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Quasiparticle relaxation rates in a spatially inhomogeneous 
superconductor 

A.A.  G o l u b o v  ~ and E.P. H o u w m a n  
University of Twente, Department of Applied Physics, 217, 7500 AE Enschede, The Netherlands 

Received 10 October 1992 

Effective quasi-particle relaxation rates in reduced gap regions of a dirty superconductor (S) at low temperatures are calculated 
from microscopic theory. Gap reduction in S caused by a proximity layer (S') with lower critical temperature is modeled by an 
effective trapping layer with zero gap and an effective thickness Lefr/~s, which is a function of the proximity parameter yM= (trS,~S/ 
aS?,S,) (ds,/~s')- The total rate is the sum of the rate of the reduced gap region and of the proximity layer. The effective trapping 
volume of the core of an Abrikosov vortex, which is trapped in the superconductor, is a cylinder with radius Reff~ 2.7~s and zero 
gap. 

I. Introduction 

Josephson tunnel junct ions  can be used as detec- 
tors for nuclear particles,  phonons  and photons over 
a wide energy range [ 1 ]. In the case of  X-ray detec- 
t ion the tunnel junct ion  is biased in the quasi-par-  
ticle tunneling regime. An impact ing X-ray photon 
creates a cascade of  hot quasi-particles and phonons  
that  relax to the bandgap.  Above the thermal  equi- 
l ibr ium quasi-part icle densi ty an excess densi ty is 
created, that typically consists of  2 × 106 quasi-par-  
ticles for a photon energy of  about  6 keV (assuming 
that  all photon  energy is conver ted into excess quasi- 
particles).  The excess quasi-particle density gives rise 
to an excess tunneling current,  which is measured.  

In practice, however, a large fraction o f  the excess 
quasi-part icles may be lost by different processes, be- 
fore tunneling takes place. An impor tan t  loss mech- 
anism is the trapping of  quasi-particles in regions with 
a lower energy gap due to energy relaxation. In most 
cases these t rapped quasi-particles cannot  tunnel an- 
ymore.  Such regions with a reduced energy gap may 
be (1)  induced by the proximi ty  effect because of  
the presence of  layers with lower or zero gap adja- 
cent to the superconductor ,  (e.g. anodized  or oxi- 
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dized surfaces, the initial  growth layer of  (sput ter-)  
deposi ted thin films or normal  metal  layers);  (2)  the 
core of  a t rapped Abrikosov vortex in the supercon- 
ducting electrode. 

A t rapping layer can also be advantageously used 
to collect the excess quasi-part icles from a large vol- 
ume, as was proposed by Booth [2 ]. The larger ex- 
cess quasi-part icle densi ty in, and the smaller vol- 
ume of, the trap produces a signal in the read-out 
junct ion  placed on the trap, that  can be up to two or 
even three orders of  magnitude larger than in the case 
without a trap. For  an X-ray detector, that has to have 
a high efficiency, a t rapping layer is inevitable,  be- 
cause of  the large volume of  the X-ray photon ab- 
sorber that  is needed. 

Although strongly needed for the design of  an X- 
ray detector,  a detai led study of  the t rapping effect 
was lacking up till now. The relaxation rate of  quasi- 
particles from a certain energy down to the bandgap 
was calculated by Kaplan  et al. [ 3 ] for the case of  a 
homogeneous,  weak-coupling superconductor  in 
the rmodynamic  equil ibrium. In this paper  we cal- 
culate the effective quasi-part icle relaxation rates in 
a dir ty superconductor ,  that is in thermal  equilib- 
r ium but  has a spatial ly inhomogeneous order  pa- 
rameter,  on the basis of  microscopic theory. Two 
cases are treated: 
(1)  the reduction of  the order  parameter  in a su- 
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perconducting layer S (with critical temperature 7~.S) 
due to the presence o f  a proximity layer S' (with 
7~S'); and 
(2) the effect o f  the core of  an Abrikosov vortex. 

