any small-a expansion) by means of the
continuous fraction method [65] and tabulated in [70, 71]
Figure 1 presents the results of this exercise, focusing

on the fundamental mode with ℓ = m = 2. The top pan-
els show a comparison between the behavior of the real
(left) and the imaginary (right) parts of the QNM fre-
quencies for the slowly-rotating Kerr metric (solid) and
the exact Kerr metric (dashed) as a function of the spin
parameter a for both the scalar (green curves) and the
gravitational modes (blue curves). The bottom panels
show the relative percent error due to the slow rotation
approximation, which we define via

δ(Imω) = |1− (ImωSR)/(ImωK)| × 100 , (52a)

δ(Reω) = |1− (ReωSR)/(ReωK)| × 100 , (52b)

where, ωK are the QNM frequencies calculated from the
exact Kerr metric [65, 70], whereas ωSR are the QNM
frequencies we calculated for the Kerr metric expanded
to linear order in a/M .
We can extract several conclusions from this figure.

First, the relative error introduced by the slow-rotation
approximation is larger for the imaginary part of the
frequency than for the real part. For instance, when
a/M = 0.1, the relative error is approximately eight
times larger on the imaginary part than on the real part
for both gravitational and scalar-led modes. In addition,
we also find that the absolute error |ωSR−ωK| is of O(a2)
for both the real and imaginary parts of the QNM fre-
quencies. This naturally follows from the fact that the
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FIG. 2. Real (Imaginary) parts of the QNM frequency for the n = 0, ℓ = m = 2 mode as a function of the spin parameter for
slowly rotating BHs in dCS gravity with different CS couplings α/M2 are shown in the top (bottom) panels. The individual
QNM frequencies increase for both the gravitational- and scalar-led modes with spin parameter a/M whereas with increase in
the CS coupling α/M2, the frequencies are found to decrease with the exception of Re(ωs). The imaginary part is larger in
magnitude with increasing α, suggesting that modes are more strongly damped in dCS gravity. The shaded red region shows
the region of error introduced due to the slow rotation approximation and the results can be accurately estimated only for an
average spin parameter value of up to 0.0375. The curve for the imaginary part of the exact Kerr metric QNM frequency varies
slowly with a/M in the range shown. The legends shown apply to all panels.

error should indeed be of O(a2), since we have evaluated
ω to leading order in the spin parameter. The results
show that the approximation introduces errors smaller
than 10% when a . 0.2 for the real part and a . 0.04 for
the imaginary part.

B. Slow rotation: dCS

In this section, we present how the QNM frequencies
discussed in the previous section are modified by the pres-
ence of a nonzero CS coupling α/M2 for the dominant
n = 0, ℓ = m = 2 mode. Tabulated values for the QNM
frequencies for the fundamental mode with ℓ = 2, ℓ = 3,
and ℓ = 4 can be found in Appendix C.

As we discussed in Sec. III B 3, our calculations are
valid to linear order in spin a/M , but second-order in
the CS coupling α/M2. Moreover, we recall that the
polar sector [governed by Eq. (35c)] does not depend on
α/M2, and therefore, the polar gravitational QNMs are
identical to those of GR. This extends to linear order in
spin, the result found in [44]. Hence, we focus on the
coupled system of Eqs. (35b) and (35a) alone and use
the numerical procedure described in Sec. IV to calculate
the QNMs. Our results for the fundamental modes are
summarized in Figs. 2 and 3.

In Fig. 2 we show the dependence of the real and

imaginary values of gravitational- and scalar-led QNMs
as function of spin parameter a/M for α/M2 =
{0, 0.05, 0.10, 0.15, 0.20}. We also show QNMs of an ex-
act Kerr BH for comparison, and shaded the region be-
tween those and our α = 0 curve, to give a sense of the er-
ror due to the small-rotation approximation. In Fig. 3 we
complement this analysis, by showing the dependence of
the QNMs on α/M2 for a/M = {0, 0.05, 0.10, 0.15, 0.20}.
These two figures can be thought of as showing the slow-
rotation corrections to the non-rotating BH QNM fre-
quencies in dCS and the dCS modifications to the GR
QNM frequencies respectively.
As seen from Fig. 2 and 3, the behavior of the real and

the imaginary part for gravitational-led and the scalar-
led sectors is distinct. Therefore, we present individual
analysis for each.

• Real gravitational-led QNM (top left panel of
Figs. 2 and 3). The Re(ωg) increases with BH spin
just as in GR (see Sec. VA) for constant CS cou-
pling, while it remains mostly constant with a slight
decrease as the CS coupling increases for constant
spin.

• Imaginary gravitational-led QNM (bottom
left panel of Figs. 2 and 3).

• Real scalar-led QNM (top right panel of Figs. 2
and 3). The Re(ωs) initially shows a sinuous be-
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FIG. 3. Real (top) and imaginary (bottom) parts of ω as a function of the CS coupling for slowly rotating BH in dCS gravity
for different values of the spin parameter a (given in legend) are shown above. The deviation introduced on a non-rotating BH
in dCS gravity on introduction of spin can be seen by a strong shift in gradient when spin is introduced. Re(ω) decreases as
the CS coupling gets stronger for gravitational-led mode whereas it increases for the scalar-led mode. The inferences made in
Fig. 2 are supported here as well. For higher spins, it is seen that change in decay rate is small as the CS coupling is increased
for Im(ω) for both sectors which can be an artifact of the slow rotation approximation as discussed previously. It is evident
from the above panels that for a particular value of spin, there is a quadratic order dependence on CS coupling for the QNM
frequencies supporting our estimate in Sec. IIID. The legends shown apply to all panels.

havior as we increase spin and hold the CS coupling
constant up to a = 0.05, and then it increases with
BH spin. On the other hand, the Re(ωs) increases
monotonically with the CS coupling while keeping
the BH spin constant.

