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Abstract. A brief account of the zero temperature magnetic response of a system of strongly correlated
electrons in strong magnetic field is given in terms of its quasiparticle properties. The scenario is based
on the paramagnetic phase of the half-filled Hubbard model, and the calculations are carried out with the
dynamical mean field theory (DMFT) together with the numerical renormalization group (NRG). As well
known, in a certain parameter regime one finds a magnetic susceptibility which increases with the field
strength. Here, we analyze this metamagnetic response based on Fermi liquid parameters, which can be
calculated within the DMFT-NRG procedure. The results indicate that the metamagnetic response can be
driven by field-induced effective mass enhancement. However, also the contribution due to quasiparticle
interactions can play a significant role. We put our results in context with experimental studies of itinerant
metamagnetic materials.

PACS. 71.10.Fd Lattice fermion models — 71.27.+a Strongly correlated electron systems; heavy fermions
— 71.30.4+h Metal-insulator transitions and other electronic transitions — 75.20.-g Diamagnetism, param-
agnetism, and superparamagnetism — 71.10.Ay Fermi-liquid theory and other phenomenological models

1 Introduction

The interplay of strong correlation physics and magnetic
behavior in itinerant electronic systems has been a fasci-
nating subject for many years. At low temperature it is
often possible to describe the response of such systems
in terms of the low energy excitations and quasiparticle
properties such as in a Fermi liquid picture. The ratio of
the spin susceptibility of the interacting system x5 and
that of the non-interacting system x is then given by the
expression

Xe /e )

Xs ]‘ + E)
where m*/my is the ratio of effective and bare electronic
mass, and Fy is the lowest order asymmetric Landau pa-
rameter, which accounts for quasiparticle interactions. A
special kind of response is metamagnetism, which we de-
fine here as the existence of a regime where the system’s
differential susceptibility, xs = dM/dH, increases with
magnetic field H, i.e. dxs/dH > 0, for H € [Hy, Hs] with
H; > 0. The subject of this paper is the analysis of the
metamagnetic response in correlated electron systems in
terms of the Fermi liquid description (1). For this we cal-
culate the effective mass and the term due to quasiparticle
interactions from a microscopic model. This allows us to
understand what drives the magnetic response. This can
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be relevant for the interpretation of experiments for itin-
erant metamagnets where the magnetic response is mea-
sured simultaneously with the field dependence of the spe-
cific heat.

In a naive single electron picture itinerant metam-
agnetism is not intuitive as with increasing polarization
the magnetic response usually decreases. For instance, in
weakly interacting systems, such as a Hubbard model with
small U, with a featureless concave density of states meta-
magnetic behavior does not occur. RPA based calcula-
tions yield a decreasing susceptibility with increasing field
as spin fluctuations are suppressed. On the other hand, a
convex density of states, i.e. with positive curvature at the
Fermi energy, such as in the Wohlfahrt and Rhodes [1] the-
ory, can lead to metamagnetic behavior. This is exploited
in a number of works, where the Hubbard model with such
convex density of states is analyzed [2,3]. Metamagnetic
behavior is shown to also occur in situations where the
Fermi energy lies close to a van Hove singularity [4,5], or
where a Pomeranchuk Fermi surface deformation instabil-
ity occurs [6]. It has been shown by calculations based on
the Gutzwiller approximation by Vollhardt [7] and Spalek
and coworkers [8-10] that for a generic concave density of
states metamagnetic behavior is also found in the interme-
diate coupling regime of the Hubbard model. The metam-
agnetic scenario is then that of correlated electrons, with
a (Mott) localization tendency due to the interaction.

