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Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation

of resonances due to slow sound
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Laboratoire d’Acoustique de l’Université du Maine, CNRS UMR 6613, Le Mans, France

(Received 6 October 2016; revised manuscript received 12 December 2016; published 23 January 2017)

We theoretically and experimentally report subwavelength resonant panels for low-frequency quasiperfect

sound absorption including transmission by using the accumulation of cavity resonances due to the slow sound

phenomenon. The subwavelength panel is composed of periodic horizontal slits loaded by identical Helmholtz

resonators (HRs). Due to the presence of the HRs, the propagation inside each slit is strongly dispersive, with

near-zero phase velocity close to the resonance of the HRs. In this slow sound regime, the frequencies of the

cavity modes inside the slit are down-shifted and the slit behaves as a subwavelength resonator. Moreover, due to

strong dispersion, the cavity resonances accumulate at the limit of the band gap below the resonance frequency of

the HRs. Near this accumulation frequency, simultaneously symmetric and antisymmetric quasicritical coupling

can be achieved. In this way, using only monopolar resonators quasiperfect absorption can be obtained in a

material including transmission.

DOI: 10.1103/PhysRevB.95.014205

I. INTRODUCTION

Two main types of audible acoustic panels are desired in

practical engineering applications: first, nonreflecting treat-

ments and, second, zero-transmission materials. The first

group requires that the reflection coefficient of a rigidly backed

material vanishes. This is typically achieved by using porous

or fibrous materials, that are mainly efficient in the inertial

regime and for frequencies higher than the so-called quarter

wavelength resonance of the backed layer, i.e., f = c0/4L, the

sound speed in current porous materials being nearly similar

to that in the air, c0. On the other hand, zero transmission

is commonly obtained by using highly reflecting materials

together with an interior frame made of a porous absorber.

These structures are efficient for frequencies higher than the

first Fabry-Pérot resonance of the slab of equivalent material,

i.e., f = c/2L. Concerning low frequency sound, both groups

of structures result in practical limitations due to the excessive

thickness, L, and weight of the treatments.

Designing materials with both zero reflection and zero

transmission simultaneously, i.e., perfect absorbers including

transmission, is of special interest. Perfect absorption is

of particular interest for many applications such as energy

conversion [1], time reversal technology [2], coherent perfect

absorbers [3], or soundproofing [4] among others. In the case of

rigidly backed materials, acoustic metamaterials are efficient

solutions to design sound absorbing materials which can

present simultaneously subwavelength dimensions and strong

or perfect acoustic absorption. These include double porosity

materials [5], metaporous materials [6–9], dead-end porosity

materials [10,11], metamaterials composed by membrane-type

resonators [4,12–14], Helmholtz resonators (HRs) [14–16],

and quarter-wavelength resonators (QWRs) [11,17–19]. These

last types of metamaterials [11,16–18] make use of strong

dispersion giving rise to slow-sound propagation inside the

material. Using slow sound results in a decrease of the cavity

resonance frequency and, hence, the structure thickness can be

drastically reduced to the deep-subwavelength regime [18].
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In transmission problems, where both reflection and

transmission are possible, acoustic metamaterials for perfect

absorption have also been presented recently using decorated

membrane resonators based on degenerate resonances [20].

In this case, monopolar and dipolar resonators are used to

critically couple the symmetric and antisymmetric problem

respectively and, therefore, to get perfect absorption of the full

problem with transmission [21]. Perfect absorption has also

been observed in metamaterials composed only by monopolar

resonators, e.g., by using two unsymmetrical HRs [22]. In these

structures, the transmission vanishes at the resonance of one

HR, behaving effectively as a hard wall. By tuning a second HR

the reflection problem can be critically coupled and, therefore,

perfect absorption is obtained. The propagation of acoustic

waves in waveguides loaded by arrays of monopolar resonators

have been also considered previously, e.g., as in arrays of

QWRs [23], arrays of HRs [24] producing Bragg interference

and local resonances, and arrays of two concentrically placed

QWRs producing Fano resonance [25]. In this work, we

present quasiperfect absorption in a subwavelength metamate-

rial panel for transmission problems using identical monopolar

resonators. The current design is based on the accumulation of

resonances due to slow sound. The system works as follows:

first, strong dispersion inside the slits is generated below the

resonance frequency of the HR, while around the resonance

frequency a band gap is generated and transmission vanishes.

Second, in the propagation band the cavity resonances of

each slit are stretched in frequency and accumulate below the

resonance frequency of the HR. Due to this accumulation of

resonances, the absorption using only monopolar resonators

can exceed 50%. Then, by tuning the geometry of the system

it can be almost critically coupled with the exterior medium,

therefore achieving quasiperfect absorption.

II. DESCRIPTION OF THE SYSTEM

AND THEORETICAL MODELS

The system consists in a panel perforated with a periodic

arrangement of open slits, of thickness h and length L, with

periodicity d in the x1 direction, as shown in Fig. 1. The
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FIG. 1. (a) Conceptual view of the thin panel placed on a rigid wall with N = 4 layers of square cross-section Helmholtz resonators.