• Imaginary scalar-led QNM (bottom right panel
of Figs. 2 and 3). The Im(ωs) initially decreases
with BH spin for constant CS coupling, reaches a
minimum and then increases again. On the other
hand, the Im(ωs) remains essentially constant as
we change the CS coupling for constant spin.

The modes decay for all values of spin parameter and
CS coupling within the limits of our approximation, giv-
ing strong evidence that slowly-rotating BHs in dCS
gravity are linearly stable against gravito-scalar pertur-
bations, extending the results of [44, 45] to small spins.
In interpreting the figures, especially Fig. 2, one must

be careful to take into account the approximate nature
of our results. The numerical calculations we have per-
formed are only valid in the slow-rotation approximation
(to leading order in the BH spin and second order in the
CS coupling). This is why we included the red shaded
regions in Fig. 2, which quantify approximately the error
in the slow-rotation approximation (see also Sec. VA).
When the spin is large enough that this error becomes
comparable to the dCS correction, then our numerical
results should not be trusted any longer. This occurs

roughly at a/M & 0.2 for Re(ωg,s), a/M & 0.05 for
Im(ωg) and a/M & 0.07 for Im(ωs). Therefore, to be
conservative, henceforth we restrict our attention to the
regime a/M ≤ 0.0375, where the errors introduced by
the slow-rotation approximation are very small and the
dCS corrections we have calculated are meaningful.
Our results allow us to estimate the magnitude of the

dCS deviations with respect to the GR QNMs. As an
example, let us use saturate the constraint α1/2 6 8.5 km
(at 90% confidence) obtained in [41], and consider the
smallest remnant BH mass observed so far (M ≈ 18M⊙),
the product of the event GW170608 [72]. Combining
this value of M with the maximum value of α allowed
from [41], we find α/M2 ≈ 0.1. We can now use the
data presented in Tables III and IV (see also Fig. 2) to
find that the maximum deviations from the GR QNMs
is about 2% (2%) for the oscillation frequency and about
9% (6%) for the decay rate for the fundamental dominant
ℓ = m = 2 gravitational- (scalar-) led modes and a BH
with spin a/M = 0.0375 (i.e., at the upper limit of our
slow-rotation approximation).
It is important to stress that a GW detector responds

only to gravitational degrees of freedom that propagate
from the source to the detector (taken to be at spatial
infinity), which in dCS gravity was shown to consist of
the standard “plus” and “cross” transverse-traceless po-
larization modes, just as in GR [55]. This means that in
practice only deviations to the gravitational-led modes
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can be used to test dCS gravity, since these are the modes
that affect the detector. To constrain the modest devia-
tions predicted here one would require a signal with very
high signal-to-noise ratio, in addition to detection and
characterization of at least two ringdown modes (to break
degeneracies between mass, spin and dCS coupling). One
should bear in mind however, that the small deviations
found here may be a consequence of the small-spin ap-
proximation. For BHs in dCS gravity, the larger the spin,
the larger the deformations away from the Kerr metric
become, which in turn may reflect on larger deviations
in the QNM frequencies. This implies that tests of dCS
gravity through BH spectroscopy would benefit from an
extension of our work to larger spin values.

C. Fitting formulas for the QNMs

We have calculated a large catalog of QNM frequencies
from which we can construct ready-to-use fitting formulas
for the fundamental mode with ℓ = m = 2, as well as
other multipoles. In general, we use the fitting functions

Mωg(M,a) = ag + bg (1− a/M)cg , (53a)

Mωs(M,a) = as +

3
∑

j=1

dj (a/M)
j
, (53b)

where (ag, bg, cg) and (as, bs, cs) are fitting coefficients
for the gravitational-led and the scalar-led sectors of the
QNMs, respectively. Table I presents the numerical val-
ues of these coefficients for the fundamental dominant
n = 0, ℓ = 2, m = 2 mode, and selected values of the CS
coupling α/M2.
The fitting coefficients show a quadratic dependence

on α, in agreement with the arguments presented in
Sec. III D. Thus, we can fit (ag, bg, cg) and (as, bs, cs) as
functions of ζ = α2/(M4κ), recasting the fitting func-
tions (53) to their final form, given by

Mωg(M,a, α) = f1 + f2κζ + (f3 + f4κζ)

× (1− a/M)
f5+f6κζ , (54a)

Mωs(M,a, α) = g1 + g2κζ

+

3
∑

j=1

(

g
(j)
3 + g

(j)
4 κζ

)2

(a/M)
j
, (54b)

These fitting coefficients vary for different values of n,
ℓ, and m. For the fundamental dominant mode n = 0
and ℓ = m = 2, the fitting coefficients are presented in
Table II.
The average (maximum) relative error of these fit to

our data is 0.4% (0.6%) and 0.7% (0.9%) for the Re(ωg)
and Im(ωg) respectively, and 0.4% (0.6%) and 1.6%
(1.86%) for the Re(ωs) and Im(ωs) respectively in the
regime a/M ≤ 0.0375 and ζ ≤ 0.04/κM4. We can fit
the QNM frequencies of other ℓ = 2 multipoles and other
higher multipoles with the same functional form as that

presented above. The numerical values of these fitting
functions and their average errors are tabulated in Ap-
pendix C.

