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1 Introduction

The fuzzball proposal [1–5] is a paradigm for the black hole interior. In the conventional

picture of a black hole, the region around the horizon is in the vacuum state. In the

fuzzball paradigm, string theory effects modify the interior of the black hole all the way

upto the horizon. The proposal posits that the radiation leaving from the fuzzball can

carry information just like radiation from a piece of burning coal. In recent years, these

ideas are widely explored, though still there are many issues that remain to be understood,
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particularly with regard to how the fuzzball proposal reproduces detailed classical and

quantum properties of black holes.

In the context of supersymmetric D1-D5-P black hole, the fuzzball program has met

with the most success. Large classes of supersymmetric microstate geometries have been

constructed. These supersymmetric microstate geometries provide a geometrical descrip-

tion of certain quantum microstates of the black hole. In several cases their identification

in the dual CFT as states is also well understood. The focus of attention in the present

work is the class of geometries constructed by Giusto, Mathur, and Saxena (GMS) [6–8].

These geometries carry three charges as well as two angular momenta. These geometries

can be thought of as special limits of the Cvetič-Youm metrics.

The GMS microstate geometries have been studied in a variety of contexts over the

years. These geometries admit a Killing tensor in addition to four Killing vectors in 6d.

As a result geodesic equations can be reduced to quadratures and the scalar wave equation

can be separated. Smooth (linear as well as non-linear) hair modes on the dilaton-free class

of GMS geometries have been constructed in the last decade or so [9–13]. More recently,

via a tour de force calculation (non-linear) smooth hair modes on general GMS geometries

supporting non-trivial dilaton profiles have also been constructed [14, 15]. The dual CFT

description of these hair modes is also understood. Non-supersymmetric generalisation of

the GMS geometries, known as the JMaRT solutions [16], are also well explored [17–21].

In an intriguing paper [22], Eperon, Reall, and Santos (ERS) studied linear waves in the

GMS microstate geometries, and pointed out that there are qualitative differences between

the decay of linear waves in supersymmetric microstate geometries and in supersymmetric

black holes. In supersymmetric black holes linear waves for scalar perturbations decay as

an inverse power of time at late times. The higher angular frequency modes decay faster.

In contrast, in the GMS microstate geometries there is a stable trapping of geodesics. The

stable trapping of geodesics strongly suggests that the decay of linear waves is slower than

any inverse power of time. To further support this claim they pointed out that the GMS

geometries admit very slow decaying quasinormal modes. The slower decaying modes are

with higher angular frequencies. They argued that such a slow decay leads to a non-linear

instability of mircostate geometries.1

If we take the point of view that the fuzzball paradigm of black holes should reproduce

classical properties of black holes in detail, then these results pose puzzles. Although

subsequent authors have made suggestions for the end point of the ERS instability [26, 27],

several puzzles raised by ERS remain unaddressed. Specifically, how to reconcile with

properties of black holes the fact that in the microstate geometries the slower decaying

modes are of higher angular frequencies? How to interpret the slow decaying quasinormal

modes on the microstate geometries? In this paper, we present our modest attempts to

address some of these issues. The rest of the paper is organised as follows.

We revisit the study of probe scalar quasinormal modes in the GMS microstate geome-

tries in section 2. Since these geometries do not have a horizon, quasinormal modes refer

to definite frequency modes that satisfy regularity in the interior and are purely outgoing

1Geodesics in the GMS microstate geometries are further explored in [23] and the decay properties of

waves are further explored in [24, 25].
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at infinity. We compute the real and imaginary parts of the quasinormal modes in the

parameter regime when the geometries have large AdS region in the interior. In section 3

we reproduce both the real and the imaginary parts of the quasinormal mode spectrum

from a D1-D5 orbifold CFT analysis. The CFT picture suggests a different scenario on

the gravity side than the one suggested by ERS. They suggested that the slow decaying

modes cause non-linear instability in the sense that a generic perturbation would collapse

to a tiny black hole in the fuzzball geometry. Our results suggest a picture that the geom-

etry evolves to another fuzzball upon scalar absorption. We conclude this because on the

CFT side the scalar emission spectrum is reproduced via a transition from certain excited

states to the GMS states. Unfortunately, the bulk duals for the excited CFT states are

not known beyond the linear approximation. However, given our experience with fuzzball

geometries and their CFT duals it is expected that the excited CFT states correspond

to other fuzzballs, possibly with stringy microstructure. This picture is in line with the

suggestions made in [26, 27].

In section 4 we analyse the quasinormal mode wavefunctions and certain features of

the emitted scalar radiation. We make precise the physical picture that the decay process

corresponds to the leakage of excitation from AdS throat to infinity. We conclude in

section 5. A collection of useful formulae for ease of reproducing calculations in the main

text is presented in appendix A.

The key reason for the appearance of the slow decaying modes in the GMS geometries is

the “reflecting” boundary conditions. This boundary condition ensures that the scalar field

is smooth at the location where the throat pinches to zero size. It is clearly the most natural

boundary conditions for a probe scalar field on the classical microstate geometry. Given

these boundary conditions the results of ERS are robust. However, from the point of the

view of the fuzzball proposal the smoothness of the scalar field or the “reflecting” boundary

conditions is not the correct one. This point is closely related to the discussion presented

in [28, 29]. They argue that the dynamics of the scalar field on the microstate geometry

is governed by the evolution of new excitations that the scalar field generates. These

excitations alter the microstate geometry. The reflecting boundary condition overlooks

this physics. Unfortunately, it is not clear how to account for such an effect in a probe

calculation.

2 Quasinormal modes of supersymmetric microstate geometries

We begin with a study of the quasinormal modes of the three-charge supersymmetric mi-

crostate geometries of [6–8]. The term “quasinormal modes” simply refers to modes with

definite frequency ω. We begin with a review of the scalar wave equation on the GMS

geometries [22, 30, 31] and obtain the quasinormal mode spectrum via a matched asymp-

totic expansion analysis. Our investigation is inspired by the study of Eperon, Reall, and

Santos [22], who have also studied quasinormal mode in a matched asymptotic expansion.

The main difference from their work is that our matched asymptotic expansion analysis is

done in a “near decoupling limit”, whereas their matched asymptotic expansion is done in

the “eikonal limit” with the angular momentum parameter l being large. In section 2.5 we

present a detailed comparison of our expressions with theirs.
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2.1 Scalar wave equation

The ten-dimensional string frame metric of the three-charge geometries of references [6–8]

takes the form,

ds2 = ds26 +

√

H1

H5

4
∑

i=1

dx2i (2.1)

where

ds26 = −1

h
(dt2 − dy2) +

Qp
hf

(dt− dy)2 + hf

(

dr2

r2 + (γ1 + γ2)2η
+ dθ2

)

+h

(

r2 + γ1 (γ1 + γ2) η −
Q1Q5 (γ

2
1 − γ22) η cos2 θ

h2f2

)

cos2 θdψ2

+h

(

r2 + γ2 (γ1 + γ2) η +
Q1Q5 (γ

2
1 − γ22) η sin2 θ

h2f2

)

sin2 θdφ2

+
Qp (γ1 + γ2)

2 η2

hf

(

cos2 θdψ + sin2 θdφ
)2

−2
√
Q1Q5

hf

(

γ1 cos
2 θdψ + γ2 sin

2 θdφ
)

(dt− dy)

−2
√
Q1Q5 (γ1 + γ2) η

hf

(

cos2 θdψ + sin2 θdφ
)

dy. (2.2)

Explicit expressions for the 2-form Ramond-Ramond field and the dilaton can be found

in the above references. These geometries are solutions to the type IIB supergravity com-

pactified on T4. Upon dimensional reduction, the resulting six-dimensional geometries are

asymptotically 5d Minkowski spacetime times a Kaluza-Klein circle of radius R. We will

focus on the six-dimensional geometry. Various functions and parameters appearing in

metric (2.1)–(2.2) are as follows,

η =
Q1Q5

Q1Q5 +Q1Qp +Q5Qp
, (2.3)

f = r2 + (γ1 + γ2) η
(

γ1 sin2 θ + γ2 cos2 θ
)

, (2.4)

H1 = 1 +
Q1

f
, H5 = 1 +

Q5

f
, h =

√

H1H5, (2.5)

Qp = −γ1 γ2. (2.6)

The y ∼ y+ 2πR circle plays a key role in our discussion. In writing the above metric

we have in mind the D1-D5 system, that is, we consider n1 D1 branes wrapped on this S1

and n5 D5 branes wrapped on S1×T 4. The parameters Q1, Q5 and Qp are the dimensionful

charges, which can be written in terms of integer charges n1, n5 and np as follows,

Q1 =
gsα

′3

V
n1, Q5 = gsα

′n5, Qp =
g2sα

′4

V R2
np, (2.7)

where the volume of the T 4 at infinity is (2π)4V .
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It is convenient to work with the following parametrisation,

γ1 = −
√
Q1Q5

R
nγ , γ2 =

√
Q1Q5

R
(n+ 1)γ, Qp =

Q1Q5

R2
n(n+ 1)γ2 = a2n(n+ 1)γ2

(2.8)

where

a =

√
Q1Q5

R
, γ =

1

k
. (2.9)

The parameter k ∈ Z is the orbifolding parameter. The orbifold structure of these ge-

ometries was analysed in detail in reference [30]. From above relations it follows that the

integer quantised momentum charge np is,

np = n(n+ 1)n1n5γ
2. (2.10)

A minimally coupled scalar on the six-dimensional (Einstein frame) metric ds26 has a

natural interpretation in IIB supergravity as a graviton with legs in the T4 directions; see

e.g., [32]. The equation for the minimally coupled massless scalar,

�Φ ≡ 1√−g ∂µ
(√−g gµν ∂ν Φ

)

= 0, (2.11)

is known to separate for scalar configurations of the form

Φ(t, r, θ, φ, ψ, y) = exp(−iωt+ imφφ+ imψψ + iλy)H(r)Θ(θ). (2.12)

Our conventions are same as [18, 21], except that λ now has dimensions of inverse length.

