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Effective quasi-particle relaxation rates in reduced gap regions of a dirty superconductor (S) at low temperatures are calculated
from microscopic theory. Gap reduction in S caused by a proximity layer (S’) with lower critical temperature is modeled by an
effective trapping layer with zero gap and an effective thickness L./ &, which is a function of the proximity parameter yy = (og &/
0sés ) (ds /&) The total rate is the sum of the rate of the reduced gap region and of the proximity layer. The effective trapping
volume of the core of an Abrikosov vortex, which is trapped in the superconductor, is a cylinder with radius R~ 2.7&; and zero

gap.

1. Introduction

Josephson tunnel junctions can be used as detec-
tors for nuclear particles, phonons and photons over
a wide energy range [1]. In the case of X-ray detec-
tion the tunnel junction is biased in the quasi-par-
ticle tunneling regime. An impacting X-ray photon
creates a cascade of hot quasi-particles and phonons
that relax to the bandgap. Above the thermal equi-
librium quasi-particle density an excess density is
created, that typically consists of 2 10¢ quasi-par-
ticles for a photon energy of about 6 keV (assuming
that all photon energy is converted into excess quasi-
particles). The excess quasi-particle density gives rise
to an excess tunneling current, which is measured.

In practice, however, a large fraction of the excess
quasi-particles may be lost by different processes, be-
fore tunneling takes place. An important loss mech-
anism is the trapping of quasi-particles in regions with
a lower energy gap due to energy relaxation. In most
cases these trapped quasi-particles cannot tunnel an-
ymore. Such regions with a reduced energy gap may
be (1) induced by the proximity effect because of
the presence of layers with lower or zero gap adja-
cent to the superconductor, (e.g. anodized or oxi-
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dized surfaces, the initial growth layer of (sputter-)
deposited thin films or normal metal layers); (2) the
core of a trapped Abrikosov vortex in the supercon-
ducting electrode.

A trapping layer can also be advantageously used
to collect the excess quasi-particles from a large vol-
ume, as was proposed by Booth [2]. The larger ex-
cess quasi-particle density in, and the smaller vol-
ume of, the trap produces a signal in the read-out
junction placed on the trap, that can be up to two or
even three orders of magnitude larger than in the case
without a trap. For an X-ray detector, that has to have
a high efficiency, a trapping layer is inevitable, be-
cause of the large volume of the X-ray photon ab-
sorber that is needed.

Although strongly needed for the design of an X-
ray detector, a detailed study of the trapping effect
was lacking up till now. The relaxation rate of quasi-
particles from a certain energy down to the bandgap
was calculated by Kaplan et al. [3] for the case of a
homogeneous, weak-coupling superconductor in
thermodynamic equilibrium. In this paper we cal-
culate the effective quasi-particle relaxation rates in
a dirty superconductor, that is in thermal equilib-
rium but has a spatially inhomogeneous order pa-
rameter, on the basis of microscopic theory. Two
cases are treated:

(1) the reduction of the order parameter in a su-
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perconducting layer S (with critical temperature 7.5)
due to the presence of a proximity layer S’ (with
7.8); and
(2) the effect of the core of an Abrikosov vortex.
As we are working on the development of X-ray
Josephson junction detectors for space application
based on the Nb(7.=9.2 K)/Al(T,=1.3 K) system
and operated at “*He temperatures ( 7'~ | K), the cal-
culations especially apply to that case. However, it
can be shown that the critical temperature of the
proximity layer enters the problem only very weakly.
The relevant parameter is log(7.S/7.S8") and its
variation can be easily taken into account by means
of a simple renormalization procedure [4]. The re-
sults will, therefore, also apply fairly well to other
combinations of superconductors.

2. Theory

The Eliashberg equations for a spatially inhomo-
geneous superconductor have the general form [5]:

(W, x)=wl{w, x)

=w-— de’ Re G(w’, x) deaz(Q)F(Q)
0 3]

[f(—w’)+n(9) _f—o)+n(Q)
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0

A(w, x) and Z(w, x) are the space- and frequency-

dependent order parameter and renormalization
function, respectively: (¢ and F are the normal and
anomalous Green’s functions of a superconductor.
The function «”(£2)F(£L) is the spectral weight
function of the clectron—-phonon interaction, £2 being
the phonon frequency. i* is the Coulomb pseudo-
potential and «. is a cutoff frequency of the order of
wy,. The space coordinates are normalized to the co-
herence length .