(b) Scheme of the unit cell of the panel composed of a set of N Helmholtz resonators. Symmetry boundary conditions are applied at boundaries

Ŵx1=d and Ŵx1=0.

upper wall of the slit is loaded by N identical HRs in a square

array of side a, in such a way that the length of the system is

L = Na. To maximize the volume of the cavity of the

resonators and hence to minimize the resonance frequency,

HRs with rectangular cross section are used, characterized by

a square neck with side wn, a rectangular cavity with sides wc,1

and wc,2, and length ln and lc respectively. The viscothermal

losses in the system are considered in both the resonators

and in the slit by using effective complex and frequency

dependent physical parameters [26]. Therefore, by changing

the geometry, the intrinsic losses of the system can be tuned.

In order to have a deeper understanding of the physics

involved in the system described above, several theoretical

models with different hypotheses have been applied to analyze

the scattering of the system. In this section, we briefly present

each one, more details being given in the Appendixes.

A. Modal expansion method (MEM)

The first model is a modal expansion method (MEM) [18].

The acoustic field is expanded in the modal basis for each

domain, and then each domain is assembled by applying the

boundary conditions (continuity of pressure and velocity are

considered at the entrance and exit of the slit). The effect

of the resonators is included by an impedance condition at

x1 = h in the slit, by considering Z = ZHR/φ, with ZHR the

impedance of the HRs and φ = w2
n/a

2 the slit surface porosity.

The impedance of the HR including the radiation correction of

the neck is presented in the Appendixes. Eventually, a mode-

matching linear system is obtained, allowing us to calculate

the reflection and transmission coefficients [18].

One of the interesting points of this method is that,

considering the first order terms in the expansion, the low

frequency approximation of the mode-matching system gives

the effective parameters, i.e., the complex and frequency

dependent effective bulk modulus, κe, and effective density,

ρe, as

κe =
κs

φt

[

1 +
κsφ(Vcκn + Vnκc)

κnh(Snκc − Vcρnlnω2)

]−1

, (1)

ρe =
ρs

φt

, (2)

where φt = h/d is the total porosity of the metamaterial, ρs

and ρn are the effective densities of the slit and neck, κs , κn, and

κc are the effective bulk modulus of the slit, neck, and cavity,

respectively, Vn and Vc are the volumes of the neck and cavity

of the HRs, respectively, and ω is the angular frequency. From

Eqs. (1) and (2) it is clear that this metamaterial allows only

for negative compressibility for frequencies around the reso-

nance frequency of the HRs. The reflection and transmission

coefficients are linked to the effective parameters by

Rt =
i
(

Z̄2
e − 1

)

sin(keL)

2Z̄e cos(keL) − i
(

Z̄2
e + 1

)

sin(keL)
, (3)

Tt =
2Z̄e

2Z̄e cos(keL) − i
(

Z̄2
e + 1

)

sin(keL)
, (4)

with normalized effective impedance Z̄e = ρeκe/ρ0κ0 and

effective wave number ke = ω
√

ρe/κe. Finally, the absorption

of the system is defined as α = 1 − |Tt |2 − |Rt |2. Another

interesting point of the MEM is that if high order terms are

included in the expansion, no end corrections are required

both at the entrance and exit of the slit.

B. Transfer matrix method (TMM)

The second model is based on the transfer matrix method

(TMM), in which the N resonators are included as 1D point

scatterers. N matrices are assembled for a system made of

N unit cells, giving the transfer matrix, from which the

reflection, transmission, and absorption coefficients can be

obtained. Using the transfer matrix of a single unit cell with the

Floquet-Bloch periodic boundary conditions, the dispersion

relations in the periodic system can be obtained. This model

accounts for the finite and discrete arrangement of HR while

the MEM model, being based on an average impedance

at the wall, does not consider the effect of discreteness, i.e.,

the finite number of HR. Moreover, contrary to the MEM,

in which we can obtain the effect of the higher order modes

in the system, the TMM directly considers the plane wave

approximation, which is valid for the low frequency regime.

The radiation corrections are included in the impedances of

the resonators and in the slits in order to mimic the effect of

the higher order modes. Importantly, the TMM gives a direct

information of the effect of the finite number of resonators.
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FIG. 2. (a) Dispersion relation in the slit calculated using (red)

modal expansion method (MEM), (blue) transfer matrix method

(TMM) in the lossless (dashed line), and lossy case (continuous line).

Wave number in the air k0 = ω/c0 (dotted line) and the low frequency

asymptotic limit ω/ceff (dashed-dotted line). (b) Representation of

c̃p = Re(ω/k), which is closely related to the phase speed. The inset

shows the slow sound regime.

