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QUASIPOSITIVITY AS AN OBSTRUCTION TO SLICENESS

LEE RUDOLPH

Abstract. For an oriented link L C S3 = dD4 , let Xs(L) be the greatest

Euler characteristic x(F) of an oriented 2-manifold F (without closed com-

ponents) smoothly embedded in D4 with boundary L . A knot K is slice if

Xs(K) = 1 . Realize D4 in C2 as {(z, w) : \z\2 + \w\2 < 1} . It has been con-

jectured that, if V is a nonsingular complex plane curve transverse to S3 , then

Xs(VnS3) = ^(KnZ)4). Kronheimer and Mrowka have proved this conjecture

in the case that V n D4 is the Milnor fiber of a singularity. I explain how this

seemingly special case implies both the general case and the "slice-Bennequin

inequality" for braids. As applications, I show that various knots are not slice

(e.g., pretzel knots like ^(-3, 5,7); all knots obtained from a positive tre-

foil 0{2, 3} by iterated untwisted positive doubling). As a sidelight, I give an

optimal counterexample to the "topologically locally-flat Thorn conjecture".

1. A BRIEF HISTORY OF SLICENESS

A link is a compact 1-manifold without boundary L (i.e., finite union of

simple closed curves) smoothly embedded in the 3-sphere S3 ; a knot is a link

with one component. If S3 is realized in R4 as, say, the unit sphere, then a

natural way to construct links is to intersect suitable two-dimensional subsets

X c R4 with S3 ; one may then ask how constraints on X are reflected in

constraints on the link X r\S3.
For instance, Fox and Milnor (c. 1960) considered, in effect, the case that

X is a smooth 2-sphere intersecting S3 transversally; at Moise's suggestion,

Fox [5] adopted the adjective slice to describe the knots and links X nS3 so
constructed. Fox and Milnor [6] gave a criterion for a knot A" to be slice: its
Alexander polynomial Ak(í) £ Z[t, t~x] must have the form F(t)F(rx). This

shows that, for instance, the two trefoil knots 0{2, ±3} are not slice (since
A0{2,±3} = t~x -l+t is not of the form F(t)F(t~x) ), but it says nothing about

the two granny knots 0{2, 3}#0{2, 3}, 0{2, -3}#0{2, -3} (indeed, both
granny knots share the Alexander polynomial (r-1 - 1 + i)2 with the square
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knot 0{2, 3}#0{2, -3} , which is slice), and Fox could only aver [5] that "it
is highly improbable that the granny knot is a slice knot."

By the end of the 1960s, several mathematicians [30, 14, 31] had found
invariants which could be applied to show that, for instance, the granny knots
are not slice. For any knot K, all these invariants (signatures of various families
of hermitian forms), as well as AK(t), can be calculated from the Seifert pairing

6F : Hi (F, Z) x Hi (F, Z) ->■ Z determined by any Seifert surface F for K
(i.e., a smooth, oriented, 2-submanifold-with-boundary F c S3 without closed
components, with K = dF ). In particular, if A" is slice, then (for any F )

there is a subgroup TV c Hi(F, Z) with rank(N) = ¿ Tank(Hi(F, Z)) on which
6f vanishes identically. Any knot for which such a subgroup exists is called
algebraically slice (briefly, A-ûicé). Levine showed [13] that in higher odd

dimensions, ^4-slice knots are slice. Whether this were true for knots in S3 was
unknown until 1975, when Casson and Gordon [1,2] developed "second-order"

obstructions to sliceness (again using signatures, but of more subtly constructed

forms that are not determined just by a Seifert pairing) and used them to show
that many ^4-slice knots are not slice. Their methods were powerless, however,

to prove nonsliceness of any knot A" with Ak(í) = 1 (such a knot is ^i-slice,

as observed by L. Taylor, cf. [9 (1978), problem 1.36]).
The subject took surprising turns in the 1980s after Donaldson and Freedman

revolutionized the theory of 4-manifolds and, not so incidentally, the theory of

knots and links in S3. In fact, let Ici4 now be a 2-sphere, still transverse

to S3, which is, however, assumed no longer smooth but merely topologically

locally-flat (i.e., in local S?0 charts it looks like R2 c R4 ); then the link Xr\S3 is
topologically locally-flatly slice (briefly, T-slice). T-slice implies ^-slice. Freed-
man [8] proved that any knot A" with Ak(í) = 1 (e.g., any untwisted double) is

