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0. I n t r o d u c t i o n  

This paper  grew out of our s tudy of the paper  of S. Donaldson and D. Sullivan "Quasicon- 

formal 4-Manifolds" [DS]. In that  paper  the authors develop a quasiconformal Yang-Mills 

theory by studying elliptic index theory with measurable coefficients in four dimensions 

via the Calder6n-Zygmund theory of singular integrals. Other  approaches to index the- 

ory on quasiconformal manifolds have been found by N. Teleman [T] and there are related 

results due to D. Freed and K, Uhlenbeck [FU] and others. We soon realized that  there 

were many other applications of these ideas to the general theory of quasiconformal 

mappings. In this paper  we present just a few of them. 

(1)Research supported in part by a grant from the U.S. National Science Foundation, DMS-9007946 
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A principal feature of our methods is that  they are quite explicit and closely mimic 

the two dimensional theory as developed by Ahlfors [A1], Boyarski [B] and Lehto [Le]. 

(Because of this we review a little of that  theory.) Moreover, precise calculations can be 

made. Indeed we have found integral formulas for all the operators involved and given 

estimates of their norms. The case of dimension 4 is especially interesting and we have 

dealt with it in some detail in an appendix. Indeed it was the calculations we first made 

there that  led to our results below. 

In many respects quasiregular mappings are a part  of PDE theory. This is again 

borne out in our paper which in many ways unifies some earlier approaches [BI2] [R3]. 

Let us recall some basic definitions and give a brief sketch of the theory leading to the 

governing equations. We refer the reader to w for the notation we use. For an extended 

survey, see [I1]. 

Let ~ be an open subset of R "  and / :12- -~R n, f = ( f l , f 2 ,  ...,fn), be a mapping of 

Sobolev class W~,loc(~2, Rn).  Its differential DfELPor GL(n)) is given by the Jacobian 

matrix 

Of(x) = \ OxJ ] i,j 

We define Dtf(x) as the transpose of Dr(x) and J(x, f) is the Jacobian determinant. 

Definition 1. A mapping f :  ~---~R n is said to be K-quasiregular, l~<K<oc,  if 

(i) few~,,or Rn), 
(ii) J(x,f)>~O a.e. or J(x,f)<<.O a.e., 

(iii) maxlhl= 1 IDf(x)hl<Kminlhl= 1 [Df(x)h[ a.e. 

The number K is called the dilatation of f .  If in addition f is a homeomorphism, then 

f is called K-quasiconformal. 

Development of the analytic theory of quasiregular mappings depends upon ad- 

vances in PDE's,  harmonic analysis and (in dimension 2) complex function theory. The 

first equation of particular relevance to the theory of quasiregular mappings is the n- 

dimensional Beltrami system 

D~ f(x)D f(x) = g(x, f)2/nG(x) (0.1) 

for mappings f with non-negative Jacobian. The matrix function G: ~---*S(n) is sym- 

metric and, in view of the dilatation condition (iii) above, satisfies 

K 2-2n <~ ( G ( x ) ~ ,  ~)n <~ K2n-2 (0.2) 

for (x, ~ )E~ • S ~-1 and det G(x)= 1. In general G need not be continuous, the case when 

G is only assumed measurable is the most important  for quasiconformal analysis. 
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If G(x)=Id, the identity matrix, then 

Dt f(x)D f(x) = g (x, f)2/n Id (0.3) 

is called the Cauchy-Riemann system. Recall that a MSbius transformation of Rn is the 

finite composition of reflections in spheres or hyperplanes. Then we have the well known 

LIOUVILLE THEOREM. Every l-quasiregular mapping of a domain ~ c R  n, n>~3, is 

either constant or the restriction to ~ of a MSbius transformation of Rn 

Thus the only conformal mappings of subdomains of f t  n, n/> 3, are the MSbius trans- 

formations. This theorem was first proved by Liouville ILl in 1850 for diffeomorphisms of 

class C4(~t) using differential geometric techniques. For general l-quasiregular mappings 

the result was established by Gehring [G1], Boyarski and Iwaniec [BI1] and Reshetnyak 

[R1]. We give examples to show that 1 Wp:or R ~) solutions of equation (0.3) need not 

be MSbius for 1 <p<n/2. Actually we show in even dimensions that p=n/2 is the critical 

exponent for the regularity theory associated with this equation, see Theorem 1. 

In dimension 2, the equation (0.1) reduces to the linear complex Beltrami equation 

Of , ,Of (0.4) 

where # is referred to as the complex dilatation of f.  It is a measurable function satisfying 

K - 1  
{#(z){ ~< ~ - ~  < 1. (0.5) 

Many analytic problems of the two dimensional theory of quasiconformal mappings even- 

tually lead to the study of the singular integral 

Sw(z) = _ 1  f r o  w(r (0.6) 

which is known as the complex Hilbert transform or the Beurling-Ahlfors transform. 