C. Finite element method (FEM)

In order to validate the previous analytical models and to

show the limits of validity of each of them, we have used a finite

element method (FEM) algorithm (COMSOL Multiphysics)

to solve the scattering problem, where the effects of the finite

number of resonators, the higher order modes, and the losses

are taken into account numerically. The viscothermal losses

are introduced as effective parameters in the slit and the

resonator elements [26]. A plane wave impinges the system

and the complete geometry is considered using the radiation

conditions that simulate the Sommerfeld conditions in the

limits of the numerical domains.

III. DISPERSION RELATION AND SLOW SOUND

CONDITIONS IN THE SLIT

Figure 2(a) shows the real part of the complex wave number

in the slit using MEM and TMM for a metamaterial with

parameters h=1.2 mm, a=4.95 cm, wn =7.1 mm, wc = 4.9,

d = 5 cm, ln = 7.3 mm, and lc = d − h − ln. A band gap is

observed above the resonance frequency of the HRs, ωHR.

Inside the slit a dispersive propagation band is generated

below the band-gap frequency, where the wave number in

the slit is remarkably increased and, therefore, as Fig. 2(b)

shows, slow sound conditions are achieved in this range of

frequencies. It can be observed that the effective low-frequency

sound speed in the lossless case, calculated from Eqs. (1)

and (2), ceff = c0/
√

1 + Vtotφn/hSn, is accurately described

by both models, with Vtot the total volume of the resonator.

In the lossless case, zero phase velocity can be observed

for frequencies just below ωHR. It is worth noting here that the

maximum wave number using TMM is limited to kmax = π/a

due to the fact that this model accounts for the periodicity of

the system, while using MEM the wave number can be infinite

in the lossless case, due to the fact that the MEM does not

account for the periodicity of the system. This limitation of

the MEM will be discussed in more detail later in Sec. IV B.

Once thermoviscous losses are introduced, the dispersion

relation inside the slit is modified. As Theocharis et al. showed

[27], the minimum value of speed of sound is limited by

the thermoviscous losses. Figure 2(b) shows the slow sound

region below ωHR. We can clearly see that, although the

quantity c̃p = Re(ω/k), closely related to the phase velocity,

is anymore zero in the lossy case, slow sound conditions are

still observed in this range of frequencies: the mean phase

speed in the low frequency range is much lower than the speed

of sound in air, c0, and the phase speed near the resonance

frequency of the HR is extremely low. This makes possible the

shortening of the ratio λ/L and, therefore, the slit behaves as a

subwavelength resonator. The dispersion relation in the slit and

the sound speed predicted by the different theoretical models

agree in the low frequency regime, while only small differences

can be observed near the band gap between the TMM and

MEM calculations due to the different hypothesis used in each

model.

IV. REFLECTION AND TRANSMISSION PROBLEMS

In this work we deal with a symmetric and reciprocal

system. In the low frequency regime the problem can be

considered as 1D because only plane waves propagate. In

this situation, the two eigenvalues of the scattering matrix

(with Tt on the diagonal), which relates the amplitudes of

the input with the output waves, are given by Tt − Rt and

Tt + Rt . Therefore, the absorption of the system can be

described by decomposing the full problem in its symmetric

and antisymmetric equivalent problems in reflection [22], as

shown schematically in Fig. 3(a). In fact, the two eigenvalues

of the scattering matrix give the reflection coefficients for

the symmetric and antisymmetric subproblems in reflection,

respectively. Thus, by setting rigid, ∂p/∂x = 0 (symmetric),

and soft, p = 0 (antisymmetric), boundary conditions at the

symmetry plane of the system, the reflection coefficients of

each subproblem can be obtained as

Rsym = Tt − Rt =
Z̄e sin keL/2 − i cos keL/2

Z̄e sin keL/2 + i cos keL/2
, (5)

Rasym = Tt + Rt =
Z̄e cos keL/2 + i sin keL/2

i sin keL/2 − Z̄e cos keL/2
, (6)

for the symmetric and antisymmetric problems, respectively.

Then, the absorption coefficient of the full problem can be

obtained from the absorption of each subproblem as α =
(αsym + αasym)/2, where αsym(asym) = 1 − |Rsym(asym)|2 [22].

A. Asymptotic behavior, large number of resonators

Let us first consider N sufficiently large to accurately

describe the system as a slab of material with the effective

parameters. Figures 3(b) and 3(c) show the corresponding

reflection coefficient in the complex frequency plane. It is

obtained with the TMM, of the symmetric and antisymmetric

problems for N = 30 resonators considering a complex fre-

quency ω = ωr + iωi , with ωr and ωi the real and imaginary

frequencies. First, it can be observed that a series of zero-pole

pairs appears in the frequency complex plane [15]. The

poles correspond to the cavity modes inside the slab of

effective material [28]. Due to dispersion, these cavity modes

accumulate below the resonance frequency of the HRs. On
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FIG. 3. (a) Symmetric and antisymmetric problem decomposition for a homogeneous layer of material with effective parameters. (b),(c)

Complex frequency representation of the reflection coefficient for the symmetric and antisymmetric problem, respectively. (d) Reflection

coefficient at the real axis for symmetric (blue) and antisymmetric (dotted red). (e) Absorption for symmetric (blue), antisymmetric (dotted

red), total (thick black), and impedance matching condition (dashed gray).

the other hand, it can be seen that the cavity modes of the

symmetric problem (see Rsym) appear at frequencies different

from the frequencies of the antisymmetric one (see Rasym).