As we are working on the development of  X-ray 
Josephson junction detectors for space application 
based on the Nb(T~=9 .2  K ) / A I ( T , . =  1.3 K) system 
and operated at 4He temperatures ( T~  l K ), the cal- 
culations especially apply to that case. However, it 
can be shown that the critical temperature of  the 
proximity layer enters the problem only very weakly. 
The relevant parameter is Iog(T~S/T~S') and its 
variation can be easily taken into account by means 
of  a simple renormalization procedure [4].  The re- 
sults will, therefore, also apply fairly well to other 
combinations of  superconductors. 

2. Theory, 

The Eliashberg equations for a spatially inhomo- 
geneous superconductor have the general form [5]:  

~;)( (o, x )  =coZ ( o~, x)  

oc,f~ <i 
= o ) -  j do)' Re G(e) ' , x )  d~o~2(~)F(~2) 

O O 

× [f(  - o ) ' ) .  + n(~2) _ . r / -~o' )  + n(~2) 
L o) '+w+[2+ic~  ( o ' -  ~o +,c2-  id 

f(co')+n(~) f (o / )+n(~)  ] 
+ - o / + ¢ o + , Q + i 6  - - o S - o J + - O - i ~  " ( l a )  

3(oz x)=J(~o,x)Z(oJ, x) 

; i = d~o 'ReF(o ) ' , x )  d~o~2(l?)F(~2) 
O 0 

x[f(-oJ') +n(~)  +f(-~o')+n(~) 

_ f ( t o ' ) + n ( ~ )  _ f lo J ' )+n (U2)  [ 
- o ) '+  ~o+,O+ ic~ - oY-- ~o+,O-  id d 

- ~ * T  d o ) ' R e F ( ~ o ' , x ) t a n h ( f l o Y / 2 ) .  ( l b )  
O 

d(oJ, x)  and Z(oz  x)  are the space- and frequency- 

dependent order parameter and renormalization 
function, respectively: G and F are the normal and 
anomalous Green's functions of  a superconductor. 
The function ~2(-Q)/V(~2) is the spectral weight 
function of  the electron-phonon interaction, ~2 being 
the phonon frequency. IL* is the Coulomb pseudo- 
potential and o2,, is a cutoff frequency of  the order of  
(oD. The space coordinates are normalized to the co- 
herence length ¢s. 

The poles % of the single-particle Green's function 
in the superconducting state are determined by 

( a 2 - ~ , - j 2 = 0 .  ¢2) 

Following the procedure of  Kaplan et al. one can in- 
troduce an electron scattering rate F(¢o, x)  by setting 
oJ= E - i F ,  Z(o), x)  = Z~ (to, x) + iZ2 (o2, x), and if(to. 
x)='d~ (co, x)+i/J2 (oJ, x). Assuming that the ima- 
ginary parts are small compared to the real parts, one 
then finds from eq. (2) that E =  (e~, +.J~)~/2/Z~ and 

I~((O, X) =(oZ2((o. x ) / Z  1 ( ( o ,  x )  

-5~ ((o, x)52((o, x) /Z~(oJ,  x)~o. ( 3a ) 

Here E is the quasi-particle energy and the quantity 
F(¢o, x) determines a quasi-particle decay rate: 

I 
- 2 F ( o ) , x )  . (3b) 

vsc ( (o, x ) 

We will consider the case of  small frequencies ~o 
compared to phonon frequencies, so that the fre- 
quency dependence of  Zj and 3~ can be neglected. 
Determining the functions Z and A from eq. ( 1 ), a 
generalization o feq .  (6) of  ref. [3] for rs~J in the 
spatially inhomogeneous case is obtained. For the 
most interesting case of  very low temperatures, 7" > 0. 
the answer is 

¢,~- ~lg( x ) 

rsc-(~o, x)  - DZ, (0) d~2c~2('Q)F(~2) 
o 

x [ R e G ( x ,  ¢o-~2)--J(x)f.o ReF(x ,  co-K2) ] .  