One can characterise this operator by the symbolic equation 

0 0 
- s o  (0.7) 

Oz 02 

connecting the Cauchy-Riemann derivatives. Like other Calder6n-Zygmund type opera- 

tors the complex Hilbert transform is bounded in LP(C) for all l < p <  ~ .  Many regularity 

results for quasiconformal mappings depend on the p-norms of S. A pressing task is to 

identify these norms. Simple examples show 

{ISl[p >~ max{ ~ _  1 , p -  1 }, 1 < p <  co. (0.8) 

It is conjectured that (0.8) holds with equality. An affirmative answer would imply (in 2 

dimensions) Gehring's conjecture [G3]: 
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CONJECTURE 0.9. If f is a K-quasiconformal mapping, then fEWpl,or R n) for 

every p < n K / ( K -  1). 

In the plane it was shown by Boyarski [B] that the condition 

K - 1  
g+llISlIp<l,  p > 2  (0.10) 

is sufficient for f to be in the class Wpl, loc(12, R2). 

In the other direction, one might consider the relationship between regularity and 

dilatation. We therefore make a definition. 

Definition 2. A mapping feW~,loc(~2,R n) is said to be weakly K-quasiregular if f 

satisfies the conditions (ii) and (iii) of Definition 1. 

In 2 dimensions Lehto [Le] has proven that if fEwqlAoc(~,R 2) is weakly K-quasi- 

regular and if l~<q<2 is such that 

K - 1  
. 7 . .  IlSl4q < 1 (0.11) 
/~4-1 " 

then f is K-quasiregular. 

The other major type of equation considered in the theory of quasiconformal map- 

pings is the second order Lagrange-Euler system. 

div A(x, D f)  = A ~j (x, D = 0 (0.12) 
~ j = l  " - -  i = l , 2 , . . . , n  

where A: ~2 x Rn--~GL(n) is defined by 

A(x, M) = (G-I(x)M, M)(n-2)/2G-I(x)M 

for (x, M) E ~ x GL(n). This equation is in fact the variational equation of the conformally 

invariant integral 

I( f )  = jn(G-~(x)Dt f(x), Dt f(x)) n/2 dx. 

Each component u=fi(x) of f satisfies a single equation of degenerate elliptic type 

div A(x, Vu) = 0 (0.13) 

which in the case of a conformal mapping ( K =  1) reduces to the well known n-harmonic 

equation 

div([Vuln-2Vu) = 0, (0.14) 
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see for instance [BI2], [R3], and [GLM]. 

We shall see that all of these equations are special cases of many more equations 

related to quasiregular mappings which we shall derive in w Some of these equations 

arise in dimension n=21 as linear relations (with measurable coefficients) between the 

determinants of l•  l minors of the differential Df(x) of a quasiregular mapping. For 

instance if f is 1-quasiregular, then Df(x) is pointwise a scalar multiple of an orthogonal 

matrix 

where A, B, C, and D are the l x l submatrices. When J(x, f)~>0, these relations are 

det A(x) = det D(x) 

det  B(x) = (-1)  z det C(x) 

which generalize the Cauchy-Riemann equations. (It is an interesting exercise to directly 

verify these equations for orthogonal matrices!) The other identities are obtained from 

these by permuting the rows and columns of Dr(x). It is at this point that our theory 

really begins. 

Previously, in order to get the integrability and regularity theory of quasiregular 

mappings off the ground it was necessary to integrate the determinant of the Jacobian 

matrix, thus the usual hypothesis fEW~l,loc(~,R2Z). These identities (and the fact 

that  there are so many and that  they are linear!) show that  it is really only necessary 

to integrate determinants of the l • l minors, thus reducing the necessary integrability 

assumptions (determinants are null-Lagrangians and their integrability theory is well 

understood). This enables us to establish the following Caccioppoti type estimate for 

weakly quasiregular mappings in dimension 21. 

/ ~?(x)~lDf(x)l ~ dx /~ IV~(x)l~lf(x)-fol ~ dx (0.15) <<. C(n,K) 

for some s E [!, 2/). Here ~E C~(f~) is a test function and f0 E R ~l. As far as we are aware, 

this is the first time integral estimates have been obtained with s<n for quasiregular 

mappings. This estimate is enough to derive higher integrability results for the differen- 

tial of f .  We shall use (0.15) to prove removable singularity theorems for quasiregular 

mappings. 

For the basic geometric properties of quasiregular mappings we refer to the founda- 

tional papers of Martio, Rickman and V~iis~ls [MRV 1-3], the books of Reshetnyak [R3] 

and Vuorinen IV], and the forthcoming book of Rickman [Ri4]. 

3-935201 Acta  Mathemat ica  170. Imprim~ le 29 avril 1993 
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Statement of results. Our first main theorem is the following sharp generalization of 

the Liouville Theorem, see w 

THEOREM 1. Every weakly 1-quasiregular mapping f of Sobolev class wzl, loc (12, R21), 

l> 1, is either constant or the restriction to f~ of a MSbius transformation of R 21. The 

exponent I of the Sobolev class is the lowest possible for the theorem to be true. 

Our Theorem 1 is part of a more general spectrum of results concerning the inte- 

grability theory of quasiregular mappings. The precise results are formulated in terms 

of the p-norms of a singular operator S which, because of the strong analogy with the 

two dimensional case, see [AB], we call the Beurling-Ahlfors operator, see too [IM2]. 