T-slice. Nonsliceness results flowed from Donaldson's restrictions on intersec-
tion forms of smooth, as distinct from topological, 4-manifolds: Casson proved
the existence of a nonslice knot A" with AK(t) — 1 (cf. [9(1984), problem

1.36]); Akbulut gave an explicit example of such a knot, the untwisted positive

double D(0{2, 3}, 0, +) (cf. [3]); Cochran and Gompf [3] found large classes
of knots K such that D(K, 0, +) is not slice; and Yu [32], building on work
of Fintushel and Stern, found many ,4-slice Montesinos knots which are not

slice.
In §4 I give many examples of nonslice knots: for example—recovering some

of Fintushel and Stern's results—all pretzel knots 3°(p, q, r) ^ O with Al-

exander polynomial 1, and—considerably generalizing [3, Corollary 3.2]—all

iterated untwisted positive doubles of any knot K ^ O which is a closed pos-
itive braid. The method in each case is to show that the knot under consider-

ation is strongly quasipositive, then to use the fact that a strongly quasipositive
knot K / O is not slice, which follows from a corollary to a recent result

of Kronheimer and Mrowka [10]. In §3 I state their result and establish that

corollary, as well as a superficially stronger (actually equivalent) corollary, the

"slice-Bennequin inequality" for braids. Section 2 is preliminary material on
quasipositivity, etc. Section 5 is a sidelight, using an example from §2 to produce

a topologically locally-flat surface in CP2 , of algebraic and geometric degree 5,
with genus 5 = j(5-l)x(5-2)-l: this is an optimal counterexample to the

"topologically locally-flat Thorn conjecture".
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Remarks. (1) Note that it is not Kronheimer and Mrowka's machinery, but

"only" their (spectacular) result which is used. In particular, one can understand

the present note while staying totally disengaged from gauge theory.

(2) Although Kronheimer and Mrowka in [10] do not discuss the slice-

Bennequin inequality, they do draw explicit attention to a (strictly weaker)

corollary of their main result, namely, the affirmative answer to the "question of

Milnor" [15] on the unknotting number of a link of a singularity. The nonslice-

ness results of the present paper have nothing to do with unknotting number.

(3) W. M. Menasco has recently announced a proof of the unknotting re-

sult which, in marked contrast to that in [10], uses purely three-dimensional

techniques (somewhat in the style of [0]); should such techniques someday be

used successfully to establish the slice-Bennequin inequality, then the present

nonsliceness results will have a purely three-dimensional proof as well.

2. Quasipositivity

Transverse C-links and quasipositive Seifert surfaces. When constructing links

as intersections X n S3, instead of restricting the topological type of X as in
§ 1, one might restrict the nature of the embedding I^l4. In particular, if

R4 is identified with C2 D S3 := {(z, w) : \z\2 + \w\2 = 1} and X is required
to be a complex plane curve, then one can obtain many interesting links.

Definitions. A complex plane curve is any set Vf :— f~x(0) c C2, where

f(z, w) e C[z, w] is nonconstant; Vf is a smooth, oriented 2-submanifold

of C2 except at a finite set 3* (Vf) c Vf of singularities. If Vf is transverse to

S3, then the oriented link Kf := Vf nS3 is a transverse C-link [22, 29].

Examples. Replacing S3 by a round sphere of sufficiently small radius centered

at a point of 3* (Vf), one sees that any link of a singularity of a complex plane

curve is a transverse C-link; replacing S3 by a round sphere of sufficiently large

radius, one sees that any link at infinity of a complex plane curve is a transverse
C-link.

Links of singularities and links at infinity, though very interesting (cf. [15,

11, 4, 23, 17], etc.), are highly atypical transverse C-links (for instance, while

the unknot O is the only slice knot which is a link of a singularity [11] or a
link at infinity [23], many nontrivial slice knots are transverse C-links [19]). A

much broader class of transverse C-links is easily defined using braid theory.

Definitions. In the n-string braid group

Bn:=gPL,i<i<n-i ê'*;'!-f,'<' lrj\:\),

a positive band is any conjugate w a,w ~ ' (tuefi„,l<i<«-l);a positive em-
bedded band is one of the positive bands a¡-j :— (a¡ ■ • ■ a¡--i)Oj-i(Oi ■ ■ ■ fT;_2)_l ,

I < í < j < n (e.g., each standard generator a¡ = er;,,+i is a positive embedded

band). A (strongly) quasipositive braid is any product of positive (embedded)

bands (e.g., a positive braid, that is, a product of standard generators, is strongly
quasipositive). A (strongly) quasipositive oriented link is one which can be real-
ized as the closure of a (strongly) quasipositive braid. Up to ambient isotopy,
every quasipositive link is a transverse C-link [19].
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Question. Is every transverse C-link quasipositive?

