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We have studied 2H-NbSe2 by scanning tunneling spectroscopy with two different orientations,
along the c and the a/b axis. The results can be understood in the framework of a two-gap model:
along the c-axis, the large gap is dominant in the tunneling spectra, while a smaller gap is measured
along the a/b axis. Our measurement thus shows unambiguously the existence of two gaps, where
the orientation preferentially selects one gap or the other. Similarly as for MgB2, the tunneling
spectra are well described by the McMillan equations for a two-band superconductor, showing
that interband coupling originates from quasiparticle scattering from one band to the other. The
electronic structure of 2H-NbSe2 is further studied theoretically by means of DFT calculations.
Examining the different contributions to the Fermi level DOS, we conclude that the large gap
observed in tunneling originates from states associated with the Fermi surface cylinders around
K, whereas the small gap originates from the cylinders around Γ. In addition, we show that the
tunneling current at large distance from the surface is dominated by the selenium orbitals. This
finding suggests that the third component of the Fermi surface, the Se-based pancake around Γ, is
strongly coupled to the cylinders around K, possibly due to the charge density wave state.

PACS numbers:

I. INTRODUCTION

Superconductivity in niobium diselenide (2H-NbSe2)
was discovered about fifty years ago [1, 2]. In spite of nu-
merous experimental and theoretical studies of the mate-
rial, the precise nature of its superconducting (SC) state
remains controversial. In particular, the relation between
the SC transition [1, 2] and the charge density wave order
[3] is still debated.

The possibility of some anisotropy in the SC gap was
already noted in the 1970’s by Morris et al. [4]. Clear de-
viations from the standard BCS density of states (DOS)
were then observed by Hess et al. [5] using scanning
tunneling spectroscopy on a ‘c’ axis oriented sample, but
were not given much attention at the time. This is sur-
prising since the two-branch Fermi surface (FS), with a
set of Nb-derived cylinders around the central Γ point of
the hexagonal Brillouin zone and another set of cylinders
around the corner K points had been well established [6–
8]. Later, the gap anisotropy was modeled by Rodrigo et
al. [9] using a continuous gap distribution.

More recently, a two-gap scenario was proposed by sev-
eral groups based on photoemission (ARPES) [10], heat
conductivity [11], specific heat [12, 13] or penetration
length measurements [14]. In all these works it was as-
sumed that the system is described by the early model
of Suhl, Matthias and Walker [15], which assumes a pair

coupling between the two bands, giving rise to a BCS-like
density of states [16]. A particular feature of the Fermi

surface of 2H-NbSe2, a selenium-based pocket near the
Brillouin zone center, was first revealed by a combined
de Haas-van Alphen and density functional theory (DFT)
study, [17] and later confirmed by ARPES Fermi surface
mappings [10, 18]. Its role in the multigap scenario has
not been determined yet.

The room temperature crystal structure of 2H-NbSe2

[19, 20] (see Fig. 1) is built from hexagonal NbSe2 layers
containing Nb atoms in a trigonal prismatic coordina-
tion. The six Nb-Se bonds within these layers are iden-
tical (2.598 Å). As shown in Fig.1, the repeat unit of the
solid contains two symmetry equivalent layers related by
a screw axis along c. Successive layers are separated by
van der Waals spacings through which there are relatively
short Se–Se bonds, i.e. every Se atom makes three Se–
Se bonds (3.537 Å) shorter than the sum of the van der
Waals radii with the Se atoms of the adjacent layer. The
Se–Se bonds along the c-direction within the hexagonal
layers are even shorter, 3.347 Å. These two structural
features give a considerable three-dimensional character
to this layered material.

At 30 K 2H-NbSe2 undergoes a distortion leading to
a (3a×3a×c) superstructure [3]. Its origin has been at-
tributed to a Fermi surface nesting driven charge density
wave (CDW) [21] although this explanation has been
challenged [7, 8, 18, 22–24]. The detailed structure of
the distorted phase has not yet been reported although
several models have been discussed [25, 26].

In this paper, the question of multigap supercon-
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FIG. 1: (Color online) Crystal structure of 2H-NbSe2. The
Nb and Se atoms are represented with blue and yellow
spheres, respectively.

ductivity in 2H-NbSe2 is studied using tunneling mea-
surement in different orientations and its connection
to the band structure and Fermi surface is examined.
Superconducting-vacuum-superconducting (SIS) config-
urations were also realized. We show that tunneling mea-
surements in c-axis oriented samples of this material can
be described in the framework of a two-band model. In
addition, a smaller gap is observed along the a/b axis.
The SIS data obtained with a nominal c-axis oriented
sample and a 2H-NbSe2 tip with a/b orientation confirm
this scenario. We further explain why the large gap is
dominantly observed along the c axis and show that this
tunneling selectivity can be qualitatively understood on
the basis of the DFT band structure of the material to-
gether with the CDW state coexisting at low tempera-
ture.

We finally conclude that 2H-NbSe2 is a two gap super-
conductor in many ways similar to MgB2: while super-
conductivity develops in one band (with a large gap), it is
induced in the other band (with a small gap) by means of
a proximity effect in reciprocal space (see [27] for MgB2).
This effect is adequately described by the McMillan equa-
tions [28], where interband coupling arises because of
quasiparticle scattering from one band to the other, not
taken into account in the Suhl-Matthias-Walker model.
The role of the selenium Fermi surface pocket is also dis-
cussed.

II. SCANNING TUNNELING SPECTROSCOPY
EXPERIMENT

A. Tunneling along the c axis

High purity 2H-NbSe2 was prepared in a sealed tube
using the standard iodine vapor transport method. The
samples were cleaved under UHV and the tunneling con-
ductance was measured using our home built STM/STS
setups at low temperature (Most of the experiments were
done at T = 2.3 K; additional measurements in order
to explore the fine structure of the gap were done at
T = 300mK using another setup). Fig. 2 shows a typical
tunneling conductance spectrum measured at low tem-
perature with the PtIr tip. As reported previously [5, 9],
a well-pronounced gap is observed. However, as shown in
the following, this does not mean that only a single gap
parameter is present. Indeed, in this case the tunneling
conductance shape slightly deviates from a conventional
single-gap BCS superconductor.

As shown in a previous report [29], the tunneling con-
ductance can be fitted by the McMillan equations. This
model was originally developed in order to describe a
thin normal layer coupled to a superconducting layer. It
is also relevant to describe a proximity effect in recipro-
cal space for a multiband superconductor such as MgB2

where a 2D band with high electron-phonon coupling is
coupled to a band with 3D character and low electron-
phonon coupling [30]. Two gaps are clearly observed in
point contact spectroscopy [31] or in tunneling experi-
ments [32–34]. Furthermore, the shape of the excitation
spectra follows the McMillan equations and is in agree-
ment with this two band scenario [27, 35].

In this model, a multiband superconductor is described
by intrinsic gaps ∆0

i resulting from electron-phonon cou-
pling in each band i and it also takes into account the
quasiparticle coupling between bands i and j, character-
ized by a coupling parameter Γij , which represents the
inverse lifetime of a quasiparticle in band i due to its
coupling to band j. Such a coupling could result from
the presence of impurities [36]. In the clean limit, one
cannot exclude the effect of electron-electron scattering.
This point remains to be studied by ab-initio calculations
including electron correlations.

