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Quasiparticle engineering and entanglement
propagation in a quantum many-body system
P. Jurcevic1,2*, B. P. Lanyon1,2*, P. Hauke1,3, C. Hempel1,2, P. Zoller1,3, R. Blatt1,2 & C. F. Roos1,2

The key to explaining and controlling a range of quantum phenom-
ena is to study how information propagates around many-body sys-
tems.Quantumdynamics canbedescribed byparticle-like carriers of
information that emerge in the collectivebehaviour of theunderlying
system, the so-called quasiparticles1. These elementary excitations
are predicted to distribute quantum information in a fashion deter-
mined by the system’s interactions2. Here we report quasiparticle
dynamicsobserved inaquantummany-body systemof trappedatomic
ions3,4. First,weobserve theentanglementdistributedbyquasiparticles
as they trace out light-cone-like wavefronts5–11. Second, using the
ability to tune the interaction range inour system,weobserve informa-
tion propagation in an experimental regime where the effective-light-
cone picture does not apply7,12. Our results will enable experimental
studies of a range of quantum phenomena, including transport13,14,
thermalization15, localization16 and entanglement growth17, and rep-
resent a first step towards a newquantum-optic regime of engineered
quasiparticles with tunable nonlinear interactions.
Experimental study of the quantum coherent properties of quasipar-

ticles represents a significant challenge over a broad range of disciplines,
frominvestigating thepropagationof quantumcorrelationsbymagnons
or phonons in naturally occurring systems, to creating exotic anyons in
engineered quantummatter for topological quantum technology18. Very
recently, in an engineered systemof 10 to 18 atoms in anoptical lattice9,10,
the propagation of correlations bymagnons was observed. Detecting the
quantum nature of the correlations distributed by quasiparticles (that is,
entanglement) has not yet been achieved.
We present experiments in an engineered one-dimensional system of

atomic ions, whose dynamics are accurately described by a latticemodel
of interacting spins.The salient features of our systemare as follows: first,
we are able to inject localized excitations into the system and, in the
subsequent dynamics,measure arbitrarymulti-particle correlation func-
tions, thereby allowing the possibility of detecting and quantifying en-
tanglement. Second, we can tune the ion–ion interaction range from
effectively nearest-neighbour to infinite range. In each case, a new set of
quasiparticles is createdwithunique dynamical properties. In contrast to
quantum simulation, where one aims to study computationally complex
processes, our goal is to manipulate individual quasiparticles and their
properties precisely, and observe the information and quantum correla-
tions that they transport.
In any quantum system with finite-range interactions (for example,

nearest-neighbour), quasiparticles have a finitemaximal velocity, known
as theLieb–Robinsonvelocity5,19,20. Such systems exhibit an effective light
cone for quantum dynamics that strictly bounds the speed with which
information propagates, as recently observed9,10. However,many natural
and engineered quantum systems exhibit long-range interactions that
decay as a power law, such as dipole–dipole or van der Waals interac-
tions. Understanding the quantumdynamics in thismore general case is
anactive fieldof theoretical research12,17,21,22. Forweakly long-range inter-
actions, the light-cone picture remains a good description, but as the
interaction range increases, themaximal velocity in the system ispredicted

to diverge and the light-cone picture no longer applies12. Here, we
experimentally access these regimes.
We control the quantum state and interactions of the valence electron

in each (40Ca1) ion,which canbe inoneof two states jS1=2,m~z1=2ior
jD5=2,m~z5=2i that we label j;i and j:i respectively. The quasiparti-
cles of our system are therefore collective electronic excitations. In the
presence of laser-driven interactions, our system is well described by a
one-dimensional model of interacting spins, with Hamiltonian3,4
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where B5h/2p, sbi b~x,y,zð Þ are the spin-1/2 Pauli operators for the
ith spin and B is an effective transverse magnetic field strength. The
coupling matrix Jij!1= i{jj ja has an approximately power-law depend-
encewithdistance i{jj j,with an exponent tunable between infinite range
a~0ð Þ and short range a~3ð Þ: Previous trapped ion experiments23–25

have investigated the ground stateproperties ofHIsing.Here,we investigate
out-of-equilibrium dynamics and a new regime where B?max(jJijj).
In this case, the number of spin excitations ("z) is conserved during the
dynamics, and HIsing reduces to the XY model of hopping hard-core

bosons,HXY~B
P
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. For further experimentdetails,

see Methods.
Using a tightly focused laser and single-ion resolved imaging, we can

inject localized excitations andobserve the system’s response. These local
quenches (that is, sudden perturbations of the system) allow the dynam-
ical properties of individual quasiparticle wave-packets to be studied, in
particular their dispersion relation and entanglement distribution. Local
quenches are performed by flipping one or more spins, thus coherently
populating a range of quasiparticlemodes. Eachmode can be pictured as
an equal superposition of spin waves (magnons) with positive and nega-
tivemomentum+k. Therefore, in the subsequent time evolution, super-
positions of left-travelling and right-travelling spin waves, ejected from
the quench site, distribute entanglement amongst the spins (Fig. 1a).
The precise dynamics are determined by the quasiparticle dispersion