Positive ωR corresponds to positive energy quanta. Upon substituting this ansatz, we get

the angular equation to be

1

sin 2θ

d

d θ

(

sin 2θ
d

d θ

)

Θ

+

[

−
m2
ψ

cos2 θ
−

m2
φ

sin2 θ
+ γ2κ2 η

(

−n sin2 θ + (n+ 1) cos2 θ
)

]

Θ = −ΛΘ. (2.13)

where

κ2 = (ω2 − λ2)a2, (2.14)

and where Λ is the separation constant. The radial equation becomes,

1

r

d

dr

(

r(r2 + ηa2γ2)
dH

dr

)

+

{

(ω2 − λ2)r2 + (ω2 − λ2)(Q1 +Q5)

+(ω − λ)2Qp +
ηa2

r2 + ηa2γ2

(

ω

η
R− λR

(Q1 +Q5)Qp
Q1Q5

− γ2
a
mφ −

γ1
a
mψ

)2

−a
2η

r2

(

λR+
γ2
a
mψ +

γ1
a
mφ

)2
− Λ

}

H(r) = 0. (2.15)

To simplify expressions, we introduce a dimensionless radial coordinate, x,

x =
r2

a2
=

r2R2

Q1Q5
, (2.16)
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and define new parameters

ω =
ω̃

R
, λ =

λ̃

R
, (2.17)

The radial equation then becomes

4
d

dx

(

x(x+ ηγ2)
dH

dx

)

+

{

(ω̃2 − λ̃2)

[

Q1Q5

R4
x+

(Q1 +Q5)

R2

]

+ (ω̃ − λ̃)2
Qp
R2

+
η

x+ ηγ2

(

ω̃

η
− λ̃

(Q1 +Q5)Qp
Q1Q5

− γ2
a
mφ −

γ1
a
mψ

)2

−η
x

(

λ̃+
γ2
a
mψ +

γ1
a
mφ

)2
− Λ

}

H(r) = 0 . (2.18)

Defining the following convenient quantities,

δ =

√
η

a
(γ1 + γ2) =

√
η γ, (2.19)

κ2 =

[

(ω̃2 − λ̃2)
Q1Q5

R4

]

, (2.20)

ν =

(

1 + Λ− (ω̃2 − λ̃2)
Q1 +Q5

R2
− (ω̃ − λ̃)2

Qp
R2

)
1

2

, (2.21)

ξ = ±√
η

(

ω̃

η
− λ̃

Qp(Q1 +Q5)

Q1Q5
− mψ

a
γ1 −

mφ

a
γ2

)

, (2.22)

ζ =
√
η
(

λ̃+
mψ

a
γ2 +

mφ

a
γ1

)

, (2.23)

the radial equation simplifies to,

4
d

d x

(

x(x+ δ2)
d

d x

)

H +

[

κ2 x+ 1− ν2 +
ξ2

x+ δ2
− ζ2

x

]

H = 0. (2.24)

In the following we explore solutions to this radial equation in a matched asymptotic

expansion analysis.

The scalar wave equation has a symmetry that allows one to relate solutions with

positive real part of ω to negative real parts of ω [17], i.e., if ωR + iωI is a quasinormal

mode then so is −ωR + iωI . This symmetry simultaneously changes the sign of mφ,mψ, λ.

Thus without loss of generality, we can only fix the sign of one; we set ωR > 0.

2.2 Solutions by matching

In order to set up a matched asymptotic expansion, we work in the parameter regime

ǫ =
(Q1Q5)

1

4

R
≪ 1. (2.25)

In the literature this limit is often called the “large R” limit or the “near decoupling limit”.

This limit isolates the low-energy excitations of the D1-D5 bound states. In the gravity

description, the geometry develops a large inner AdS3 × S3 region. Since a =
√
Q1Q5

R
,

cf. (2.9), the limit also entails

a2 ≪
√

Q1Q5. (2.26)

– 6 –
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We will be looking for scalar wave functions with frequency ω ∼ 1
R

and wave number

λ ∼ 1
R
. In the large R limit, in terms of ǫ defined in (2.25), we observe that

κ2 = (ω2 − λ2)a2 ∼ ǫ4, η ∼ 1, (2.27)

and so we find from the angular equation (2.13) that,

Λ = l(l + 2) +O(ǫ4) . (2.28)

We also note from eq. (2.23) that

ν = l + 1 +O(ǫ2) . (2.29)

In terms of the dimensionless radial variable x defined in eq. (2.16), we define the ‘inner

region’ to be the range

0 ≤ x . σ
1

ǫ2
, (2.30)

where we have introduced another parameter σ ≪ 1 for convenience [21]. We then define

the ‘outer region’ to be the range

x &
1

σ

1

ǫ2
. (2.31)

As defined, the inner and outer regions do not overlap. We will match solutions in the

‘neck’ region x ∼ 1
ǫ2
, or more specifically,

σ
1

ǫ2
. x .

1

σ

1

ǫ2
. (2.32)

Solutions to the radial wave equation are power law in x in this range [33]. The above

definitions of inner and outer regions are valid independent of the numerical value of l.

In particular, the discussion remains valid for l = 0 as well. This is in contrast with the

analysis of Eperon et al. [22], where a parametrically large l is used to split the dimensionless

radial coordinates in three regions.

2.2.1 Solution in the inner region

In the inner region (2.30), the κ2x term in equation (2.24) can be dropped. The equation

then simplifies to,

4
d

dx

(

x(x+ k−2)
dH(x)

dx

)

+
{

1− ν2 +
ξ2

x+ k−2
− ζ2

x

}

H(x) = 0. (2.33)

The solution of this equation that is regular at x = 0 is of the form,

Hin(x) = x
k|ζ|
2

(

x+ k−2
)

kξ
2
[

2F1(a, b; c;−xk2)
]

, (2.34)

where 2F1(a, b; c; z) is the ordinary hypergeometric function, with

a =
1

2
(1− ν + k|ζ|+ kξ) , b =

1

2
(1 + ν + k|ζ|+ kξ) , c = 1 + k|ζ|. (2.35)

– 7 –
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In writing this solution we have chosen to normalise the wavefunction (2.34) by setting its

overall normalisation constant to unity.

In the neck region, where x ∼ 1
ǫ2
, the wavefunction (2.34) behaves as,

Hin(x) ∼ Γ (1 + k|ζ|)
[

Γ(−ν)k−1−ν−k|ζ|−kξ

Γ
(

1
2(1− ν + k|ζ|+ kξ)

)

Γ
(

1
2(1− ν + k|ζ| − kξ)

)x−
ν+1

2 (2.36)

+
Γ(ν)k−1+ν−k|ζ|−kξ

Γ
(

1
2(1 + ν + k|ζ|+ kξ)

)

Γ
(

1
2(1 + ν + k|ζ| − kξ)

)x
ν−1

2

]

.

As commented above, in the neck region the scalar wave function behaves as a linear

combination of two power law solutions.

2.2.2 Outer region

In the outer region (2.31), the radial equation (2.24) becomes,

4x2H ′′ + 8xH ′ +
{

κ2x+ 1− ν2
}

H(x) = 0. (2.37)

The most general solution to this equation is a linear combination of Bessel functions,

Hout(x) =
1√
x

[

C1Jν(κ
√
x) + C2J−ν(κ

√
x)
]

. (2.38)

In the asymptotic region, κ
√
x≫ 1, the behaviour of the outer region solution is,

Hout(x) ∼
1

x
3

4

1√
2πκ

[

eiκ
√
xe−i

π
4 (C1e

−iν π
2 + C2e

iν π
2 ) + e−iκ

√
xei

π
4 (C1e

iν π
2 + C2e

−iν π
2 )
]

.