The interband coupling leads to energy-dependent
gaps ∆i(E) which can be calculated by the self-consistent
equations [28]:

∆i(E) =
∆0

i + Γij∆j(E)/
√

∆2
j (E) − (E − iΓji)2

1 + Γij/
√

∆2
j (E) − (E − iΓji)2

(1)

with i = 1, 2. The density of states NS(E) =
∑

iN
i
S(E)

is expressed as a sum over the partial density of states
N i

S(E) in each band i :

N i
S(E) = Ni(EF )Re

|E|
√

E2 − ∆i(E)2
(2)
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FIG. 2: (Color online) a) Tunneling conductance obtained
with a metallic (platinum-iridium) tip in a c axis oriented
2H-NbSe2 sample. The datas are fitted by a two gap model
(McMillan equations) assuming a full tunneling selectivity to-
wards the large gap (TL = 1, in red). It is compared to the
situation where the tunneling arises towards the band with
a small gap (TS = 1, in green). Inset: Partial DOS corre-
sponding to the small gap and the large gap. b) Tunneling
conductance obtained with a 2H-NbSe2 tip oriented along the
a/b axis. The tip is obtained by gluing a 2H-NbSe2 sample
on the slide to a platinum-iridium tip. The data are fitted
by a two gap model (McMillan equations) assuming a tun-
neling selectivity towards the small gap (TS = 1, in green).
It is compared (red curve) to the situation where the tunnel-
ing arises towards the band with a large gap (TL = 1). The
parameters used for the fit in both cases are the following:
Tfit = 2.2K; ∆0

L = 1.4 meV; ∆0
S = 0 meV; ΓSL = 3 meV;

ΓLS

ΓSL
= 1/3. Inset: Partial DOS corresponding to the small

gap and the large gap.

To describe the tunneling experiment, we take into ac-
count an additional tunneling selectivity. Depending on
the configuration in k-space and symmetries of the bands
relevant to the surface, one particular band or the other
can be probed. This effect was clearly demonstrated in
magnesium diboride. Indeed, it has been shown that for
c-axis oriented samples of MgB2, only the small gap is
observed in the tunneling density of states [33, 34], while
two gaps are clearly seen for an a/b axis oriented sam-
ple in grains with arbitrary orientations [32]. This is
due to the particular symmetries of the bands in MgB2:
the large gap develops in the σ band, with high electron
phonon coupling and having a rather 2D nature, while a

small gap is induced in the π band having 3D character
[30, 37]. This explains why the small gap is preferentially
observed in a nominal c-axis oriented sample by scanning
tunneling spectroscopy.

Taking into account selectivity effects, the tunneling
DOS for a two gap superconductor can be written in the
general way:

NS(E) =
∑

i=1,2

TiNi(EF )Re
|E|

√

E2 − ∆i(E)2

=
∑

i=1,2

Neff

i
Re

|E|
√

E2 − ∆i(E)2
(3)

where Ti accounts for the k-averaged tunneling probabil-

ity toward a given band i and Neff

i
= TiNi(EF ) is the

effective DOS in band i as measured by STS taking into
account the tunneling selectivity.

It is important to note that the interband quasiparticle
coupling leads to characteristic signatures in the excita-
tion spectra which deviates from the standard BCS form
[29]. This is at odds with the case of interband pair cou-
pling as considered by Suhl et al. [15] which gives rise to
a standard BCS DOS for each band. From the curve fit
we deduce the values of the intrinsic gaps in each band
∆i

0, as well as the interband coupling parameters Γij .
Note that the ratio of the partial DOS of two bands is
directly related to the interband coupling between them:

Γij

Γji

=
N(Ej

F )

N(Ei
F )

This information will be very useful and will allow us to
compare with the results of bulk measurements such as
specific heat.

For 2H-NbSe2, we get from the fits: ∆0
L = 1.4 ± 0.1

meV and ∆0
S = 0.00 ± 0.1 meV. In order to confirm

the fine structure of the gap, additional measurements
were also done at T = 300 mK, using another setup
(home built STM/STS). The tunneling conductance and
the corresponding fit with the two-gap model is plotted
in Fig. 3a [38].

In Fig. 3b we show the partial DOS of 2H-NbSe2 de-
duced from these fits. Each curve is clearly different from
the usual BCS DOS. In particular, a distinctive kink is
noticeable at the small gap energy (see arrows in Fig. 3b)
in the partial DOS corresponding to the large gap.

With this analysis we find that superconductivity pref-
erentially develops in one band while Cooper pairs arise
in the other by the proximity effect, as previously men-
tioned. This is analogous to the case of MgB2 where
superconductivity develops in the σ band and is induced
in the π band [30]. The values for the interband cou-
pling parameters are: ΓSL = 3 ± 0.3 and ΓLS

ΓSL
= 1/3

± 0.03. The ratio of the coupling parameters is given by
the ratio of the partial DOS at the Fermi energy of the

corresponding bands: Γ12

Γ21
= N2(EF )

N1(EF ) . Thus, knowing the

contributions of the different bands in the DOS would
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FIG. 3: (Color online) a) Tunneling conductance obtained
with a metallic (platinum-iridium) tip in a c axis oriented
2H-NbSe2 sample at T=300mK. The datas are fitted by a
two-gap model (McMillan equations) assuming a full tunnel-
ing selectivity towards the large gap (TL = 1, in red). The
parameters used for the fit are the following: Tfit = 2.2K;

∆0
L = 1.32 meV; ∆0

S = 0 meV; ΓSL = 2.5 meV; ΓLS

ΓSL
= 1/4.

b) Partial DOS for the small (in red) and large gap (in green)
for the parameters deduced from the fits (shown in Fig. 2).

∆0
L = 1.3 meV; ∆0

S = 0 meV; ΓSL = 2.5 meV; ΓLS

ΓSL
= 1/4.

help identify in which band superconductivity develops
preferentially (i.e. the band with a large SC gap). Note
that the respective weights in the DOS for the small and
large gaps are in qualitative agreement with the values
deduced from the temperature and magnetic field depen-
dence of the specific heat measurements [12]. Fitting
their data with a simple two-band model (i.e. the model
of Suhl et al. [15]), Huang et al. [12] found a ratio close
to 1/4 with gap values ∆S = 0.73 meV and ∆L = 1.26
meV while Ying et al [13] found a ratio 0.56 with gap
values ∆S = 0.85 meV and ∆L = 1.5meV.

The tunneling selectivity in 2H-NbSe2 appears to be
also very sensitive to cleavage conditions. When the
cleavage was done under UHV conditions, the large gap
dominates in the tunneling current, i.e. TL ≈ 1. On
the other hand when the sample is cleaved in air, the
tunneling selectivity varies and a combination of the

small and large gaps is necessary to fit the data properly
(0 ≤ TS ≤ 0.5). We propose that this effect is related to
modifications in the Se pocket arising with surface con-
tamination when the sample is cleaved in air.

B. Tunneling along the a/b axis

In a second step, we have measured the tunneling con-
ductance for a 2H-NbSe2 sample with a different orien-
tation. For this purpose, we have fabricated special tips
with 2H-NbSe2 samples glued on their side on a stan-
dard platinum-iridium tip (see schematics in Fig. 2b).
A typical conductance spectrum is shown in Fig. 2,
with a fit using the two-gap proximity effect model as
described previously, with the tunneling selectivity to-
wards the small gap and, for comparison, towards the
large gap. The other parameters are unchanged in the
fits within the uncertainty mentioned above. For this
orientation, it is clear from the fit that the small gap
is dominantly probed, as opposed to the nominal c-axis
experiment. This demonstrates that the tunneling selec-
tivity depends clearly upon the sample orientation.