Remarks. (1) There are non-quasipositive knots, for example, the figure-8. This

follows, for instance, from a result of Morton [16] and Franks and Williams [7]

about the oriented link polynomial of a closed braid (cf. [26]). (Note, how-
ever, that every Alexander polynomial, and indeed every Seifert pairing, can be

realized by a quasipositive knot or link [21].)
(2) There are knots which are not transverse C-links; the figure-8 is again an

example. Biding an affirmative answer to the above question, I know of no way

to show this without using the methods of the present paper.

Any specific expression of a quasipositive braid as a product of positive bands,

ß = wiajlw^xw2(Ji2W2l ■■■wlcGikwk~x 6 B„, gives a recipe for constructing a

quasipositive braided Seifert ribbon S(wlailw'[x,... ,wkaikwk~x) c Z>4 , that
is, a smooth surface (actually "ribbon-embedded", a refinement we can ignore)

bounded by the closed braid ß. The isotopy carrying ß onto a transverse

C-link Kf can be chosen to carry .S^i ffiiwîl > • • • > wkaikwk~X) onto tne (non_

singular) piece of complex plane curve Vf n D4 . The Euler characteristic of

S(wlaitw^x, ... ,wkaikwk~x) is n-k. If ß - ailthailih ■ ■•aikjk is strongly

quasipositive, then S(a^ j,, o¡2j2, ... , a¡kjk) C D4, is the "push-in" of a quasi-

positive braided Seifert surface, abusively indicated by the same notation; Figs. 1

and 2 give a sufficient idea of the construction.
A Seifert surface is quasipositive if it is ambient isotopic to a quasipositive

braided Seifert surface. (See [20-22] for more on braided surfaces and quasi-

positivity.) A subset of a surface is full if no component of its complement is

contractible.

Theorem [18]. A full subsurface of a quasipositive Seifert surface is quasipositive.

Plumbing; quasipositive doubles. For A" a knot, x e Z, let A(K, x) C S3 be

an annulus of type K with x twists; that is, K c dA(K, x) and 6a(k,z) has

matrix (t) . Let A(K, t) * A(0, ±1) be a Seifert surface formed by plumbing

A(0, ±1) to A(K, x) ; that is, there is a 3-cell B c S3 such that A(K, x) c
B, A(0,±l) c S3\Int5, and A(K, x) n A(0, ±1) = A(K,x)ndB =
A(0, ±1) n dB is a quadrilateral 2-cell whose sides are, in order, contained in
alternate components of dA(K, t) and dA(0, ±1). The knot D(K, x, ±) :-

d(A(K, x) * A(0, =pl)) is the x-twisted positive (resp. negative) double of K.

A matrix for dD(KtTt±) is (*^\), so AD(A->T>±)(i) = 1 t x(t - 2 + rx), and

D(K, 0, ±) is ^4-slice for any K.

Lemma 1. If K ^ O is strongly quasipositive, then A(K, 0) ¿s quasipositive.

Proof. This follows from the last theorem; for a collar of the boundary of a
quasipositive Seifert surface F ^ D2 bounded by K is an annulus A(K, 0),
and full.   D

Example. 0{2, 3} = dS(oi ,Oi,Oi); A(0{2, 3}, 0) is isotopic to the quasi-
positive braided surface S(03,6, cri^, 03,5, (74,6 > ̂ 2,5 > <?i) pictured in Fig. 1.

Lemma 2. If the knot K ^ O is strongly quasipositive, then D(K, 0, +) is

strongly quasipositive, being the boundary of a quasipositive braided Seifert sur-

face of Euler characteristic -1.
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Fig. 1 S(a-i, 6, tfit 4, 03t5, er4t6, a2,5, o\ ) ■

Fig. 2 F(-3,5,7) on the Seifert surface of 0{5, 5}.