relation,which in turn can be tuned by the spin–spin interaction range12.
Wecanverify the correct implementationof thedesired interaction range
and the corresponding quasiparticle dispersion relation by directly mea-
suring the spatial distribution of the spin–spin interactions (Fig. 1b). The
measurement closelymatches theoretical predictions (see ExtendedData
Fig. 5). Fitting adispersion relation frompower-law interactions allowsus
to extract the exponent a (Fig. 1c).
The spreadof information fromthe local quench sites canbeobserved

in spatially and temporally resolved single-spin observables, such as the
spin polarization hszi tð Þi, which characterizes the magnetization of the
system (Fig. 2a–c). At early times, localized spin-wave packets radiating
away from single spin-excitations are clearly visible. Later, reflections
result in complex interference patterns, with properties determined by
both a and the spin chain length. Questions such as whether the initially
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localized excitation refocuses are non-trivial even in the simpler case of
nearest-neighbour interactions13.
Flipping several spins at both ends of the chain creates counter-prop-

agating wavefronts, opening the prospect of studying quasiparticle colli-
sions (Fig. 2c). Extended Data Fig. 1 shows close agreement with theory
in all cases. Initializing allN spins in ;j iz :j i realizes a global quench. In
this case, themany-body state is in a superposition containing 0 through
to N excitations, in which interactions between single-excitation quasi-
particle modes can no longer be neglected. In this case, the resulting
distribution of information can be observed through two-point correla-
tion functions9,26, as seen in Fig. 2d and Extended Data Fig. 2.
To reveal thedistributionof quantumcorrelations after a local quench,

we tomographically measure the evolution of the full quantum state of
pairs of spins (see Fig. 3 andExtendedData Fig. 3). Figure 3a exemplifies
the results for an interaction range a<1:75, for which a clear wavefront
is apparent. The results show thatmagnonwave-packets emerging from
either side of the initial excitation distribute entanglement across the
spin chain (Fig. 3b, c); the wavefront first entangles spins neighbouring
the quench site, then the next-nearest neighbours, and so on until the
boundaries are reached.
Finally, we investigate how the spin–spin interaction range affects the

way inwhich information is transported around the system. For this, we
measure themagnetization dynamics following a local quench in a chain
of 15 spins, for three values ofa roughly equally spaced arounda~1. In
the shortest-range case (Fig. 4a, a~1:41), an approximate light cone can
be seen. There is a clear leading wavefront of spin-excitation that moves
away from the quench site at a well defined velocity, and outside which
the signal decays rapidly (Fig. 4a, d). These are the features of a well-
defined speed limit for quantum dynamics that one would expect for
finite-range interactions, and that has previously been observed in sys-
tems of neutral atoms with nearest-neighbour interactions9,10. Indeed,
the information transport observed in our shortest-range experiment
is largely captured by a Lieb–Robinson bound that considers only the
nearest-neighbour interactions in the system (Fig. 4a, d, e).
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Figure 2 | Measured quantum dynamics in a seven-ion system following
local and global quenches. a–c, Time evolution of the magnetization szi tð Þ
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(colour coded) following a local quench at: a, the central spin (ion), fora< 1.36;
b, the leftmost spin, for a< 1.36; and c, both ends of the chain, for a< 1.75.
Values of61 correspond to the fully polarized states. The colour scales in b and
c also refer to a. d, Time evolution of the averaged two-spin correlation function

Cn~
1

N{n

X

N{n

i

Ci,izn (colour coded) where Ci,j~ szi s
z
j

D E

{ szi
� �

szj

D E

following a global quench, for a< 1.75. The timescales (in units of 1/J, where

J~
P

i

Ji,iz1= N{1ð Þ so that the time evolution can be compared with different

values of a) are for a–d, respectively: Tmax5 8.36, 6.72, 5.44, 3.12.
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Figure 3 | Entanglement distribution following a local quench. Shown are
the dynamics for a< 1.75 up to T5 30ms (2.99 J21). a, Measured single-spin
magnetization (colour coded). b, Single-spin von Neumann entropy
2Tr(rlog(r))/log(2) (colour coded) derived from measured density matrices.
High-entropy states are due to correlations with other spins. c, Evolution of
entanglement (concurrence, see Methods) between pairs of spins distributed
symmetrically around the central spin, revealing the propagation of entangled
quasiparticles from the centre to the boundaries of the system. Blue, spins 3 and
5; red, spins 2 and 6; black, spins 1 and 7. Dashed lines show theoretical
predictions. Error bars, 1s calculated via Monte Carlo simulation of quantum
projection noise30.
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Figure 1 | Quantum dynamics in a one-dimensional spin chain following a
local quench. a, A steady state is locally perturbed by flipping one spin.
Quasiparticle wave-packets propagate left and right from the quench site and
entangle spin pairs across the system. The underlying spin–spin interaction
defines possible direct hopping paths (examples shown as arrows) and the
quasiparticle dispersion relation. b, Example of a long-range spin–spin
interaction matrix Jij, directly measured in our system for N5 7 spins (see
Methods), with colours matched to the interactions pictured in a.
c, Quasiparticle dispersion relation (shifted by energy B), derived from
b (circles) and predicted using experimental parameters (crosses). The line
is the fitted dispersion relation for power-law interactions, with best-fit
exponent a5 1.36. The maximum group velocity vmax