VI. DISCUSSION

We here investigated the quasinormal modes excited
in dCS gravity by a perturbed and slowly-rotating black
hole. We began by finding the perturbation equations
that describe the evolution of scalar and metric pertur-
bations. These triply-coupled set of differential equa-
tions generalize the slowly-rotating versions of the Regge-
Wheeler and the Zerilli-Moncrief master equations to the
case of dCS gravity. Using symmetry arguments, we
showed that not all terms in these equations contribute
to the QNM frequencies, thereby simplifying our set of
equations into two sets: two coupled equations for the
axial and the scalar sectors, and an homogeneous equa-
tion describing the polar sector; the later was found to be
identical to the GR case for a slowly-rotating Kerr BH.
We then solved these equations to calculate the QNM

frequencies for slowly rotating BHs in dCS gravity. We
found that the dCS corrections to the QNM frequencies
scale with the square of the CS coupling. We also found
that, in general, slowly-rotating BHs in dCS gravity have
a decay time that is mostly independent of the CS cou-
pling, so these BHs return to their stationary configura-
tion only slightly more rapidly than in GR. Nonetheless,
their (real) frequency of oscillation is indeed affected, de-
creasing when the CS coupling increases for fixed spin.
Finally, we constructed fitting functions for the real and
imaginary parts of the gravitational and scalar QNM fre-
quencies as a function of the BH mass, spin and CS cou-
pling for the fundamental (n = 0) mode and all ℓ ≤ 4
harmonics.
The work presented here allows for many extensions

along different directions. First, as it should be clear from
our paper, we have here only considered perturbations to
leading-order in the spin parameter. A natural extension
of our work then would be to go to higher order in spin,
which should produce more accurate results for BHs that
are not as slowly spinning. Extending this calculation to
second order, however, will be very difficult because of
mode coupling between the odd- and even-parity sectors,
just as in the GR case [57].
Another interesting extension of our work would be to

develop a continued fraction approach for the calculation
of the QNM frequencies in dCS gravity. Such a method
was introduced by Leaver long ago, but its extension to
modified gravity theories is not obvious [44]. One could
therefore use dCS gravity as a toy problem to extend
such methods, and then compare these continued fraction
results to the numerical results found in this paper.
The results that we presented in this paper can also

serve as a way to verify numerical simulation of BH bi-
naries that result in slowly-rotating BH remnants, such
as the head-on collisions performed in [73]. A natural
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α/M2 ar
g brg crg ai

g big cig
0.00 1.1849 −0.8130 0.2959 0.3212 −0.4112 0.6545

0.05 1.1846 −0.8147 0.2876 0.3052 −0.3962 0.7062

0.10 1.1823 −0.8175 0.2648 0.2874 −0.3811 0.8085

0.15 1.1706 −0.8122 0.2297 0.2976 −0.3952 0.8746

0.20 1.1328 −0.7806 0.1826 0.3281 −0.4299 0.8885

α ai
s di1 di2 di3 ai

s di1 di2 di3
0.00 0.4856 −0.1033 −9.2285 89.779 −0.09494 −0.7367 20.275 −104.25

0.05 0.4881 −0.0723 −10.029 94.521 −0.09488 −0.7494 20.220 −102.88

0.10 0.4950 −0.0032 −12.166 107.49 −0.09489 −0.7902 20.26 −100.28

0.15 0.5054 0.0935 −15.289 127.69 −0.09514 −0.8788 21.141 −101.53

0.20 0.5185 0.1758 −19.848 162.64 −0.09359 −1.2206 27.165 −131.13

TABLE I. Fitting coefficients for Eqs. (53a) (top) and Eq. (53b) (bottom) with fixed CS coupling parameter, to model both
the real (superscript r) and imaginary (superscript i) QNM frequencies describing the gravitational (top) and scalar (bottom)
sectors.

f1 f2 f3 f4 f5 f6 % error

Re(ωg) 0.2203 0.1506 −1.6129 −0.0522 −0.0387 9.9922 0.4

Im(ωg) 0.3030 0.3347 −0.3933 −0.6296 0.7026 5.5940 0.7

g1 g2 g
(1)
3 g

(1)
4 g

(2)
3 g

(2)
4 g

(3)
3 g

(3)
4 % error

Re(ωs) 0.4862 0.8206 −0.0845 6.9267 −9.3642 −263.20 89.418 1800.5 0.4

Im(ωs) −0.0951 0.0287 −0.6995 −11.712 19.336 165.06 −98.517 −633.21 1.6

TABLE II. Fitting coefficients for Eqs. (54a) (top) and (54b) (bottom) for the n = 0, ℓ = 2, m = 2 mode, which allow us
to approximate both the real and the imaginary parts of the QNM frequencies as a function of both the spin and the dCS
coupling.

and important extension of our work, would be to ex-
tend the validity of our calculations to larger values of
spin. Currently, the only way to find the QNM frequen-
cies of not-slowly-spinning BHs in dCS is through nu-
merical relativity simulations of BH mergers which are
computationally expensive. Another interesting path for
future research would then be to find a modified Teukol-
sky equation for dCS gravity. Such a task, however, may
not be possible given that the BHs of dCS gravity are
Petrov type I and not Petrov type D [50], as assumed in
the work of Teukolsky [74, 75]

Another interesting calculation would be to map our
theory-specific numerical results to the theory-agnostic
QNM parametrization introduced in [66] (see also [76]).
Our numerical results could also be used to quantify the
error in theory-agnostic QNMs calculations due to the
geometrical optics approximation, as done in [77–79].