This important point is further checked by using
a Superconductor-Insulator-Superconductor (SIS) junc-
tion with a 2H-NbSe2 tip and a c-axis oriented sample.
For a SIS junction, the tunneling current is given by

I(V, z) = I0 exp(−2αk z)×
∫

E

Ntip(E) Nsample(E + eV ) ×

[f(E) − f(E + eV )] dE

where f(E) is the Fermi-Dirac function, Ntip(E) and
NSample(E) are respectively the DOS of the tip and the
sample. As shown in Fig. 4, the SIS tunneling conduc-
tance is well fitted assuming that a full tunneling selec-
tivity towards the small gap for the tip (i.e. TS =1 and
TL =0) and towards the large gap for the sample (i.e.
TS =0 and TL =1), therefore confirming the previous
results.

C. Temperature dependence of the tunneling
conductance

The tunneling spectra for a SIS junction (see Fig. 5b,
2H-NbSe2 tip-2H-NbSe2 sample) as well as for SIN junc-
tion (see Fig. 5a, 2H-NbSe2 tip-gold sample) was mea-
sured as a function of temperature. The conductance
curves were fitted at each temperature with the McMil-
lan model for a two-gap superconductor described in sec-
tion II. The same parameters were used for both SIS and
SIN junctions.

From the fits, we deduce the temperature dependence
of the intrinsic gaps ∆0

L(T ) and ∆0
S(T ). Note that ∆0

S(T )
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FIG. 4: (Color online) Left: Scheme of the tunneling junction:
The tip is oriented in the a/b axis while the sample is ’c’ axis
oriented. Right: Tunneling conductance of the SIS junction.
The spectrum is fitted with the McMillan model, assuming a
tunneling selectivity towards the small gap for the tip (TS = 1;
TL = 0) and the large gap for the sample (TS = 0; TL = 1) .
The tip and sample are described by the same parameters as
before.

FIG. 5: (Color online) a) Temperature dependence of the tun-
neling conductance obtained for a SIN junction with a 2H-
NbSe2 tip and a gold sample and corresponding McMillan fit
(in gray). b) Temperature dependence of the tunneling con-
ductance obtained for a SIS junction with a 2H-NbSe2 tip and
a ’c’ axis oriented sample, and corresponding McMillan fit (in
gray). The data are fitted with the McMillan model for a two
gap superconductor with the same parameters for the tip and

sample: ∆0
S =0 meV; ΓSL =3 meV; ΓLS = NS(EF )

NL(EF )
= ΓSL/3.

The intrinsic large gap ∆0
L is the adjustable parameter. The

tip is oriented in the a/b axis while the sample is c axis ori-
ented. In the SIS case, the spectra are fitted with the McMil-
lan model, assuming a tunneling selectivity towards the small
gap for the tip (TS = 1; TL = 0) and towards the large gap
for the sample (TS = 0; TL = 1). In the SIN case, we assume
a full tunneling towards the small gap (TS = 1; TL = 0). At
each temperature, the fit gives the value of the intrinsic large
gap ∆0

L(T ).

is close to zero for all temperatures. In addition, the theo-
retical dependence of the intrinsic gaps with temperature

FIG. 6: (Color online) a) Temperature dependence of the in-
trinsic large gap ∆0

L(T ) deduced from the fits for the SIN (2H-
NbSe2 tip-gold sample) and SIS junction (2H-NbSe2 tip-2H-

NbSe2 sample) compared to the theoretical value ∆0,th

L (T )
calculated by the resolution of the self-consistent equations
(4). b) Theoretical temperature dependence of the excitation
gap ∆ex,th (in black) and of the peak to peak small and large

gaps (in red and green respectively) ∆pp,th

S,L which are defined
as the peak to peak value in the calculated partial DOS for
the small and large gap NS(E) and NL(E). c) Temperature
dependence of the partial DOS for the small gap NS(E) cal-
culated by the resolution of the self-consistent equation. d)
Temperature dependence of the partial DOS for the large gap
NL(E).

can be obtained from the self-consistent equations:

∆0
i = λii

∫ h̄ωi

0 dE tanh
[

E
2kBT

]

Re

[

∆i(E)√
E2−∆2

i
(E)

]

+λij

√

Nj

Ni

∫ h̄ωij

0
dE tanh

[

E
2kBT

]

Re

[

∆i(E)√
E2−∆2

i
(E)

] (4)

where λii = ViiNi are the intraband electron-phonon cou-
pling constants in each band, while λij = Vij

√

NiNj is
the interband electron-phonon coupling constant of the
Suhl-Matthias-Walker model [15].

In the most general case, the intrinsic gaps result from
intraband and interband pair coupling [15]. In the spe-
cial case of 2H-NbSe2, interband pair coupling can be ne-
glected (but not interband quasiparticle scattering), i.e.
λ12 = 0 and only the large intrinsic gap is not zero, λ11 =
0 for the small gap and λ22 ≈ 0.5 for the large gap, with
the corresponding phonon frequency h̄ω2 ≈ 6.55 meV.
This shows unambigously that the small gap is induced
by proximity effect as a result of quasiparticle interband
coupling, similarly as for MgB2 [27].

The temperature dependence of the intrinsic large gap
deduced from the fits ∆0

L(T ) can then be compared to the

theoretical expectation ∆0,th
L (T )(see in Fig. 6 the tem-

perature dependence of the DOS for the small and large

gap bands form which we deduce ∆0,th
L (T )). From the
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calculation, we also deduce the theoretical dependence

of the peak to peak gap ∆pp,th
S,L in the small/large partial

DOS NS,L(E) as well as of the excitation gap ∆ex,th (Fig
6b), which can also be compared to the values deduced
from the fit, showing a qualitative agreement.

D. Two band model vs distribution of gaps

As already mentioned, the tunneling conductance in
2H-NbSe2 was interpreted in terms of a continuous gap
distribution [9]. In this model, the tunneling DOS is
described by a weighted sum of BCS DOS: N(E) =
∑

i g(∆i)NBCS(E,∆i). We have determined the gap dis-
tribution needed to fit the DOS of the large and small
gap, which were calculated by solving the self-consistent
equations in the McMillan model (see Fig. 6c,d). The
distributions are shown in Fig. 7.

The distribution for the large gap exhibits two well
defined peaks around 0.77meV and 1.16meV. One notes
that their positions correspond to the peak-to-peak gaps
in the McMillan DOS (see Fig. 6a,b). The distribu-
tion of the small gap is strikingly different from that of
the large gap. In particular, it exhibits a single peak at
0.76meV. More importantly, one notices that some of the
weights have negative values, which demonstrate that it
is not possible to properly fit the small gap with a gap
distribution with only positive weights. This is due to
the very peculiar shape of the peaks, whose amplitude
decreases more rapidly than ∼ 1/

√
E − ∆ close to the

gap edge. The same result would of course have been ob-
tained by directly fitting the conductance curve obtained
in the tunneling experiment with the tip oriented in the
a/b axis. Thus, while the conductance for the large gap
can be fitted by a gap distribution, this is not the case
for the small gap.

In addition, for both the small and large gap, the dis-
tribution is more and more peaked as the temperature
increases and gets very close to BCS, with a same gap
value for both bands near the critical temperature. This
behavior is quite opposite to that expected from the Suhl,
Matthias and Walker model [15], where the ratio between
the two gaps increases with the temperature. Thus, the
criteria of homogeneization of the two gaps towards a
single BCS like signature close to TC is a marked char-
acteristic of a quasiparticle mediated interband coupling
(as in Schopohl and Scharnberg’s model [36]) instead of a
Cooper pair interband coupling (as in the Suhl, Matthias
and Walker model) [15].

To conclude, this series of experiments leads to three
major conclusions:

i) Our data for 2H-NbSe2 can be explained in terms
of a two-band proximity effect.

ii) The tunneling selectivity is important to fit the
superconductor-insulator-normal-metal (SIN) spectra.

iii) Tunneling towards c-axis gives a large gap while
tunneling towards a/b axis gives a small gap.