g is inferred from the
curve’s steepest slope (we set the lattice spacing to unity). a.u., arbitrary units.

Error bars (1s) are smaller than symbols used.
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As the interaction range is increased (Fig. 4b, c), the arrival times of
the first maxima in magnetization are seen to appear earlier and earlier,
reflecting the ejection of faster and faster quasiparticles from the quench
site. Furthermore, the signal decay outside these maxima is very slow:
there is an almost instant increase in themagnetization even at large dis-
tances (Fig. 4d, top). Clearly we are able to tune our system into a regime
where the light-cone picture does not apply and significant amounts of
information can propagate directly to distant neighbours. This is con-
sistent with generalized Lieb–Robinson bounds for power laws, which
for av1 are trivial, placing no restriction on the speed of information
propagation6–8.
A quantitative analysis is provided by extracting the maximum qua-

siparticle group velocity vmax
g from the data (see Methods and Extended

Data Fig. 4). For the shortest-range case, the observed vmax
g fits well with

thenearest-neighbour case (Fig. 4d).As the interaction range is increased,
the results are consistentwithadivergenceofvmax

g , as recentlypredicted12.
Ultimately, the informationpropagation speed inour system is limitedby
thepropagationof acousticwaves across the ion chain21.Note that, despite
the faster-moving components in the longer-range data (Fig. 4c), the
initial perturbation remains more localized. This is consistent with the
predicted flattening of the dispersion relation away from the divergence.
For a comparison of data with theory, see Extended Data Fig. 4.
Differences between the observed and ideal quantum dynamics fol-

lowing local quenches largely correspond to imperfect conservation of
excitation number. This could be caused by electric field noise leading to
heating of the ion’s motional state or by unwanted spin–motion entan-
glement. For global quench dynamics, laser-frequency and magnetic-
field fluctuations give rise to dephasing.
We have presented a new platform for investigating quantum

phenomena—a many-body quantum system in which the states and
properties of its quasiparticle excitations can be precisely initialized,
controlledandmeasured. This opensmanynewpaths for experimental

investigations, the subjects of which can be broadly split into the follow-
ing: (1) quantum transport phenomena, concerning howquantumstates
and entanglement13, or excitations14,27, propagate across quantummany-
body systems; (2) how quantum systems reach equilibrium, including
the question of when thermalization15,28 and localization occur16; (3) en-
tanglement growth and simulation complexity17 (the interaction range
parameter a is known to play a critical role in the growth rate of entan-
glement and thepossibilityof simulating thedynamicswith conventional
computers); and (4) quasiparticle behaviour near phase transitions1.
For many of these research lines it would be useful, and feasible, to add
localized spin excitation absorbers or reflective boundaries, and static or
stochastically fluctuating disorder, to our system.
During the final stageof thiswork,webecameaware of complementary

recent work investigating global quenches of trapped-ion spin chains26.

METHODS SUMMARY
Ions are held in a linear Paul trap, each encoding a spin-1/2 particle in the electronic
states S1=2,m~z1=2i:

�

�

�

�;i and D5=2,m~z5=2i:
�

�

�

�:i. Spins are manipulated
with a narrow-linewidth laser at 729 nm (ref. 29). Ions are coherentlymanipulated
with two laser beams intersecting the ion string perpendicularly from opposite
directions. The first beam interacts with all the ionswith nearly equal strength and
is used for carrying out collective spin rotations, as well as implementing effective
spin–spin interactions bymeans of electronic-state-dependent forces3. These forces
off-resonantly drive the transverse motional modes of the ion string. The inter-
action range að Þ is controlled by how far off-resonant the driving is and the axial
trapping confinement. The second beam is strongly focused, steerable, and is used
for single-spin rotations. Spatially resolved fluorescencemeasurements in conjunc-
tion with prior single-spin rotations allow us to take single-shot measurements of
arbitrary spin correlations.
If our systemhadonly nearest-neighbour interactions, the signal propagation after