(2.39)

In the neck region, where x ∼ 1
ǫ2
, the combination κ

√
x ∼ ǫ2 · 1

ǫ
∼ ǫ≪ 1. We use the series

expansion of the Bessel function for small arguments to write

Hout(x) ∼
C1

Γ(1 + ν)

(κ

2

)ν

x
ν−1

2 +
C2

Γ(1− ν)

(κ

2

)−ν
x−

ν+1

2 . (2.40)

2.2.3 Matching solutions in the neck region

We match the asymptotic expansions (2.36) and (2.40) in the neck region to get

C1

C2

Γ(1− ν)

Γ(1 + ν)

( κ

2k

)2ν
=

Γ(ν)

Γ(−ν)
Γ
(

1
2(1− ν + k|ζ|+ kξ)

)

Γ
(

1
2(1− ν + k|ζ| − kξ)

)

Γ
(

1
2(1 + ν + k|ζ|+ kξ)

)

Γ
(

1
2(1 + ν + k|ζ| − kξ)

) . (2.41)

We impose the no incoming waves boundary conditions at infinity, i.e.,

C1 + C2e
−iνπ = 0. (2.42)

Here we have assumed that ωR > 0. We obtain

− e−iπν
Γ(1− ν)

Γ(1 + ν)

( κ

2k

)2ν
=

Γ(ν)

Γ(−ν)
Γ
(

1
2(1− ν + k|ζ|+ kξ)

)

Γ
(

1
2(1− ν + k|ζ| − kξ)

)

Γ
(

1
2(1 + ν + k|ζ|+ kξ)

)

Γ
(

1
2(1 + ν + k|ζ| − kξ)

) .

(2.43)
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The emission frequencies are given by the solutions to this transcendental equation. The

right hand side of this equation has ξ appearing in a symmetric way under ξ ↔ −ξ. We

can thus restrict our analysis to only one branch of the value of ξ, cf. (2.22). We take,

ξ =
√
η

(

ω̃

η
− λ̃

Qp(Q1 +Q5)

Q1Q5
− mψ

a
γ1 −

mφ

a
γ2

)

, (2.44)

which in the large R limit becomes,

ξ = ω̃ +
n

k
mψ − (n+ 1)

k
mφ. (2.45)

In the large R limit the expression for ζ becomes

ζ = λ̃+
(n+ 1)

k
mψ − n

k
mφ. (2.46)

2.3 Real and imaginary parts

In the large R limit, κ is parametrically small and ν is close to a positive integer. Therefore,

the κ2ν term in equation (2.43) is parametrically small. As a result, the only way the tran-

scendental equation (2.43) can be solved, is when one of the Γ-functions in the denominator

on the right hand side is close to developing a pole. That is, to leading order, either,

1

2
(1 + ν + k|ζ| − kξ) ≃ −N, (2.47)

with N a non-negative integer, or

1

2
(1 + ν + k|ζ|+ kξ) ≃ −M, (2.48)

with M a non-negative integer, with ξ restricted to be of the form (2.45). The two solu-

tions are,

Modes A:

ωA
R ≃ 1

kR

[

(l + 2(N + 1)) + |kλ̃+mψ(n+ 1)−mφn|+ (mφ(n+ 1)−mψn)
]

, (2.49)

Modes B:

ωB
R ≃ 1

kR

[

−(l + 2(M + 1))− |kλ̃+mψ(n+ 1)−mφn|+ (mφ(n+ 1)−mψn)
]

. (2.50)

This is the complete spectrum. The subscript R refers to the real part of the quasinormal

mode frequencies. The spectrum (2.49) precisely matches with expression 6.12 of [30]. In

the strict decoupling limit the spectrum has the symmetry,

ωA
R(−λ,−mφ,−mψ) = −ωB

R(λ,mφ,mψ). (2.51)

However, in the near decoupling limit the modes A and B are distinguished by the imaginary

parts. The imaginary parts of these quasinormal mode frequencies can be readily calculated
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using the procedure given in [18, 21]. A simple, though somewhat lengthy, calculation gives

the imaginary parts for the above modes,

ωA
I ≃ − 2π

kR

1

(l!)2

[

(ω2
R − λ2)

Q1Q5

4R2k2

]l+1
l+1+NCl+1

l+1+N+k|ζ|Cl+1, (2.52)

ωB
I ≃ +

2π

kR

1

(l!)2

[

(ω2
R − λ2)

Q1Q5

4R2k2

]l+1
l+1+MCl+1

l+1+M+k|ζ|Cl+1, (2.53)

where nCm is the standard binomial coefficient. Since ωA
I < 0, A modes are the stable

modes, and B modes (if allowed) are the unstable modes. In writing the above expressions,

implicit is the assumption that parameters can be arranged such that situation (2.47)

and (2.48) are physically realisable. In the next subsection we argue that this assumption

is false.

2.4 No unstable modes

We now argue that the unstable modes do not exist. Recall that we have fixed the conven-

tion ωR > 0. We now show that unstable modes do not exist by showing that we cannot

make ωB
R and (ωB

R)
2 − λ2 positive for any value of M,n, k, l,mψ,mφ, λ. Said differently, we

cannot arrange parameters where pole (2.48) is physical. Hence the procedure for comput-

ing the imaginary part following [18, 21] does not go through, and the only physical modes

are the stable modes. Ref. [17] gave essentially the same argument in a slightly different

form. The presentation below is instructive as almost all the emission calculations in the

fuzzball literature are done in the near decoupling limit. The discussion below makes a

direct connection to the CFT analysis. We will see in the next section that in the CFT

emissions corresponding to B modes are forbidden.

To begin with let us consider two charge geometries, i.e., geometries with no momentum

charge, Qp = 0. This happens when n = 0 or n = −1. For n = 0, we have

ωB
R =

1

kR

[

−l − 2(M + 1)− |kλ̃+mψ|+mφ

]

(2.54)

=
1

kR

[

−(l −mφ)− 2(M + 1)− |kλ̃+mψ|
]

. (2.55)

For spherical harmonics on the three-sphere, the values of l,mφ and mψ are constrained

so that

l ≥ |mφ|+ |mψ|, l ≥ 0. (2.56)

Thus, for mφ ≥ 0, l −mφ ≥ 0 and for mφ < 0 too l −mφ ≥ 0. In both cases the right

hand side of equation (2.55) is strictly negative, i.e., such emission modes do not exist.

For n = −1, we have

ωB
R =

1

kR

[

−l − 2(M + 1)− |kλ̃+mφ|+mψ

]

(2.57)

=
1

kR

[

−(l −mψ)− 2(M + 1)− |kλ̃+mφ|
]

. (2.58)

Via a similar argument (now with mψ), it follows that the right hand side of equation (2.58)

is strictly negative, i.e., such modes do not exist. This is clearly in line with our expectation

that the 2-charge geometries do not admit unstable modes.
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For the three-charge geometries, the corresponding analysis is much more subtle.

For the general 3-charge geometries considered above, supersymmetry property implies

the existence of a causal Killing vector arising from the square of the covariantly constant

Killing spinor. In 6d such a causal Killing vector is globally null [34]. This globally null

vector does not become time translation at infinity.

The norm of the time translation Killing vector T = ∂
∂t
,

T · T = gtt =
−f +Qp

fh
, (2.59)

is positive on the “evanescent ergosurface” f = 0,2 where fh =
√

(f +Q1)(f +Q5) =√
Q1Q5. We have,

T · T =
Qp√
Q1Q5

> 0, for Qp > 0. (2.60)

This observation was first made in [16].

In fact, for every Killing vector that becomes time translation (in some boosted frame)

at infinity, there is an ergoregion. The most general such vector is

ξ =
∂

∂t
+ c

∂

∂y
, (2.61)

for |c| < 1. On evanescent ergosurface f = 0, the norm of the this Killing vector field is

also positive

ξ · ξ = (c− 1)2
Qp√
Q1Q5

> 0. (2.62)

The three-charge geometries have a genuine ergoregion in 6d. A different perspective on

this discussion is presented in [36].

A presence of the ergoregion signals an ergoregion instability [17]. A natural question

is then: do unstable modes exist? Is it possible to arrange parameters such that ωB
R > 0

and (ωB
R)

2 − λ2 > 0?

We are not able to conclusively show that unstable modes do not exist, though, to the

extent we have investigated, we find that it is not possible to arrange parameters such that

these modes become physical.

There are a few cases that can be easily analysed analytically. For example, an in-

spection of the expression for ωB
R (2.50) shows that with fixed n, l for several values on mψ

and mφ, ω
B
R is strictly negative. All such modes are clearly unphysical. For some values

of the parameters it is possible to get positive ωB
R. For example, take M = 0, n = 4, k =

1, l = 1,mφ = 0,mψ = −1 and λ̃ = 5, then ω̃R = 1. This is a potentially dangerous modes,

however, since (ω̃B
R)

2 − λ̃2 < 0 such a mode is unphysical.

To systematically search for those modes, it is convenient to introduce parameters m

and m̄ labelling the scalar spherical harmonics basis on S3, such that

mψ = m̄−m, (2.63)

mφ = m̄+m, (2.64)

2Evanescent ergosurface is a concept introduced in [35] and expanded upon in [22]. In 5d it is the surface

of infinite redshift relative to infinity. In 6d it is defined as the locus where globally null Killing vector field

V = ∂
∂t

+ ∂
∂y

is orthogonal to the Kaluza-Klein Killing vector field Y = ∂
∂y

.

– 11 –



J
H
E
P
1
0
(
2
0
1
9
)
0
7
2

with m, m̄ ∈
(

− l
2 ,

l
2

)

. For n > 0, the values m = m̄ = l
2 and M = 0, k = 1 gives rise to the

most un-favourable situation, with

ω̃B
R = (nl − 2)− |nl − λ̃|. (2.65)

Now there are two cases: (nl− λ̃) ≥ 0 and (nl− λ̃) < 0. When (nl− λ̃) < 0, we have λ̃ > nl

and ω̃B
R < nl − 2. When (nl − λ̃) ≥ 0, ω̃B

R = λ̃ − 2 together with the condition λ̃ ≥ 2. In

both these siutations (ω̃B
R)

2 − λ̃2 < 0, i.e., such modes are unphysical.