Our calculations are based on the half filled single
band Hubbard model which has been used frequently
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to describe itinerant metamagnetism for correlated
electrons [2-5,9-12] due to its relative formal sim-
plicity. We employ the dynamical mean field theory
(DMFT) [11,13] combined with the numerical renormal-
ization group (NRG) [14,15] to solve the effective impu-
rity problem. We focus on the case of zero temperature,
where sharp features are most clearly visible. We follow
these earlier approaches here and restrict ourselves to the
response of the paramagnetic solutions of the Hubbard
model, which is possible for mean field-like approaches.
The half filled Hubbard model in a magnetic field has
already been investigated by detailed DMFT studies by
Laloux et al. [11] and Bauer and Hewson [16]. Low tem-
perature magnetization curves and field induced metal in-
sulator transitions have been investigated by Laloux et
al. Metamagnetic response based on correlated electron
physics, seen in the Gutzwiller approach, was confirmed in
such calculations. Our analysis extends previous work [11]
as we investigate the T = 0 magnetic response with a
Fermi liquid interpretation based on the field dependent
renormalized parameter approach [16-19]. This, together
with results for the spectral functions, allows us to identify
what gives rise to the magnetic response in the system.
The paper is organized as follows. In a brief Section 2
we give details about the model and method. The Fermi
liquid interpretation and the relation between Fermi lig-
uid parameters and the field dependent renormalized pa-
rameters are described in Section 3. Section 4 reports the
results for magnetization, susceptibilities and the inter-
pretation in terms of effective mass and quasiparticle in-
teractions. We conclude by putting our results in context
with itinerant metamagnetism studied experimentally.

2 Model and method

The basis for our calculation forms the Hubbard
Hamiltonian in a magnetic field, which in the grand canon-
ical formulation reads

Hy = Z(tijc')ir,acjﬁ + hc) - Z,u'crnicr + Uanm,l.
0 i

1,7,0
(2)

T creates an electron at site i with spin o, and n; , =

ci,a
c}tyaciyg. t;; = —t for nearest neighbors is the hopping am-
plitude and U is the on-site interaction; u, = p + oh,
where p is the chemical potential of the interacting sys-
tem, and the Zeeman splitting term with external mag-
netic field H is given by h = gugH/2 with the Bohr mag-
neton pp. In the DMFT approach the proper self-energy
is a function of w only [20,21]. In this case the local lattice
Green’s function G°¢(w) can be expressed in the form,

po(€)

Gy(w) = [d 3

O S
where po(g) is the density of states for the non-interacting
model (U = 0). It is possible to convert this lattice prob-
lem into an effective impurity one [13], introduce the dy-
namical Weiss field Gy ) (w). The DMFT self-consistency
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condition reads
Goo(W) = G (W)™ + T (w). (4)

The Green’s function G°°(w) can be identified with the
Green’s function G, (w) of an effective Anderson model,
and Gy L(w) expressed as

Goaw) =w+ po — Kq(w). (5)

The function K,(w) plays the role of a dynamical mean
field describing the effective medium surrounding the im-
purity. K,(w) and X,(w) have to be calculated self-
consistently using equations (3)—(5). Our calculations are
based on the numerical NRG [14,15] to solve the effec-
tive impurity problem. As in earlier work [16] we calculate
spectral functions from a complete basis set [22,23] and use
higher Green’s functions to obtain the self-energy [24]. For
numerical calculations within the DMFT-NRG approach
for po(e) we take the semi-elliptical form for the non-
interacting density of states pi™(e) = 2v/D? — 2 /7 D?,
where W = 2D is the band width with D = 2t for the
Hubbard model. ¢t = 1 sets the energy scale in the follow-
ing.

3 Field dependent renormalized parameters
and Fermi liquid theory

The response of a metallic system of correlated electrons
can often be described in terms of Fermi liquid theory.
The ratio of the spin susceptibility of the interacting sys-
tem s and that of the non-interacting system x? is given
in equation (1). Thus, when strongly interacting fermions
have a large paramagnetic susceptibility, it can be inter-
preted as due to quasiparticles with large effective masses.
It is, however, also possible that the susceptibility is ad-
ditionally enhanced due to the quasiparticle interaction
term 1/[1 + F§], which is for instance the case in lig-
uid 3He, where m*/mo ~ 5 but ys/x? =~ 20 [25]. This
is usually described by the dimensionless Sommerfeld or
Wilson ratio R of the magnetic susceptibility and the lin-
ear specific heat coefficient v. We will use it in the form
R = (xs/x3)/(v/70), where v/vo = m* /my.