Yet another possible avenue for future work is to apply

the tools developed here to study the oscillation spectra
of rotating neutron stars in dCS gravity [39, 80]. Such
an analysis could have applications to GW asteroseismol-
ogy [81, 82].

Finally, these results technically allow for the construc-
tion of ringdown templates that could be used by the
LIGO-Virgo-Kagra collaboration to place constraints on
dCS gravity. This would of course only be possible for
ringdown signals produced by slowly-rotating BH rem-
nants, which in turn only occurs when the inspiraling
binary components have the right spin magnitude and
orientation prior to merger. Whether the remnant is
spinning or not, however, cannot currently be determined
accurately enough because the signals detected so far do
not have sufficiently high signal-to-noise ratio [83], and
thus the posteriors on the spin are very wide [84, 85].
Moreover, such ringdown tests would require the unam-
biguous detection of more than one QNM mode [86–88]
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As the signal-to-noise ratio increases, it may be possible
to carry out such a test, and in the meantime, it would
be highly desirable to extend our results to more rapidly
rotating BH backgrounds.
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Appendix A: Spherical Harmonics - Orthogonality

properties

In this appendix, we are providing some useful orthog-
onality relations for scalar, vector and tensor spherical
harmonics. The scalar spherical harmonics satisfy a fun-
damental identity,

Y ℓm
,θθ + cot θ Y ℓm

,θ +
1

sin2 θ
Y ℓm
,φφ = −ℓ(ℓ+ 1)Y ℓm . (A1)

They also satisfy the orthogonality relation given by

〈Y ℓm, Y ℓ′m′〉 = δℓℓ
′

δmm′

. (A2)

Vector spherical harmonics hold the following orthogo-
nality relations,

〈Y ℓm
a , Y ℓm

a 〉 = 〈Sℓm
a , Sℓm

a 〉 = (ℓ− 1)(ℓ+ 2) + 2 , (A3)

where the polar and axial vector harmonics have been
defined as

Y ℓm
a =

(

Y ℓm
,θ , Y ℓm

,φ

)

,

Sℓm
a =

(

−
Y ℓm
,θ

sin θ
, sin θY ℓm

,θ

)

. (A4)

Finally, the tensor spherical harmonics are given by

〈Zℓm
ab , Zℓ′m′

ab 〉 = 〈Sℓm
ab , Sℓ′m′

ab 〉
= 2ℓ(ℓ− 1)(ℓ+ 1)(ℓ+ 2)δℓℓ

′

δmm′

. (A5)

There are additional orthogonality relations which can
be found in [48]. The additional relations that we have
used in this work are

cos θY ℓm = qℓ+1,mY ℓ+1,m+qℓ,mY ℓ−1,m ,

sin θY ℓm
,θ = qℓ+1,mℓY ℓ+1,m−qℓ,m(ℓ+ 1)Y ℓ−1,m

Aℓ′m′ 〈Y ℓm, sin θY ℓ′m′

,θ 〉 = (ℓ− 1)qℓmAℓ−1,m

−(ℓ+ 2)qℓ+1,mAℓ+1,m , (A6)

where qℓm is defined in Eq. (25). Aℓm is the operator de-
fined to separate the angular dependence of the linearized
field equations within the slow-rotation approximation.

Appendix B: Coefficients of the perturbation equations

In this Appendix, we list the explicit forms of the coefficients appearing in the perturbation equations presented in
Sec. III B. These coefficients have prefactors of a combination of α, a and m which have already been shown in the
expression for the perturbation equations. However, it is worth noting that there is no direct correspondence between
these coefficients. The potentials are given by:

V S
eff =

(

1− 2M

r

)[

ℓ(ℓ+ 1)

r2
+

2M

r3

]

+ amω
4M

r3
, (B1)

V A
eff =

(

1− 2M

r

)[

ℓ(ℓ+ 1)

r2
− 6M

r3
+

am

ω

24M (3r − 7M)

ℓ(ℓ+ 1)r6

]

+ amω
4M

r3
, (B2)

V P
eff =

(

1− 2M

r

)[

2M

r3
+

1

3
(ℓ − 1)(ℓ+ 2)

(

1

r2
+

2(ℓ− 1)(ℓ+ 2)(ℓ2 + ℓ+ 1)

(6M + (ℓ2 + ℓ− 2)r)2

)

+
4amM

r8ℓ(ℓ+ 1) [(ℓ2 + ℓ− 2) r + 6M ]
4
ω

7
∑

i=0

ξi(r, ℓ, ω)M
ir7−i

]