More cases can be considered along the similar lines. We have done an extensive

computer search. We organised our computer program as follows: for fixed n,N, l we find

the minimum and maximum values of λ for which ωB
R is positive by varying m and m̄.

Then we check for the condition (ωB
R)

2 − λ2 < 0. We do not find any unstable mode.3

Writing a full combinatorial proof that no such modes exist is likely to be cumbersome,

involving many cases. In the absence of such a proof, it remains a conjecture that one

cannot arrange parameters so that unstable modes become physical.

For simplicity of notation from now onwards we will drop the superscripts A and B

and exclusively work with the stable modes (A modes).

2.5 Eperon-Reall-Santos limit

For black holes, quasinormal modes in the large l limit can be related to properties of circu-

lar null geodesics [37–39]. Eperon, Reall, and Santos (ERS) [22] analysed the quasinormal

mode spectrum in the large l limit for the supersymmetric microstate geometries. They

focus on two classes of modes: (i) modes for which the corresponding (stably) trapped null

geodesics are at the evanescent ergosurface, i.e., the energy and Kaluza-Klein momentum

of these modes do not scale with l, (ii) modes for which the corresponding (stably) trapped

null geodesics are away from the evanescent ergosurface, i.e., the energy and Kaluza-Klein

momentum of these modes scale with l in such a way that ω̃R+λ̃ ∼ O(l) but ω̃R−λ̃ ∼ O(l0).

In the large l limit (geometrical optics limit) and the large R limit (near decoupling limit)

several of their expressions can be recovered from ours. For this discussion we keep the

orbifolding parameter k unfixed; to match with the ERS expressions one needs to set k = 1.

2.5.1 kω̃R ≪ l and k|λ̃| ≪ l: modes at evanescent ergosurface

Real part. We start by looking at the real parts of the frequencies.

• For n > 0: in order to achieve kω̃R ≪ l with k|λ̃| ≪ l, the terms proportional to l

should cancel out in ω̃R. This is possible [22] for n > 0 with

mφ +mψ = −l, (2.66)

and

0 ≤ mψ

mφ
≤ n

n+ 1
. (2.67)

3We thank Samir Mathur for several useful discussions on these issues.
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From these relations it follows that both mφ and mψ are negative. Therefore, for

these modes,

|mψ(n+ 1)−mφn| = mψ(n+ 1)−mφn. (2.68)

To leading order in l we arrive at,

kω̃R = l +mψ(n+ 1)−mφn+ (mφ(n+ 1)−mψn) + k|λ̃|+ 2(N + 1) +O(l−1)

= k|λ̃|+ 2(N + 1) +O(l−1). (2.69)

This last equation is equation (85) of ERS.

• For n < −1: terms proportional to l cancel out in ω̃R with

mφ +mψ = −l, (2.70)

and
mψ

mφ
≥ n

n+ 1
. (2.71)

From these relations again it follows that both mφ and mψ are negative. Therefore,

for these modes,

|mψ(n+ 1)−mφn| = mψ(n+ 1)−mφn. (2.72)

We get,

kω̃R = l +mψ(n+ 1)−mφn+ (mφ(n+ 1)−mψn) + k|λ̃|+ 2(N + 1) +O(l−1)

= k|λ̃|+ 2(N + 1) +O(l−1). (2.73)

This last equation is again equation (85) of ERS.

• For n = 0: this case corresponds to a 2-charge geometry with Qp = 0. For this case,

the ERS modes are with

mφ = −l, mψ = 0. (2.74)

For these modes,

kω̃R = k|λ̃|+ 2(N + 1) +O(l−1). (2.75)

This is equation (114) of ERS.

• For n = −1: this case also corresponds to a 2-charge geometry — a different 2-charge

geometry than the n = 0 case. For this case, ERS modes are with,

mφ = 0, mψ = −l. (2.76)

For these modes too,

kω̃R = k|λ̃|+ 2(N + 1) +O(l−1). (2.77)

This last equation is again equation (114) of ERS.
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Imaginary part. Now let us look at the imaginary part of the frequencies. Let

j ≡ mψ

mφ
, m ≡ mφ

l
. (2.78)

In the large l limit, for modes with k|λ̃| ≪ l we have

k|ζ| = |kλ̃+mψ(n+ 1)−mφn| = mψ(n+ 1)−mφn+O(l0) (2.79)

= mφ (j(n+ 1)− n) +O(l0) (2.80)

= ml (j(n+ 1)− n) +O(l0) = µl +O(l0) (2.81)

where

µ = −(j(n+ 1)− n)

1 + j
> 0. (2.82)

Using Stirling’s approximation in various factors of eq. (2.52) with the value (2.81) of k|ζ|,
we find

1

(l!)2
∼ exp

[

−2l ln l + 2l − ln l +O(l0)
]

, (2.83)

l+1+NCl+1 ∼ exp
[

N ln l +O(l0)
]

, (2.84)

l+1+N+k|ζ|Cl+1 ∼ exp

[

{−µ lnµ+ (1 + µ) ln(1 + µ)} l − 1

2
ln l +O(l0)

]

. (2.85)

The remaining dimensionless factor in eq. (2.52) behaves as,

[

(ω2 − λ2)
Q1Q5

4R2k2

]l+1

=

[

κ2

4k2

]l+1

∼ κ20 exp

[

l ln

[

κ20
4k2

]

+O(l0)

]

, (2.86)

where κ2 = (ω2 − λ2)a2 and κ20 = (ω2
R − λ2)a2. Multiplying these factors, we obtain the

imaginary part of the frequency in the large l limit. The resulting expression matches with

the corresponding ERS expression, eq. (89), in the decoupling limit (with k = 1),

ω̃I ∼ −Dκ20e
−2 l ln l+

{

(2−µ lnµ+(1+µ) ln(1+µ)+ln
κ2
0

4k2

}

l+(N− 3

2) ln l+O(l0)
, (2.87)

where D is a positive constant independent of l to the leading order in l.4

2.5.2 k(ω̃R + λ̃) ∼ O(l) and k(ω̃R − λ̃) ≪ l: modes away from evanescent

ergosurface

For n > 0, ERS also looked at modes with λ > 0 and with

mφ +mψ = −l, (2.88)

and

0 ≤ mψ

mφ
≤ n

n+ 1
. (2.89)

4An expression for the coefficient D can certainly be obtained, but it is somewhat cumbersome as it

depends on O(l0) correction to |ζ| through equation (2.81).
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For such modes, to leading order in l we have,

kω̃R = l +mψ(n+ 1)−mφn+ (mφ(n+ 1)−mψn) + kλ̃+ 2(N + 1) +O(l−1)

= kλ̃+ 2(N + 1) +O(l−1). (2.90)

This expression is same as the above expression (2.69), except now kλ̃ scales with l. In

the decoupling limit this expression matches with eq. (94) of ERS. The 1/R corrections

to (2.90) obtained in [22] cannot be captured by our analysis as we have already taken

the large R limit. For n < −1 the corresponding expressions are readily obtained from

the analysis of the previous subsection. Once again the real part of the quasinormal mode

frequencies is (2.90).

Imaginary part. For the imaginary part, we start with the observation

k|ζ| = |kλ̃+mψ(n+ 1)−mφn| = λ̃+mψ(n+ 1)−mφn+O(l0) (2.91)

= kλ̃+mφ (j(n+ 1)− n) +O(l0) (2.92)

= kλ̃+ml (j(n+ 1)− n) +O(l0) = µ′l +O(l0) (2.93)

where

µ′ =
kλ̃

l
− (j(n+ 1)− n)

1 + j
. (2.94)

Let µ′ > 0. Using Stirling’s approximation (2.83)–(2.85) in various factors of eq. (2.52)

together with

(ω̃2 − λ̃2) = (ω̃ − λ̃)(ω̃ + λ̃) ∼ l, (2.95)

and

[

(ω2 − λ2)
Q1Q5

4R2k2

]l+1

∼ exp

[

l ln l + l ln

[

κ20
4lk2

]

+ ln l +O(l0)

]

, (2.96)

we obtain the large l limit of the imaginary part of the quasinormal mode frequencies.

Multiplying various factors, we obtain

ω̃A
I ∼ −D′e

− l ln l+

{

(2−µ′ lnµ′+(1+µ′) ln(1+µ′)+ln
κ2
0

4lk2

}

l+(N− 1

2) ln l+O(l0)
, (2.97)

where D′ is a positive constant independent of l to the leading order in l. It is proportional

to Q1Q5

4R2k2
. This expression matches with the corresponding ERS expression, eq. (96), in the

decoupling limit (with k = 1).

To summarise: most of the interesting features of the ERS modes are captured in our

near decoupling limit analysis.