Formally S is the operator 

Sw -= ( diS-~d) o A -  i w 

where d is the exterior derivative and 8 is the Hodge operator. Thus S maps m-forms 

to m-forms for all m. In spin geometry this operator is called the signature operator, 

see for example [LM]. In w we give the explicit forms of the Fourier multiplier and 

the convolution formula for this operator. This is possible because the entries of the 

multiplier of S are spherical harmonics of degree 2 and we can apply the Hecke identities 

as in [S] to produce this formula. This operator plays an essential role in what follows 

and is an extension of an operator introduced by Donaldson and Sullivan. Our next main 

result (cf. (0.11)) is the following (see w for the definition of Beltrami coefficient). 

THEOREM 2. Let f be a weakly quasiregular mapping of Sobolev class Wpl/,loc(~, R 2/) 

with 1<p~<2. Let lzf(x) be the Beltrami coefficient o f f ,  [#I[<1. If  

[#f[ [[Slip < 1, 

then f is quasiregular. That is f~W~l,loc(12). 

Again we show by example that  Theorem 2 is qualitatively best possible. Indeed we 

conjecture Theorem 2 is sharp. Because of Theorem 2, the calculation of the p-norms 

IISIIp seems an important problem in higher dimensions. We obtain the estimates IISII2 = 1 

and 

maX{p--~ll,P-1 } ~HSHp<.~C(n)max{p-l_---~,p-1}, l < p < o o ,  

where C(n) is a constant which depends only on the dimension (it comes from the weak 

L 1 norm). We give other estimates for [IS[[ v in w We point out that  good estimation 

of the p-norms provides interesting geometric facts about quasiregular mappings. Our 

conjecture regarding the sharpness of Theorem 2 would follow from the conjecture that  

the lower bound we gave above for NS]Ip is sharp. (More recently we have established the 



QUASIREGULAR MAPPINGS IN EVEN DIMENSIONS 35 

estimate [[S[[p <~ (n+ 1)Ap, where Ap denotes the p-norm of the two dimensional Beurling- 

Ahlfors operator [IM2].) In even dimensions n=2l the Beltrami coefficient # can be 

estimated in terms of the linear dilatation K.  In particular a sharp estimate (independent 

of the mapping) is 
K t - 1  

< g +l 

and so we could have phrased our result in terms of K.  However in that  case it is un- 

likely to be sharp (the reason being that  we expect the dilatation of the radial mapping 

x__~x[x I-l+l/K to be extremal for many of these problems. As for extremal Teichmiiller 

mappings, the radial mapping has constant norm [#(x)[ = ( K - 1 ) / ( K +  1) and so the esti- 

mate above is not sharp for this mapping when l>  1). Next, because I[Sll2 = 1, Theorem 2 

gives us (via an interpolation argument) an estimate for Gehring's Integrability Theorem 

[G2] (cf. (0.9) and (0.10)). 

THEOREM 3. Let f be a quasiregular mapping with Beltrami coefficient #f.  Then 
1 21 feWpl , loc(~,R ) for all p>2  such that It'll IISItp <1. 

Related to Theorems 2 and 3 we shall outline a considerably simpler proof of the 

following result in a remark in w (see [I2], [LF], [Ma] and [R2] for a proof of this result 

in all dimensions). 

THEOREM 4. Let f be a quasiregular mapping with Beltrami coefficient 

~ f  ~ Ck'~(~-~, R2/ ) .  

Then fECk+l ,~(~ ,  R21). 

Perhaps one of our most important results concerns the removable singularity 

theorems for quasiregular mappings. A closed set E c R  n is said to be removable un- 

der bounded K-quasiregular mappings if for every open set ~ c R  '~, any bounded K- 

quasiregular mapping f :  f~\E--~R n extends to a K-quasiregular mapping f :  Q---*R ~. We 

stress here that  the mapping f need not be (even locally) injective. The simplest result 

of this type is the classical result of Palnlev~ that  any set E of linear measure zero is 

removable under bounded holomorphic mappings (thus K = I  and n=2). The p-norms 

of our operator S give a sufficient condition for removability. 

THEOREM 5. Each closed set E C R  2z of lp-capacity zero, l~<p<2, is removable 

under bounded quasiregular mappings f whenever [~ f l  ]]SHp<I. 

It is important to notice that  as lISllp is continuous, lISll2=l and I~fl <1, Theorem 

5 implies that  there are nontrivial removable sets whatever the dilatation of f may be. 
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We again show these results to be qualitatively best possible and we actually prove 

a slightly bet ter  result by weakening the hypothesis that  f is bounded to an integrability 

condition. 

Notice too tha t  as a consequence of Theorem 5 closed sets of Hausdorff dimension 

k are removable under bounded quasiregulax mappings as soon as [tzfl<~=~(k,l), a 

constant depending only on k and the dimension. We show too that  6(k,l)--*l  for 

fixed k as 1--.oc. Indeed it is immediate that  sets of Hausdorff dimension zero are 

always removable for bounded quasiregular mappings in even dimensions (actually all 

dimensions, see [I5]). 

There have been no earlier results along the lines of Theorem 2 and Theorem 5 in 

dimension greater than  2 (except for the semiclassical fact tha t  sets of n-capacity zero 

are removable [MRV2] (2)). 

Qualitatively our Theorems 2 and 5 amount  to the principle 

smaller dilatation ~ bet ter  regularity ~ larger removable sets. 

Indeed our results suggest the following: 

CONJECTURE. Sets of Hausdorff d-measure zero, d=n/  ( K + 1) ~<n/2, are removable 

under bounded K-quasiregular mappings (defined in subdomains of Rn) .  