. (B3)

where the functions ξi are the same as those found for slowly rotating Kerr BHs in GR [48]. Moreover, we also
provide these functions in a Mathematica notebook that can be made available upon request. The other functions in
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the perturbed field equations that contribute to the QNM frequencies [See Eqs. (35)] are given by

g(r) =
6i(ℓ− 1)ℓ(ℓ+ 1)(l + 2)M

r5ω
, (B4a)

h(r) = − i
(

r4ω2
(

12(2ℓ(ℓ+ 1)− 1)M2 + 15Mr + 5r2
)

+ 144M3(2M − r)
)

2Mr9ω2
, (B4b)

j(r) =
72iM2(r − 2M)

r8ω2
, (B4c)

and

v(r) = −6iMω

κr5
, (B5a)

n(r) =
i
(

−4224M4 + 3306M3r + 48M2r2
(

r2ω2 − 15
)

+ 5Mr3 + 15r4
)

4κl(l+ 1)Mr9
, (B5b)

p(r) =
12iM(12M − 5r)(2M − r)

κℓ(ℓ+ 1)r8
. (B5c)

All the other functions such as ki, pi, si and ri (i = 1, . . . , 4) are rather lengthy and non-illuminating and hence not
provided here. Instead these can be found in a Mathematica notebook which can be made available upon request.

Appendix C: QNM frequencies of different multipoles and fitting coefficients

In this appendix, we have tabulated the values of QNM frequencies for all multipoles of ℓ = 2 and ℓ = 3. ℓ = 4
values have been compiled into a data file available upon request. In the following tables, we have shown the values
for the real and imaginary parts of the QNM frequencies for both gravitational- and scalar-led modes.
We then proceed to present the numerical values for the fitting functions shown in Eqs. (54) for both the gravitational

and scalar QNM frequencies. We have also calculated the average percent error in these fits and presented these in
our tables below.

a/M α/M2 m = 2 m = 1 m = 0 m = −1 m = −2
0.0 .3737, .0889 .3737, .0889 .3737, .0889 .3737, .0889 .3737, .0889

0.0 0.1 .3671, .0926 .3671, .0926 .3671, .0926 .3671, .0926 .3671, .0926

0.2 .3557, .1002 .3557, .1002 .3557, .1002 .3557, .1002 .3557, .1002

0.0 .3749, .0881 .3743, .0887 .3737, .0889 .3730, .0887 .3723, .0881

0.01 0.1 .3679, .0916 .3676, .0923 .3671, .0926 .3664, .0923 .3656, .0916

0.2 .3557, .0993 .3559, .1000 .3557, .1002 .3549, .0999 .3536, .0991

0.0 .3764, .0857 .3749, .0881 .3737, .0889 .3723, .0881 .3709, .0859

0.02 0.1 .3689, .0888 .3679, .0916 .3671, .0926 .3656, .0916 .3637, .0890

0.2 .3548, .0959 .3553, .0993 .3557, .1002 .3536, .0991 .3501, .0961

0.0 .3783, .0825 .3756, .0870 .3737, .0889 .3716, .0871 .3693, .0829

0.03 0.1 .3702, .0851 .3684, .0904 .3671, .0926 .3647, .0904 .3617, .0856

0.2 .3546, .0912 .3553, .0979 .3557, .1002 .3519, .0978 .3466, .0919

0.0 .3805, .0857 .3764, .0857 .3737, .0889 .3708, .0859 .3677, .0796

0.04 0.1 .3721, .0812 .3689, .0887 .3671, .0926 .3637, .0890 .3597, .0819

0.2 .3554, .0862 .3548, .0959 .3557, .1002 .3501, .0961 .3434, .0874

TABLE III. QNM frequencies for axial gravitational-led sector with n = 0, ℓ = 2 for slowly rotating BHs in dCS gravity. The
format used is M(Re(ω),−Im(ω)). To save space, the leading zeros have been omitted.
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a/M α/M2 m = −2 m = −1 m = 0 m = 1 m = 2
0.0 .4836, .0967 .4836, .0967 .4836, .0967 .4836, .0967 .4836, .0967

0.0 0.1 .4933, .0971 .4933, .0971 .4933, .0971 .4933, .0971 .4933, .0971

0.2 .5163, .0989 .5163, .0989 .5163, .0989 .5163, .0989 .5163, .0989

0.0 .4817, .0976 .4828, .0969 .4836, .0967 .4843, .0969 .4846, .0967

0.01 0.1 .4914, .0979 .4925, .0973 .4933, .0971 .4940, .0929 .4944, .0976

0.2 .5147, .0999 .5156, .0992 .5163, .0989 .5171, .0992 .5177, .0998

0.0 .4787, .1007 .4817, .0976 .4836, .0967 .4846, .0976 .4839, .1004

0.02 0.1 .4887, .1008 .4914, .0979 .4933, .0971 .4944, .0979 .4942, .1006

0.2 .5129, .1028 .5147, .0998 .5163, .0989 .5177, .0998 .5185, .1029

0.0 .4719, .1085 .4803, .0988 .4836, .0967 .4846, .0987 .4782, .1044

0.03 0.1 .4839, .1082 .4902, .0991 .4933, .0971 .4946, .0990 .4897, .1056

0.2 .5121, .1101 .5138, .1010 .5163, .0989 .5182, .1011 .5174, .1108

0.0 .4520, .1581 .4787, .1007 .4836, .0967 .4839, .1004 .4692, .1005

0.04 0.1 .4739, .1372 .4887, .1008 .4933, .0971 .4942, .1006 .4794, .1033

0.2 .5232, .1178 .5129, .1029 .5163, .0989 .5185, .1029 .4989, .1124

TABLE IV. Same as Table III but for the scalar-led sector with n = 0, ℓ = 2.