Here we are interested in analyzing the behavior in
finite field, and it is possible to calculate corrections of
higher order in H to equation (1) [26]. We will, however,
follow a different approach here, and assume that expres-
sion (1) remains valid for finite field with field dependent
effective mass m*(H) and Landau parameter F§(H). This
is in the spirit of the field dependent quasiparticle param-
eters introduced in earlier work [16,18,19]. Notice that for
the case considered the field dependence of x?, which is
given by the non-interacting density of states, varies very
little in the relevant field range. In this picture with field
dependent parameters, metamagnetism can occur when
the effective mass increases with the magnetic field. Gen-
erally, however, also the field dependence of the quasipar-
ticle interaction plays a role. One hypothesis tested in this



J. Bauer: Quasiparticle properties for itinerant metamagnetic behavior

paper is that itinerant metamagnetic behavior is always
accompanied by a field induced localization and a sharp
increase of the effective mass near the metamagnetic tran-
sition.

In order to calculate the microscopic Fermi liquid pa-
rameters, we expand X, (w) in powers of w for small w,
and retain terms to first order in w only. This is used to
define renormalized parameters [16],

- ZO’(O)]7 2o = ]-/ []- - E;(O)]a (6)

flo,0 = Zo[Ha and

and from (3) a normalized quasiparticle propagator,

. 1
loc _ d
Gigsw) = | [

Note that this w-expansion can also be carried out in fi-
nite magnetic field. Then the renormalized parameters be-
come field dependent, z, = z,(h) and fig, = fio,(h).
The density of states po,(€) derived from (7), po-(e) =
—ImGlo (e 4 i6) /7 = pol(e + fi0.0)/%0]/ %0, is Teferred to
as the free quasiparticle density of states. z, is interpreted
as the weight of the quasiparticle resonance and jig , gives
the position of the quasiparticle band. All energies are
measured from the chemical potential p.

To obtain the renormalized parameters 2z, and fig,, we
use two different methods based on the NRG approach.
The first method is a direct one where we use the self-
energy Y, (w) determined by NRG and the chemical po-
tential yi,, and then substitute into equation (6) for z, and
fto,o- The second method is indirect, and it is based on the
quasiparticle interpretation of the NRG low energy fixed
point of the effective impurity [17]. This approach has been
used earlier for the Hubbard model [16,27] and for the
Anderson impurity model in a magnetic field [18,19]. As
shown before the results of both methods usually agree
within a few percent, and we use an average value of both
methods for the numerical results. It is important to cal-
culate these parameters accurately, since for the following
results also their derivatives are needed.

We can calculate static expectation values and re-
sponse functions in terms of the renormalized parameters.
The quasiparticle occupation number 712 is given by inte-
grating the quasiparticle density of states up to the Fermi
level,

po(s/zg) (7)

w+/}0,0_€'

0 %)
1= [de oale) = [ de praeolin = =), (8)

Luttinger’s theorem [28] holds for each spin component for
the Hubbard model in magnetic field [16], hence we have
Ny = N, where n, is the value of the occupation number
in the interacting system at 7' = 0.

To calculate the magnetic response we focus for the
rest of this paper on the case with particle-hole symmetry
where ;1 = U/2, and we can write X, (0,h) = U/2—on(h).
We can calculate n(h) directly from the self-energy, e.g.
n(h) = (X, — X1)/2, or from the renormalized parameters
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n(h) = fio(h)/z(h) — h. At half filling we have z; = 2| = z
and fig,1 = —flo,] = flo. We define the function

g(h) = h+ n(h) = fio(h)/=(h) = fio(Mym" (h)/mq, (9)

as m*/mgo = 2~ in DMFT. In terms of the quasiparti-
cles it is the product of the effective mass enhancement
m*/mg and the shift of the quasiparticle band fig. With
the applicability of Luttinger’s theorem the magnetization
is then given by

mih) = (=) = [ de po(@6lg(m) <) - 5. (10

For a local self-energy this is an exact expression for the
magnetization, which only depends on the field dependent
renormalized parameters via g(h). For certain bare densi-
ties of state, for instance, for the semi-elliptical density of

states pi®™(g), it can be evaluated analytically,
1

LI (o) + | (1)

Differentiating (10) with respect to h yields the local static
spin susceptibility

m(h) = arcsin(g(h)).

xe= I = g Bpolo(h)

where here and in the following primes indicate derivatives
with respect to h. A similar expression had already been
derived by Luttinger [28]. The metamagnetic condition
X5 (h) > 0 is then

9" (h)po(g(h)) + po(g(h))g' (h)* > 0.