For related questions, see lAB], [Tu] and [P]. 

There axe of course many related results of interest which we shall have to post- 

pone. For instance obtaining bet ter  and dimension free estimates for the p-norms of the 

operator S. The operator  S seems closely linked with the index theory of even dimen- 

sional manifolds (it permutes the signature operators d + and d - )  and should be a useful 

tool in that  s tudy (as realized by Donaldson and Sullivan [DS, Appendix 2] who give 

an alternative (and simpler) proof of Teleman's  main results [T]). Our results also have 

applications to the study of quasiconformal structures on even dimensional manifolds. 

There is also the nagging question of odd dimensions. Despite some efforts we 

have not y e t  been able to extend our results even to dimension 3 (though of course we 

conjecture that  all of our results hold, with obvious modifications, in all dimensions). It  

seems entirely new methods are necessary to establish the highly non-trivial estimates 

that  stand in the way. There have been earlier a t tempts  to find higher dimensional forms 

(2)Some related results have been communicated to us by M. Vuorinen and P. Jhrvi concerning 
the removability of certain selfsimilar Cantor sets [JV], and also independent results by P. Koskela and 
O. Martio [KM] concerning removability of certain Cantor sets of Hausdorff dimension zero. Both of 
these approaches are in all dimensions. In response to this work, S. Rickman has constructed Cantor sets 
E in R 3 of arbitrarily small Hausdorff dimension and bounded quasiregular mappings f: I:ta\E--*R 3. 
The set E is necessarily a nonremovable set for such f [Ri3]. 
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of the Cauchy-Riemann operators. For instance the Linear Cauchy-Pdemann operators 

introduced by Ahlfors [A2] 

have found applications to linear elasticity theory, quasiconformal semiflows and sta- 

bility estimates for quasiregular mappings with dilatation close to 1 [Sa]. However as 

first degree (linear) approximations of the nonlinear system of equations for conformal 

mappings, the Ahlfors operators are rather difficult to use. Some new ideas in the nonlin- 

ear theory of elasticity have produced differential equations which although of a formal 

nature may be useful in generalizing our results to odd dimensions [I3]. Perhaps even 

nonlinear potential theory via the p-harmonic operator (see [GLM] and [I4]) will lead to 

interesting results in odd dimensions.(3) 

With these future developments in mind we have tried as much as possible to give 

a reasonably detailed and accessible account. Thus various parts of this paper can be 

viewed as an elaboration, refinement or extension of aspects of the paper of Donaldson 

and Sullivan. Besides the interest of the results we obtain we hope too that our paper 

partly serves as a complement to their beautiful paper. 

Acknowledgement. We would like to thank the people at the Institut Mittag-Leflter 

for their hospitality during our stay there, during which time this research was completed, 

and in particular to Seppo Rickman for his advice and encouragement. 

1. N o t a t i o n  

In the sequel we shall be concerned with the following spaces of functions and distribu- 

tions defined on an open subset f~ of R n. 

LP(f ) and 

LPm(f~): 

For 1 ~<p~< c~, the usual L p spaces with respect to Lebesgue measure. 

The complex space of infinitely differentiable functions. 

The subset of C~ consisting of functions whose support is com- 

pact in f~. 

The dual space to C~(f~), that is the complex space of Schwartz 

distributions. 

For l~<p<c~, m=0, 1,..., the subspace of T~t(f~) consisting of all 

distributions whose mth order derivatives are in LP(f~). This space 

is equipped with the semi-norm 

(3)In fact very recently the first author, using the p-harmonic operator, has extended many of the 
results herein (in a qualitative form) to all dimensions [I5]. 
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\ p/2 \ l /p 

GL(n): 

S(n): 

[M]. 

The regular distributions are those which are represented by locally 

integrable functions on ft. That is L~oc(~)CTY(fl ). 

The space of n x n matrices with real entries and non zero deter- 

minant. 

The subset of GL(n)  consisting of the positive definite, symmetric 

matrices whose determinant is equal to one. 

We recall two results. The first is classical, the second can be found for instance in 

WEYL'S LEMMA. If An=0 for some uETY(~) ,  then u is harmonic in the usual 

sense. 

LEMMA 1.1. C~176 is dense in LP(12). 

The Sobolev space is then defined as 

W~(f~) = N {  L~(fl): k = 0 ,  1,2, ..., m}. 

We also use the subscript loc in the obvious fashion as for instance in Wp*,loc(f~). 

If X is a linear space, then the symbol/:) '(fl, X) is used to denote those distributions 

on fl which take their values in X. Similar notation is used for the other classes of function 

spaces. If X is a normed space, then LP(f l ,  X) has an obvious semi-norm which is a 

norm for LP(f~, X). 