This effect is clearly seen in Fig. 3(d), where the reflection

coefficients for each problem are plotted at the real axis of

frequencies.

In addition, it can be seen that for some particular

frequencies, as those marked with the arrows in Figs. 3(b)

and 3(c), the zeros of the reflection coefficient are located

on the real axis of frequencies. At these frequencies, the

reflection coefficient of the (anti)symmetric vanishes and the

structure is critically coupled. This condition is enough to

achieve perfect absorption for, e.g., the symmetric problem,

as was demonstrated in rigid-backed materials [14,16,18].

However, to obtain perfect absorption of the full problem

including transmission, both symmetric and antisymmetric

reflection coefficients must simultaneously vanish [21,22],

as the following relations hold: Rt = (Rsym + Rasym)/2 and

Tt = (Rsym − Rasym)/2.

In general, for a homogeneous slab of material the cavity

resonances of the symmetric and antisymmetric problems,

i.e., its Fabry-Pérot modes, are staggered in frequency and

perfect absorption is not possible. However, in our system the

cavity modes are accumulated below the limit of the band gap

because of the strong dispersion introduced by the presence

of the resonators. Then, the zeros of the reflection coefficient

for the symmetric and antisymmetric problems can be close

to one another in frequency and quasiperfect absorption

can be obtained at the edge of the band gap. Figure 3(e)

shows the corresponding absorption of the full problem

(black line), where the absorption due to accumulation of

resonances around ωHR is observed. It is interesting to show

that, in the limit of a semi-infinite panel, both the reflection

coefficient of the symmetric and antisymmetric problems col-

lapse to the impedance matching condition, limL→∞ Rsym =
limL→∞ Rasym = (Z̄e − 1)/(Z̄e + 1), and then, only in this

limit, perfect absorption can be achieved, as shown in Fig. 3(e).

However, for a finite layer Rsym �= Rasym and only quasiperfect

absorption can be reached with a single homogenized slab of

material. Moreover, Z̄e is generally complex and no perfect

matching can be achieved.

B. Finite number of resonators

Figure 4 shows the scattering of the system in the lossless

case for N = 3 resonators with the same parameters as in

Sec. IV A. Figures 4(a) and 4(b) show the complex frequency

representation of the reflection coefficient obtained by using

the MEM, while Figs. 4(d) and 4(e) show the corresponding

one obtained by using the TMM. It is worth noting here

that if we solve the problem using the MEM (with an

effective-impedance boundary condition to represent the effect

of the HRs), it presents a zero-pole structure with an infinite

collection of resonances that accumulate around the band-gap

frequency. Note for a finite number of resonators there should

be a finite number of resonances. The TMM correctly accounts

for the finite number of resonances, in this case N = 3, in

agreement with FEM simulations as shown in Fig. 4(g). It is

also worth noting here that these cavity resonances are in fact

the collective modes of the HRs and there exist only N different

collective modes. Figure 4(f) shows the total reflection and

transmission in the real axis calculated with TMM and FEM.

The agreement between the two methods is very good, showing

that the hypothesis of the TMM are correct for the considered

frequency range. It can also be noticed that, by including

the discreteness of the system, the band-gap frequency is

shifted down from ωHR, as it was previously noticed from

the dispersion relations. However, the finite number of HRs

limits the accumulation of resonances near the band gap: as N

decreases the condition to have symmetric and antisymmetric

resonances close to one another in frequency will become

more difficult to achieve. Therefore, the number of (identical)

HRs is a critical parameter to obtain quasiperfect absorption in

metamaterials with transmission by means of the accumulation

of resonances.

Once losses are introduced in the system, the zero-pole

structure is down-shifted in the complex frequency plane and
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method (FEM) at frequencies corresponding to the resonances m = 1,2,3, color bar in normalized pressure units.

the system starts to absorb energy [15]. Figure 5(a) presents

the absorption of a panel as a function of the number of

resonators, N , and frequency. First, it can be observed that for

a relatively large number of resonators quasiperfect absorption

can be achieved even when the discreteness is retained, e.g.,

for N = 50 resonators as shown in Fig. 5(b). The material

is almost impedance matched with the exterior medium and

both MEM and TMM agree: the system can be described as

a homogenized slab of locally reactive material. Only small

differences between MEM and TMM solutions exist near the

band gap due to the infinite number of resonances of the MEM.