a local perturbation using sx‘ would be bounded by hy tð Þ Oj jy tð Þi{hy0 Oj jy0ij j
ƒ2 Oj jj jId 4 tj jmaxi Ji,iz1ð Þð Þ, where O may be any local operator with norm Oj jj j
and distance d to the quench site ‘. As Fig. 4d shows forO~szi , this bound is only a
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Figure 4 | Measured quantum dynamics for increasing spin–spin
interaction ranges. a–c, Measured magnetization szi tð Þ
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(colour coded)
following a local quench. From a to c, the interaction ranges are a< 1.41, 1.07,
0.75. In a, an effective light cone is evident and the dynamics are approximately
described by nearest-neighbour interactions only. Red lines, fits to the observed
magnon arrival times (examples in d); white lines, light cone for averaged
nearest-neighbour interactions; orange dots, after renormalization by the
algebraic tail (seeMethods). As the interaction range is increased (b, c) the light
cone disappears and nearest-neighbour models fail to capture the dynamics.
d, Magnetization of spins (ions) 6 and 13, from a (top) and c (bottom). Solid

lines, Gaussian fits to measured magnon arrival. Top: for a5 1.41, a nearest-
neighbour Lieb–Robinson bound captures most of the signal (shaded region,
Methods). Bottom: for a5 0.75, it does not. e, Maximum group velocity. With
increasing a, the measured magnon arrival velocities (red circles) approach the
group velocity of the non-renormalized nearest-neighbour model (grey dash-
dotted line). If renormalized by the algebraic tail, the nearest-neighbour group
velocity increases at small a (orange dots), butmuch less than the increase of the
observed magnon velocity. For small a, the measured arrival times are
consistent with the divergent behaviour predicted for full power-law
interactions (black line).
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good approximation for the shortest-range casemeasured. Additionally, for nearest-
neighbour interactions, the maximal group velocity vmax

g of magnon modes (that is,
the largest slope of the quasiparticle dispersion relation) is finite. Figure 4a–c shows
the corresponding light cone t~d=vmax

g , outside which the signal would diminish
exponentially if our systemhadonly nearest-neighbour interactions. Clearly, longer-
range interactions play an important role in our dynamics and must be taken into
account.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in theonline versionof thepaper; referencesunique
to these sections appear only in the online paper.
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METHODS

Magnon eigenmodes. The dynamics in our system are well described by an XY
Hamiltonian of N coupled spins,

HXY~B
P

ivj

Jij szi s{j zs{i szj

� �

ð1Þ

wheres+i ~ sxi+is
y
i

� �

=2,withs
x,y
i theusualPaulimatrices.Wecanuse theHolstein–

Primakoff transformation31 to exactlymap the spins to hard-core-interacting bosons,

szi ?a{i ,s
{

i ?ai, where ai a{i

� �

annihilates (creates) a boson on site i. The resulting

model, Hboson~ B
P

ivj

Jij a{i ajzh:c:
� �

, conserves the total number of particles (cor-

responding toconservedmagnetization in theoriginal spinmodel, allowingus to treat
the transverse-field term B

P

i

szi as a constant that we can neglect). In the single-

particle subspace, diagonalizingHboson is equivalent todiagonalizing theN|Nmatrix
with entries Jij. The result can be written in the form

Hboson~
P

k

Bvka
{

kak ð2Þ

where a{k~
P

i

ci,ka
{
i creates an excitation in eigenmode k. The mode functions ci,k

are the normalized eigenvectors of Jij . The eigenmode spectrumvk, that is, the dis-

persion relation, depends on the boundary conditions and interaction range.Once Jij
is known, it can be determined unambiguously. A single-particle wave-packet con-
structed from these eigenmodes is what we call a magnon quasiparticle.
A local perturbation of the fully polarized state, that is, a local quench, can be

understood as the creation of a singlemagnon. After a spin flip at site ‘, for example,
the system state evolves according to

Y tð Þj i~e{iHboson t=Ba{‘ 0j i~
X

k

c�‘,ke
{ivk ta{k j0i ð3Þ

where j0i is the vacuum.When the number of excitations exceeds one, the picture of
non- interacting magnons is only an approximation, and one has to account for the
presence of hard-core interactions.
Calculation of group velocity. From equation (3), it becomes clear that the time
evolutionafter creationof a single excitation is determinedby themagnondispersion
relation, andconsequentlyby the associatedgroupvelocities. For translationally inva-
riant systems, the modes with energies vk are plane waves with well-defined wave-
vector k. In this case, the magnon group velocities are given by the well-known
relation vg~Lv=Lk. In contrast, for a finite system with open boundary conditions
and nearest-neighbour interactions, the mode functions are standing waves of the
form c

kð Þ
i !sin k:ið Þ, with k~np= Nz1ð Þ, wheren~1:::N (we set the lattice spacing

to unity). In the presenceof finite-range interactions, themodesget distorted, but the
number of nodes remains well defined.We can then still associate standing waves
with the magnon modes and extract a maximal group velocity as: vmax

g : maxkj
vkzp= Nz1ð Þ{vk

� �

Nz1ð Þ=pj.
Encoding a spin-1/2 in an optical transition of a trapped ion.To experimentally
realize the spin HamiltonianHXY, we identify the Zeeman states jS1=2,m~z1=2i
and jD5=2, m

0
~z5=2i of 40Ca1 with the j;i and j:i states of a spin-1/2 particle.