2. Some  exterior algebra 

Let el ,e2, . . . ,e  n denote the standard basis of R n. For each l=0,1,  2, ..., n denote by 

At = A I ( R  n) the complex space of/-vectors on R '~, A ~  A l = c  n. Then A z consists of 

linear combinations of exterior products 

e I = eil Ae ~2 A... Ae i~ , (2.1) 

where I = ( i l , i 2  .... ,il) is any l-tuple. The standard basis of A t is {e I} where I is an 

ordered/-tuple, 1~<il <i2 <... <it  ~n .  The complex dimension of the space A l is 

d i m A ' = (  n)l ' (2.2) 
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see [F, w For #=~-~I # zeI and A=~-~I AIe I in A t, the scalar product of A and tt is 

<A,#) = E AI#I, (2.3) 
I 

where of course the summation is over all ordered l-tuples. We denote the volume form 

on R n by 

Vol = e 1 A e 2 A... Ae" e A"(R"). (2.4) 

To simplify notation it is often convenient to speak of At(R ") for each integer l. Thus 

for l~{0, 1, ..., n} we set A~(R")={0}. The exterior product of aEA t and ~ c A  k is 

a A ~  = (--1)t'k~Aa �9 A (2.5) 

Let A: R n--* R '~ be a linear transformation, i.e. an n • n matrix A = (a}). If a l ,  a2, ..., am E 

A I ( R ~ ) = C  ~, then (see IF, w 2.21) 

A a l  AAa~ A...AAa,~ ---- (det A ) a l  Aa2 A...Aa,~. (2.6) 

The lth exterior power of A is the linear operator 

A#: A t --, A t 

defined by 

A# (al  Aa2 A... Aat) = A a l  AAa2 A... AAaz, (2.7) 

for a l ,  a2, ..., a,~ E A 1 and then extended linearly to all of A t. In particular, for an ordered 

l-tuple j = (jl,  j2, ..., jr) 

A # ( e  J) = Ae jl AAe  j2 A . . .AAe j~ 

= a e ~1 A a e i2 A...A a e ~z 

x i 1 = 1  / \ i 2 = 1  / \ Q = I  / ( 2 . 8 )  

= E ajli~ aj2i2 ... a}, l eil Aei2 A... A eil 

_-EASe, 
I 

where the summations are over all ordered l-tuples I = ( i l , i 2 ,  ...,it) and A / is the deter- 

minant of the l •  minor obtained from A by deleting all the ith rows with i ~ I  and all 

the j t h  columns with j r  Thus A# is represented by the (~) • (~) matrix of minors 

A# = (A~). (2.9) 

The following lemma is immediate (see also [F, w 2.4]). 
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LEMMA 2.10. For matrices A, BEGL(n) ,  

(i) ( A B ) # = A # B # ,  

(ii) (A-1)#=(A#)-I=A~I if det(A)r 

(iii) (At)#=(A#)t=At# (where A t is the transpose of A), 

(iv) a#(oaArl)=(A#oa)A(A#rl) for ,cA 
It then follows that if the matrix A is the identity, orthogonal, symmetric, diagonal or 

invertible, then so too is the matrix A#.  

The Hodge star operator is a linear operator ,:  AI--~A n-t defined by the rule 

# A , A =  (A,u)Vol for all # , A e A  t. (2.11) 

In order to aid calculation we need to introduce the notion of complementary index. For 

an /-tuple I=(il , i2, . . . , iz)  the complementary index is the (n- l ) - tup le  N - I  obtained 

from N=(1 ,  2, ..., n) by deleting those entries ikEI.  Then of course 

,e I = a( I, N -  I)e N-I ,  

where a ( I ,  N - I ) E  {-1,  1 } is the sign of the induced permutation which is either odd or 

even. As a(I, N - I ) = ( - 1 ) t ( ~ - O a ( N - I ,  I) we see 

**= (-1)  l{"-0 on A l. (2.12) 

LEMMA 2.13. For any matrix AEGL(n) 

A~ *A# = (det A)*: AI--, A n- ' .  

Proof. Let # E A  ~-t and AEA I. We compute 

(A~*A#A, #) Vol = (*A#A, A##) Vol 

= A#/2A**A#A = A#/2AA#**~ 

= A#(#A**A)= A# (*A,#) Vol 

= (det A)(.~,  #) Vol. 

Hence (A~ �9 A#) A = (det A) �9 ~ and the lemma is proved. 

Next we want to discuss those linear mappings which are conformal from the 

usual structure on R n to another given conformal structure on R '~ defined by GES(n).  

Here G is a symmetric, positive definite n•  matrix with det G - 1 .  A linear mapping 

A: R'~--*R '~ is said to be G-conformal if 

AA t = I det(A)i2/~G (2.14) 
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(compare with (0.1)). For m = l , 2 , . . . , n - 1  we introduce the notion of m-dimensional 

sectional distortion Ksec(m) of a G-conformal mapping. Let E be the ellipsoid E--  

<G~,~)=I, 

max{Volm(EAIIm) :IIm an m-dimensional hyperplane} 

K~e(m) - ~ i H-~ ~n m-dimensional hyperplane} " 

Here we choose the hyperplanes to pass through the origin and so Ksec(m) is the ratio 

of the largest and smallest volumes of m-dimensional sections of E (see Figure 1). One 

can easily derive the formula 

Ksec(m) = ~ n " ~ n - 1  . . .  " ~ n - m + l  ( 2 . 1 5 )  

")'1")'2 .-. '~m 

where ~12-<-~')'22<...~<~ are the eigenvalues of G. K = K ~ c ( 1 )  is commonly referred to as 

the dilatation of a G-conformal map, 

K = max{IAh[ : Ihl ---- 1} 

min{IAh] : Ihl = 1}" 

The two estimates 

Ksec(m) ~< K m and Kser ~Kk-mK~ec(m) for m~< k 

follow directly. (In practice A will be the transpose Jacobian matrix of a mapping f 

which is conformal in some measurable structure G(x) and we will define the pointwise 

m-dimensional sectional distortion in the obvious manner.) It is a simple, but interesting, 

fact that  if [n/2] denotes the integer part of n/2, then Ksec([n/2]) is the largest of all 

the sectional dilatations. Thus, in even dimensions, control of the middle dimensional 

sectional distortion gives good geometric information. 