For most sound absorption applications it is desirable to

use panels with reduced thickness, and of special interest is

the design of panels with subwavelength dimensions. Then,

when reducing the panel thickness the number of resonators

must also be reduced and, therefore, the accumulation of

resonances becomes limited. Figure 5(c) shows the absorption

of a panel with N = 15 (L ≈ λαmax
/2), while Fig. 5(d) shows

the absorption of a panel with N = 5 (L = λαmax
/6.6). In both

cases, a peak of absorption is still observed, but its amplitude

falls to αmax = 0.96 and αmax = 0.92, respectively, for each

case. The corresponding reflection coefficient in complex

frequency plane for N = 5 is shown in Fig. 5(f) for the

symmetric and antisymmetric problems. Again, the zeros of

the symmetric problem appear staggered in frequency with

respect to the antisymmetric one and, as a consequence, the

accumulation of resonances is limited by the small number of

resonators. However, by tuning the geometry of the system,

high acoustic absorption can be achieved by locating one zero

of the reflection coefficient of the symmetric problem on the

real frequency axis and, simultaneously, locate another zero of

the antisymmetric problem as close as possible to the real axis
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c̃p = Re(ω/k), closely related to the speed of sound.

at a different but near frequency. Therefore, the maximum

value of absorption is directly dependent on the number of

HRs and inversely dependent on the panel thickness. Using

an array of identical resonators the design of the panel is a

compromise between the peak acoustic absorption and the

parameter λmax/L.

V. EXPERIMENTAL RESULTS

A subwavelength thickness sample with N = 10 resonators

was built using stereolithography techniques using a photosen-

sitive epoxy polymer (Accura 60 R©, 3D Systems Corporation,

Rock Hill, SC 29730, USA), where the acoustic properties of

the solid phase are ρ0 = 1210 kg/m3 and c0 = 1630 ± 60 m/s.

The geometry of the structure was tuned using an optimization

method [sequential quadratic programming (SQP) method

[29]] in order to maximize the absorption at a given fre-

quency (350 Hz), while the panel thickness was constrained

to L = λ/10. The resulting parameters were h = 4.3 mm,

a = 9.8 mm, wn = 5.3 mm, wc,1 = 11.4 mm, wc,2 = 9.3 mm,

d = cm, ln = 25.2 mm, and lc = 139.6 mm. It is worth noting

here that we use the coiling of the HRs in order to save

space. The amplitude of the acoustic source was low enough

to consider negligible the contribution of the nonlinearity of

the HRs. Figure 6 summarizes the experimental results. First,

Fig. 6(a) shows a photograph of the panel, composed by three

unit cells with N = 10 for each one, allowing the measurement

of reflection and transmission coefficients at normal incidence,

which are shown in Fig. 6(b). A good agreement between

the experimental results, theoretical predictions, and FEM

simulations is observed. The results show the band gap

generated by the resonance of the HRs, where the low-cutoff

frequency of the band gap is just below the resonance

frequency of the HRs, fHR = 364 Hz. In this frequency range,

transmission almost vanishes and the total reflection does not,

as shown in Fig. 6(b), as a consequence of the staggered

structure of zero-pole structure. The corresponding absorption

is plotted in Fig. 6(c), where again good agreement can be

observed between theory and experiments. Here, at 350 Hz the

absorption peak obtained from the experiments was α = 0.87,

while α = 0.91 was obtained from TMM predictions. In

addition, small differences can be observed around 300 Hz.

These small discrepancies can be associated to imperfections

on the fitting of the structure to the impedance tube and due to

the coiling of the HRs.

On the other hand, the effective wave number inside the slits

was reconstructed using an inversion method [30]. Figures 6(d)

and 6(e) show the experimental and theoretical reconstruction

of the real and imaginary part of the wave number, respectively.

It can be observed that the experimental reconstruction agrees

with the theoretical prediction. Here, at f = 350 Hz where

the peak absorption is observed, the real part of the wave

number is greatly increased compared to the wave number in

air, k0. Moreover, the imaginary part of the wave number is also

increased, leading to the damping of the acoustic waves inside

the material. Finally, the quantity c̃p = Re(ω/k) is shown

in Fig. 6(f). It can be seen that slow sound conditions are

achieved by the experiment and the speed of sound inside the
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material is reduced to c̃p = 34 m/s at the peak absorption

frequency, f = 350 Hz. Finally, it is important to note that the

effect of the evanescent coupling between adjacent resonators

is negligible. This coupling is implicitly included in FEM

simulations and inherently present in the experiments. The

good agreement between FEM simulations and experiments,

and theoretical models shows the evanescent coupling can be

considered negligible.

VI. CONCLUSIONS

The absorption of panels in transmission with periodic

arrays of slits loaded by monopolar resonant inclusions made

of HRs has been studied. We have shown that by using an

array of identical monopolar resonators the symmetric and

antisymmetric resonances of the system exist at staggered

frequencies and, therefore, simultaneous critical coupling of

the symmetric and antisymmetric modes is not possible.

However, due to the loading HRs, strong dispersion is observed

in the interior of each slit and the cavity resonances accumulate

below the band-gap frequency, being the symmetrical and

antisymmetrical modes staggered but very close in frequency.

In this frequency range and by tuning the geometry, the system

can be quasicritically coupled with the exterior medium and

therefore quasiperfect absorption can be obtained.