a/M α/M2 m = −3 m = −2 m = −1 m = 0 m = 1 m = 2 m = 3
0.0 .5994, .0927 .5994, .0927 .5994, .0927 .5994, .0927 .5994, .0927 .5994, .0927 .5994, .0927

0.0 0.1 .5791, .0964 .5791, .0938 .5791, .0964 .5791, .0964 .5791, .0964 .5791, .0964 .5791, .0964

0.2 .5499, .1019 .5499, .1019 .5499, .1019 .5499, .1019 .5499, .1019 .5499, .1019 .5499, .1019

0.0 .5970, .0911 .5979, .0919 .5987, .0925 .5994, .0927 .6001, .0925 .6007, .0919 .6013, .0911

0.01 0.1 .5764, .0946 .5775, .0955 .5784, .0962 .5791, .0964 .5796, .0962 .5799, .0955 .5803, .0945

0.2 .5464, .1000 .5479, .1011 .5491, .1017 .5499, .1019 .5502, .1017 .5501, .1011 .5498, .0999

0.0 .5941, .0874 .5961, .0900 .5979, .0919 .5994, .0927 .6007, .0919 .6019, .0899 .6035, .0871

0.02 0.1 .5728, .0902 .5752, .0933 .5775, .0955 .5791, .0964 .5799, .0955 .5806, .0931 .5815, .0897

0.2 .5411, .0951 .5446, .0986 .5479, .1010 .5499, .1019 .5501, .1010 .5494, .0983 .5491, .0943

0.0 .5912, .0829 .5942, .0874 .5971, .0911 .5994, .0927 .6013, .0911 .6034, .0871 .6064, .0825

0.03 0.1 .5693, .0852 .5728, .0902 .5764, .0945 .5791, .0964 .5803, .0944 .5816, .0897 .5839, .0844

0.2 .5363, .0891 .5411, .0951 .5464, .1000 .5499, .1019 .5497, .0999 .5491, .0943 .5503, .0877

0.0 .5883, .0787 .5922, .0844 .5961, .0900 .5994, .0927 .6019, .0899 .6053, .0841 .6099, .0782

0.04 0.1 .5661, .0804 .5705, .0869 .5753, .0933 .5791, .0964 .5806, .0931 .5830, .0861 .5871, .0795

0.2 .5323, .0836 .5378, .0911 .5446, .0987 .5499, .1019 .5494, .0983 .5497, .0899 .5527, .0819

TABLE V. Same as Table III but for the axial gravitational-led sector with n = 0, ℓ = 3.
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a/M α/M2 m = −3 m = −2 m = −1 m = 0 m = 1 m = 2 m = 3
0.0 .6753, .0965 .6753, .0965 .6753, .0965 .6753, .0965 .6753, .0965 .6753, .0965 .6753, .0965

0.0 0.1 .7018, .0972 .7018, .0972 .7018, .0972 .7018, .0972 .7018, .0972 .7018, .0972 .7018, .0972

0.2 .7500, .1009 .7500, .1009 .7500, .1009 .7500, .1009 .7500, .1009 .7500, .1009 .7500, .1009

0.0 .6714, .0974 .6731, .0969 .6744, .0966 .6753, .0965 .6759, .0966 .6761, .0968 .6758, .0971

0.01 0.1 .6981, .0983 .6997, .0977 .7008, .0973 .7018, .0972 .7025, .0973 .7028, .0977 .7027, .0982

0.2 .7475, .1027 .7483, .1017 .7492, .1011 .7500, .1009 .7516, .1017 .7516, .1017 .7522, .1028

0.0 .6630, .0989 .6693, .0979 .6731, .0969 .6753, .0965 .6761, .0968 .6750, .0974 .6720, .0969

0.02 0.1 .6904, .1013 .6962, .0991 .6997, .0977 .7018, .0972 .7028, .0976 .7022, .0988 .6994, .0997

0.2 .7462, .1103 .7467, .1043 .7483, .1017 .7500, .1009 .7516, .1017 .7528, .1045 .7534, .1112

0.0 .6515, .0961 .6630, .0989 .6715, .0973 .6753, .0965 .6758, .0972 .6720, .0969 .6679, .0919

0.03 0.1 .6771, .1005 .6905, .1014 .6981, .0983 .7018, .0972 .7027, .0982 .6993, .0997 .6936, .0959

0.2 .7099, .1187 .7463, .1104 .7475, .1027 .7500, .1009 .7522, .1028 .7534, .1112 .7305, .1126

0.0 .6428, .0903 .6551, .0976 .6693, .0979 .6753, .0965 .6750, .0974 .6689, .0939 .6671, .0855

0.04 0.1 .6669, .0945 .6816, .1018 .6962, .0991 .7018, .0972 .7022, .0988 .6952, .0978 .6916, .0893

0.2 .6988, .1064 .7156, .1252 .7467, .1043 .7500, .1009 .7528, .1045 .7347, .1180 .7261, .1009

TABLE VI. Same as Table III but for the scalar-led sector with n = 0, ℓ = 3.