3 Quasinormal modes from a D1-D5 orbifold CFT analysis

The aim of this section is to obtain the real and imaginary parts of the quasinormal mode

spectrum computed in the previous section from a CFT analysis. This involves several key

steps. Fortunately, almost all of these steps are already carefully presented in [40]; see also
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earlier papers [18, 41, 42] and the review [43]. We will see that a correct interpretation

of some of intermediate results from these references gives the full spectrum. To keep the

discussion simple we set k = 1. Towards the end we briefly indicate how the discussion

generalises to k > 1. We wish to emphasise that although the correct interpretation of some

of the known results is all that is required, the points made below are not well appreciated

in the literature. To the best of our knowledge no study exists that tries to make the

connection between the stable quasinormal modes of any D1-D5 microstate geometry and

the D1-D5 CFT.

3.1 Scalar emission from the D1-D5 CFT

To set the notation we start by describing some elementary features of the D1-D5 CFT.

Consider type IIB string theory compactified on S1 × T 4 with N1 number of D1 branes

wrapping S1 and N5 number of D5 branes wrapping S1 × T 4. The bound state of these

branes can be described by a field theory. We take the size of the torus to be of the order

of the string scale whereas we take the radius R of the circle S1 to be large compared to

the string scale. For such a set up, at low energy, we can focus on the excitations only

on the S1 direction. This low energy limit gives a two-dimensional CFT on the circle

S1. It is conjectured that we can move in the moduli space of this CFT to the ‘orbifold

point’ where the CFT is a N = (4, 4) supersymmetric (1 + 1) dimensional sigma model

whose target space is the symmetrized product of N1N5 copies of T 4; for more details and

references see e.g., [32, 44]. A convenient way of thinking about the sigma model is in

terms of component strings. Each copy of the T 4 is viewed as a component string, giving 4

bosonic excitations together with 4 left moving and 4 right moving fermionic excitations.

Since the sigma model target space is the symmetrized product, there are twisted sectors.

The twisted sector states can be obtained by applying twist operators σn on an untwisted

state. The twist operators link several copies of the component strings [45].

The CFT that describes the bound state of the D1-D5 system is in the Ramond sector.

The Ramond sector has a number of degenerate ground states. All these ground states can

be obtained by applying ‘one unit’ of spectral flow on chiral primary states in the NS sector.

The gravity dual of the NS vacuum state |∅〉NS is AdS3 × S3 × T 4. One unit of spectral

flow on the left and right sectors on the NS vacuum gives a Ramond sector ground state.

Further even units of spectral flows only on the left sector give supersymmetric excited

states. The GMS microstate geometries are dual to precisely these state. To summarise:

the three-charge GMS geometries are dual to odd units of spectral flows on the left and

one unit of spectral flow on the right on the NS vacuum. Due to the fact that the GMS

geometries have a direct relation to the NS vacuum, several calculations can be first done

in the NS-NS sector and then spectral flowed to the Ramond-Ramond sector.

The N = 4 superconformal symmetry of the D1-D5 CFT is generated by Ln, G
±
r , J

a
n on

the left and L̄n, Ḡ
±
r , J̄

a
n on the right. Expressions for the left and right generators in terms

of the free fields can be found in e.g., [40, 44] together with relevant OPEs and the (anti-

)commutation relations. The generators Ja0 and J̄a0 correspond to the SU(2)L × SU(2)R
R-symmetry of the D1-D5 CFT. We denote the quantum numbers in the left and the

right SU(2) as (j,m) and (j̄, m̄) respectively. The quantum number under L0 and L̄0 are
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denoted h and h̄ respectively. In addition, there is an internal symmetry corresponding

to the rotation on the T 4: SO(4)I ≃ SU(2)1 × SU(2)2 . This symmetry is broken by the

compactification of the torus, but it is useful in organising the field content of the D1-D5

CFT at the orbifold point. The indices A,B are used for the doublet of the SU(2)1 and the

indices Ȧ, Ḃ are used for the doublet of the SU(2)2. The torus indices i and j are related to

the A, Ȧ indices via the Pauli matrices. For a vector Xi on the internal torus T 4, we have

[X]ȦA =

4
∑

i=1

Xi(σi)ȦA, (3.1)

where σi are the three Pauli matrices (for i = 1, 2, 3) and the identity matrix (σ4 = iI2).

The notation is more fully explained in references [40, 44].

We are interested in studying minimally coupled massless scalar in the GMS geome-

tries. The minimally coupled scalar in six-dimensions correspond to the ten-dimensional

graviton with indices in the torus directions. From the study of the spectrum of IIB super-

gravity on AdS3 × S3 × T 4, it follows that in the NS sector the scalar excitations can be

described as descendants of chiral primary states; see e.g. discussion in [32]. Thus we have

the following picture: adding an excitation in the AdS region of the geometry corresponds

to an excitation in the CFT. This excitation relaxes by emitting a scalar quanta. The

initial state is related via spectral flows to descendants of chiral primary states. The final

state is the state dual to the three-charge GMS geometry. We describe our initial and final

state and the vertex operator following in more detail in the next subsection.

The emission is caused by the coupling of the CFT to modes to infinity. The general

structure of such coupling was discussed in [40]. Our analysis heavily relies on those results.

The idea is to compute a transition amplitude in the CFT (which in the present set-up is

essentially a two-point function) and use it to compute the real and imaginary parts of the

quasinormal mode spectrum. A related analysis for AdS5 black holes was reported in [46].

3.2 Initial and final states

We consider the scenario where the initial state is an excited state. It is dual to the three-

charge geometry with the scalar excitation. This excited state decays to a lower energy

state. The lower energy state is dual to an unexcited three-charge GMS geometry. In this

transition, a scalar quanta is emitted. As mentioned above, since the GMS geometries

have a direct relation to the NS vacuum, the calculation of transition amplitude can be

first done in the NS-NS sector and then spectral flowed to the Ramond-Ramond sector.

The final state is the NS description is simply the NS-NS vacuum,

|f〉 = |∅〉NS . (3.2)

The correctly normalised NS-NS sector excited state was constructed in [40]. It takes

the form,

|i〉 = |φ〉AȦBḂ =

√

(l − q)!(l − q̄)!

4N !N̄ !(N + l + 1)!(N̄ + l + 1)!q!q̄!(l + 1)2

× LN−1(J
−
0 )qG−A

− 1

2

ψ+Ȧ
− 1

2

L̄N̄−1(J̄
−
0 )q̄Ḡ−̇B

− 1

2

ψ̄+̇Ḃ
− 1

2

σ0l+1 |∅〉NS . (3.3)
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The notation is as follows:

1. In equation (3.3), the operator σ0l+1 is the normalised chiral primary operator with

dimensions (under L0, L̄0) and SU(2) R-charges (under J3
0 , J̄

3
0 ),

σ0l+1 : h = m =
l

2
, h̄ = m̄ =

l

2
. (3.4)

We will also need the anti-chiral primary operator σ̃0l+1. It has dimensions and

charges,

σ̃0l+1 : h = −m =
l

2
, h̄ = −m̄ =

l

2
. (3.5)

The normalisation of these operators is such that the two-point function is unit

normalised,

〈σ̃0l+1(z)σ
0
l+1(0)〉 =

1

|z|l . (3.6)

2. The J−
0 and J̄−

0 are respectively the lowering operators for the left and right SU(2)

R-charges. They act in equation (3.3) q and q̄ times respectively. The SU(2) angular

momentum quantum number of the initial state (3.3) are therefore,

m =
l

2
− q, m̄ =

l

2
− q̄, (3.7)

which are related to the SO(4) quantum numbers (in our notation) as,

mφ ≡ m̄+m = l − q − q̄, mψ ≡ m̄−m = q − q̄. (3.8)

These last relations are different from what is used in reference [40]. A reason for

this difference is that they work with three-charge non-supersymmetric geometries,

which are often written in different angular coordinate conventions. Our notation is

same as that of [30]. The mφ and mψ are the angular momentum quantum numbers

of the emitted scalar, cf. (2.12).

3. The action of LN−1 and L̄N̄−1 increases and energy of the state by N and N̄ respec-

tively on the left and the right sectors. These integers account for the ‘harmonics’

in the quasinormal mode spectrum, that is the integers N and M that feature in

equations (2.49)–(2.50).

4. Since the scalar field is viewed as a 10d graviton with legs in the T 4 directions, the

state (3.3) carries AȦBḂ as its free indices.

3.3 Scalar emission vertex operator

The scalar emission vertex operator is obtained by starting with a twist operator in the

CFT and dressing it appropriately. This operator was constructed in detail in [40]. In the
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notation of appendix A of that reference the correctly normalised operator which corre-

sponds to the scalar emission with SO(4) charges l,mφ,mψ is (note that the vertex operator

itself has opposite SO(4) charges),

VAȦBḂl,mφ,mψ
(z, z̄) =

1

2

√

(l − q)!(l − q̄)!

(l + 1)2(l + 1)!2q!q̄!

(

(J+
0 )q(J̄+

0 )q̄G+A
− 1

2

ψ−Ȧ
− 1

2

Ḡ+̇B
− 1

2

ψ−̇Ḃ
− 1

2

σ̃0l+1(z, z̄)

)

z,z̄

.

(3.9)

Note that since σ̃0l+1 appears in the vertex operator and the σ0l+1 appears in the initial

state, the computation of the emission amplitude 〈i|V|f〉 essentially becomes a two-point

function calculation for the twist operators, cf. (3.6).