(4) 

This gives the quasi-particle relaxation rate from en- 
ergy o2 to dg(X). Here Ag(x) is the x-dependent value 
of  the energy gap of  the system and d (x )  is the real 
part of  the order parameter (which is frequency in- 
dependent for small o2). Because of  the limit T *0 
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this expression does not contain quasi-part icle re- 
combina t ion  and corresponds to energy relaxation 
with rate z~-fl only. In the low-frequency approxi-  
mat ion  one can write o~2(~2)F(~Q)=b~2 2 and then 
define a characterist ic  t ime zo=Z~(O)h/2nb(kT~) 3 
for a given mater ia l  [3].  Finally,  one can define an 
effective rate in some l imited volume of  a supercon- 
ductor  by summing the contr ibut ions  of  different re- 
gions. For  example,  in the one-dimensional  case one 
has: 

TO L t o - - i ( x )  

0 0 

x [ R e  G(x, t O - ~ ) -  d (x )  Re F(x, tO-~)] 
tO 

(5) 

where L is the size of  a region with reduced energy 
gap. In eq. (5 )  and further on, energies are nor- 
mal ized to kT~. At low temperatures  most of  the 
quasi-part icles in the bulk mater ia l  are near  the 
bandgap and thus one can set tO equal to the gap en- 
ergy of  the bulk mater ia l  dos. 

2. I. Proximity layer 

We will apply the above formal ism to two differ- 
ent cases which are of  immedia te  interest for the ap- 
plication in Josephson junct ion X-ray detectors. First 
we consider  the case of  a layer with an energy gap 
that  is reduced by the proximi ty  effect due to the 
presence of  a layer with a lower (but  non-zero)  bulk 
value of  the order  parameter ,  dos,. Secondly, the ef- 
fective relaxation rate in an Abr ikosov vortex is cal- 
culated, The spatial  dependence  o f  the order  param-  
eter in these cases is shown schematically in fig. I (a) .  

For  the determinat ion of  < ro/Z~:(to, x) ) one needs 
to de termine  the generalized densities o f  states 
ReG( to ,  x)  and Re F(to, x).  In a spatially homo- 
geneous superconductor ,  which is in thermal  equi- 
l ibrium, these are given by the well-known 
expressions 

tO 
Re G(to)  = R e  ( tO2_d2( to ) )w2 , 

A(to) 
Re F( to )  = R e  (to2_d2(tO) )1/2 • (6)  
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Fig. 1. (a) Schematic space dependence of the order parameter 
3(x) in a bilayer, due to the presence of a superconducting prox- 
imity layer S' with bulk gap dos, and of a trapped Abrikosov vor- 
tex in the superconducting layer S with bulk gap dos. (b) Effec- 
tive dimensions of the quasi-particle relaxation traps due to the 
reduced gap regions in the SS'-bilayer. 

In the general case one should solve the equations of  
the microscopic theory applying them to any specific 
model  under  considerat ion.  In a dir ty superconduc- 
tor  the functions G and F obey the so-called Usadel  
equations [6]  which take the form: 

O(to~,x)=d(ton, x) 

+ .-2 ~Tc V[G~(to . ,x)VO(to. ,x)  ] 

T +2nT~ (d(to.,x)/to. A(to,,, x )  In ~ ,o. 

(7a)  

- F ( t o , , ,  x ) )  = 0 ,  (7b)  
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O=*o,,F/(;, (;=~o,,[~o~ + 0 ~ ' ]  - ~/ :  

F=0[~o~, + 0 e l  .,': 

( o , , = x T ( 2 n +  1 ), n = 0 ,  1,2 . . . . .  

(7c t  

Equa t ion  ( 7b ) is the self-consistency relat ion for the 
d e t e r m i n a t i o n  of  the order  pa rame te r  A((o,,, x ) .  For  
the calculat ion of  G and  I:  in a SS' sandwich,  these 
equa t ions  are coupled by some boundary '  cond i t i ons  
and  therefore have to be solved s imul taneous ly  in 

the S and  S' layer ( in  the general  case numer ica l ly ) .  
We assume that no bar r ie r  exists at the interfacc 