The metastable D5=2state has a lifetime of 1.16(2) s and is connected to the S1/2
ground state by an electric quadrupole transition at a wavelength of l5 729nm.
The degeneracy of the ion’s Zeeman states is lifted by a weak magnetic field of
<4G which allows us to initialize the jS1=2, m~z1=2i state using optical pump-
ing techniques with a probability of about 99.9%. Choosing the jD5=2,m

0
~z5=2i

state for encoding :j i has the advantage that spontaneous decay of the metastable
state does not give rise to population loss from the computational state space. The
static electric fields of the linear trap used to confine the ions axially induce electric
quadrupole shifts which shift the energy of the :j i state. Hence, the transition fre-
quency v0 between the spin states is slightly inhomogeneous across the ion string.
However, for our experimental parameters, these inhomogeneities are below 20Hz
and thus considerably smaller than the spin–spin coupling strength.
Realization of variable-range spin–spin couplings in 40Ca1. Variable-range
spin–spin interaction of the Ising type are realized by globally addressing the ions
with a laser beam whose direction is orthogonal to the ion string axis. The laser off-
resonantly couples the ions’ electronic states representing ;j i and :j i to the ion
strings’ collectivemodes ofmotion in the directions perpendicular to the string. The
laser carries two frequenciesv+~v0+D, which induces aMølmer-Sørensen type
interaction32 by coupling to all first-order sidebands of the transverse collective
modes of motion (Bv0 is the energy difference between ;j i and :j i). In the limit of
weak coupling, the induced effective interactionbetween the spins isdescribedby the
Hamiltonian3,23

H~B

X

ivj

Jijs
x
i s

x
j ð4Þ

with spin–spin coupling constants:

Jij~ViVj
Bk2

2m

X

n

bi,nbj,n

D2
{n2n

ð5Þ

Here, Vi denotes the Rabi frequency of each component of the bichromatic beam
on ion i~1:::N , k5 2p/l andm is the ion mass. The summation runs over all 2N
transversemodes, where nn is themode’s oscillation frequency and bi,n is the Lamb–
Dicke factor, which is proportional to the displacement of the ith ion in the nth
collective mode.
When the laser detuningD is set to a valuehigher than the frequencyof thehighest

transverse mode, the coupling becomes anti-ferromagnetic with a range that is
described approximately by a power-law dependence, Jij! i{jj j{a. The exponent
a can be varied between 0 and 3. Themore similar the denominators in equation (5)
become, the shorter the range of the interaction gets. This can be achieved by either
increasing the laser detuning or by bunching up the transverse modes in frequency
space by trapping the ions in a strongly anisotropic potential. In contrast to experi-
ments engineering spin–spin interactions in trapped ions using Raman transitions
connecting hyperfine states4,23,24, our experiment uses a single-photon transition.
In all experiments presented here, with the exception of the data shown in Fig. 4a,

we trap ions in a harmonic potential with an axial frequency of 219 kHz and trans-
verse frequencies of 2.655 and 2.628MHz. The degeneracy of the transverse fre-
quencies is slightly lifted to achieve efficient Doppler cooling. The detuningD of the
laser from the highest transverse mode is in the range of 15 to 120 kHz. To achieve
a5 1.41 in a 15-ion string (Fig. 4a), we lowered the axial confinement to 150 kHz.
To reduce off-resonant excitation of the vibrational modes, frequency resolved

sidebandcoolingof all radial vibrationalmodes to theground state is employedat the
beginning of each experiment. Rabi frequencies ofV< (2p)125 kHz are achieved by
focusing about 20mWof light to an ellipticalGaussian beam focuswithbeamwaists
wjj~380mm and w\~33mm. In the seven-ion experiments, the intensity on the
outer ions is about 8% lower than on the central ion. In the fifteen-ion experiment,
this number increases to about 20%.
Implementationof the transverse field and its effect on thequantumdynamics.A
transverse field BB