The occurrence of metamagnetic behavior can be analyzed
depending on the functional form of g(h) and po(e). For
a simple analysis let us assume h > 0 and the power law
form for g(h) = ch®, ¢ > 0. The first term in (13) is
then positive if « > 1. For a convex density of states,
pg(e) > 0, the second term is also positive and metamag-
netic behavior occurs as mentioned earlier. For a concave
density of states, pj (¢) < 0, the two terms in (13) compete.
If we also assume the power law form for the density of
states, po(e) = ro —de?, (e.g. for pi™ one has ro = 2/wD
d =ry/2 and v = 2) condition (13) becomes

(12)

(13)

T a—1

h.
Ada(l+v)—1 -

(14)
Since the right hand side is positive, we can infer that for
a>1and 7 > (1 — @)/a metamagnetic behavior occurs.
The actual field dependence of g(h) can be calculated from
the renormalized parameters and it depends on the inter-
action strength. As we will see for the half filled Hubbard
model and intermediate U, g(h) grows faster than linear
with h, ie. a> 1.

In the limit of zero field the ratio of the susceptibility of
the interacting and non-interacting system has a simplified
expression in terms of the renormalized parameters,

m*(0) .,

Xe — g(0) = fi (0),

15
N - (15)
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Fig. 1. (Color online) The local magnetization m(h) as a func-

tion of the magnetic field h for different values of U. We can

see that a metamagnetic curvature sets in at U = 3. Inset:

Hysteresis curve for U = 4 (triangle up increasing h, triangle

down decreasing h).

for fip(0) = 0. Comparing with the Fermi liquid expres-
sion (1) we can identify 1/(1 + F§) = f(. This quantity
corresponds to the Wilson ratio R. In the general case,
the field dependent enhancement due to the quasiparticle
interactions reads

B~y gy = (o)) : ;()um:f)

So far the considerations have been independent of our
DMFT-NRG approach. In the following section we will
compare results for the magnetic susceptibility obtained
from the static expectation values of integrating the
Green’s functions, with the results based on the field
dependent parameters. We determine them as described
above. Alternatively they can be calculated by other meth-
ods, such as the Gutzwiller (GW) approach, and we will
make comparison as appropriate. Results are obtained as
in reference [7], where the critical interaction for the metal
insulator transition is USW = 16W/37 ~ 6.79 for pie™ (¢)
with W = 4.

(16)

4 Results
4.1 Magnetization and metamagnetic transition

For a first overview we present results for the magnetiza-
tion m(h) as a function of field h in Figure 1 for various
values of U. The magnetization m(h) was computed from
the static NRG expectation value (EV) for the occupation
number as well as from integrating the spectral function
to the Fermi level, both of which agree very well. The
results for m(h) based on the field dependent renormal-
ized parameters (RP) and equation (11) are also in good
agreement, but not included in the figure.

The plot gives a clear picture of the field strength hpe
necessary to polarize the metal completely to m = 1/2.
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For weak coupling it can be related to the rigid band shift
and a large field h ~ D is needed, but for larger interaction
strength Ayl is reduced substantially. For U > 3 a meta-
magnetic curvature in the magnetization can be observed,
and we see that in the Hubbard model at zero tempera-
ture the metamagnetic transition field! Ay, coincides with
hpot, which is not necessarily the case for 7" > 0. Laloux
et al. [11] have compared results from low temperature
DMFT calculations with the Gutzwiller approximation
and it was found that the occurrence of metamagnetic be-
havior is overestimated by the Gutzwiller approximation
(see also Fig. 3).

Earlier work [11] showed that the transition is a dis-
continuous first order one at low temperature. Our results
show jumps in the magnetization curve at the transition
field Ay, e.g. for U = 3 and U = 4 in Figure 1, however,
we can not exclude a very steep continuous increase which
can not be resolved numerically. We have also found hys-
teresis, shown for U = 4 as an inset in Figure 1 (triangle
up increasing h, triangle down decreasing h). This suggests
that the transition is also of first order for zero temper-
ature. For larger interaction U > 4.5 there exists a small
field range near hy,, where we have not found unique, well
converged DMF'T solutions, so no definite statement can
be made.