However, two points remain to be elucidated:

FIG. 7: (Color online) Small (a) and large (b) gaps distribu-
tions obtained by fitting the DOS calculated self-consistently
as a function of temperature with a weighted sum of BCS
DOS, following the fitting procedure of Rodrigo et al. [9].

i) Which band corresponds to which gap?

ii) As it is now well established [17], the Se bands offer
an additional branch of the Fermi surface, so its role must
be elucidated.

To clarify these aspects, we first discuss the electronic
structure and tunneling of 2H-NbSe2 on the basis of first-
principles DFT calculations, and later we consider the
possible role of the low temperature CDW transition oc-
curring in this material.



7

Γ M K Γ A
-3

-2

-1

0

1

2

3

E
 -

 E
F

 
(e

V
)

FIG. 8: (Color online) Calculated band structure for 2H-
NbSe2 where the green and the red circles are proportional
to the niobium dz2 and dxy/dx2

−y2 character, respectively. Γ
= (0, 0, 0), M = (1/2, 0, 0), K = (1/3, 1/3, 0), A = (0, 0,
1/2), L = (1/2, 0, 1/2) and H = (1/3, 1/3, 1/2) in units of
the reciprocal hexagonal lattice vectors.

III. DFT CALCULATIONS

A. Electronic structure of 2H-NbSe2

The electronic structure of 2H-NbSe2 has been calcu-
lated a number of times in the literature [17, 18, 22, 23,
39–41]; here we just highlight some aspects which are rel-
evant in order to understand the signatures of multigap
superconductivity in tunneling spectroscopy. The calcu-
lated band structure is shown in Fig. 8. The details
of the calculations are given in Appendix A. There are
three partially filled bands, the two upper ones having
niobium 4d as the dominant character (except around Γ)
whereas the lower is mostly based on selenium orbitals.
From now on these bands will be referred to as band 3, 2,
and 1, respectively. This is in contrast with the situation
for a single NbSe2 slab where only the two niobium 3d
based bands are partially filled.

The calculated Fermi surface (see Fig. 9) contains
three different contributions. First, a pancake like con-
tribution centered at the Γ point arising from the sele-
nium based band. Second a pair of warped cylinders cen-
tered at Γ arising from the two partially filled niobium
3d bands. Third, a pair of warped cylinders centered
at K arising also from the two partially filled niobium
3d bands. The cylinders occur in pairs because there are
two layers per repeat unit and thus there are in-phase and
out-of-phase combinations of the former niobium bands.
The two cylinders around Γ as well as those around K
merge at the border of the Brillouin zone because there
the phase factors are such that the interlayer interactions
vanish. Although both pairs of cylinders around Γ andK
originate from the same bands their character completely
changes from one region to the other : Whereas the nio-
bium character is mostly dz2 around Γ it is dxy/dx2−y2

around K (see Fig. 8).

B. Contribution of the different orbitals to the
partially filled bands

In correlating the partially filled bands to the STM
images it will be essential to have a clear idea of what is
the relative weight of the different orbital contributions,
i.e. niobium dz2 , niobium dxy/dx2−y2 and selenium, for
the different parts of the Fermi surface (i.e. in the two
different pairs of cylinders and in the pancake around Γ).
The pancake is strongly based on the selenium orbitals.
Of particular interest are the middle and upper partially
filled bands. Their orbital contributions are shown in
Fig. 10. An important observation is that the selenium
contribution to these formally niobium bands is compa-
rable to the individual niobium contributions. As shown
in Fig. 11, almost half of this selenium contribution is
pz, i.e., the selenium orbitals perpendicular to the layers.
This means that although globally the metal character
prevails in these two bands, there is a very important hy-
bridization of the selenium orbitals, and particularly the
selenium pz orbitals. Consequently, they are expected to
dominate the tunneling along the c axis (see the calcu-
lation of the tunneling current in section III D), and Se
atoms will be seen in the tunneling images, at least at
large distance.

C. Partial DOS associated with the different
portions of the Fermi surface

Shown in Table I is the partitioning of the total nio-
bium and selenium contributions to the density of states
at the Fermi level into those associated with the cylin-
ders around Γ and those around K for the middle and
upper partially filled bands as well as for the pancake
around Γ. The more salient features of the second and
third columns of this table are:

i) The contributions of the upper niobium-based band
are considerably larger.

ii) For both niobium-based bands the contribution of
the cylinders around K are always larger than those of
the cylinders around Γ.

iii) The contribution of the lower selenium band is
small.

iv) The ratio between the contribution of the K vs. Γ
cylinders to the total DOS at the Fermi level is 2.7.

The origin of these values is developed in detail in Ap-
pendix A. As noted above, the selenium contribution to
the niobium-based bands is very important and a sub-
stantial portion is due to the pz orbitals pointing outside
the layers so that these contributions will most certainly
dominate in the tunneling current. From the values of the
second and third column of this table, which of course re-
fer to values for bulk 2H-NbSe2, one could expect a large
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FIG. 9: (Color online) Contribution of band 1 (a and b), band 2 (c) and band 3 (d) to the Fermi surface for 2H-NbSe2.
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FIG. 10: (Color online) Separate contributions of the selenium, niobium dz2 and niobium dxy/dx2
−y2 orbitals to the density of

states associated with the (a) middle -2- and (b) upper -3- partially filled bands.
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(2) and upper (3) partially filled bands.

contribution from the cylinders aroundK, a lesser contri-
bution from the cylinders around Γ, and finally an even
smaller contribution from the selenium based pancake.
Surprisingly, this is not what is found in the calculation,
as shown in the following.

D. Calculated tunneling images

We now consider STM imaging within the Tersoff-
Hamman approximation, [42] where the current at a
given tip position is proportional to the LDOS at that
point, integrated over the standard energy window given
by the tip-surface potential difference (EF , EF + eV ).

In this model, the calculated images correspond to con-
stant current images, showing the maps of heights that
produce a constant tip-surface current. Instead of spec-
ifying the value of the current (which is the situation in
an experiment), we choose a particular value of the den-
sity of states and plot the corresponding constant DOS
surface. In Fig. 12 we show the STM images for a spe-
cific isovalue, separating the different contributions of the
pancake, the cylinders around Γ and the cylinders around
K. As pointed out in section III A, when dealing with
tunneling spectroscopy along the c axis, the contribution
to the tunneling due to the three portions of the Fermi
surface should be dominated by those of the selenium
atoms. Thus, it is expected that the three images will
be practically identical, i.e. they will be made of bright
spots centered at the selenium atom positions, though
with different intensities. As shown in Figs. 12a to 12c
this is indeed the case, in agreement with experimental
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TABLE I: Total and partial DOS for the different bands at the Fermi level around Γ and K, given in elec·(eV· unit cell)−1.

DOS DOS DOS DOS

(Total) (Nb contribution) (Se contribution) (Sepz contribution)

Band 1 Γ 0.117 0.035 0.080 0.062

Band 2 Γ 0.359 0.239 0.121 0.066

Band 2 K 0.731 0.528 0.203 0.052

Band 3 Γ 0.337 0.260 0.080 0.032

Band 3 K 1.175 0.848 0.331 0.117

results (note however that for small tip-surface distances,
the underlying Nb atoms have been also experimentally
seen in the tunneling images [43]). This calculation also
shows that the Se contribution for the three different
Fermi surface portions plays a crucial role in the tun-
neling, as discussed in the previous section.