The limits of acoustic absorption in symmetric and re-

ciprocal panels with transmission were explored experimen-

tally, and quasiperfect absorption for a subwavelength panel

with thickness L = λ/10 was demonstrated. These results

underline the necessity of breaking the symmetry of the

system to achieve perfect absorption in transmission or the

use of degenerate resonators with symmetric (monopolar) and

antisymmetric (dipolar) resonances. Strategies for breaking

the symmetry include the use of, e.g., different sized HRs

[22]. Strategies to use degenerate resonances have been also

studied [20,21].

On the other hand, the extension of the results shown in

this work to other analogous physical systems is also possible,

with special interest for those where the number of resonators

in the cavity can be remarkably increased, e.g., by using deep-

subwavelength resonators as arrays of identical membranes

with added mass or by using gas microbubbles for underwater

acoustic applications.

The proposed configuration presents interesting and re-

markable features as the open slits allow the air to flow

through the panel, e.g., being able to use these subwavelength

metamaterials for low-frequency noise control in industrial

applications where simultaneously chromatic noise absorption

and machinery refrigeration or air flow are required. These

promising results open the possibilities to study different

configurations based on these metamaterials and to extend the

results to broadband and omnidirectional perfect absorption

with deep subwavelength structures, which remains a great

scientific challenge.

ACKNOWLEDGMENT

This work has been funded by the Metaudible Project No.

ANR-13-BS09-0003, cofunded by ANR and FRAE.

APPENDIX A: VISCOTHERMAL LOSSES MODEL

The viscothermal losses in the system are considered both

in the resonators and in the slit by using its effective complex

and frequency dependent parameters [26].

Slits. The effective parameters in the slit, considering only

plane waves propagate inside, are expressed as

ρs = ρ0

[

1 −
tanh

(

h
2
Gρ

)

h
2
Gρ

]−1

, (A1)

κs = κ0

[

1 + (γ − 1)
tanh

(

h
2
Gκ

)

h
2
Gκ

]−1

, (A2)

with Gρ =
√

iωρ0/η and Gκ =
√

iωPrρ0/η, and where γ is

the specific heat ratio of air, P0 is the atmospheric pressure,

Pr is the Prandtl number, η the dynamic viscosity, ρ0 the air

density, and κ0 = γP0 the air bulk modulus.

Ducts. The propagation in a rectangular cross-section tube

can be described by its complex and frequency dependent

density and bulk modulus, and considering that plane waves

propagate inside, can be expressed as [26]

ρt = −
ρ0a

2b2

4G2
ρ

∑

k∈N

∑

m∈N

[

α2
kβ

2
m

(

α2
k + β2

m − G2
ρ

)]−1
, (A3)

κt =
κ0

γ + 4(γ−1)G2
κ

a2b2

∑

k∈N

∑

m∈N

[

α2
kβ

2
m

(

α2
k + β2

m − G2
κ

)]−1
,

(A4)

with the constants αk = 2(k + 1/2)π/a and βm = 2(m +
1/2)π/b, and the dimensions of the duct a and b being either

the neck, a = b = wn, or the cavity, a = wc,1 and b = wc,2,

of the Helmholtz resonators.

APPENDIX B: MODAL EXPANSION METHOD (MEM)

1. Mode matching system

As sketched in Fig. 1, the full space is divided into three

subdomains: the forward exterior medium, �[0], the interior of

the slit, �[1], and the backward exterior air, �[2]. The field can

be represented on each �[i] domain as

p[0] =
∑

q

(

Aiδqe
−ik

[0]
2q (x2−L) + Rqe

ik
[0]
2q (x2−L)

)

eik1qx1 , (B1)

p[1] =
∑

n

(

Bne
−ik

[1]
2n x2 + Cne

ik
[1]
2n x2

)

sin k1n(x1 − L), (B2)

p[2] =
∑

q

Tqe
ik1qx1−ik

[0]
2q x2 , (B3)

where Ai is the amplitude of the incident wave, Rq and Tq are

the reflection and transmission coefficients of the qth Bloch

mode, respectively, and δ0
n is the Kronecker delta. Here and

beyond the superscript [i] indicates the domain according to

Fig. 1. Periodic boundary conditions are assumed at x1 = 0

and x1 = d. It is worth noting here that for normal incidence

periodic boundary conditions reduce to symmetric (rigid)

boundary conditions. Inside the slit, at x1 = h, the effect of

the resonators is included by a wall impedance condition given

014205-7
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by Zwall = ZHR/φ, with ZHR the impedance of the HRs and

φ = w2
n/a

2 the surface porosity of the slit. The application

of these boundary conditions and continuity between domains

leads to the following mode matching system:

Rq −
∑

q ′

∑

n

η[1]
n

η
[0]
nq

h

dNn

(

−iRq ′

tan k
[1]
2n L

)

I+
nq ′I

−
nq

−
∑

q ′′

η[1]
n

η
[0]
q

h

dNn

∑

n

(

iTq ′′

sin k
[1]
2n L

)