The half filled repulsive Hubbard model in magnetic
field can be mapped to the attractive one [29], in which
the chemical potential is related to the field in the original
model, 4 = U/2+h. The attractive model has been studied
by the DMFT in situations, where superconducting order
was not allowed for [30,31]. A first order transition from a
metallic to a pairing state for fixed density was found at a
critical interaction. The occurrence of the transition can
be related to the metamagnetic transition here. A nearly
polarized system corresponds to a low density limit, and
to estimate when the transition sets in, one can analyze
the two-body problem in the attractive model and calcu-
late the critical U, for bound state formation. For a three
dimensional cubic lattice the result is U, ~ 0.659W [29].
With the given bandwidth this corresponds to a value of
U. =~ 2.64, which is a reasonable estimate for the interac-
tion strengths, where the metamagnetic behavior is found
here.

4.2 Magnetic susceptibilities and quasiparticle
properties

From the initial slope of the magnetization curves in Fig-
ure 1 we observe an increase of the magnetic susceptibility
with the interaction strength U. This increase can also be
seen in the following Figure 2 where we show the ratio
of zero field susceptibility to the non-interacting value x9
as function of U deduced from differentiating the EV for
m(h) in the limit h — 0.

For comparison we have also included the susceptibil-
ity calculated from equation (15) with the renormalized

! The metamagnetic transition field is the field where the
susceptibility is maximal.
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Fig. 2. (Color online) The U-dependence of the magnetic sus-
ceptibility xs. We compare results deduced from the EV of
m(h) with ones obtained from the RP and from the Gutzwiller
(GW) approximation. The inset shows the effective mass
m*(U)/mo and the Wilson ratio R(U) as a function of U.

parameters (RP) and their derivatives, as well as the re-
sults obtained from the Gutzwiller (GW) approximation.
EV and RP results agree very well, confirming the ap-
plicability of Fermi liquid results in this metallic regime.
The GW results follow a similar trend but overestimate
the value for the susceptibility, which becomes more pro-
nounced for larger U.

The inset plot shows the U-dependence of the effective
mass and the Wilson ratio. In terms of Fermi liquid theory
and the expression (1) the increase of xs with U can be
understood by the behavior of the effective mass and the
progressive localization tendency, which brings out more
the spin degrees of freedom of the electrons. We can see,
however, that the effective mass ratio is larger than that
of the magnetic susceptibility. This difference can be at-
tributed to the factor R = iy = [1+F¢]~!, which is due to
the quasiparticle interaction. This factor is larger than one
for smaller values of U, but decreases to values below one
for stronger interaction. This indicates a sign change of
the parameter F{§ from negative to positive. The compar-
ison with the corresponding quantities calculated in the
GW approximation shows a qualitatively similar behavior
for both m*/mg and R, when U is small. For larger values
of U in Figure 2, however, the effective mass enhancement
in the GW approach, m*/mg = 1 — (U/USW)?, is much
smaller and R increases with U in contrast to the DMFT
result.

We return to the finite field response and focus on
the metamagnetic behavior which is found for interme-
diate values of U. Results for the ratio of the magnetic
susceptibility in finite and zero field deduced from dif-
ferentiating the magnetization (EV) are compared to the
ones obtained from the quasiparticle parameters (RP) and
equation (12). For completeness, we have also included re-
sults from the GW approximation. This is shown in Fig-
ure 3 for U = 3 in the upper panel and U = 4.5 in the
lower panel.
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Fig. 3. (Color online) The h-dependence of the ratio of the
finite and zero field magnetic susceptibility xs for U = 3 (upper
panel) and U = 4.5 (lower panel). We compare results deduced
from the EV for m(h) with ones obtained from the RP and the
ones from the GW approach. The inset shows the ratio of finite
and zero field effective mass m™(h)/mo(0) and the Wilson ratio
R(h)/R(0) as a function of h.