m f1 f2 f3 f4 f5 f6 % error

2 0.2203 0.1506 −1.6129 −0.0522 −0.0387 9.9922 0.4

1 0.8345 −2.8014 −0.4627 2.3553 0.1969 −4.4606 0.2

0 0.6863 −0.2178 −0.3137 −0.2304 ≈ 0 ≈ 0 0.02

−1 0.7097 3.4830 −0.3370 −3.9195 −0.2124 −2.2966 0.3

−2 0.7138 13.952 −0.3409 −14.4265 −0.4487 5.1861 0.3

m f1 f2 f3 f4 f5 f6 % error

2 0.3030 0.3347 −0.3933 −0.6296 0.7026 5.5940 0.7

1 0.5822 2.6540 −0.6729 −2.9587 0.2034 1.1492 0.5

0 0.5091 −0.4353 −0.5984 0.1529 ≈ 0 ≈ 0 0.04

−1 0.6169 2.2458 −0.7078 −2.5435 0.1862 0.9471 0.6

−2 0.4171 −3.4719 −0.5079 3.1802 0.5551 9.7328 0.6

TABLE VII. Same as Table II but for the gravitational-led sector and the n = 0, ℓ = 2 mode for real (top) and imaginary
(bottom) parts.
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m g1 g2 g
(1)
3 g

(1)
4 g

(2)
3 g

(2)
4 g

(3)
3 g

(3)
4 % error

2 0.4862 0.8206 −0.0845 6.9267 −9.3642 −263.20 89.418 1800.5 0.4

1 0.4835 0.8015 0.3211 1.7772 −9.4529 30.909 44.952 −645.52 0.2

0 0.4844 0.8170 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 0.04

−1 0.4828 0.8024 0.1929 4.4256 −7.6129 −78.963 17.130 198.32 0.2

−2 0.4863 0.8048 −0.1903 7.1129 −17.734 −247.98 136.48 1599.8 0.5

m g1 g2 g
(1)
3 g

(1)
4 g

(2)
3 g

(2)
4 g

(3)
3 g

(3)
4 % error

2 −0.0951 0.0287 −0.6995 −11.712 19.336 165.06 −98.517 −633.21 1.6

1 −0.0965 −0.0866 0.0426 8.2154 −6.0266 −280.41 59.516 1833.71 0.6

0 −0.0966 −0.0563 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 0.12

−1 −0.0977 −0.0882 0.2878 9.9186 −14.027 −320.07 110.37 2028.0 1.1

−2 −0.0921 −0.0710 −1.0426 −0.5249 23.221 −75.864 −112.92 754.87 3.5

TABLE VIII. Same as Table II but for the scalar-led sector and the n = 0, ℓ = 2 mode.

m f1 f2 f3 f4 f5 f6 % error

3 1.5249 −1.1738 −0.9328 −0.1019 0.3993 −2.3318 0.7

2 1.3566 −2.5989 −0.7629 1.3451 0.2718 −2.5372 0.7

1 0.9705 −4.9430 −0.3756 3.7294 0.2014 −4.5916 0.7

0 0.6223 −1.6403 −0.0270 0.4245 −0.0123 0.2384 0.6

−1 0.3803 −3.5492 0.2152 2.3453 0.4325 1.7505 0.6

−2 0.2432 0.1693 0.3525 −1.3988 0.5483 9.4537 0.6

−3 0.7138 13.952 −0.3409 −14.4265 −0.4487 5.1861 0.3

m f1 f2 f3 f4 f5 f6 % error

3 0.2432 2.2068 −0.3361 −2.4234 0.0.9602 0.5338 1.5

2 0.3956 −2.6348 −0.4902 2.3966 0.5228 8.2091 0.6

1 0.5619 2.1895 −0.6567 −2.4346 0.1878 0.9899 0.6

0 0.5025 −0.3303 −0.5959 0.1026 ≈ 0 ≈ 0 0.7

−1 0.5543 1.6632 −0.6489 −1.9032 0.1804 0.7948 0.6

−2 0.5511 −1.0319 −0.6458 0.7961 0.3890 3.3348 0.6

−3 0.4171 −3.4719 −0.5079 3.1802 0.5551 9.7328 0.6

TABLE IX. Same as Table II but for the axial gravitational-led sector and the n = 0, ℓ = 3 mode.
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m g1 g2 g
(1)
3 g