P

i

szi can be added to equation (4) by shifting both frequency

components of the bichromatic beam by an additional amount d~2B, that is, the
two frequencies are nowv0+Dz2B. The effect is to tune the ;j i ;j i to :j i :j i tran-
sition out of resonance whereas the ;j i :j i to :j i ;j i coupling is not affected as it is
driven by absorption and stimulated emission of photons of the same wavelength.
IfB? Jij , joint spin flips coupling ;j i ;j i< :j i :j i are suppressed.All local quench

experiments presented in this Letter were carried out in this regime where the
number of excited spins is a conserved quantity. As dephasing due tomagnetic field
and laser noise is suppressed in subspaces with fixed numbers of excitations, the
spin–spin dynamics can be followed over timescales of tens of milliseconds.
Compensation of a.c.-Stark shifts.Excitationof the S1=2<D5=2 quadrupole trans-
ition by the laser inducing the spin–spin interactions gives rise to a.c.-Stark shifts
of the coupled levels. These shifts are caused by off-resonant excitation of dipole
transitions coupling the S1/2 and P1/2 states to other excited states. For our experi-
mental parameters, the light shifts are of the order of 2–3kHz. Moreover, they vary
from one ion to the other, reflecting the intensity inhomogeneities of the laser beam
used to drive the interactions. To compensate the a.c.-Stark shifts, a third laser fre-
quency is added to the bichromatic beam causing a light shift of the same strength
but opposite sign33. In order to keep the power of the compensating light field low,
we chose to add a frequency component red-detuned by about 1MHz from the
j#æ« j"æ transition. For this method to work, care has to be taken that there are no
polarizationor k-vector gradients across the ion string thatmight introduce intensity-
independent coupling strength variations among different ions. The intensity of this
frequency component is set to the right value by analysing at which detuning of the
bichromatic beam correlated spin flips are observed.
Single-ion addressing and state read-out.Addressing of single ions is achievedby
a strongly focused beam inducing a light shift on one of the ions in the string. The
beam position can be switched within 12ms from one ion to any other ion using an
acousto-optic deflector. Arbitrary single-ion rotations can be built up from opera-
tions combining single-ion a.c.-Stark shiftswith global interactions resonantly coup-
ling the states j#æ and j"æ (ref. 29). Combining these arbitrary single-ion rotations
with spatially resolved detection of the ions’ fluorescence on an EMCCD camera
enables us tomeasure any observable that can bewritten as a tensor product of Pauli
spin operators.
Quantum state tomography and entanglement quantification. For measure-
ment of the entanglement of spin-pairs to the left and right of the central spin (Fig. 3),
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wecarryoutquantumstate tomographyof eachpairof spins.All required expectation
values of two-spin observables s

bi
i s

bj
j b~x,y,zð Þ can be estimated from measure-

ments in nine different measurement bases where ions 1–3 are projected onto the
same set of basis states and ions 4–7 onto the states of a different measurement basis.
We estimate each expectation value by measuring 400 times in the corresponding
basis, leading to a statistical uncertainty in each assigned value.We use themethod of
maximum-likelihood estimation34 to find themost likely physical two-spin quantum
state to have produced the observed set of estimated expectation values.
From the maximum-likelihood reconstructed two-spin density matrix we can cal-

culate any one- or two-qubit property, such as entropy or concurrence. To translate
the experimental uncertainties in expectation values into uncertainties in quantities
derived from the reconstructed densitymatrix, we use theMonteCarlo bootstrapping
technique30.
To quantify the entanglement between pairs of spinswith densitymatrixrwe use

the concurrence C rð Þ — a widely used absolute entanglement measure for mixed
and pure states of a two qubit system35:

C(r);max(0, l12l22l32l4) (6)

where li are the eigenvalues in decreasing order of the Hermitian matrix R:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffi

r
p

sy6sy
� �

r� sy6sy
� �

ffiffiffi

r
pq

. The concurrence is a measure ranging from zero

for a completely separable state up to one for amaximally entangled Bell state. Con-

sequently, up to statistical uncertainty, a non-zero value of concurrence proves the

existence of entanglement.
Measurement of spin–spin coupling matrix elements. For the measurement of
the spin–spin coupling matrix Jij , the ions are initially prepared in j#æ by optical
pumping. Next, all ions except i and j are transferred into an auxiliary ZeemanD5=2