and  7~,s> Tcs,: ds>>~s>> Is, Is, ~ds ,  <<~s,, i.e., both 
mater ia ls  are in the dir ty l imit .  (ds(ds , ) ,  &(Is,), and  
~s(C~s,) are the thickness,  the electron mean  free path 
and  the coherence length of  the S (S ' )  layer, respec- 
tively. ) The  last cond i t i on  also impl ies  that the func-  
t ion G, F and  L1 are a s sumed  to be cons tan t  over  the 
S' layer. Detai ls  on this model  o f  the p rox imi ty  effect 
are given in ref. [7] for a SN sandwich (7~-s,=0) 
and in ref. [8] for the more  general  case of  a SS' 
sandwich.  It was shown that  in both cases the extent  
o f  the inf luence  of  the p rox imi ty  effect is d e t e r m i n e d  
by the pa rame te r  

: '~  = ( as , ,~s/o 's  .~ , )  ( & , / ' ~ s ,  ) . ( 8 ) 

.7 

E 

L . . . . . .  

Fig. 2. Normalized quasi-particle densities of states in the S laver 
at 1'<< T,s and at various distances to the SS'-interface. duc to 
the proximity, effect with an S'-layer with T,s, < l~-s with )'M= 10 

ergy gap in the S' layer is increased compared  to the 

bulk value, Jg>.Jos, .  
In fig. 3 the quant i t i es  ro/r~s(.V) and / l ( .v ) / r tk ' /~s  

( inse t ) ,  are plotted to i l lustrate the relat ive contr i-  
bu t ion  of  different  regions of  S to the scat ter ing rate 
( for the par t icular  value ,'M = I 0) .  and  the behav iour  

where as,s, are the no rma l  stale conduc t iv i t i es  of  thc 
S and  S' metals.  Genera l ly ,  the larger the }'M value 
the s t ronger  is the suppress ion  of  the order  param-  
eter on the SS' b o u n d a w .  

In the fol lowing we cons ider  the case of  a N b / A I  
sandwich at a t empera tu re  of  I K, thus l ' < T s , .  
However,  it is stressed again that the critical t en> 
pera ture  ratio Tcs,/7~,s inf luences  the results only 
very little. 

As an i l lustration, the normal ized  densi t ies  of  states 
:V(~o, . v ) = R e  Gs((O, .v) (where (o= -i~o, ,)  are plot- 
ted in fig. 2 for 7M = 10 at different  d i s tances -v /~s  
from the SS' boundary '  in the S-region. In the S'-re- 
gion Re Gs,(Og) takes the value at the b o u n d a r y  Re 
Gs(¢O, 0). 11 iS seen thal the gap value J~ is sup- 
pressed relat ive to the bulk value Jos. The value of  
Jg is the same for all poin ts  in S, the difference being 
in the values  of  N(co, _v) at Ag<vO<Jos, which be- 
come small  as X /¢s>  3.5. This  me an s  that  a large re- 
gion of  the S mater ia l  near  the SS' b o u n d a r y  has a 
reduced gap value Ag< Jos- On the o ther  hand  the en- 

t 

5 

Fig. 3. Normalized relaxation rate m the S-layer at 1<< l,.s as a 
function of the distance to the interface of the SS'-layer, duc to 
the proximity effect with an S'-Iayer with T,. s, < T,.s with 7M = 1 (L 
Inset: Normalized order parameter in the S-layer as a functmn of 
the distance to the SS'-interface for various values for the prox- 
imity parameter )'M. 
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of  the order parameter zl(x) for a number  of  ?M 
values. 

For the presentation of  the final result, it is useful 
to define an effective thickness Lar of  a layer in the 
S material that is in the normal state (zJg=O) (see 
also fig. 1 (b ) ) ,  which gives the same total scattering 
rate as the reduced gap region by the relation 
o o  

f 1 dx=L~f f 1 (9) 
J r~s (x) r~s (~g = O) " 
0 

The integral in the left-hand side of  eq. (9) is finite, 
because r ; - '  (x)-- ,0 as x--,oo, provided ~o=Aos. The 
quantity r~s ~ (Ag= 0) can be calculated from eq. ( 16 ) 
of  ref. [3] for A=0,  ~o=Aos and can be interpreted 
as the relaxation rate in the S material in the normal 
state for quasi-particles with energy equal to Aos down 
to the Fermi-energy. Taking into account that 