(1)
4 g

(2)
3 g

(2)
4 g

(3)
3 g

(3)
4 % error

3 0.6810 1.9293 −0.4136 −6.7595 5.7508 −117.81 −4.1052 1342.8 1.1

2 0.6803 1.8542 −0.0832 9.7784 −2.9483 −455.07 36.346 3157.8 1.0

1 0.6792 1.8169 0.1311 4.5758 −4.6926 −10.148 27.212 −746.03 1.2

0 0.6794 1.8455 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 0.6

−1 0.6794 1.7904 −0.0676 10.367 −2.5888 −192.47 7.0098 427.89 0.8

−2 0.6781 2.1636 −0.2646 10.817 −8.0549 −454.10 59.607 3026.3 1.2

−3 0.4862 0.8206 −0.0845 6.9267 −9.3642 −263.20 89.418 1800.5 1.1

m g1 g2 g
(1)
3 g

(1)
4 g

(2)
3 g

(2)
4 g

(3)
3 g

(3)
4 % error

3 −0.0969 −0.0685 −0.1104 −22.949 12.603 470.43 −81.121 −2514.6 1.2

2 −0.0959 −0.0365 −0.2456 −18.061 10.076 246.64 −52.797 −833.94 0.7

1 −0.0959 −0.1657 −0.0963 14.916 1.7665 −565.79 −1.4423 3877.6 0.6

0 −0.0963 −0.1136 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 0.5

−1 −0.0959 −0.1859 −0.0569 19.115 0.0976 −671.08 6.8510 4477.2 0.7

−2 −0.0955 −0.0333 −0.3242 −15.748 9.3870 174.35 −43.658 −390.57 1.0

−3 −0.0921 −0.0710 −1.0426 −0.5249 23.221 −75.864 −112.92 754.87 3.5

TABLE X. Same as Table II but for the scalar-led sector and the n = 0, ℓ = 3 mode.

m f1 f2 f3 f4 f5 f6 % error

4 1.4148 −2.2063 −0.6157 0.2412 0.6881 −5.7401 1.0

3 1.3409 −4.8111 −0.5413 2.8538 0.5322 −4.0873 0.9

2 1.2119 −11.366 −0.4079 8.7904 0.3892 7.8567 0.9

1 1.0583 −4.3496 −0.2542 1.7776 0.2768 −3.5423 0.9

0 0.8803 −0.6367 −0.0801 −1.3170 0.0029 −0.0519 1.0

−1 0.5955 −2.8643 0.2086 0.2942 0.3538 0.9393 1.0

−2 0.4814 −3.5410 0.3228 0.9744 0.4931 1.8531 0.9

−3 0.3863 −3.4811 0.4179 0.9127 0.5969 2.3454 1.2

−4 0.2986 −3.1758 0.5058 0.6033 0.6828 2.5986 1.1

m f1 f2 f3 f4 f5 f6 % error

4 0.6589 1.6619 −0.7550 −1.8657 0.6338 3.5775 0.7

3 0.5833 1.0937 −0.6795 −1.3019 0.5223 3.6721 0.8

2 0.4918 1.9436 −0.5875 −2.1497 0.3491 2.0597 0.8

1 0.4567 −0.0252 −0.5516 −0.2324 0.1167 1.8467 0.3

0 0.4363 1.9714 −0.5312 −2.1693 ≈ 0 ≈ 0 0.6

−1 0.4563 −0.0649 −0.5512 −0.1916 0.1131 1.7912 0.2

−2 0.4975 0.5585 −0.5929 −0.8199 0.3355 4.0209 0.5

−3 0.5837 0.9136 −0.6796 −1.1736 0.5095 4.8685 0.6

−4 0.6507 2.8767 −0.7467 −3.1286 0.6398 3.5226 0.6

TABLE XI. Same as Table II but for the axial gravitational-led sector and the n = 0, ℓ = 4 mode.
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m g1 g2 g
(1)
3 g

(1)
4 g

(2)
3 g

(2)
4 g

(3)
3 g

(3)
4 % error

4 0.8766 2.8304 −0.0512 48.851 −2.3909 −4532.0 135.72 72648.7 0.8

3 0.8766 2.7934 0.1344 30.684 −10.106 −2661.6 168.70 38390.9 0.9

2 0.8466 2.8004 0.0270 24.357 1.0001 −1609.1 −49.353 19316.2 0.9

1 0.8725 3.4584 0.0775 0.1535 −1.9811 −57.895 5.7601 −875.64 0.7

0 0.8765 2.8162 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 0.7

−1 0.8725 3.4583 −0.0751 −0.4851 −1.8263 48.603 1.3107 −402.55 0.6

−2 0.8724 3.4658 −0.1056 −7.6281 −11.936 888.34 127.43 −20825.8 0.8

−3 0.8725 3.4222 −0.2294 23.032 −20.461 −1404.8 290.40 10821.0 0.7

−4 0.8727 3.4217 −0.4490 38.818 −22.413 −3473.7 363.66 51302.7 0.9

m g1 g2 g
(1)
3 g

(1)
4 g

(2)
3 g

(2)
4 g

(3)
3 g

(3)
4 % error

4 −0.0959 −0.1349 −0.2066 −20.430 34.189 −631.29 −452.52 25358.0 1.2

3 −0.0965 −0.0762 −0.0866 −5.6460 25.433 −2889.76 −395.26 70752.7 3.1

2 −0.0959 −0.1978 −0.5895 94.929 50.994 −8517.6 −791.63 142661.0 3.3

1 −0.0962 −0.1475 0.0016 −0.1050 −0.0674 −60.637 13.666 −563.08 0.5

0 −0.0962 −0.1454 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 0.1

−1 −0.0962 −0.1474 0.0023 −0.0904 −0.0975 −52.641 7.6109 −574.55 0.1

−2 −0.0955 −0.0333 −0.3242 −15.748 9.3870 174.35 −43.658 −390.57 1.0

−3 −0.0961 −0.1566 −0.1221 15.374 12.253 −2584.3 −87.559 48317.0 1.5

−4 −0.0960 −0.1045 −0.1786 −19.049 23.801 −798.65 −260.28 26756.7 1.4

TABLE XII. Same as Table II but for the scalar-led sector and the n = 0, ℓ = 4 mode.
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