E. Tunneling selectivity

The key aspect when trying to use the calculated im-
ages in understanding the origin of the proposed two-gap
superconductivity in this material lies in evaluating the
relative weight in the tunneling current due to each of
the three components of the Fermi surface. The results
can be compared with the STM measurements. From the
Tersoff and Hamman analysis [42], it is expected that the
contribution of the states with small wave vector paral-
lel to the surface will decay slower in vacuum and thus
give a dominant contribution to the current for large tip-
surface distance. Tersoff and Hamman also stressed the
importance of states near the Brillouin zone boundary
which also give a significant contribution.

A precise analysis requires the calculation of the tun-
neling current as a function of the height of the tip, which
reflects how the different contributions in the DOS de-
crease in vacuum. We have studied the decay of the cur-
rent I(z) with the tip height z in different positions of
the x, y plane for the three different components of the
image. For this purpose, we calculate I(z) at different
(x, y)-plane positions, which is expected to roughly vary
exponentially I ≈ Ae−αz . If the exponential dependence
holds, we can easily obtain α by doing a fit of the data.

In some cases, the curves do not correspond to a single
exponential, but rather display two exponential regimes
(with two different slopes). This can also be understood
within the Tersoff and Hamman model [42]. Far from
the surface (where the potential is roughly constant and
equal to the vacuum potential), the wave functions can
be expressed as:

ψk(x, y, z) =
∑

Gx

∑

Gy

Ck(G)ei(G+k)·re−αk+Gz, (5)

where Ck(G) is the Fourier component of the wavefunc-
tion at a reference plane (taken as z = 0), G = (Gx, Gy)

the surface reciprocal lattice vectors and r = (x, y) is
the in-plane position. The decay of the corresponding
Fourier component with z is thus given by

αk+G =
√

κ2 + (k + G)2, (6)

where κ−1 is the standard decay length depending on the
work function.

From this formula, it is apparent that the wave func-
tions have different components with different decay into
the vacuum. The decay length of a given state depends
on the G vector of that component, and on the parallel
surface momentum k. At large distances from the sur-
face, the G = 0 component will dominate, with a decay
αk =

√
κ2 + k2. In this case, the decay of the wave func-

tion is determined by both the work function and the
wave vector of the states at the Fermi surface near the
Γ point. For distances closer to the surface, several G

will contribute, leading to different decay rates. The re-
sults of the fits to I(z) are shown in Table II. A second
exponential is needed in the component of the cylinders
around K, indicating a faster decay of one contribution
of the partial DOS relatively close to the surface.

F. Contribution of Nb-cylinders to the tunneling
current

The ratio of the DOS in vacuum associated with the
cylinders around Γ and the cylinders around K plotted
as a function of the distance from the surface is shown
in Fig. 13. For most values of the tip to surface dis-
tance, the intensity due to the cylinders around Γ is
around twice larger than that originating from the cylin-
ders aroundK. This surprising result might be explained
thought consideration of both tunneling selectivity and
the signs of the mixing coefficients of the orbitals for a
given wave vector (see the discussion in appendix A).

To make some progress in understanding the origin of
the different gaps we should now consider the Se based
pancake portion of the Fermi surface. Three-quarters of
its contribution to the density of states at the Fermi level
originate from the Se pz orbitals so that some degree of
interband coupling with the cylinders around Γ and K
might be expected. As a matter of fact, if one associates
the contributions of the Nb-cylinder aroundK and the Se
pocket, it then becomes the dominant contribution when
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a) b) c)

FIG. 12: (Color online) STM images associated with the pancake contribution (a), the cylinders around Γ (b), and the cylinders
around K (c). Note that the scale for the three images is different.

FIG. 13: (Color online) Ratio of the STM image intensities
at different distances from the surface.

compared to that of the Nb-cylinder around Γ (Fig. 13,
green curve). Remind that this occurs despite the dom-
inance of the bare contribution of the cylinders around
Γ over that of the cylinders around K. This observation
reinforces our suspicion that the Se pancake pocket may
play a crucial role in the tunneling current through inter-
band coupling with either the cylinders around Γ or K.
Thus this question is further addressed in the following
section.

IV. ONE OR TWO GAPS? COMPARISON OF
EXPERIMENTAL RESULTS

A. Anisotropy vs two-gap superconductivity

As described in section I, 2H-NbSe2 cannot be simply
described by the BCS theory for a isotropic ‘s’ wave su-
perconductor: Clear deviations from conventional BCS
behavior were observed in the tunneling spectra [5] or in
the field dependence of the γ coefficient in the specific

heat [11, 13, 44, 45]. The origin of these deviations was
addressed by means of many experimental techniques:
specific heat [12, 13], heat transport [11], penetration
length [14] and scanning tunneling spectroscopy [9, 29].
The results are summarized in Table III. They can be
sorted into two groups, either concluding that 2H-NbSe2

is a two-gap superconductor [11, 12, 29] or that the gap
is anisotropic in k-space [46]. Some works [13, 14] sug-
gest that the experimental results could be interpreted
in both ways.

It is important to note that in order to fit specific heat
or penetration depth data [12–14], it was implicitly as-
sumed that the DOS is a weighted sum of BCS DOS with
two different gap values. This is equivalent to the pio-
neering model of Sulh, Matthias, Walker [15] for a two-
gap superconductor, where the two corresponding bands
are coupled with an interband pair coupling term. In
fact, a different coupling between the bands must be con-
sidered to precisely reproduce the shape of the tunneling
spectra (see section II).

B. Photoemission results

ARPES results recorded for 2H-NbSe2 are often con-
tradictory [47–52]. The limited resolution of the photoe-
mission, of the order of twice the superconducting gap,
and the low critical temperature of this material makes
the data difficult to analyze. Moreover, the transition
to the CDW state, whose origin and consequences on
the spectral weight and superconducting state are still
debated, complicates the determination of the spectral
modification at the Fermi energy EF near the SC criti-
cal temperature. Yet, some general features emerge from
the analysis of the more recent fine ARPES experiments
(see table IV for a comparison of reported photoemission
results): a large gap is shown to open in the Nb cylinders
around K while a smaller gap is found associated with
the Nb Γ-cylinders. There is no indication of the exis-
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TABLE II: I vs z fits

Contribution Position α-exp 1 (Bhor−1) α-exp 2 (Bhor−1)

Pancake At atom 1.3049 ± 0.0011 -

At hollow 1.3016 ± 0.0004 -

Cylinder at Γ At atom 1.3144 ± 0.0016 -

At hollow 1.3093 ± 0.0007 -

Cylinder at K At atom 1.3066 ± 0.0006 1.66 ± 0.04

At hollow 1.3064 ± 0.0006 -

TABLE III: Comparative of experimental results for 2H-NbSe2 concerning the anisotropy vs two-gap superconductivity.

Work Experiment Model Gap value(s) (meV)

Huang et al [12] Specific heat Two isotropic gaps (fit) ∆S =0.73, ∆L =1.26

Weights: 20%; 80%

Ying et al. [13] Specific heat Two isotropic gaps (fit) ∆S =0.85, ∆L =1.5

Weights: 36%; 64%

” ” Anisotropic gap (fit) ∆0=1.62

∆ = ∆0 [0.4 + 0.6| cos(3θ)|]

Rodrigo et al. [9] Scanning tunneling Spectroscopy Gap distribution (fit) Gap values in the range

N(E) = 1
αi

∑

αiNBCS(∆i, E) [0.4 − 1.4]

Fletcher et al. [14] Penetration length Two isotropic gaps (fit) ∆S =0.62-0.67, ∆L =0.98-1.27

Weights: 0.43-0.5%; 0.57-0.57%

” ” Six fold gap ∆min =0.56-0.58

∆(φ,T ) = ∆min(T ) [1+ǫ cos(6φ)]
1−ǫ

1+ǫ
1−ǫ

=1.74-2.33

Boaknin et al. [11] Heat Conductivity Two gaps ∆L

∆S
∼3

(Deduced from two length scales)

Sanchez et al. [46] Specific heat Anisotropic gap (fit) ∆0(0) =1.55;

∆k(T ) = ∆0(T )(1− ǫ2 cos2 θ) ǫ2=0.6

tence of a gap in the small Se pocket around Γ. However,
these results should be taken with care since the ARPES
data for the Se pz pocket are affected by the very strong
kz dispersion (see the band diagram calculations) and/or
defects. The selenium pz states appear strongly blurred
in photoemission images and a quantitative analysis of
this band is questionable. Indeed, the finding of non-
gapped states at the Fermi energy in the Se pocket seem
to contradict the existence of a superconducting state. In
contrast, STS experiments as well as specific heat mea-
surements clearly imply a fully gapped DOS at EF .