state, which does not couple to the bichromatic beam inducing the spin–spin coup-
ling, and the state of one of the ions still remaining in j#æ is flipped to j"æ. Finally, we
switch on the bichromatic beam coupling j#æij"æj to j"æij#æj and measure the fre-
quency of oscillation at which the two ions exchange the shared excitation.
Estimation ofa fromadispersion relation.Thespatial behaviourof the spin–spin
couplings Jij does not follow a perfect power law, making it difficult to extract an
unambiguous exponent a from a direct fit in real space. However, the magnon dis-
persion relation allows us to estimate an effective value for a. To do this, we compare
the dispersion relation of a system with power-law interactions to the dispersion
relation of a realistic system obeying the experimental parameters. The power-law
exponent a yielding the best fit provides an estimate for the interaction range.
As seen in Fig. 1c, there is a close agreement between the dispersion relation from
power-law interactions, the one simulated using experimental parameters, and the
one using the measured coupling strengths. The corresponding value of a allows us
to classify the system behaviour, since the dispersion relation uniquely determines
the dynamics in the single-magnon subspace, see equation (3). Indeed, as demon-
strated in Extended Data Fig. 1, simulations employing the estimated a reproduce
the main features of the measured magnetization dynamics well, thus justifying its
use. While the results for a of direct fits to the interactions depend on the details of
the fit (using averaged interactions, interactions of the central spin, and so on), they
typically agreewithin20%withour values extracted fromthequasiparticle spectrum.
In particular, the regimes in which the extracted a fall—strong long-range av1ð Þ or
weak long-range aw1ð Þ—do not depend on the details of the method used.
Numerical simulations of the spin dynamics. For numerical simulations, we use
the measured trap frequencies and the intensity distribution of the ions across the
string to calculate the spin–spin coupling matrix Jij .The coupling matrix and the
measured laser–iondetuning are thenused in anumerical integrationof the equation
of motion within the 2N - dimensional Hilbert space describing the spin system. For
the simulation of the fifteen-ion experiments, we disregarded processes not conserv-
ing the spin excitation number in order to carry out the numerical integrationwithin
the one-excitation subspace. The only free parameter in the simulations is the overall
intensity of the bichromatic laser field which could not be calibrated perfectly (devia-
tions from the measured value were always below 5%).
Approximate light cones and the Lieb–Robinson bound. If interactions in a
quantummany-body system are of short range (for example, exponentially decreas-
ing with distance), information cannot propagate arbitrarily fast. Therefore, when
measuring anobservable (such as themagnetization szi

� �

) at a distance dw0 from a
local perturbation, the observed expectation value can change only after a certain
time. A mathematically rigorous formulation of this concept, which we will sketch
now, was first given by Lieb and Robinson5 and later generalized by various authors
(see, for example, refs 6, 36, 37).

We denote the unperturbed initial state by jy0æ and by jy(t)æ the state that has
evolved during time t following the perturbation. Although the concept is more
general, for consistency with Fig. 4, we consider a local perturbation with sx‘ , ‘~
Nz1ð Þ=2, that is, y t~0ð Þj i~sx‘ y0j i. The change of any observableO can then be
bounded by

y tð Þh jO y tð Þj i{ y0h jO y0j ij jƒ O tð Þ,sx‘ 0ð Þ

 �

�

�

�

� ð7Þ
whereO tð Þ is the observableO evolved in theHeisenberg picture of theunperturbed
Hamiltonian, and where Oj jj j is the operator norm ofO, that is, the largest absolute
value of its eigenvalues.The commutator on the right hand sidequantifies howmuch
it matters in which temporal order the operatorsO and sx‘ are applied.

If interactions decrease exponentially with distance, one can bound this commut-
ator by7,8

O tð Þ,sx‘ 0ð Þ

 �

�

�

�

�ƒ Ok kF d,tð Þ; F d,tð Þ~Cem v tj j{dð Þ ð8Þ

where C and m are positive constants that depend on the interactions and lattice
structure, and v is the so called Lieb–Robinson velocity. In essence, the function
F d,tð Þ provides an approximate light cone—information propagating faster than v
is exponentially suppressed. The constants that appear in equation (8) are not
unique7,8, but as a reasonable choice one may identify the Lieb–Robinson velocity
with the maximal group velocity vmax

g . To estimate how strong the influence of

interactions beyond nearest neighbours is in our system, we include in Fig. 4a–c
the line t~d=vmax

g , which would delineate the light cone in a system with only

nearest-neighbour interactions. We compare our data to two opposite cases, one
where interactions are simply truncated to nearest neighbours (homogenized over

the chain, that is, interactions have strength �J:
1

N{1

X

N{1

i~1

Ji,iz1). The second case

considers a nearest-neighbour model with interactions renormalized by the algeb-
raic tail, that is, we replace all interactions by

P

jwic

Jj,ic where we use the value of the

central ion ic~8. For small a, the first magnon maximum clearly propagates faster
than these nearest-neighbour light cones, demonstrating that effective nearest-
neighbour models are insufficient—we have to account for the full long-range
interaction to describe the quasiparticle propagation.
To quantify the deviation from short-range physics, we study in Fig. 4d the Lieb-

Robinson bound, equation (8), for which one can find a compact formulation in the
case of nearest-neighbour interactions. GivenHamiltonianH~

P

i

hi,iz1, following

ref. 19, one can bound F d,tð Þ~ P

?

m~d

N mð Þ 2g tj j=Bð Þm=m! with g~max
i

hi,iz1.