Proof. This follows from Lemma 1 and a theorem in [25]: for any Seifert

surface S, annulus A , and proper arc a c S, the plumbed surface S *a A is

quasipositive if both S and /I are quasipositive. A proof in the present case,

where S is itself an annulus, a is a transverse arc of S, and A = A(0, -1),

was given in [22]; the reader can readily recreate it after comparing the following

example to the preceding one.   D

Example.  D(0{2, 3}, 0, +) = dS(a6, <t3j6, o6, cti,4, ct3,5 , ct4,6, ^2,5, o\) ■

Quasipositive pretzels.     Let p, q, r e Z.   A diagram for the pretzel linkP,Q,r e
q, r) is obtained from a braid diagram for ßp ; q > o7r G B6 by

forming the /?/<zr of ßp,q,r (using the pairing (16)(23)(45) at top and bottom).
If p, q, r are all odd, then 3s(p, q, r) is a knot, and (once it is oriented) the

obvious surface F(p, q, r) that it bounds (two 0-handles attached by three

1-handles) is a Seifert surface.

Example. 3°(\, 1, 1) = 0{2, 3} ; F(l, 1, 1) = S(ax, ox, <7i) (up to ambient

isotopy).

Lemma 3. For p, q, r all odd, F(p, q, r) ¿s quasipositive iff

(*) min{p + q, p + r, q + r} > 0.

Proo/. For -îe{p + ?,p + r,î + r}, F(p, q, r) contains A(0, x) as a full
subsurface (omit each 1-handle in turn). It is proved in [29] that A(0, x)

is quasipositive iff x < 0; therefore, by the theorem of [18] quoted above, if

F(P » Q ) r) is quasipositive, then (*) is true. Conversely, if (*) is true, then ei-

ther min{p, q, r} > 0, or exactly one of p, q, r is negative and it is of strictly

smaller absolute value than the other two. In the first case, F(p, q, r) is ob-

tained   (up   to   ambient   isotopy)   from   the   quasipositive   Seifert   surface
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S(oi, (Ti, (Ti) by applying nonpositive twists to the three 1-handles, so, ac-

cording to [21] (or [22]), F(p, q, r) is quasipositive; a similar, only slightly

less straightforward, twisting argument applies in the second case.   D

Example. jF(-3, 5, 7) is ambient isotopic to

S(0~i , (T2, (T2,4, ^3,6, (Tl,4, (T5 , 02,5)-

3. Kronheimer-Mrowka Theorem; "slice-Bennequin inequality"

If L c S3 is an oriented link, let Xs(L) be the greatest Euler characteris-
tic x(F) of an oriented 2-manifold F (without closed components) smoothly

embedded in D4 with boundary L ; so, for a knot K, Xs(K) = 1 iff A" is slice.
If Kf c S3 is the link of the singularity (0,0) G S*(Vf), then its Milnor

fiber [15] is the nonsingular piece of complex plane curve Vf_s n D4 (for any

sufficiently small 8 > 0 ); of course, Kf is isotopic to Kf_¿ = 9 fy_¿ nZ>4. The
following is a restatement of [10, Corollary 1.3] in the present terminology.

Kronheimer-Mrowka Theorem. If Kf is the link of a singularity, then Xs(Kf)

is the Euler characteristic of its Milnor fiber.

This is a special case of the next proposition, which, however, it implies!

Proposition. If Kf c S3 is a transverse C-link and 3*(Vf) n D4 = 0, then

Xs(Kf) = x(Vfr)D4).

Proof. Without loss of generality (after perturbing / slightly) we may assume

that the projective completion Y c CP2 of Vf in CP2 D C2 is nonsingular
and transverse to the line at infinity. Then the link at infinity of Vf is isotopic

to 0{d, d} , d = degT. Assuming Xs(Kf) > x(Vf n D4), we would then also
have Xs(0{d, d}) > x{Vf) ■ Yet 0{d, d} is also a link of a singularity (namely,

zd+wd at the origin), and the interior of its Milnor fiber is diffeomorphic to Vf,
so our assumption is inconsistent with the Kronheimer-Mrowka Theorem.   D

Corollary. If ß = wxaixW[x ■■■wkOikwk~x G B„ is quasipositive, then Xs(ß) =

n-k.   D

This corollary—in fact, its special case that a strongly quasipositive knot

K ^ O is not slice—suffices for the applications in §4. It is easy, however, to

go further. Let e : B„ —► Z be abelianization (exponent sum with respect to the
standard generators a¡ ).

Slice-Bennequin Inequality. For every n, for every ß e B„, Xs(ß) < n-e(ß).

Proof. The preceding corollary asserts the slice-Bennequin inequality (with

equality) for ß quasipositive. Now apply the following lemma.   D

Lemma 4 [28]. If the slice-Bennequin inequality holds for all quasipositive ß,
then it holds for all ß.