The poles €, of the single-particle Green’s tunction
in the superconducting state are determined by

=

el —J'=0. ()

Following the procedure of Kaplan et al. one can in-
troduce an electron scattering rate / (w, x) by setting
w=E—il Z(w,x)=Z(w,x)+iZy(w, x), and J(.
x):ﬂ, (), x)+idy (o, x). Assuming that the ima-
ginary parts are small compared to the real parts. onc
then finds from eq. (2) that E= (€2 +43)'/*/Z, and

N xyY=wZ(w.x) /2, {w,x)
— A, x) A (. x) /23w, x)w . (3a)

Here E is the quasi-particle energy and the quantity
['(w, x) determines a quasi-particle decay rate:

B =2I"(w. x) . (3b)
Ty (. x)

We will consider the case of small frequencies
compared to phonon frequencies, so that the fre-
quency dependence of Z, and A, can be neglected.
Determining the functions Z and Afromeq. (1), a
generalization of eq. (6) of ref. [3] for 75! in the
spatially inhomogeneous case is obtained. For the
most interesting case of very low temperatures, 7 0.
the answer is

L N dQa* () F(R
Tl %)~ RZ,(0) aEFL)
X[Re G(x, w—-0Q)— gfv—':lRc:F(.Jc,w—.Q)J.

(4)

This gives the quasi-particle relaxation rate from cn-
ergy wto 4,(x). Here 4,(x) 1s the x-dependent value
of the energy gap of the system and A(x) is the real
part of the order parameter (which is frequency in-
dependent for small w). Because of the limit 70
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this expression does not contain quasi-particle re-
combination and corresponds to energy relaxation
with rate t3d only. In the low-frequency approxi-
mation one can write a?(Q)F(2)=52? and then
define a characteristic time 1,=2,(0)%/2rb(kT,)?
for a given matenial [3]. Finally, one can define an
effective rate in some limited volume of a supercon-
ductor by summing the contributions of different re-
gions. For example, in the one-dimensional case one
has:

L (x)
1 2
<TSC((U X)> J; dx JI dea

X[Re G(x,w—-8)~— A—'(a):—) Re F(x, w—.Q):I s
(5)

where L is the size of a region with reduced energy
gap. In eq. (5) and further on, energies are nor-
malized to k7. At low temperatures most of the
quasi-particles in the bulk material are near the
bandgap and thus one can set @ equal to the gap en-
ergy of the bulk material 4gs.

2.1. Proximity laver

We will apply the above formalism to two differ-
ent cases which are of immediate interest for the ap-
plication in Josephson junction X-ray detectors. First
we consider the case of a layer with an energy gap
that is reduced by the proximity effect due to the
presence of a layer with a lower (but non-zero) bulk
value of the order parameter, 4os.. Secondly, the ef-
fective relaxation rate in an Abrikosov vortex is cal-
culated. The spatial dependence of the order param-
eter in these cases is shown schematically in fig. [ (a).

For the determination of { 7o/, (®, X) > one needs
to determine the generalized densities of states
Re G(w, x) and Re F(w, x). In a spatially homo-
geneous superconductor, which is in thermal equi-

librium, these are given by the well-known
expressions
w
Re G(w)=Re m >
4
Re F(w)=Re () (6)

(C()Z—Az(a)) )1/2 N
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Fig. 1. (a) Schematic space dependence of the order parameter
A(x) in a bilayer, due to the presence of a superconducting prox-
imity layer S’ with bulk gap 4,5 and of a trapped Abrikosov vor-
tex in the superconducting layer S with bulk gap 4,. (b) Effec-
tive dimensions of the quasi-particle relaxation traps due to the
reduced gap regions in the SS’-bilayer.

In the general case one should solve the equations of
the microscopic theory applying them to any specific
model under consideration. In a dirty superconduc-
tor the functions G and F obey the so-called Usadel
equations [6] which take the form:

o(w,, x)=4(w,, x)

T,

TR oG

VIGH(w,, x)Vo(w,, x)],

(7a)

T,

<

A w,, x) ln—T— +2rT Y (A(w,, x)/w,

—F(w,,x))=0, (7b)
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o=w,F/G, G=w,[wi+¢>] V-,

F=¢lw,+¢°] """, (7¢)

w,=xT(2n+1), n=0,1.2 ...

Equation (7b) is the self-consistency relation for the
determination of the order parameter A(w,, x). For
the calculation of  and F in a SS" sandwich, these
equations are coupled by some boundary conditions
and therefore have to be solved simultaneously in
the S and S’ layer (in the general case numerically).

We assume that no barrier exists at the interface
and Ts> To: ds> &> s, Iy <ds < &, 1.¢., both
materials are in the dirty imit. (ds(ds ), ls(ly). and
& (&) are the thickness. the electron mean frec path
and the coherence length of the S (S') layer, respec-
tively.) The last condition also implies that the func-
tion (7. F and A are assumed to be constant over the
S’ layer. Details on this model of the proximity effect
are given in ref. [7] for a SN sandwich (7.4 =0)
and in ref. [8] for the more general case of a SS’
sandwich. It was shown that in both cases the extent
of the influence of the proximity effect is determined
by the parameter

M= (0s&s/ o5 ) (ds /s ) (8)

where gy ¢, are the normal state conductivities of the
S and S’ metals. Generally, the larger the y, value
the stronger is the suppression of the order param-
cter on the SS’ boundary.