V. DISCUSSION

A. Linking the small and large gaps to the Fermi
surface sheets

The study of the band structure of 2H-NbSe2 by means
of DFT calculations gives the respective contributions
of the different Fermi surface sheets to the DOS at the
Fermi level (see Table I). Moreover, from the tunneling
data, we have deduced the empirical ratio of the par-

TABLE IV: Comparative of gap values (in meV) deduced in
photoemission experiments for 2H-NbSe2 in the Se pocket
around Γ as well as in the Nb cylinders around Γ and K.

Work Gap (in meV) for each Fermi branch

Se pocket Nb (Γ) Nb (K)

Kiss et al. [48] - 0.65±0.05 -

Yokoya et al. [47] 0 1 ± 0.1 0.9 ±0.1

Kiss el al. [50] 0 0.9-1.1 0.3-1.1

Borisenko et al. [51] - 0-0.5 0.8

Rahn et al. [52] 0 ±0.2 0.1 ±0.3 2.3-2.6 ±0.2

tial DOS corresponding to the small and the large gaps:
NS(EF )/NL(EF ) ∼ 1/3. This information allows the
identification in k-space of the Fermi sheets correspond-
ing to the small and large gaps, or at least to propose a
reasonable scenario.

For simplicity in the discussion, we call the cylinders
centered on the Γ point (respectively the K point) of
the Brillouin zone the ‘Nb Γ-cylinders’ (respectively the
‘Nb K-cylinders’) since they mostly arise from the Nb
bands. The role of the additional Se Γ-pocket, see Fig.
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14, will be discussed subsequently. We first assume that
the two ‘Nb Γ-cylinders’ (or alternatively the two ‘Nb
K-cylinders’) quasi overlap. If one adds the DOS con-
tribution of band 2 and 3 around Γ (‘Nb Γ-cylinders’),
one obtains 0.7 elect.eV−1.unit cell−1 (i.e. 26 percent of
the total DOS) while the contribution of bands 2 and 3
aroundK gives 1.9 elect.eV−1.unit cell−1 (i.e. 70 percent
of the total DOS). Thus, the ratio between the two par-
tial DOS (K as compared to Γ) is 0.37, a value which is
very close to that inferred from the tunneling data. The
immediate conclusion is that the small gap is associated
with the ‘Nb Γ-cylinders’ and the large gap with the Nb
K-cylinders.

However, as shown in Fig. 13 (blue line), the contribu-
tion of the ‘Nb Γ-cylinders’ to tunneling should dominate
over that of the ‘Nb K-cylinders’. On the other hand, as
already described, the tunneling current is mostly sen-
sitive to states with small k‖ since the wave function
decreases exponentially into the vacuum as a function
of the distance z from the surface. Since the region of
the first Brillouin zone (FBZ) with small k‖ should dom-
inate the tunneling current, this predicts that the‘Nb
Γ-cylinders’ having the small gap should reveal in the
tunneling DOS. This is not observed in the experimental
spectra [5, 9, 29].

To resolve this apparent paradox, there are two im-
portant aspects that must be taken into account: First,
the existence of the Se pancake pocket around Γ and
second, the charge density wave state coexisting at low
temperature. Both of them have strong implications for
the tunneling selectivity and the interband coupling, as
we discuss below. The existence of the Se-based pancake
(Figs. 9 and 14) has been confirmed experimentally, for
instance using ARPES [10, 18] or magnetoresistance, [17]
and is based on the Se pz orbitals. Thus it should strongly
contribute to the tunneling current and is likely coupled
to the Nb bands. Nevertheless, its role in multigap su-
perconductivity is far from being understood.

The second aspect to consider is that the low tempera-
ture Fermi surface may be more complex than indicated
in Fig. 14 due to the CDW state existing below the tran-
sition temperature TCDW ≈ 35K [3]. In the CDW state
the system exhibits a nearly commensurate (3a×3a×c)
superstructure [3, 21, 26]. This may play a significant
role in both the interband coupling as well as in the tun-
neling selectivity. In fact, the consideration of the CDW
state leads to a qualitative model in good agreement with
the tunneling measurements.

Assuming a commensurate (3a×3a×c) superstructure
after the transition, the CDW leads to a reduced hexag-
onal Brillouin zone with 1/9th of the parent area and
centered at Γ. However, it is instructive to consider the
extended zone scheme and to look for equivalent k points
in the non-reduced (parent) Brillouin zone. In particu-
lar, as a result of the new periodicity, the center of the
FBZ, Γ, becomes equivalent to the parent K point since
~ΓK = ~g1 + ~g2, with ~g2 = 1

3
~G2 and ~g3 = 1

3
~G3 (where ~Gi

are the basis vectors of the parent reciprocal lattice of

FIG. 14: (Color online) Schematic view of the Fermi surface of

2H-NbSe2. The vectors of the charge density wave ~gi = 1
3

~Gi

(where Gi are the basis vectors of the reciprocal space of 2H-
NbSe2 above the CDW phase transition temperature) link the
selenium pocket around Γ (dark blue lines) to the cylinders
around K (orange lines) at different points.

2H-NbSe2). Consequently, in the tunneling probability,

one has to consider αk =
√

δk2 + κ2 where ~δk is a vector
from the K point to the nearest FS sheet. Clearly, due
to the CDW state, the K-cylinders are now considerably
more favorable for the tunneling conductance.

The CDW state might also play a role in the interband
coupling. As seen in Fig. 14, two wave vectors of the

charge density wave ~g2 = 1
3
~G2 and ~g3 = 1

3
~G3 precisely

link the small selenium pocket around Γ to the cylinders
around K at different points. For this reason, we expect
a strong coupling mediated by the charge density wave
between those two bands (or Fermi sheets). As will be
shown in the following section, when the coupling is suf-
ficiently strong (≥ 10 meV), the Se Γ-pocket and the Nb
K-cylinders behave as one single band.

B. Three band model calculation

The strong coupling effect may be further illustrated
by a three-band model calculation. Let us consider three
bands (see Fig. 15) with intrinsic gaps ∆0

1 = 0 meV,
∆0

3 = 0 meV, and ∆0
2 = 1.4 meV. The parameters of

bands 1 and 2 correspond to the values found for the
small gap (band 1) and large gap (band 2) of 2H-NbSe2.
Band 1 is thus weakly coupled to band 2 and very weakly
coupled to band 3. We then studied the evolution of the
partial DOS in each band as a function of the interband
coupling parameter Γ32 between bands 2 and 3. The
ratios of the interband scattering parameters have been
chosen such that they correspond to the calculated DFT
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FIG. 15: (Color online) Schematic view of the possible inter-
band couplings between those bands associated with the three
different Fermi surface components. Band 1 (2) corresponds
to the Nb cylinders around Γ (K), while band 3 corresponds
to the Se pocket around Γ.

ratios of the partial DOS (we recall that band 1 is as-
sociated with the ‘Nb Γ-cylinders’, band 2 with the Nb
K-cylinders and band 3 with the Se pocket around Γ).