I+
nq ′′I

−
nq

= Ai +
∑

n

η[1]
n

η
[0]
q

h

d

−iAi

tan k
[1]
2n LNn

I+
n0I

−
nq (B4)

and

Tq +
∑

q ′

∑

n

η[1]
n

η
[0]
nq

h

d

(

−iRq

Nn sin k
[1]
2n L

)

I+
nq ′I

−
nq

+
∑

q ′′

∑

n

η[1]
n

η
[0]
nq

h

dNn

iTq ′′

tan k
[1]
2n L

I+
nq ′′I

−
nq

=
∑

n

η[1]
n

η
[0]
nq

h

d

iAi

sin
(

k
[1]
2n L

)

Nn

I+
n0I

−
nq , (B5)

where η
[j ]
q = k

[j ]

2q /ρ[j ]. Thus the reflection and transmission

coefficients can be calculated by solving the linear system

of Eqs. (B4) and (B5), where the integrals I±
nq are written in

analogy with Refs. [16–18].

2. Low frequency approximation: Effective parameters

In the low frequency regime, the system (B4) and (B5) leads

to the reflection and transmission coefficients as

R0 +
iZ̄eR0

tan k
[1]
2 L

−
iZ̄eT0

sin k
[0]
2 L

=

(

1 −
iZ̄e

tan k
[1]
2 L

)

, (B6)

T0 −
iZ̄eR0

sin k
[1]
2 L

+
iZ̄eT0

tan k
[1]
2 L

=
iZ̄e

sin k
[1]
2 L

, (B7)

where the normalized effective impedance is defined as Z̄e =
η[1]h/η[0]d = Z[1]/Z[0]φt , with the total porosity φt = h/d,

and Ai = 1. We clearly identify the effective wave number

inside the panel as

k
[1]
2 =

√

(

k
[1]
1

)2 − (k10)2. (B8)

The transversal component of the wave number is given by

[31]

k10 =
1

h

√

−iωρsh

Zwall

, (B9)

and using the Helmholtz resonator impedance in the low

frequency regime it becomes

k10 =
1

h

√

−ωρsh(VcZnkc + SnZcknln)φ

Zn(SnZc − VcZnkcknln)
. (B10)

Using Eq. (B8) the effective wave number reads

ke = k
[1]
2 =

ω2

c2
0

[

1 +
κs(Vcκn + Vnκc)φ

κn(Snκc − Vclnω2ρn)h

]

. (B11)

The effective parameters, i.e., the complex and frequency

dependent bulk modulus and density are given by

κe =
κs

φt

[

1 +
κsφ(Vcκn + Vnκc)

κnh(Snκc − Vcρnlnω2)

]−1

, (B12)

ρe =
ρs

φt

. (B13)

Using these parameters, the reflection and transmission coef-

ficients can be calculated according to Eqs. (B6) and (B7) as

R0 =
i
(

Z̄2
e − 1

)

sin(keL)

2Z̄e cos(keL) − i
(

Z̄2
e + 1

)

sin(keL)
, (B14)

T0 =
2Z̄e

2Z̄e cos(keL) − i
(

Z̄2
e + 1

)

sin(keL)
. (B15)

APPENDIX C: TRANSFER MATRIX METHOD

A discrete model is developed accounting for the finite

number of resonators using the transfer matrix method (TMM).

Thus, for identical resonators, the transfer matrix is written as

(

Pi

Ui

)

= T

(

Po

Uo

)

, (C1)

where the transmission matrix T is written as

T =
(

T11 T12

T21 T22

)

= M�lslit
(MsMHRMs)

NM�lslit
.

Here, the transmission matrix for each lattice step in the

slit, Ms , is written as

Ms =

(

cos
(

ks
a
2

)

iZs sin
(

ks
a
2

)

i
Zs

sin
(

ks
a
2

)

cos
(

ks
a
2

)

)

, (C2)

where the slit characteristic impedance is written as

Zs = √
κsρs/Ss and Ss = h a. The resonators are introduced

as punctual scatters by a transmission matrix MHR as

MHR =
(

1 0

1/ZHR 1

)

, (C3)

and the radiation correction of the slit to the free space as

M�lslit
=

(

1 Z�lslit

0 1

)

, (C4)

with the characteristic radiation impedance of the slit Z�lslit
=

−iω�lslitρ0/φtS0, where S0 = d a, ρ0 is the air density, and

�lslit is the proper end correction that will be described later.