3.4 Real part of the frequency

Now we can put together various pieces and get the spectrum and the emission rates from

the excited CFT state. We are interested in a process involving a single quanta. Precisely

this computation was done in [40] as an intermediate step; the result can be read-off

from that paper, equation (8.4). Translated into our conventions,5 we have for the scalar

emission spectrum from the CFT side to be,

ωR =
1

R

[

(α+ ᾱ+ 2)
l

2
− αq − ᾱq̄ +N + N̄ + 2

]

, (3.10)

λ =
1

R

[

(α− ᾱ)
l

2
− αq + ᾱq̄ +N − N̄

]

. (3.11)

In this equation the parameters α and ᾱ are the spectral flows on the left and the right

sectors respectively. We reach the three-charge states of interest from the NS-NS vacuum

by applying α = (2n + 1) units of spectral flows on the left and applying ᾱ = 1 unit of

spectral flow on the right.

The above spectrum is written slightly differently than on the gravity side. On the

gravity side one only integer features and λ is thought of an as independent parameter.

We can match the two answers as follows. Solving (3.8) for q and q̄ in favour of mψ and

mφ, we get

q =
1

2
(l +mψ −mφ), (3.12)

q̄ =
1

2
(l −mψ −mφ). (3.13)

Substituting α, ᾱ, q, q̄ in (3.19) we get

λ̃ = N − N̄ −mψ(n+ 1) +mφn. (3.14)

Rewriting it in terms of ζ, cf. (2.46), we have N−N̄ = ζ. For ζ ≥ 0, substituting N = N̄+ζ

we get,

ωR =
1

R

[

(l + 2(N̄ + 1)) + ζ + (mφ(n+ 1)−mψn)
]

, (3.15)

5Apart from the differences mentioned around equation (3.8), the only other difference is that in our

convention Py = L0 − L̄0 = −P there
y .
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and for ζ < 0, substituting N̄ = N + |ζ| we get,

ωR =
1

R
[(l + 2(N + 1)) + |ζ|+ (mφ(n+ 1)−mψn)] . (3.16)

For both cases combined we can write the ωR expression as

ωR =
1

R

[

(l + 2(M + 1)) + |λ̃+mψ(n+ 1)−mφn|+ (mφ(n+ 1)−mψn)
]

, (3.17)

for some positive integer M . This expression is precisely equation (2.49) for k = 1. There

are no other modes.

This discussion can be readily generalised to k > 1. The relevant equations can now be

obtained as intermediate steps from reference [47]. In that reference the authors calculate

in the CFT an amplitude for the twisting process as they are interested in reproducing the

unstable spectrum of the non-extremal JMaRT geometries. In this paper we are interested

in corresponding CFT amplitude for the untwisting process. The answer for the energy

spectrum in our conventions is

ωR =
1

kR

[

(kα+ kᾱ+ 2)
l

2
− kαq − kᾱq̄ +N + N̄ + 2

]

, (3.18)

λ =
1

R

[

(kα− kᾱ)
l

2
− kαq + kᾱq̄ +N − N̄

]

. (3.19)

Following exactly the same logic as above, one sees that the resulting expression matches

with the gravity answer for k > 1 too, equation (2.49). See also discussion in section 6.2

of [30].

3.5 Imaginary part of the frequency

Typically in AdS/CFT one computes correlation functions in the CFT and compares them

to quantities computed in the AdS geometry. The set-up we are interested in is slightly

different. The three-charge microstate geometries discussed above have an inner AdS region

glued to an asymptotically flat region. The quansinormal modes are determined via the

outgoing boundary conditions in the asymptotically flat region. Therefore, we are interested

in the emission of a scalar quanta leaving to infinity of the asymptotically flat region. This

requires coupling of CFT to flat space modes. This physics was worked out in detail in

reference [40]; see also earlier paper [18]. The basic ideas we describe in words and refer

the reader to those references for details.

AdS/CFT allows us to relate the partition function for gravity in AdS with given field

values at the boundary of AdS to the CFT partition function with sources. The boundary

values of the fields φb(y) act as sources J(y) for the operators O(y) dual to the field,

Sint = −
∫

d2yJ(y)O(y) = −µ
∫

d2yφb(y)V(y), (3.20)

where d2y is the two dimensional (t, y) space on which the CFT lives, φb(y) is boundary

value of the field φ(x) and V(y) is the operator dual to the scalar field. The scalar field and
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the the operator V(y) are appropriately normalised. Using AdS/CFT prescription we can

compute the two-point function of the operator µV(y). Using the chosen normalisation of

V(y) we can fix the coupling constant µ.

The boundary value of the field φb(y) can also be viewed as the limiting value of

the field from the outer region. This allows to continue modes from the AdS region to the

asymptotically flat region. Suppose we have an excited initial state in the inner AdS region

|i〉 and vacuum in the outer asymptotically flat region |∅〉outer. Due to the coupling (3.20)

a particle can be emitted to infinity, lowering the energy and the other quantum numbers

of the inner region state. Let the final inner region state be |f〉. The final outer region

state be a one-particle state. The total amplitude for the process (to the lowest order

approximation in the coupling) is
[

〈1particle| × 〈f |
]

(iSint)

[

|i〉 × |∅〉outer
]

. (3.21)

From such considerations, an expression for the rate of radiation to infinity in terms of the

CFT amplitude for the decay of an excited state was written in [40]. The decay rate takes

the form equation (2.65) of that reference,

dΓ

dE
=

2π

22l+1(l!)2
(Q1Q5)

l+1

R2l+3
(ω2 − λ2)l+1|〈f |V|i〉unit|2δλ,λ0δ(ω − ω0). (3.22)

In writing the above expression we have in mind the emission of a minimally coupled

massless scalar with angular momentum mode l on the S3 from the D1-D5 system. The

ansatz for the scalar wavefunction is (2.12); R being the radius of the S1 at infinity; ω0, λ0
and the angular quantum numbers of the emitted quanta are determined by the difference

in the quantum numbers of the initial and final CFT states; 〈f |V|i〉unit is the CFT correlator

on a ‘unit sized’ cylinder of cirumference 2π. The decay rate (3.22) refers to the decay of

the intensity of the radiation, whereas ωA
I refers to the decay of the amplitude of the wave.

Since the intensity is quadratic in the amplitude, ωA
I is half of the dΓ

dE . Moreover, since dΓ
dE

refers to the decay, the correct interpretation in terms of the quasinormal modes is with

the minus sign,

ωA
I = −1

2

dΓ

dE
. (3.23)

As an intermediate step of the analysis in [40] the amplitude 〈f |V|i〉unit for precisely

the process of current interest was computed. The final emission rate can be read-off from

equation (8.6) of that reference. Appropriate generalisation for k > 1 via reference [47]

gives the answer,

ωA
I = − 2π

kR

1

(l!)2

[

(ω2 − λ2)
Q1Q5

4R2k2

]l+1
l+1+NCl+1

l+1+N+k|ζ|Cl+1. (3.24)

This expression matches with the gravity calculation (2.52).

To summarise: a correct interpretation of the known results in the context of the D1-

D5 system allow to capture the full scalar quasinormal mode spectrum from the D1-D5

CFT in the near decoupling limit.

As we saw in detail in section (2.5), this spectrum includes the slow decaying

ERS modes.
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4 Analysing the scalar wavefunction

We now analyse the scalar wavefunction and certain features of the emitted scalar radiation.

We investigate the physical picture that the decay process corresponds to the leakage of

excitation from AdS throat to infinity.

Our considerations are inspired by the analysis of [21, 41], though the picture and the

set-up are completely different. In those references unstable modes of the non-extremal

JMaRT solution were analysed. It was argued that the emission process corresponds to

a pair creation. The positive energy excitation escapes to infinity and a negative energy

excitation settles down in the ergoregion. It was shown there that the inner region and the

outer region excitations carry equal and opposite values of various charges. As we will see

below shortly, that this is not the relevant picture for our case. In the present context the

decay process is as in the α-decay from an atomic nucleus. Scalar excitation slowly leaks

from the inner region (AdS throat) to the outer region (asymptotic infinity).

Let Jµ be a conserved current for the perturbation, ∇µJ
µ = 0. Since our background

configuration has four Killing vectors, namely ∂t, ∂y, ∂φ, and ∂ψ, we can construct four such

conserved currents for the scalar perturbation with ansatz (2.12). The energy momentum

tensor of the (complex) scalar field Tµ
ν is

Tµν = ∂µΦ∂νΦ
∗ + ∂νΦ∂µΦ

∗ − gµν∂αΦ∂
αΦ∗. (4.1)

Conserved currents are simply Tt
µ, Ty

µ, Tψ
µ, and Tφ

µ.

With the scalar field ansatz (2.12), we saw above that the imaginary parts of the

quasinormal mode frequencies are negative. As a result, near infinity the scalar solutions

behave as (for the simple case of λ = 0),

Φ ∼ exp [−iω(t− r)] ∼ exp [ωIt− ωIr] . (4.2)

For ωI < 0, solutions decay in time (as expected), but grow exponentially at large dis-

tances. This growth at infinity is a well known feature of the stable quasinormal modes,

see e.g. discussion and references in section 3.1 of [48].6 Due to this exponentially growing

nature of the modes at large distances, we cannot follow the discussion in references [21, 41]

to construct conserved quantities

Qtotal =

∫

Σ
JνdSv, (4.3)

where the integral extends over a complete spacelike hypersurface in the spacetime. In

those references surfaces Σ are simply chosen to be t = const. On any such spacelike

hypersurface the integral necessarily diverges.