In the following we consider the case of a Nb/Al
sandwich at a temperature of 1 K. thus 7T<7y.
However, it is stressed again that the critical tem-
perature ratio 7Tg/7.s influences the results only
very little.

As an illustration, the normalized densities of states
N(w, x)=Re G4(w, x) (where w= —1w,) are plot-
ted in fig. 2 for ;=10 at different distances x/&
from the SS’ boundary in the S-region. In the S'-re-
gion Re Gg (w) takes the value at the boundary Re
Gs(w, 0). It is seen that the gap value 4, is sup-
pressed relative to the bulk value dug. The value of
-, is the same for all points in S, the difference being
in the values of N(w, x) at 4, <w<dys, which be-
come small as x/&>3.5. This means that a large re-
gion of the S material near the SS" boundary has a
reduced gap value 4, < dng. On the other hand the en-

NP N
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i

Fig. 2. Normalized quasi-particle densities of states in the S layer
at 7'« T, and at various distances to the SS’-interface. duc to
the proximity effect with an S™-layer with T.q < T with ypy = 10.

ergy gap in the S layer is increased compared to the
bulk value, 4,> 0.

In fig. 3 the quantities 1,/ Tys(X) and A(x) /AT
(inset). are plotted to illustrate the relative contri-
bution of different regions of S to the scattering rate
(for the particular value ;= 10). and the behaviour

(X}

[N al

NI

Fig. 3. Normalized relaxation rate in the S-layer at 7' { g as a
function of the distance to the interface of the SS’-layer. due to
the proximity effect with an S'-layer with 7.¢ < T with yp= 100
Inset: Normalized order parameter in the S-layer as a function of
the distance to the SS'-interface for various values for the prox-
imity parameter J'y.
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of the order parameter 4(x) for a number of yy
values.

For the presentation of the final result, it is useful
to define an effective thickness L.y of a layer in the
S material that is in the normal state (4,=0) (see
also fig. 1(b)), which gives the same total scattering
rate as the reduced gap region by the relation

o]

1 1

lrscs(x) Wr=ler s (4,=0)° ®)
The integral in the left-hand side of eq. (9) is finite,
because 17! (x) =0 as x— o0, provided w=4ys. The
quantity 7d (4,=0) can be calculated from eq. (16)
of ref. [3] for 4=0, w=4,s and can be interpreted
as the relaxation rate in the S material in the normal
state for quasi-particles with energy equal to 455 down
to the Fermi-energy. Taking into account that

2mb(KTs)” L( dos >3 ~ 132 g
ZAOh \kTs)

Tos

T (4y=0)=

(making use of the BCS-relation 2445/k7Ts=3.52),
the function L.g(ym) for the S material is deter-
mined, using the result of the calculations of 7/
T.s(x) as shown in fig. 3. An analogous procedure
has been applied to the trapping layer S’ by intro-
ducing the length L for the S’ material in the nor-
mal state (with 4,5, =0), which corresponds to the
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Fig. 4. Normalized effective thickness L.q/&(Liy/ds) of the
trapping layer in the S- (S'-)layer of a SS'-bilayer as a function of
the proximity parameter yy at temperature 7< 7.

given thickness ds of the S’—layer, dy/Tey=
Lig/Tees (4g=0). In fig. 4 both functions Leg/Es(vm)
and L.q/ds (ym) are presented.

2.2.Abrikosov vortex

The second problem to be treated is that of an iso-
lated Abrikosov vortex trapped in the bulk material.
The problem of determining an effective relaxation
time of a vortex can be solved as follows. First the
equations for the Green’s functions of a supercon-
ductor G and F in the core region of the vortex, where
the order parameter is strongly suppressed, are
solved. Then the densities of states Re G(w, p), Re
F(w, p) for various distances p from the centre of
the core are determined. An effective radius R g for
the trapping region of the core can be defined anal-
ogously to eq. (9).

The Usadel equations for the Green’s functions of
a dirty superconductor in the limit x¥>>1, in the
magnetic field of a single Abrikosov vortex, are [7]

@ 140
dp?  pdp
—Q%(p) sin ¥ cos 8+ 4(w,, p) cos¥=0, (11)

w, sin ¥

AlnTI +2rT Y (4/w,—sin¥)=0,
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Fig. 5. Normalized quasi-particle densities of states in the S layer
at T < T, due to Abrikosov vortex and at various distances p/&s
from the centre of the core of the vortex.
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where F=sin 8, G =cos 9, and the gradient-invariant
vector-potential Q(p)=p~'. The boundary condi-
tions read:

MHp=0)=0%w,,0)=0:
dA(p:OO)/d/):dl?((U,,, c0)/dp=0.