Next we introduce the operator # (which will play the role of the complex dilatation, 

see w by the definition 

G # - I d  A L 
/z= G # + i d : / \  ~ A  t, (2.16) 

where Id is the identity on A t. Notice that  since G + I d  is symmetric, positive definite 

and hence invertible, so too is G# + I d .  As a consequence of Lemmas 2.10, 2.13 and 

(2.14) one easily derives 

G # , A #  = ] det Ai2(l-n)/~(det A)A#* 

on A t. Consequently we have the following 
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Df(x) 

(G~,()=I 

Fig. 1 

LEMMA 2.17. Let A be a G-conformal transformation of R 21. 

satisfies 

G#*A#=A#* if detA>lO 

and 

G # , A # = - A # *  if detA~O. 

In particular, if 0 is conformal (so G=Id) ,  then 

and 

* 0 # = 0 # *  if det01>O 

Then A#: AI- A z 

�9 0 # = - 0 # *  ifdetO~<O. 

We next want to discuss the + and - eigenspaces of the Hodge �9 operator. In this 

case we must restrict the dimension to n=21. Then, in view of the identity * * = ( - 1 )  l, 

the eigenvalue problem ,w=cw,  0 # w E A  ~, cEC,  has a solution only for c 2 = ( - 1 )  t. Tha t  

is c=+i z, i=x/%~. The positive and negative eigenspaces of A l are defined by 

A+={wEAZ:,w=ilw} and (2.18) 

Let us remark that  f o r / = 2  our choice of A + and A -  is opposite to that  chosen by 

Donaldson and Sullivan [DS]. 
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We have the natural orthogonal decomposition 

A t = A + e A  - 

and 

d i m A + = d i m A - = ~ ( 2 1 1 ) = ( 2 l ; 1 ) .  

For wcA t we denote by w+ and w_ respectively, the positive and negative components 

= 

= 

(2.19) 

Thus w=w++w_. It is clear that A + is spanned by {e/} and that A-  is spanned 

by {eI_}. We remark that if 5" is a maximal family of ordered l-tuples such that I E ~  

implies N-Ir  z, then the vectors { e / : I E F }  and {e I_ :IE~'} are orthogonal bases for 

A + and A-  respectively (each vector has the constant length 1/x/2). 

The action of the operator # on the eigenspaces of the Hodge star will be of particular 

interest to us. 

THEOREM 2.20. In dimension n=21, the operator #:At--*A t permutes the spaces 

A + and A- .  Its norm is 
Ksec(/)-i  KZ-1 

I#l = Ksec(/)+l ~< Kl+----1" 

Proof. To compute the norm of the operator # we diagonalize. Let G=OF20 t where 

0 is an orthogonal matrix and 

F =  

( i00 
3'2 0 . . .  

0 . . .  0 721 

with 7/>0, i=1,2,...,2l and 9'172 ...72z=1. We may then diagonalize # as 

F ~ - I d  t 
# = O# ~ O#. 

As O# and O~ are isometries which either both preserve the spaces A + and A -  or both 

permute these spaces (Lemma 2.17), we may simply assume that 

F ~ - I d  

" =  r +Id 
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and so # is diagonal. On the orthonormal basis 

{e I : I = (il, i2, ..., it), 1 ~< il < i2 < ... < is ~< 2/}, 

# acts by 

#(e*) = % %  e* e* 
2 2 - - ~ . 2  = ' 

7 i 1 7 i 2  ... 7i~ +1 7~+1 

where "/i=Ti,"/ia . . .  7il. Then the coefficient of e / above is 

7~-1 _ 7I--7N-I _ 7,/7N-I--1 

7~+1 7,+7N-* 7*/'IN-*+l" 

If we now look for the maximum over all multi-indices I we obtain the formula for the 

norm. Next, given an / - tup le  I as above, let d be the / - tup le  so that  , e / = e  a. Then 

7 2 - 1  ea = 1 -7 ~  ( * e ' ) = - * # ( e l ) ,  
, ( , e ' )  = = 

because 717j=1. Hence from (2.19) we find that  

, ( e : ) -  7 '=-1  ' 

which shows # permutes the spaces A + and A - -  

we  next define the operators A~ and A~ :AI--,A * by the rules 

A~w= (A#w)+ and A~tw=(n#w)_. 

LEMMA 2.21. Let AEGL(2I) be G-conformal. Then 

(i) A~=I*A~ on A -  if det(A)>.O, 

(ii) A#=#A~ on A -  if det(A)<,.O, 

(iii) A#=#A~ on A + if det(A)>~O, 

(iv) + -  A-  A + A # - #  # on if det(A)<.O. 