014205-8



QUASIPERFECT ABSORPTION BY SUBWAVELENGTH . . . PHYSICAL REVIEW B 95, 014205 (2017)

The reflection and transmission coefficients of the system

can be directly calculated from the elements of the matrix T

as

TTMM =
2eıkL

T11 + T12/Z0 + Z0T21 + T22

, (C5)

RTMM =
T11 + T12/Z0 − Z0T21 − T22

T11 + T12/Z0 + Z0T21 + T22

, (C6)

with Z0 = ρ0c0/S0, and the effective parameters can be

obtained from the transfer matrix elements as follows:

kTMM =
1

L
cos−1

(

T11 + T22

2

)

, (C7)

ZTMM =
1

Z0

√

T12

T21

. (C8)

APPENDIX D: RESONATOR IMPEDANCE

AND END CORRECTIONS

Using the effective parameters for the neck and cavity

elements given by Eqs. (A3) and (A4), the impedance of a

Helmholtz resonator can be written as

ZHR = iZn

A − tan knln tan kclc

A tan knln + tan kclc
, (D1)

with A = Zc/Zn, ln and lc are the neck and cavity lengths,

Sn = w2
n and Sc = wc,1wc,2 are the neck and cavity surfaces,

and kn and kc, and Zn and Zc are the effective wave numbers

and effective characteristic impedance in the neck and cavity,

respectively.

It is worth noting here that this expression is not exact as

long as correction due to the radiation should be included. The

characteristic impedance accounting for the neck radiation can

be expressed as [27]

ZHR = −i
cos(knln) cos(kclc) − Znkn�l cos(knln) sin(kclc)/Zc − Zn sin(knln) sin(kclc)/Zc

sin(knln) cos(kclc)/Zn − kn�l sin(knln) sin(kclc)/Zc + cos(knln) sin(kclc)/Zc

, (D2)

where the correction length is deduced from the addition of

two correction lengths �l = �l1 + �l2 as

�l1 = 0.82

[

1 − 1.35
rn

rc

+ 0.31

(

rn

rc

)3]

rn, (D3)

�l2 = 0.82

[

1 − 0.235
rn

rs

− 1.32

(

rn

rt

)2

(D4)

+1.54

(

rn

rt

)3

− 0.86

(

rn

rt

)4]

rn. (D5)

The first length correction, �l1, is due to pressure radiation

at the discontinuity from the neck duct to the cavity of the

Helmholtz resonator [32], while the second �l2 comes from

the radiation at the discontinuity from the neck to the principal

waveguide [33]. This correction only depends on the radius of

the waveguides, so it becomes important when the duct length

is comparable to the radius, i.e., for small neck lengths and for

frequencies where krn ≪ 1.

Another important end correction comes from the radiation

from the slits to the free air. The radiation correction for a

periodic distribution of slits can be expressed as [34]

�lslit = hφt

∞
∑

n=1

sin2 (nπφt )

(nπφt )3
. (D6)

Note for 0.1 � φt � 0.7 this expression reduces to �lslit ≈
−

√
2 ln[sin(πφt/2)]/π . Although Eq. (D6) is appropriate for

a periodic array of slits, it is not exact for slits loading HRs;

therefore, we can evaluate a more realistic value for the end

correction by reconstructing an equivalent impedance, Z̃, from

the reflection coefficient of the zeroth order Bloch mode

calculated with the MEM and comparing it to Z̄e = ρeκe/ρ0κ0

in analogy with Ref. [18]:

Z̃ − Z̄e = −iω
ρ0

φt

�lslit. (D7)

The slit end correction using this last approach gives a value

that depends on the geometry of the HRs and for the present

structures is around 1.5 times the one using Eq. (D6).

FIG. 7. Effective parameters computed by (thick gray lines) the

low frequency approximation of the MEM, Eqs. (1) and (2), (markers)

reconstructed from the experimental data and (continuous lines)

reconstructed from the MEM analytical reflection and transmission

coefficients. (a) Real and (b) imaginary part of the complex density

normalized by the ambient density and total porosity. (c) Real and

(d) imaginary part of the complex compressibility normalized by the

ambient bulk modulus and total porosity. The dashed line marks the

resonance frequency of the Helmholtz resonators, fHR = 364.
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APPENDIX E: RECONSTRUCTION

OF EFFECTIVE PARAMETERS

The effective parameters of the metamaterial, i.e., the

complex and frequency dependent density and bulk modulus,

can be reconstructed from its effective wave number and

impedance. Figure 7 shows the reconstruction using the

experimental data (markers), the effective parameters given

by Eqs. (1) and (2) (gray line), and the reconstruction

method using the MEM analytical reflection and transmission

coefficients as the input (black line). It can be seen that the

inversion method, even with the analytical transmission and

reflection data, fails to reconstruct the effective parameters

at the frequencies corresponding to Re(k)L/π = (1,2, . . .).

This is caused by the poor reconstruction of the effective

impedance at the Fabry-Pérot resonances of a slab of effective

material. However, the main features of the effective param-

eters are captured by the reconstruction. First, the effective

density of the metamaterial is almost the density of air

normalized by the total porosity, φt , it being almost constant in

frequency. Second, the real part of the effective bulk modulus

is reduced up to 15% of the bulk modulus of the air at 350 Hz,

it vanishes at the resonance frequency of the HRs (fHR = 364

Hz, vertical dashed line), and it is negative for frequencies

above fHR. Therefore, the effective compressibility of the

material is greatly increased, allowing the structure to resonate

in the subwavelength regime.
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