We can see that also in finite field the results for the
susceptibility calculated from the EV for m(h) and the
field dependent RP agree fairly well with a deviation of
less than 5%. For the case U = 3 (upper panel) the re-
sults for x(h) based on the field dependent RP are al-
ways smaller. In both cases we find first a period where
the susceptibility is nearly constant, but then starts to
increase rapidly as h approaches hy,. For U = 3 the val-
ues obtained from the RP initially decrease slightly with
the field, which is however incorrect, and comes about
through numerical inaccuracies when determining the pa-
rameters and the numerical differentiation. As hy, = hpol
the magnetic susceptibility is zero for h > hy,. At finite
temperature a susceptibility maximum is expected. The
results for y, from the GW approximation show generally
a similar trend, but as mentioned earlier the metamag-
netic behavior sets in at lower field strengths.

A difference in the behavior between the two cases is
visible in the two insets where the ratios of field depen-
dent effective masses to their zero field values and the
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Fig. 4. (Color online) The majority spin density of states for
U = 2 and various field strengths in comparison.

field dependent Wilson ratios R(h)/R(0) are plotted. For
the U = 3 case the effective mass decreases with the field
which is typical behavior in the weak coupling regime. It
can be understood by RPA approximations where spin
fluctuations, which give an effective mass enhancement,
are suppressed in finite field. The metamagnetic increase
of the susceptibility, however, can not be explained by
this. In terms of Fermi liquid theory it is related to the
magnetic field dependence of the quasiparticle interaction
rather than the localization tendency encoded in the ef-
fective mass. R(h)/R(0) indeed is increasing sharply close
to hy. In equation (16) we have two competing terms
for this enhancement factor, m*'/m* < 0, but one finds
fiy > |fio m*' /m*| which leads to the observed enhance-
ment. The drive for the metamagnetic behavior is there-
fore due to the shift of the quasiparticle band from the
Fermi level with increasing field. This contrasts to the
weak coupling situation, such as U = 2, where R(h) de-
creases with the field strength and no metamagnetic re-
sponse is observed.

The effective mass in the case of U = 4.5 (lower panel
in Fig. 3) shows different behavior. We can see a sharp
increase with the field. However, the magnitude the ratio
m*/my increases is less than that of the susceptibility. The
difference again can be related to the Fermi liquid factor
R = 1/[1 + F§], which is larger than one and increasing
with h as can be seen in the inset of the lower panel in Fig-
ure 3. In this case the second term in equation (16) is pos-
itive and the first term negative, but |fg| < |z m*’'/m*|.
The results from the GW approach for the effective mass
and R are in line with the DMFT calculations for the case
U = 3, however, for U = 4.5, the GW result for m*'/m*
only increases very little with the field, whereas R(h) in-
creases sharply to yield the metamagnetic response.

For larger interactions than the ones discussed here
(5 < U < U,.), one can encounter difficulties to reach
convergency in the DMFT calculations with finite field as
discussed in earlier work [16]. The results indicate, how-
ever, that there is a strong field dependent enhancement
of the effective mass which is the main drive for the meta-
magnetic response. The ratio R(h)/R(0) varies little with
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Fig. 5. (Color online) The majority spin density of states for
U = 4.5 and various field strengths in comparison: upper panel
full frequency range, lower panel low frequency behavior.

h or even decrease for larger fields. Such a behavior is also
found within the GW approach for larger U near the metal
insulator transition.

4.3 Spectral functions

The behavior of the quasiparticle band can be seen di-
rectly in the local spectral function. For the cases with
smaller coupling the field dependent response shows a con-
tinuous shift of spectral weight to lower energies for the
majority spin (see Fig. 4 for U = 2).

Note that the minority spin density of states p;(w) is
given by p1(—w) at half filling. To illustrate the behavior
of the quasiparticle peak for the stronger interacting case
with U = 4.5 in more detail, we plot the local spectral
function for the majority spin p;(w) in Figure 5.

In the upper panel we can see how the lower Hubbard
peak in the spectral density acquires weight when the field
and thence magnetization is increased whilst the upper
Hubbard peak loses spectral weight. The behavior at low
energy is seen more clearly in the lower panel. At first
sight the overall picture is reminiscent of the particle hole
symmetric Anderson impurity model in the Kondo regime
in magnetic field [18] as far as the high energy behavior is
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concerned. The quasiparticle resonance in the locally cor-
related system broadens and departs from the Fermi level.
This behavior occurs in an analogous fashion in the weak
coupling regime of the Hubbard model with fij(h) > 0. In
the strongly correlated case, however, we find a significant
narrowing of the quasiparticle peak in the field, which is
accompanied by the field induced metal insulator transi-
tion and metamagnetic behavior. The quasiparticle reso-
nance first departs from the Fermi energy, but for larger
fields is driven back to it. These features are visible in the
field dependence of the renormalized parameter jip with
6 < 0 as discussed above.