Proof. Suppose det A~>0. From Lemma 2.17 we have G # , A #  = A # ,  as operators in 

A t . Thus 

(G# + Id)(A#w)+ - (G# - Id)(A#w)_ 

= 1 (G# + Id ) (A#w + ( - i ) ' *  A#~o) - �89 ( G ,  - I d ) ( A # w -  (-i) '*A#w) 

= A#w + (-i)~G# ,A#w = A#w + (-i)~A# *w 

= 2 A # w + = 0 ,  f o r w E A - .  

This proves (i). The case det A~<0 is similar. The other identities are also clear. 

As a point of interest we observe the following corollary. 
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COROLLARY 2.22. If  O is a 2/X2/ orthogonal matrix, the operator O#: At---~A l is 

an isometry which preserves A + and A -  if det O=1 and permutes them if det 0 = - 1 .  

We conclude this section with the following lemma. 

LEMMA 2.23. Let A:R21--~R 2t be G-conformal. Then 

[Altlwl ~< KIIA#~I 

for all w e a  I . 

Proof. By homogeneity we may assume that d e t A = l  and Iwl=l. 

and A#At#=G#. We diagonalise G to F 2 as in Theorem 2.20. Then 

fAI 1 ='~max "<< Kl min{71 : I any/-tuple} 

~< Kt[F#wl = KZlA#wl, 

where ")'max denotes the largest of the numbers 71,3'2,-.., "Y21. 

Then AAt=G 

3. Differential  forms in LP m (G, A s) 

Let ~cR n be an open set and let Ak(~)=D'(~,Ak). Then ~eAk(~) ha~ the represen- 

tation 

a : E cJ dx I (3.1) 
I 

with coefficients which are complex valued distributions a leD ' (~ )  and I is an ordered 

k-tuple. If ~ I e  L~o c (~'~) for each I, then the exterior algebra of k-vectors applies at almost 

every point xel'~. There are the corresponding subspaces C~r k) and n~(fi, Ak). 
This latter space has the semi-norm 

p#2 \ i/p 

~  (fo( {L 
We shall make extensive use of the exterior derivative operator 

d: A k-' (g) ---, Ak(g) 

for k= l ,  2, . . . ,n+l  and the Hodge operator 

~: Ak(~) -, Ak-1(n) 
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for k=O, 1, ..., n defined by ~=(-1)  n(n-k) *d*. The Hodge operator 5 is the formal adjoint 

of d. More precisely, if s e C ~ ( ~ , A  k) and ~EC~(~ ,Ak+I ) ,  then 

/ (s,~)~x=- f (ds,~)dx (3.2) 

provided that one of these forms has compact support. A calculation shows that the 

Laplacian 

A = d6+Sd: Ak(fl) -* Ak (12) (3.3) 

acts only on coefficients of the k-form s. That is if s=~-'~ I sIdx I, then 

A s  = E As1 dxI 
I 

where As I is the usual Laplacian on functions. We shall need the following lemma. 

L~,MMA 3.4. Let se/;~(Rn,A k-l) and Zen~(an,A k+') with l<p,q<oo and 

1/p+l /q=l .  Then 

/R  (dS, 5fl) dx = O. 
n 

Proof. Using a standard modifying argument we find that L~(Rn)MC~(R ~) and 

Lq(R~)nC~176 n) are dense in LP(R n) and Lq(R '~) respectively. Thus we may assume 

that s and ~ are smooth. Then for each test function ~eC~(R ~) we have 

Thus by Stokes' Theorem 

/ m  ~ ~ ( d s , ~ )  dx -~ /R  n ~Ad~Ad*f~. 

Let R>0 and ~EC~(B(O, 2R)),O<~<~I,~=-I on B(O,R) and 

2 
IV~l ~< ~. 

Clearly we may replace s by s - s o ,  where s0 is any constant coefficient form So E A k-1. 

Now by HSlder's Inequality and the usual Poincar~ Lemma we have 

2 
R- (p(ds, 5Z) < ~ IIZlIL~('<I.I<2.)IIs--SOIIL~(I-1<2") dx 

<~ C(n,p, k)H~ItL[(R<IxI<2R)IISHL,~(Rn). 
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Now let R-*co.  The lemma follows from the Lebesgue Convergence Theorem which, in 

this case, implies I]~llL~(n<lxl<2n)-~0. 

Next let ~ be a domain in R n and f : ~ R  n, f = ( f l , f 2 , . . . , f n ) ,  be a mapping of 

Sobolev class Wtlp,loc(~) with p~> 1. Then f induces a homomorphism 

f.: A'-I ) L or A '-1) 

called the pull back. More precisely, let a E C ~ ( R  '~, A t - l ) ,  (~--=~-~.I aXdxI" Then 

(f* a)(x) = E ~I (f(x) ) dff' Adff 2 A...A df ~'-' . 
I 

If c~ has linear coefficients the exterior derivative of (~ is the / - form d ~ - - ~ = ~ g  flJdx J. 

This form has constant coefficients and so the induced/-form 

(f* fl)(x) = E J3J dfJl AdfJ2 A"'AdfJ' 
J 

has measurable coefficients which are linear combinations of the l • l minors of the Jaco- 

bian matrix Df(x)  and so 

f*~ e L~o c (~, A') .  