Instead, we can compute integrals only over the inner region and calculate the rate at

which various charges change, that is,

Q(t) =

∫

inner
JνdSv. (4.4)

6In general quasinormal modes can only be thought of as quasi-stationary states that cannot have existed

for all times. They are excited at a particular instant in time in a local region of the spacetime and they

decay exponentially with time.
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The change of these charges should be equal to outward flux crossing the neck region i.e.,

dQ(t)

dt
+

∫

neck
JrdS = 0. (4.5)

This is the computation we set-up in this section. We find that the inner region

charges decay monotonically in time. We therefore have the picture that the decay process

corresponds to leakage of excitation from the inner region (AdS throat) to asymptotic

infinity. For simplicity we restrict our attention to t = const hypersurfaces. Recall that in

terms of the dimensional radial variable x, cf. (2.16), the inner region is defined as x≪ 1
ǫ2
.

The neck is at x ∼ 1
ǫ2
.

Let us introduce a more convenient set of coordinates for computing integrals in the

inner region. These coordinates also manifest the AdS nature of the inner region,

x = ρ2, τ =
t

R
, ϕ =

y

R
. (4.6)

In the large R limit the inner region metric in these coordinates can be written as [30],7

ds26 =
√

Q1Q5

[

−
(

ρ2 +
1

k2

)

dτ2 +

(

ρ2 +
1

k2

)−1

dρ2 + ρ2dϕ2 + dθ2 (4.7)

+ sin2 θ

(

dφ+
n

k
dϕ− n+ 1

k
dτ

)2

+ cos2 θ

(

dψ − n+ 1

k
dϕ+

n

k
dτ

)2 ]

.

4.1 Angular momenta of the perturbation in the inner region

Angular momenta for the scalar perturbation associated to the ψ and φ are respectively,

Lψ =

∫

Tψ
νdSν , Lφ =

∫

Tψ
νdSν . (4.8)

Substituting the separation ansatz (2.12) in (4.1), we find the following expressions,

Lψ = 2mψ

∫ √−gdrdA
(

−gttωR + gtψmψ + gtφmφ + gtyλ
)

ΦΦ∗, (4.9)

Lφ = 2mφ

∫ √−gdrdA
(

−gttωR + gtψmψ + gtφmφ + gtyλ
)

ΦΦ∗, (4.10)

where dA = dθdψdφdy. We note that the integrals in Lψ and Lφ are the same. It turns

out that the integrals involved for the energy and the linear momentum are also the same.

We focus on Lψ; the discussion for other quantities is analogous.

It is most convenient to compute this integral in the coordinates introduced in met-

ric (4.6). Let us recall that the scalar wavefunction in the inner region is given by, cf. (2.12)

and (2.34),

Φin = ρk|ζ|
(

ρ2 +
1

k2

)
kξ
2

Θ(θ) exp(−iωt+ iλy + imψψ + imφφ)
[

2F1(a, b; c;−k2ρ2)
]

,

(4.11)

7In this section we only focus on the six-dimensional part of the metric.
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where the parameters in the arguments of the hypergeometric function 2F1 are defined

in eq. (2.35). For the quasinormal modes, in the decoupling limit to leading order in

ǫ = (Q1Q5)
1
4

R
, we have that

ν ≃ l + 1 and 1 + ν + k|ζ| − kξ ≃ −2N. (4.12)

As a result,

(ΦΦ∗)in = ρ2k|ζ|
(

ρ2 +
1

k2

)kξ

|Θ(θ)|2 e2ωI t

×
(

2F1(1 +N + k|ζ|, l + 2 +N + k|ζ|; 1 + k|ζ|;−k2ρ2)
)2
. (4.13)

Using the inner region metric (4.7) we get

(Lψ)in ≃ 2mψQ1Q5

R

(

ωRR+
n

k
mψ − n+ 1

k
mφ

)

×
∫ 1

ǫ

0
ρ dρ

∫

dA cos θ sin θ

(

ρ2 +
1

k2

)−1

(ΦΦ∗)in. (4.14)

For small ρ, Φin ∼ ρ k|ζ|. For large ρ, using (4.12) and (2.36), we have Φin ∼ ρ−l−2, i.e.,

at this order in the approximation the wavefunction vanishes at large ρ. As a result, in

the large ρ limit the integrand falls off as ρ−2l−5. Therefore, to leading order in ǫ we can

replace the upper limit of integration to infinity,

(Lψ)in ≃ 2mψQ1Q5

R

(

ωRR+
n

k
mψ − n+ 1

k
mφ

)

×
∫ ∞

0
ρ dρ

∫

dA cos θ sin θ

(

ρ2 +
1

k2

)−1

(ΦΦ∗)in. (4.15)

We now use the Euler transformation identity of the hypergeometric functions, equation

9.131.1 of [49],

2F1(α, β; γ; z) = (1− z)γ−α−β2F1(γ − α, γ − β; γ; z), (4.16)

to get

2F1(1 +N + k|ζ|, l + 2 +N + k|ζ|; 1 + k|ζ|;−k2ρ2)

= (1 + k2ρ2)−2N−2−l−k|ζ|
2F1(−N,−N − l − 1; 1 + k|ζ|;−k2ρ2). (4.17)

Substituting this relation in the norm (4.13) we get for the inner region angular momentum,

(Lψ)in ≃ 4πCmψQ1Q5 e
2ωI t

(

ωRR+
n

k
mψ − n+ 1

k
mφ

)

k−8N−8−4l−4k|ζ|

×
∫ ∞

0
dρ ρ2k|ζ|+1

(

ρ2 +
1

k2

)−2N−l−k|ζ|−3
(

2F1(−N,−N−l−1; 1 + k|ζ|;−k2ρ2)
)2
,

(4.18)
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where C =
∫

S3 dθdφdψ sin θ cos θ|Θ(θ)|2. Substituting ρ̃ = kρ, we get

(Lψ)in ≃ 4πCmψQ1Q5 e
2ωI t

(

ωRR+
n

k
mψ − n+ 1

k
mφ

)

k−4N−4−2l−4k|ζ|

×
∫ ∞

0
dρ̃ ρ̃2k|ζ|+1

(

ρ̃2 + 1
)−2N−l−k|ζ|−3 (

2F1(−N,−N−l−1; 1 + k|ζ|;−ρ̃2)
)2
.

(4.19)

This integral can be evaluated using the hypergeometric function identity mentioned in

appendix A, equation (A.2). Using that we get

(Lψ)in ≃ 4πCmψQ1Q5 e
2ωI t

(

ωRR+
n

k
mψ − (n+ 1)

k
mφ

)

k−4N−4−2l−4k|ζ|

× Γ(1 + k|ζ|)2 Γ(N + 1)Γ(N + l + 2)

2(2N + k|ζ|+ l + 2)Γ(N + k|ζ|+ l + 2)Γ(N + k|ζ|+ 1)
. (4.20)

The first term in the denominator is simply kξ, cf. (4.12). Moreover, using equation (2.45)

for ξ,

ξ ≃ ωRR+
n

k
mψ − (n+ 1)

k
mφ, (4.21)

we see that the first term of the denominator cancels the term in the parenthesis. Thus,

finally we get

(Lψ)in ≃ 2πC Q1Q5mψ e
2ωI tk−4N−5−2l−4k|ζ| Γ(1 + k|ζ|)2 Γ(N + 1)Γ(N + l + 2)

Γ(N + k|ζ|+ l + 2)Γ(N + k|ζ|+ 1)
, (4.22)

and as a result,
d

dt
(Lψ)in = 2ωI(Lψ)in. (4.23)

Since ωI is negative, the signs of (Lψ)in and d
dt
(Lψ)in are opposite.

The aim now is to recover this last expression from the flux of angular momentum

across the neck region.

4.2 Flux of angular momenta of the perturbation across the neck

To compute the outwards flux of angular momentum across the neck region, we need to

compute the following integral,

F =

∫

neck
JrdS (4.24)

where

dS =
√−gdθdφdψdy =

√−gdA =
√

(Q1 + f)(Q5 + f) r sin θ cos θdA. (4.25)

The radial component of angular momentum current is

Jr ≡ Tψ
r = ∂ψΦ∂

rΦ∗ + ∂ψΦ
∗∂rΦ (4.26)

= imψ(Φ∂
rΦ∗ − Φ∗∂rΦ) (4.27)

= imψg
rr(Φ∂rΦ

∗ − Φ∗∂rΦ) (4.28)

= imψg
rr

(

ΦΦ∗

HH∗

)

(H(r)∂rH
∗(r)−H∗(r)∂rH(r)) . (4.29)
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Computing the expression in the second parenthesis for the neck region wavefunction (2.40)

for the quasinormal modes, we find

H(r)∂rH
∗(r)−H∗(r)∂rH(r) =

2ν|C2|2a2
r3Γ(1 + ν)Γ(1− ν)

|κ|−2ν(κ2νe−iπν − (κ∗)2νeiπν). (4.30)

To leading order in ǫ, this expression becomes

H(r)∂rH
∗(r)−H∗(r)∂rH(r) ≃ −i4|C2|2 sin2(πν)a2

πr3
. (4.31)

Therefore, we have

Jr = 4mψa
2 g

rr

πr3
e2ωI t|Θ(θ)|2|C2|2 sin2(πν). (4.32)

The inverse metric is written in appendix A, equation (A.1). We have

grr =
r2 + a2γ2η

√

(Q1 + f)(Q5 + f)
. (4.33)

Using this expression, in the decoupling limit in the neck region we get,

JrdS = 4mψa
2π−1e2ωI t|Θ(θ)|2|C2|2 sin2(πν) sin θ cos θdA. (4.34)

as a result flux is equal to,

F = 8mψRCe
2ωI ta2|C2|2 sin2(πν). (4.35)

In order to have a final expression for this flux we need the normalisation of the

wavefunction |C2|2.