The interband coupling between bands 2 and 3 leads
to an induced gap in band 3. As seen in Fig. 16, when
Γ32 increases, the DOS in band 3 is getting close to that
in band 2. For very large Γ32 ≥ 50 meV, one recovers
a situation very similar to an effective two-band model
with a new effective band constituted by bands 2 and
3. Thus, for a large coupling strength the model shows
that bands 2 and 3 are indistinguishable from one single
band. In Fig. 17 we plot the corresponding tunneling
conductance assuming a complete tunneling selectivity
towards band 3 (i.e. with tunneling weights T1 = 0;
T2 = 0; T3 = 1). For a large coupling Γ32 ≥ 50 meV, the
tunneling conductance is very close to that predicted in
the two-band model, with a complete selectivity towards
the band with the large gap.

In summary, we propose that the CDW state has
strong implications for both the interband coupling as
well as the tunneling measurement. The associated re-
duced reciprocal vectors imply the possible coupling be-
tween Nb derived FS sheets, but also give rise to the
strong contribution to the tunneling conductance of the
states around K, an essential ingredient for the observa-
tion of the large gap in c-axis tunneling spectra. How-
ever, in this model there should also be an important
contribution to the tunneling current of the Se Γ-pocket.
The necessary implication is that the Se pocket must be
strongly coupled to the ‘Nb K-cylinders’ thus leading to

FIG. 16: (Color online) Partial DOS calculated for a three
band model for different values of the interband coupling pa-
rameter between band 2 and band 3: a) Γ32 = 1 meV; b)
Γ32 = 5 meV; c) Γ32 = 10 meV; d) Γ32 = 50 meV. The in-
trinsic gaps are ∆0

1 = 0. meV, ∆0
2 = 1.4 meV, and ∆0

3 = 0.
meV. The ratio of the partial DOS at the Fermi energy are re-
lated to the ratio of quasiparticle scattering between the corre-

sponding bands N1(EF )
N2(EF )

= Γ21

Γ12
= 1/3; N3(EF )

N2(EF )
= Γ23

Γ32
= 1/16;

N3(EF )
N1(EF )

= Γ13

Γ31
= 1/6; The quasiparticle scattering parameters

are: Γ12 = 3 meV; Γ21 = 1 meV; Γ31 = 1 meV.

an effective single band with a large gap.
Two experimental observations seem to confirm our

model : First, the sensitivity of the tunneling selectiv-
ity upon cleavage. In fact, one expects significant vari-
ations of this small pocket with the surface conditions
and most probably of the CDW state, which could then
affect the coupling between the Se pocket and the Nb K-
cylinders. Second, the tunneling spectra in the related
material NbS2, where no CDW has been observed [54],
are very similar to those for 2H-NbSe2 but with a differ-
ent tunneling selectivity, as explained in section VC.

C. Comparaison with NbS2

It is also interesting to compare the spectrum obtained
for 2H-NbSe2 to that reported by Guillamón et al. for
2H-NbS2 [53]. This material is close to 2H-NbSe2, with
a superconducting transition temperature of TC= 5.7 K
but does not exhibit any charge density wave instability
[54]. Fitting their data with a two-gap model we obtain
parameters close to those for 2H-NbSe2. The intrinsic
gaps are: ∆0

S = 0 ± 0.05meV and ∆0
L = 1.15 ± 0.05meV.

ΓSL=1.5 meV and a ratio ΓLS

ΓSL
= 1/3 ± 0.3. The selec-

tivity weights corresponding to the tunneling towards the
two different effective bands are: TS = 0.4 and TL = 0.6.

We thus find that, as for 2H-NbSe2, superconductivity
develops in one band (or more precisely in one Fermi sur-
face sheet) whereas it is induced in the other by means
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FIG. 17: (Color online) Tunneling conductance dI/dV calcu-
lated in the three band model for different values of the in-
terband coupling parameter between bands 2 and 3: Γ32 = 1,
5, 10, 50 meV; Dashed line: Tunneling conductance expected
for the small and large gap in the two band model.

of interband coupling mediated by quasiparticle scatter-
ing from one band to the other. On the other hand, it
is clear from the fits that the tunneling selectivity differs
from 2H-NbSe2. As a matter of fact, there is an impor-
tant contribution of the band with the small gap to the
tunneling current.

In principle, this result could be explained in two differ-
ent ways. First, although there is no CDW transition in
2H-NbS2, [54] our calculations show that the Fermi sur-
face is very similar to that of 2H-NbSe2. In particular the
pancake around Γ is also present. This is a quite robust
result since calculations for reasonable changes in the cell
constants lead to small changes in the FS shape. The
implication of these results is that the S based pancake
pocket can not follow the previous mechanism based on
a strong coupling with the ‘K-cylinders’. Consequently,
it must couple only weakly to the cylinders around Γ or
K, and thus develop a small gap. Second, it could be
argued that the S pocket has no states at the Fermi level
at the surface layer. In this case, the c-axis tunneling
originates primarily from both the Nb cylinders around
Γ and K, as shown in section III E. The simplest origin
one could think for the suppression of the S based pan-
cake,would be the occurrence of S vacancies which will
raise the Fermi level. Using the bulk calculations we es-
timate that a large number of vacancies (i.e. ∼ 15%) are
needed. Thus, this mechanism does not seem quite likely.
We conclude that the absence of CDW strongly alters the
coupling of the pancake with the cylinders and is even-
tually responsible for the differences between 2H-NbS2

and 2H-NbSe2.

FIG. 18: (Color online) Tunneling conductance dI/dV from
Guillamón et al. [53] and fit obtained with the two gap McMil-
lan equations. The parameters for the fit are the following.
The intrinsic gaps are: ∆0

S = 0 ± 0.05meV and ∆0
L = 1.15

± 0.05meV. ΓSL=1.5 meV and ΓLS

ΓSL
= 1/3 ± 0.3. The se-

lectivity weights corresponding to the tunneling towards the
two different effective bands are TS = 0.4 and TL = 0.6. Note
the we use a temperature for the fit The intrinsic gaps are:
∆0

S = 0 ± 0.05meV and ∆0
L = 1.15 ± 0.05 meV. ΓSL=1.5

meV and a ratio ΓLS

ΓSL
= 1/3 ± 0.3. The selectivity weights

corresponding to the tunnelling towards the two different ef-
fective bands are TS = 0.4 and TL = 0.6. Note that we use
a temperature for the fit (Tfit = 0.5K) which is significantly
higher than the experimental temperature (Texp = 0.1K).

VI. CONCLUSION

We have measured the tunneling spectra of 2H-NbSe2

for two different orientations. The tunneling conductance
can be properly described by a two band model, with
gap values ∆0

L = 1.4 meV and ∆0
S = 0. meV, where

the interband coupling is provided by the scattering of
quasiparticles from one band to the other. The data show
evidence of a strong tunneling selectivity which depends
on the orientation: the large gap is mainly probed along
the ’c’ axis while this is the opposite along the a/b axis.

In order to understand these results, we have calcu-
lated the DFT band structure of 2H-NbSe2. The Fermi
surface contains three different components: a pancake
like Se based contribution around Γ, and two pairs of Nb
based cylinders parallel to c* around Γ and K, respec-
tively. The calculated values for the partial DOS asso-
ciated with the three different components at the Fermi
energy suggest that the large gap is associated with the
cylinders around K. The calculation also suggests that
when the CDW periodicity is not taken into account, the
tunneling current is dominated by the pz character of the
Se orbitals and depends on the way they couple to the
‘Nb cylinders’.