Here,N mð Þ is the number of paths with lengthm that connect the quenched site
‘ to the observable O at a distance d. In one dimension, simple counting gives

N mð Þ~ m
m{dð Þ=2


 �

if eitherm and d areboth even or both odd, andN mð Þ~0

otherwise. Using this property, one can analytically evaluate the sum in F d,tð Þ
which takes the compact form

O tð Þ,sx‘ 0ð Þ

 �

�

�

�

�ƒ Ok kF d,tð Þ; F d,tð Þ~2Id 4g tj j=Bð Þ ð9Þ
where Id xð Þ is the modified Bessel function of the first kind. In Fig. 4d we study the
corresponding bound for O~szi and the renormalized interactions g~

P

jwic

Jj,ic ,

showing that the nearest-neighbour Lieb–Robinson bound is only a good approxi-
mation for the shortest-range casemeasured.The longer-range cases canbe captured
by Lieb–Robinson bounds that take the long-range tail explicitly into account, and
which cannot be characterized by a finite propagation velocity6–8.
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Extended Data Figure 1 | Quantum dynamics following local quenches in a
seven-ion (seven-spin) system. a–c, Time evolution of the spatially resolved
magnetization szi tð Þ

� �

(colour coded as in Fig. 2) for three different local
quenches. In each panel measured data (left-hand side) is shown next to
theoretical calculations for the ideal case (right-hand side). a and d, Quench

at the centre spin, a< 1.36; b and e, quench at the leftmost spin, a< 1.36;
c and f, quench at both ends of the chain, a< 1.75. Theoretical calculations
employ measured laser–ion coupling strengths and distribution across the
ion chain.
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ExtendedData Figure 2 | Quantumdynamics following a global quench in a
seven-ion (seven-spin) system. a, Measured correlation matrices with

elements Ci,j tð Þ~ szi tð Þszj tð Þ
D E

{ szi tð Þ
� �

szj tð ÞiD

(colour coded) at t5 0ms,

5ms, and 10ms (a< 1.75). b, Measured average magnetic spin–spin

correlationsCn~
1

N{n

X

N{n

i

Ci,izn tð Þ (colour coded) as a function of time and

distance nwhere the average was taken over all spin pairs (i, j) with | i2 j | 5 n.
c, Calculated spin–spin correlations Cn tð Þ (colour code: note the different
colour scale) as a function of time and distance.
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Extended Data Figure 3 | Entanglement distributed by quasiparticles.
Following a quench of the central spin with short-range interactions (a< 1.75),
a distinctwavefront emerges. Each panel shows data (left-hand side) and theory
(right-hand side) a, Measured single-spin magnetization (colour coded as in
Fig. 2). b, Single-spin von Neumann entropy2Tr(rlog(r)) normalized to one,
derived frommeasured densitymatrices. Zero would correspond to a fully pure
quantum state (black) and one (white) to a fully mixed state. The increase in

entropy of any individual spin during the dynamics reflects the generation of
entanglement with other spins. c, Real part of the tomographically
reconstructed full density matrix of spins 3 and 5 at a time 9ms after the
quench. Imaginary parts are less than 0.03. The fidelity between the full
experimentally reconstructed r and ideal state |yæ is F5 0.9756 0.005, using
F~Tr r yj i yh jð Þ.
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Extended Data Figure 4 | Quantum dynamics following a local quench in a
15-ion (15-spin) system. a–c, Experimentally measured time evolution of
szi tð Þ
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(as in Fig. 4a–c). d–f, Theoretical calculations based on a measured
spin–spin interaction matrix (such as presented in Fig. 1b). h–i, Theoretical

calculations using Jij~�J= i{jj ja, with�J~ 1

N{1

X

N{1

i~1

Ji,iz1 and a extracted from

a fit to themeasured dispersion relation. All theory calculations are done in the
single-excitation subspace. j–l, Magnetization of symmetric pairs around the

centre ion as a function of time: blue, ions 7 and 9; cyan, ions 6 and 10; purple,
ions 5 and 11); red, ions 4 and 12; black, ions 3 and 13. The dashed lines are
Gaussian fits to the measured arrival time of the first quasiparticle maximum
(from a–c).m–o, Excluding the outermost ion to reduce finite-size effects, the
fitted measured arrival maxima (circles) trace approximately a straight line
when plotted against distance fromquench site. A linear fit (solid line) yields an
estimate for the propagation speed of the first quasiparticle maximum.

LETTER RESEARCH

Macmillan Publishers Limited. All rights reserved©2014



Spin number

Spin 

number

ExtendedData Figure 5 | Example of a spin–spin interactionmatrix Jij. The
plot compares theory and experiment. Each element of the Jij matrix is
measured directly (see Methods) in a system of N5 7 spins (solid coloured
bars). Overlaid transparent bars with blue edges correspond to the results of a
simulation which takes the following experimental parameters into account:

the trapping frequencies; frequency of the bichromatic laser beams (see
Methods); and measured individual laser–ion Rabi frequencies. The
experimental data shown here are the same as in Fig. 1c. The elements J16, J27
and J17 were not measured. Small black vertical lines show one standard
deviation in the experimentally measured elements.
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