The results for the density of states N(w, p)=Re
G(w, p) for different p values are shown in fig. 5.

After the calculation of the 3! (p) distribution and
the averaging over the cross-section of the vortex
core, one obtains the effective core radius

Res/Esx2.7. (12)

3. Discussion

Now the effective relaxation rate 7 due to an S'-
layer with thickness ds. and area /4" on an S-layer.
with thickness ds and area A, is calculated. It is as-
sumed that the fraction of time the quasi-particles
spend in the trapping areca is proportional to the vol-
ume fraction of the trap to the total volume of the
S and S’ layers [2]. In the case ds>>dg one arrives
at an effective rate

17 _ 1.82 [Lcn‘ + ﬂ]4 (13}

Tefr ds Tos Tos | 1

where L.y and L are obtained from fig. 4. If ;15
of order unity then L.yx L.y and 175 is mainly de-
termined by the smallest 7, of the bilayer.

In the case of an Al proximity layer, the charac-
teristic time 7y 4 (110 ns) is orders of magnitude
larger than that of most other metals (e.g. Tone=0.15
ns). This means that the trapping mainly takes placc
in the reduced gap region of the S-layer and not in
the S-layer. Secondly, Al is a very effective material
for introducing a substantial reduced gap region by
even very thin Al layers, because y,, becomes large
due to the large normal state conductivity og.. As an
example, consider a Nb/Al junction with Al thick-
ness ds, =25 nm giving ymx1 (ref. [9]). A" =,
& =40 nm and dg=300 nm. Then the effective time
constant is as small as 7.x> 13 ns. Even fora 10 um
thick Nb layer, the trapping is still fairly cffective:
Torx 0.41 ps. In junctions with a relatively thin elec-
trode a degraded surface can also create a very ef-

fective trapping area and causc large quasi-particle
loss [10].

In the case of an Abrikosov vortex, the effective
relaxation rate is given by

L _ mRénly 182

, _ssle gy (14)
Tert |38 Tos Tos s

where L, is the length of the flux line in the super-
conductor with volume I (assuming that the vortex
is trapped in the bulk of the superconductor). In the
case of a junction with an electrode with sides of
length £ and thickness ds. 7.y is proportional to [.°
(Ldy) for a fluxline perpendicular (parallel) to the
layer. For a Nb layer with ds=300 nm and L=50
pum this results in Tupy =33 ns and 7. =0.56 ps.
Because X-ray detectors arc normally operated with
a field in the plane of the junction barrier in order
to suppress the Josephson current. trapped vortices
may occur without being noticed, except for cn-
hanced quasi-particle losses.

When a trapping laver adjacent to the barrier s
used as a collector of excess quasi-particles in the ab-
sorber, the tunneling rate 7o, through the barrier is
changed due to the proximity effect. The tunneling
rate out of a spatially homogencous superconducting
layer with volume 1. through a barrier with normal
state resistance R,. 1s given by
Tah={4R, eV GN() )~ with N(E) the quasi-par-
ticle density of states in the superconductor at energy
2 [10.11]. In the literature it is assumed that the
trapping layer can be described by a square well [2].
The volume in which the quasi-particles are con-
fined is then cqual to 15,,,=.1"ds and onc assumes
a spatially independent density of states in the well:
N(EY=N,(E¢)Re G(E) given by eq. (6). The total
rate 1s then assumed to be equal 10 the sum ot the
rates out of the trap and out ot the bulk layer. How-
ever. this procedure does not take into account the
cxistence of a region in the absorber laver with a spa-
tially varying reduced gap. Consequently the vol-
ume, to which the quasi-particles are confined. de-
pends on the quasi-particle energy. As has been shown
above, the density of states in the trapping region is
also spatially dependent and differs strongly from that
in the bulk. A more detailed calculation of the ef-
fective tunneling rate is therefore necessary and is
the subject of further study.
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4. Conclusions

The quasi-particle relaxation rates in reduced gap
regions of a dirty superconductor at low tempera-
tures, due to (1) the proximity effect with a layer
with lower critical temoerature, and (2) the gap re-
duction caused by a trapped Abrikosov vortex, were
determined from micréscopic theory. In the first case
the reduced gap regions can be characterized by ef-
fective lengths which are a function of the proximity
parameter yy,, assuming an order parameter equal to
zero in the trap. The reduced gap region caused by
the vortex is characterized by an effective radius
Reg=2.7 &.
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