On the basis of these electronic structure calculations,
we have shown that the tunneling selectivity and the
double-gap spectra are fully reconciled when the new pe-
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riodicity imposed by the charge density wave is taken
into account. Indeed, the latter has strong implications
for the states probed in the tunneling measurement and
provides the physical basis for a strong coupling of the
Se pocket to the Nb ‘K-cylinders’.

Appendix A

1. Computational details

The present calculations were carried out using a nu-
merical atomic orbitals density functional theory (DFT)
approach [55, 56], which was developed for efficient
calculations in large systems and implemented in the
Siesta code [57, 58]. We have used the generalized
gradient approximation (GGA) to DFT and, in par-
ticular, the functional of Perdew, Burke and Ernzer-
hof [59]. Only the valence electrons are considered in
the calculation, with the core being replaced by norm-
conserving scalar relativistic pseudopotentials [60] factor-
ized in the Kleinman-Bylander form [61]. The non-linear
core-valence exchange-correlation scheme [62] was used
for all elements. We have used a split-valence double-ζ
basis set including polarization functions, optimized for
the bulk structure of NbSe2 [63]. The energy cutoff of the
real space integration mesh was 300 Ry. The Brillouin
zone was sampled using a grid of (30×30×30) k-points
within the Monkhorst-Pack scheme [64]. The experimen-
tal crystal structure was used for the bulk calculations.
A symmetrical slab ten and a half unit cells thick based
on the experimental bulk structure was used for the cal-
culation of the STM images. In that case we also used an
extra diffuse orbital in the basis set so as to take into ac-
count the slab nature of the system [65] and the Brillouin
zone was sampled using a mesh of (30×30×1) k-points.
The geometry of the (3a×3a×c) superstructure was op-
timized.

2. Qualitative understanding of the density of
states

The features of the density of states at the Fermi level
can be understood on the basis of the analysis of the
wave functions. The two partially filled niobium-based
bands, though more heavily based on the metal atoms,
contain substantial niobium-selenium antibonding char-
acter. The dispersion of these bands results from a subtle
equilibrium between direct in plane niobium-niobium in-
teractions (ultimately responsible for the 30 K structural
distortion) [22] and niobium-selenium antibonding inter-
actions.

Increasing the niobium dz2 participation in the wave
function is accompanied by an increase of the partici-
pation of the selenium pz orbitals. Roughly speaking,
increasing the weight of dz2 in the wave function makes
the Fermi surface more isotropic in the layer plane and

shifts electron density from antibonding levels to the in-
terlayer direction so that the mixing of niobium dz2 or-
bitals will be less favorable for the subband associated
with the interlayer antibonding interactions. Increasing
the niobium dz2 participation (and thus the selenium pz

orbitals) increases the interlayer dispersion and reduces
the density of states. Thus, keeping in mind the results
of Fig. 8, it is easy to understand that the density of
states at the Fermi level for both bands is larger for the
cylinder aroundK and that the effect is larger for the up-
per, interlayer antibonding band. It is also clear that the
cylinders around Γ should be more isotropic than those
around K.

3. Effect of the CDW on the band structure

Since our analysis is based on the room temperature
crystal structure whereas the tunneling images are ob-
tained at temperatures below the 30 K transition we
must consider if the structural distortion may notice-
ably affect the results. The experimental structure of
the low temperature phase has not been previously re-
ported so that we carried out a structural optimization
using a (3a×3a×c) supercell with fixed cell parameters.
We obtained a structure exhibiting a niobium clustering
pattern closely related to that proposed by Brouwer and
Jellinek [26].

The projected densities of states for niobium dz2 , nio-
bium dxy/dx2−y2 and selenium corresponding to the dis-
torted (noted 3×3) and undistorted (noted 1× 1) struc-
tures are compared in Figure 19. It is clear that the
differences around the Fermi level are very small so that
the main conclusions of the previous analysis should still
hold after the 30 K transition. This is in keeping with
early resistivity and heat-capacity measurements [66, 67]
suggesting that the decrease in the density of states at
the Fermi level should be of the order of only 1%. It is
also in agreement with an independent theoretical study
by Calandra et al [39]. Note the absence of any sign of
gap opening at the Fermi level, something which is in
agreement with recent atomic-scale scanning tunneling
microscopy results, [68] which excludes a Fermi surface
nesting mechanism for the 30 K transition. [18, 22, 23]

4. Discussion on the contribution of the Γ and K
cylinders to the tunneling current

For most values of the tip-to-surface distance, the con-
tribution of the cylinders around Γ to the tunneling in-
tensity is around twice larger than that of the cylinders
around K (Fig. 13). This may seem a bit surprising if
we recall that the respective contributions to the density
of states at the Fermi level were found to be just the op-
posite. However, this is in line with the results of the
above mentioned fits (see Table II).
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FIG. 19: (Color online) Comparison of the niobium dz2 , nio-
bium dxy/dx2

−y2 and selenium contributions for the normal
and CDW states.

One can think about two possible origins for this rever-
sal. First, the faster decaying of the contribution of the
cylinders around K is due to the k-selectivity of the tun-
neling current [42]. It follows from Eq. 6 that the contri-
bution to the tunneling of Fermi surface states with wave
vectors near the Brillouin zone center (k = 0) should be
larger. Consequently, the contribution of the cylinders
around Γ should become larger because of this effect and
maybe could overcome the initial difference in density of
states at the Fermi level. However, in the present case
we evaluate the effect of this k-selectivity as leading at

most to an increase of about 10 % of the calculated value.
Consequently, this should not be the main factor behind
the dominance of the contribution of the cylinders around
Γ. Second, one should be aware that the decay of the Se
pz orbitals is slower than the decay of the Se (px,py) or-
bitals. As discussed in detail in section III A, the nature
of the niobium orbitals for the Fermi surface states asso-
ciated with the cylinders around Γ and those around K
is different and this will induce a different hybridization
of the selenium orbitals in the respective wave functions.
As shown in Table I the relative weight of the Se pz vs. Se
(px,py) orbitals is larger for the cylinders around Γ. This
means that the hybridization between the Se orbitals is
more strongly dominated by the pz orbitals for the states
associated with the cylinders around Γ thus leading to a
slower decay of these states.

A complementary aspect one must consider is that the
plots of the density of states lack an important ingredient
in order to understand a directional effect like the tunnel-
ing current along a certain direction: the signs of the mix-
ing coefficients of the orbitals for a given wave vector. Of
course these signs are directly related to the directionality
of the electronic states and consequently strongly influ-
ence the tunneling in a given direction. Briefly speaking,
the different nature of the niobium orbitals for the states
around Γ and around K lead to different Se orbitals hy-
bridizations with a stronger control of the pz orbitals for
the cylinder states around Γ. Actual calculation of the
wave functions for points of the Fermi surface associated
with the cylinders around Γ and aroundK show that the
former exhibit a slower decaying along c.
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Kim, L. Kipp, K. Rossnagel, Phys. Rev. B 85, 224532
(2012).

[53] I. Guillamón, H. Suderow, S. Vieira, L. Cario, P. Diener,
and P. Rodière, Phys. Rev. Lett. 101, 166407 (2008).

[54] Y. Hamaue and R. Aoki, J. Phys. Soc. Jpn. 55, 1327
(1986).

[55] W. Kohn and P. Hohenberg, Phys. Rev. B 136, 864
(1964).

[56] W. Kohn and L. J. Sham, Phys. Rev. A, 140, 1133
(1965).

[57] J. M. Soler, E. Artacho, J. Gale, A. Garćıa, J. Junquera,
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