4.3 Normalisation of the neck region wave function

On the one hand the outer region wave function in the neck region, κ
√
x ≪ 1, reads as

equation (2.40). The no incoming waves boundary conditions at infinity relates C1 and C2

as (2.42). On the other hand, the inner region wavefunction in the neck region reads as

equation (2.36). Comparing the coefficients of x
ν−1

2 of the above two expressions and using

the relation (2.42), we get

C2 = −eiνπ k−1+ν−k|ζ|−kξΓ(1 + k|ζ|)Γ(ν)Γ(1 + ν)

Γ
(

1
2(1 + ν + k|ζ|+ kξ)

)

Γ
(

1
2(1 + ν + k|ζ| − kξ)

)

(κ

2

)−ν
. (4.36)

We are interested in modes where the second Gamma functions in the denominator of

the above expression comes close to developing a pole, i.e.,

Γ

(

1

2
(1 + ν + k|ζ| − kξ)

)

= Γ(−N − δN) =
(−1)N+1

N !

1

δN
. (4.37)

Here δN is a small deviation from the integer N that controls the divergence of the Gamma

function. We assume that δN ≪ ǫ so that it can be ignored in the arguments of all the

other Gamma functions. This is a consistent assumption [21]. An expression for δN can
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be obtain from the matching condition (2.43). Inserting such an expression for δN in

equation (4.36) we obtain the normalisation constant. We need to find |C2|2. A simple

manipulation using these equations give,

|C2|2 sin2(πν) =
π

2
k−4N−5−4k|ζ|−2l(−ωIR)

Γ(1 + k|ζ|)2Γ(N + 1)Γ(N + ν + 1)

Γ(N + ν + 1 + k|ζ|)Γ(N + 1 + k|ζ|) , (4.38)

where ωI is given in equation (2.52). Substituting (4.38) in (4.35) we indeed find that,

d

dt
(Lψ)in = 2ωI(Lψ)in = −F. (4.39)

To summarise: we have shown that the rate of change of angular momenta of the

scalar perturbation in the inner region can be matched with the fluxes of these quantities

across the neck region. The angular momenta charges monotonically decay in the inner

region with decay exponent ωI . Therefore, we have picture that scalar excitation stuck in

the AdS throat slowly leaks to asymptotic infinity.

Very similar considerations apply to the energy and linear momentum of the scalar

perturbation. The rate of change of energy and linear momentum in the inner region can

be matched with the fluxes of these quantities across the neck region.

5 Conclusions and discussion

In this paper, we presented a detailed study of the quasinormal modes for the supersym-

metric three-charge geometries of Giusto, Mathur, and Saxena (GMS) [6–8]. The key result

of our paper is to reproduce the full spectrum in the decoupling limit from a D1-D5 orbifold

CFT analysis. On the gravity side, our analysis differs slightly from the analysis of Eperon,

Reall, and Santos (ERS) [22]. We work exclusively in the near decoupling limit. ERS work

in the geometrical optics limit. In the regime of overlap, we reproduce their expressions

for the real and imaginary parts of the quasinormal mode frequencies. On the CFT side,

fortunately, we did not have to do much work. Correct interpretation of some of the earlier

results in the literature [40, 47] allowed us to match the spectrum completely, including the

orbifolding parameter. In section 4 we studied properties of the scalar wavefunction and

made precise the picture that the quasinormal modes in this set up represent slow leakage

of excitation from AdS throat to asymptotic infinity.

There is a technical observation we made in section 2 that we wish to emphasise once

again here. We observed that in 6d the GMS microstates have a genuine ergoregion but

have no associated ergoregion instability. This is somewhat surprising in both ways: the

fact that a supersymmetric geometry has a genuine ergoregion and despite that it has

no associated ergoregion instability. We are not aware of any other system where this

happens. In contrast, let us mention that in the astrophysical relativity literature it is well

known that all rotating stars suffer from the so-called Chandrasekhar-Friedman-Schutz

(CFS) class of instability, see e.g. [50]. Ergoregion instability is such an instability. Such

instabilities are thought to be generic and are in fact considered a significant hinderance in

constructing truly stable rotating stars. In the present situation supersymmetry (and the

Kaluza-Klein circle) does all that automatically for us, somehow.
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In a recent series of papers [51–53],8 Bianchi et al. have studied geodesic motion and

properties of scalar scattering from fuzzballs closely related to the one studied above. They

have computed impact parameters at which the massless particle moving on geodesics

is captured by the fuzzball. They show that the fuzzball geometries captures massless

particles for a particular choice of impact parameter. This feature is once again different

from properties of black holes. Black holes capture all geodesics impinging on them with

impact parameter below a certain value. They also propose a qualitative picture of how

the blackness property of fuzzball arises. It will be interesting to relate ours to their study.

The retarded bulk-to-bulk scalar Green’s function on extremal BTZ black hole cap-

tures features related to Aretakis instability and associated power law decay [54]. A detailed

study of the bulk-to-bulk scalar Green’s functions in asymptotically AdS microstate geome-

tries, like the one presented in [55] for the boundary-to-boundary scalar Green’s function,

will be a good start in understanding the power law decay behaviour and any signature of

Aretakis behavior in the fuzzball paradigm.

We end with reiterating [5, 27] the point that in the fuzzball paradigm one expects most

of the microstate structure to be intrinsically stringy. Our discussion of the ERS modes

brings this point to the fore: we saw that within the scheme we worked with, namely scalar

excitation on the GMS microstate geometry, the dual CFT picture suggests transition to

another state. Unfortunately, even for this rather simple set-up we do not know the bulk

description of the new state beyond the linear approximation. Perhaps such a description is

not possible within supergravity. Taking it one step further, the CFT picture suggests that

the end state of the ERS instability is a transition to other (possibly stringy) mircostate

structure. In our analysis on the CFT side, we do not see any feature related to formation

of a tiny black hole as suggested by ERS; see also comments in [26, 27]. At this stage we

do not know how to make this point more precise in the bulk description. On the CFT side

perhaps more can be done, e.g., a model computation of moving from one state to another

in a scalar scattering was done in [56].
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A A compendium of formulae

Inverse metric. The inverse of the metric (2.1) is

gtt = − 1

hf

(

f +Q1 +Q5 +Qp +
Q1Q5 +Q1Qp +Q5Qp

r2 + (γ1 + γ2)2η

)

gyy =
1

hf

(

f +Q1 +Q5 −Qp +
Q1Q5 η

r2
−

Q2
p η

r2 + (γ1 + γ2)2η

(Q1 +Q5)
2

Q1Q5

)

gty = −Qp
hf

(

1 +
Q1 +Q5

r2 + (γ1 + γ2)2η

)

gψψ =
1

hf

(

1

cos2 θ
+
γ22 η

r2
− γ21 η

r2 + (γ1 + γ2)2η

)

gφφ =
1

hf

(

1

sin2 θ
+
γ21 η

r2
− γ22 η

r2 + (γ1 + γ2)2η

)

gψφ = −Qp η
hf

(

1

r2
− 1

r2 + (γ1 + γ2)2η

)

gtψ = −
√
Q1Q5

hf

γ1
r2 + (γ1 + γ2)2η

gtφ = −
√
Q1Q5

hf

γ2
r2 + (γ1 + γ2)2η

gyψ =

√
Q1Q5γ2 η

hf

(

1

r2
+

γ21
r2 + (γ1 + γ2)2η

Q1 +Q5

Q1Q5

)

gyφ =

√
Q1Q5γ1 η

hf

(

1

r2
+

γ22
r2 + (γ1 + γ2)2η

Q1 +Q5

Q1Q5

)

grr =
r2 + (γ1 + γ2)

2η

hf
, gθθ =

1

hf
, gxixj =

√

H5

H1
δij . (A.1)

A hypergeometric function identity. For positive α and for arbitrary positive integers

N and l,

∫ ∞

0
dρρ2α+1(1 + ρ2)−2N−l−3−α (

2F1(−N,−N − l − 1, 1 + α,−ρ2)
)2

=
1

2(2N + α+ l + 2)

Γ(1 + α)2 Γ(N + 1)Γ(N + l + 2)

Γ(N + α+ l + 2)Γ(N + α+ 1)
. (A.2)

A proof of the above identity can be found in appendix B.2 of [21].

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.
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