27tb(kT~s) 3 ~_( Zlos ,~3 1.82 (lO) 
r~sl (Ag = 0 )  -- Zl (O)h  3 lkkTcs) ~- ros 

(making use of  the BCS-relation 2Aos/kT~s= 3.52), 
the function L~fr(YM) for the S material is deter- 
mined, using the result o f  the calculations of  to/ 
r~s(X) as shown in fig. 3. An analogous procedure 
has been applied to the trapping layer S' by intro- 
ducing the length L'ar for the S' material in the nor- 
mal state (with Aos, = 0 ) ,  which corresponds to the 

given thickness ds, of  the S ' - l a y e r ,  ds,/r~¢s,= 
L'~ff/Z~¢s, (Ag= 0). In fig. 4 both functions L~ff/~ (yM) 
and L'ff/ds, (TM) are presented. 

2.2.Abrikosov vortex 

The second problem to be treated is that of  an iso- 
lated Abrikosov vortex trapped in the bulk material. 
The problem of  determining an effective relaxation 
time of  a vortex can be solved as follows. First the 
equations for the Green's functions of  a supercon- 
ductor G and F in the core region of  the vortex, where 
the order parameter is strongly suppressed, are 
solved. Then the densities of  states Re G(og, p),  Re 
F(~o, p) for various distances p from the centre of  
the core are determined. An effective radius Refr for 
the trapping region of  the core can be defined anal- 
ogously to eq. (9).  

The Usadel equations for the Green's functions of  
a dirty superconductor in the limit x>> 1, in the 
magnetic field of  a single Abrikosov vortex, are [7 ] 

d20 1 dO 
dp~ + p ~p -°gn s in0  

_ Q 2 ( p )  s inOcosO+A(~o~,p)  c o s 0 = 0 ,  (11) 

T 
A l n ~  +2~T~,.  ( A / ~ o , - s i n O ) = O ,  
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Fig. 4. Normalized effective thickness Le~r/~s(L'n/ds,) of the 
trapping layer in the S- (S'-)layer of a SS'-bilayer as a function of 
the proximity parameter 7M at temperature T< Tcs. 
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Fig. ft. Normalized quasi-particle densities of states in the S layer 
at T<< Tcs due to Abrikosov vortex and at various distances P/~s 
from the centre of the core of the vortex. 
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where F =  sin O, G = cos 0, and the gradient- invar iant  
vector-potent ial  O ( p ) = p - ~ .  The boundary  condi- 
tions read: 

J ( p = 0 )  =O((o , ,  0 ) = 0  : 

dA(p=oo ) / dp=dO( to,,, ~ , ) / d p = 0 .  

The results for the densi ty of  states N({o, p ) = R e  
G(~o, p)  for different p values are shown in fig. 5. 

After the calculation of  the r~  j (p) distr ibution and 
the averaging over the cross-section of  the vortex 
core, one obtains the effective core radius 

R~-/C~s ~ 2.7 . (12)  

3.  D i s c u s s i o n  

Now the effective relaxation rate z~J due to an S'- 
layer with thickness ds, and area A '  on an S-layer, 
with thickness a' s and area A, is calculated. It is as- 
sumed that the fraction of  t ime the quasi-part icles  
spend in the t rapping  area is propor t ional  to the vol- 
ume fraction of  the trap to the total volume of  the 
S and S' layers [2] .  In the case &>> ds, one arrives 
at an effective rate 

1 _ 1 . 8 2  [ k ~ , , .  + . ( 13 ) 

r~n- ds L ros ros, J A 

where L~n-and L~,T are obta ined from fig. 4. If }'M is 
of  order  unity then L~n-~,L'~,- and r~n ! is mainly de- 
te rmined by the smallest ro of  the bilayer. 