Proof. Since [28] is somewhat obscure, I resuscitate the proof. Let

ß = a*}...ol'€Bn, £,€{1,-1},

have p (resp. v = k - p) indices j with ej = 1 (resp. t¡ = -1); so

e(ß) = p — v. If 1 < j\ < 72 < • • • < jp < k are the positive indices, let

y — <Jij---0t] ; so y is quasipositive (in fact, positive), and Xs(?) — n - p.
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There is a smoothly embedded surface ßc53x[0,l] of Euler characteristic

-v (Q is a union of annuli with v extra 1-handles attached somehow) such

tlurt ÖßnS3x{0}=? and ÔQnS3 x {1} = /?;so \Xs(ß) - Xs(?)\ < v , and

X*(ß)<n-p + v = n-e(ß).   U

Remark. Bennequin [0] proved that x(S) < n - e(ß) for all ß G B„ and all

Seifert surfaces S bounded by ß , and conjectured the slice-Bennequin inequal-

ity.

4. Nonsliceness results

Proposition. If the knot K ^ O is strongly quasipositive, then none of the knots
DX(K) := D(K, 0, +), D'(A") := D(Di~x(K),0, +>, i > 2,  is slice.

Proof. If K / O is strongly quasipositive, then, by Lemma 2 and the corol-

lary to the Kronheimer-Mrowka Theorem, D(K, 0, +) is strongly quasiposi-

tive and not slice (because Xs(D(K, 0, +)) = -1 ); the proof is completed by
induction.   D

Remark. Cochran and Gompf [3, Corollary 3.2] show that if the knot K ^ O
is the closure of a positive braid, then D'(K) is not slice for 1 < i < 6. The

present result is infinitely stronger. It would be interesting to understand the

relation between being (strongly) quasipositive and "being greater than or equal

to T" in the sense of [3].

Proposition. If p, q, r are all odd, {1, -1} <£ {p, q, r}, and

(**) qr + rp+pq - -1,

then 3>(p, q, r) is not slice.

Remarks. ( 1 ) For p, q, r odd, {1, -1} c {p, q, r} iff 3°(p, q, r) is an un-
knot, and (**) iff A^,, r)(f) = 1.

(2) This corollary, which answers problem 1.37 in [9], is a special case of
results in [32].

Proof. Not all of p, q, r have the same sign; we may assume p < 0 < q < r.

By Lemma 3, if (*) is true, then 3B(p, q, r) bounds a quasipositive Seifert

surface of Euler characteristic -1, so by §3 it is not slice. Suppose (*) is false;
then p + q = -a,r-q = b with a, b > 0, so by (**), -I = qr + rp +pq -
-(q2 + 2aq + ab), whence q = l,a = 0,p = -I, and {1, -1} C {p, q, r},
contrary to hypothesis.   D

5. The "topologically locally-flat Thom conjecture"

The "Thom conjecture" says that (\da(S)\ - l)(\da(S)\ - 2)/2 < g(S) for
any closed, oriented surface S smoothly embedded in CP2 of (algebraic) de-

gree da(S) and genus g(S). This conjecture is not known to be true, but it

certainly becomes false if it is strengthened by replacing "smoothly embedded"
with "topologically locally-flatly embedded" (briefly, T-embedded). Let the
geometric degree dg(S) of a T-embedded surface 5 c CP2 be the minimum
number of points of intersection of a surface S' isotopic to S that intersects
CP^ transversally.
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Claim. There is a T-embedded surface 5" c CP2 with g(S) = da(S) = dg(S) =
5.

Remark. Lee and Wilczyñski [12] show the existence, for every d > 0, of a

r-embedded surface Wd c CP2 with da(Wd) = d and g(Wd) = gt(d), where
gt(d) is the lower bound for g(S) provided by classical estimates (Hsiang and

Szczarba, Rohlin, etc.) if S c CP2 is T-embedded and da(S) = d ; gt(d) =
(d - \)(d - 2)/2 for 1 < d < 4, and gt(5) = 5, so the claim is a sharp
counterexample. The techniques of [12] appear to give no control over dg(Wd).

It would be interesting to know if Wd can always be taken to have geometric

degree d .

Proof (sketch). Follow [27]; instead of replacing a copy of A(0{2, 3}, 0) *
A(0, -1) embedded on the quasipositive Seifert surface of 0{6, 6} by a T-

embedded disk with the same boundary, do the same with the copy of

F(—3, 5, 7) embedded on the quasipositive Seifert surface of 0{5, 5} illus-

trated in Fig. 2. (By an oversight, in [27] the embedding actually given was of

A(0{2,3},l)*A(0,-l).)   O
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