5 Relation to experiments and conclusions

It is of interest to see, whether the described behav-
ior bears any resemblance with what is observed exper-
imentally in strongly correlated itinerant electron system.
Metamagnetic behavior is observed, for instance, in the
heavy fermion compounds CeRugSiy [32,33], UPts [34]
or SrsRu207 [33,35-37] and the Co-based metallic com-
pounds such as Y(Coj_,Al;)2 [38,39], sometimes called
nearly ferromagnetic metals. The microscopic origin for
the occurrence of the effect in these compounds can be
manifold, and is sometimes still controversial. In many
cases antiferromagnetic exchange is thought be important
and the system’s closeness to a magnetic instability.

For generic features, we attempt to compare our mi-
croscopic Fermi liquid description with experimental stud-
ies of itinerant metamagnetic behavior in heavy fermion
compounds. It is important, however, to be aware that
our results based on the paramagnetic solutions of the
half filled single band Hubbard model are not appropriate
to make quantitative predictions for those complex sys-
tems. Organic conductors are thought to behave like sim-
ple Mott-Hubbard systems and have been shown to dis-
play a magnetic field induced localization transition with
hysteresis by resistance measurements [40]. The author is,
however, not aware of any published field dependent mag-
netization or specific heat data to compare to.

In materials such as CeRusSis, UPts or Sr3RusO7 the
magnetic field dependence of the linear specific heat co-
efficient v was measured near the metamagnetic transi-
tion [32-34,37]. It is worth noting that, as can be shown
from a thermodynamic identity, the field dependence of ~y
can also be extracted from T2-coefficient of the magneti-
zation [32]. In the experiments + increases with the mag-
netic field and possesses a maximum at the metamagnetic
transition h = h,,. This is comparable with the Fermi lig-
uid results for stronger coupling, e.g. the case U = 4.5
(Fig. 3 lower panel), where the effective mass increases
with the magnetic field. In the case of CeRuzSis [33] one
can see that the susceptibility increase with the mag-
netic field is up to about 8.5 times the zero field value,
whereas in the same regime the specific heat coefficient
only shows an enhancement of 1.6. In our Fermi liquid in-
terpretation this signals that the quasiparticle interaction
plays an important role in the susceptibility enhance-
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ment and the metamagnetic behavior. The relevance of
this has been emphasized in the recent experimental work
on YbsPtys [41]. A more careful quantitative comparison
would be possible based on the periodic Anderson model,
for instance. The present approach can be extended to this
situation, but also other techniques are available [42-45].
To summarize, we have analyzed the metamagnetic
response of the half filled Hubbard model in terms of
renormalized quasiparticle parameters and Fermi liquid
theory. The renormalized parameters can be calculated ac-
curately with methods based on the NRG, and they have
a clear physical meaning. It is shown that the field depen-
dent metamagnetic behavior can have part of its origin
in field induced effective mass enhancements, but is not
fully explained by this. This is most clearly pointed out
in Figure 3, where metamagnetic behavior for smaller U
is accompanied by an effective mass reduction in the field,
whereas for larger interaction the opposite is the case. The
comparison with results obtained from the Gutzwiller ap-
proximation gives similar trends, but shows quantitative
deviations. The hypothesis that the metamagnetic behav-
ior in itinerant systems is always driven by field induced
mass enhancement is therefore found to be not valid. In
the intermediate coupling regime it is also shown that the
effective mass enhancement alone is not sufficient to ex-
plain the metamagnetic enhancement and based on Fermi
liquid theory arguments the quasiparticle interaction has
to account for the difference. As a generic feature there
the corresponding term described by the Wilson ratio R
increases near the metamagnetic transition. The oppo-
site happens in the weak (no metamagnetic response) and
strong coupling situation. The observation that only a part
of the susceptibility enhancement is based on the effective
mass is found to be qualitatively in agreement with ex-
perimental observations in heavy fermion systems.
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