In the case of  an AI proximi ty  layer, the charac- 
teristic t ime ro,A~ (110 ns) is ordcrs  of  magni tude 
larger than that of  most other metals (e.g. rO,Nb = 0. I 5 
ns ). This means that the t rapping mainly takes place 
in the reduced gap region of  the S-layer and not in 
the S'-layer. Secondly, AI is a very effective material  
for introducing a substantial  reduced gap region by 
even very thin A1 layers, becausc 7M becomes large 
due to the large normal  state conduct ivi ty  as,. As an 
example,  consider  a Nb/A1 junc t ion  with AI thick- 
ness d s ,=25  nm giving ~'M~I (ref. [ 9 ] ) ,  =1'=,4, 
~s=40  nm and d s =  300 rim. Then the effective t ime 
constant  is as small as T~n-~ 13 ns. Even for a 10 ~m 
thick Nb layer, the t rapping is still fairly effective: 
r~fT~ 0.41 !us. In junc t ions  with a relatively thin elec- 
t rode a degraded surface can also create a very et- 

fective t rapping area and cause large quasi-part icle 

toss [ 101. 
In the case of  an Abrikosov vortex, the effective 

relaxation rate is given by 

1 = ~R~,rLa, (.8 2 _ dj~/~q, 42 ,14 )  
r,.jl- I is r.s ros I ~ 

where L,t, is the length of  the flux line in the super- 
conductor  with volume 1 ~ ( assuming that the vorlex 
is t rapped in the bulk of  the superconductor) .  In the 
case of  a junct ion with an electrode with sides of 
length L and thickness ds r,,t-f-is proport ional  to /. ~ 
(Lds)  for a fluxline perpendicular  (para l le l )  to the 
layer. For a Nb layer with d s = 3 0 0  nm and L = 5 0  
lain this results in r~.nq = 3 3  ns and rct-r : =0 .56  {ts. 
Because X-ray detectors are normally operated with 
a field in the plane of  the junct ion barr ier  in order 
to suppress the Josephson currenl,  t rapped vortices 
may occur without being noticed, except tot en- 
hanced quasi-part icle losses. 

When a t rapping layer adjacent  to the barrier  is 
used as a collector of  excess quasi-particles in the ab- 
sorber, the tunneling rate r ,J,  through the barrier  is 
changed due to the proximity  effect. The tunneling 
rate out of  a spatially homogeneous superconduct ing 
layer with volume I s, through a barrier  with normal 
state resistance R,,, is given b} 
r , . ~ = ( 4 R , e 2 1 s N ( E ) )  ~ . w i t h X ( E )  thequas i -pa r -  
ticle density of  states in the superconductor  at encrg 5 
1£ [ 10.11 ]. In the l i terature it is assumed that the 
t rapping layer can be described by a square ~ell [ 2 ]. 
The ~olume in which the quasi-part icles are con- 
fined is then equal t o  l ' nap  = I'e4, and one assumes 
a spatially, independent  density of  states in the well: 
. V ( E ) = N , , ( E v ) R e  ( ; (E)  given by eq. (6) .  The total 
rate is then assumed to be equal to the sum of  the 
rates out of  the trap and out of  the bulk laycr. How- 
ever, this procedure does not take into account the 
existence of  a region in the absorber  layer with a spa- 
tially varying reduced gap. Consequently the vol- 
umc, to which the quasi-particles are confined, dc- 
pends on the quasi-particle energy. As has been sho~n 
above, the densi ty of  states in the t rapping region is 
also spatially dependent  and differs strongly frorn thal 
in the bulk. A more detai led calculation of  thc ell 
fective tunneling rate is therefore necessary and is 
the subject of  further study, 
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4. Conclusions References 

The quasi-particle relaxation rates in reduced gap 
regions of a dirty superconductor at low tempera- 
tures, due to (1) the proximity effect with a layer 
with lower critical temoerature, and (2) the gap re- 
duction caused by a traoped Abrikosov vortex, were 
determined from microscopic theory. In the first case 
the reduced gap regions can be characterized by ef- 
fective lengths which are a function of the proximity 

parameter YM, assuming an order parameter equal to 
zero in the trap. The reduced gap region caused by 
the vortex is characterized by an effective radius 

Refr~ 2.7 ~s- 
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