As we have mentioned, the exterior algebra applies pointwise a.e. in ~. The operator f* 

on/-forms with constant coefficients is easily recognized as the lth exterior power of the 

linear transformation Dtf(x) .  That is 

(f*da)(x) = [D' f(x)l # d(~. (3.5) 

We shall need the following identity. 

L E M M A  3.6. For c~EAI-I(R ~) with linear coefficients and f eW~l,lor R~), p~>l, 

we have 

d(f*a) = f*(d(~) 

where the left hand side is understood in the sense of distributions. 

Proof. We use a simple approximation argument. Let fvEC~(12,  R~), ~=1,2, . . .  

be a sequence of mappings converging to f in the topology of Wplz,lor Rn). Then we 

obviously have d(f,*(~)=f*(da), r = l ,  2, .... But now 

f* a---* f*~ and f*(da)--~ f*(d~) 

in L~or (~, A ~-1) and L~or (Q, A t) respectively. Hence 

d(f* a) ---*d(f* c~) 

in 7:)' (~, A l) which implies the lemma. 
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4. Differential  sy s t ems  for quas i regular  mappings 

In this section we formulate and unify a fairly complete set of second order differential 

equations for quasiregular mappings. These equations are all of divergence form and so it 

is possible to state and derive them for the larger class of weakly quasiregular mappings. 

We begin by recalling the algebraic identity of Lemma 2.13 

At#*A# = (det A)*:/~ ---* A n-l 

for each AEGL(n).  Let O<~l<~n and let us suppose that f E Wnl_l,loc(f~, R n) is a weakly 1- 

quasiregular mapping with non-negative Jacobian. Then f satisfies the Cauchy-Riemann 

system 

Dt f ( x )D f(x)  = J(x, f)2/n Id. 

For simplicity of notation, let A=A(x )=Dt f ( x ) .  Then AAt=(det  A) 2/n Id and for each 

/-form f~ with constant coefficients we have 

A#w = f*w. 

Consequently 

A # A ~  -- (det A) 2(n-O~" Id#:/~n-z --+ An-t 

and the identity of Lemma 2.13 gives 

(det A)(n-20/n*A# = A#*: A l ~ A "-z. 

Applying this identity to an wEA z we obtain 

(4.1) 

J(x, f)(n-al)/n, f* w = f*(*w). (4.2) 

We can now differentiate both sides of this equation in the distributional sense. Because 

of the identity 

df*(*w) = f*(d*w) = f*(O) = 0 

which follows from Lemma 3.6, we conclude that 

d[J(x, f)(n-~O/n* f* w] = O. (4.3) 

Also, from the Cauchy-Riemann system above we have 

g(x,f)x/n=lDf(x)l=lVf~ I, i=1 ,2 , . . . ,n .  (4.4) 
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Now let us choose w=dyI=dy il Ady i2 A...Ady iz, I = ( i l ,  i2, ..., it). Evidently we have the 

equation 

d(ID fl ~-2t *dr il Adf i2 A... Adf ~ ) = 0 (4.5) 

for each/- tuple I.  In the simplest case l = 1 this system reduces to the familiar uncoupled 

system of n-harmonic equations 

div(IVfil~-2Vfi)=O, i=1,2,...,n. 

Here f is assumed to be in the Sobolev class 1 W,~_l,lor R~). To get an idea of the 

algebraic structure of the equations of (4.5) let us consider the case l - 2 .  Thus we 

suppose that f ~  W~_2,1o r (f2, R ~) is a weak 1-quasiregular mapping. Choose 

w-----dy'~Ady ~, a , / ~ = 1 , 2 , . . . , n .  

A direct calculation leads to the equations 

o [ (o:o o:oo:' I 
k=1 ~ ]DfV~-4 Of/~ 

\Ox k OxJ OxJ oxk]J =0 (4.6) 

for each j = 1, 2, ..., n and any pair a, f~ E { 1, 2, ..., n}. Equivalently we have the equations 

div (f~j [V/~I~-4V/~)  = div ( f ~  [ V f Z [ n - 4 V f ) .  (4.7) 

A similar situation arises for the general case of weak K-quasiregular mappings. 

Thus let 1 n fEW~_ljoc(~, R ) be a solution to the Beltrami system 

D~f(x)Df(x) = J(x, f)2/nG(x), J(x, f )  >>. O, 

where G: f2--*S(n) is measurable. Again for simplicity we denote Dtf(x) by A, so that  

AAt=(det A)2/nG. From the identity of Lemma 2.13 and proceeding as above we find 

(det A)(~-21)/'~G# . A #  = A # . :  A t -~ A n-~. 

We apply this to a constant coefficient /-form ~ and because of the relation A#w=f*w 

we find 

J(x, f)(n-21)/nC# * f* w = f*(*w) 

and then differentiating as before we obtain 

d[J(x, f)(n-2')/nG#* f* w] = O. 

4-935201 Acta Mathematica 170. Imprim~ le 29 avril 1993 

(4.s) 
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The first order Beltrami system gives 

I (DfG-I, D f) = J(x, f)2/n = (G-IVfi, Vfi) 
n 

for 1 = 1,2, ..., n. Hence 

d [(DfG -1 , Df)(n-20/nG# *df i~ Adf i2 ...Adf i-z] = 0 (4.9) 

for each /-tuple I=(Q,i2, ...,it). Se t t i ng /=1  we obtain the uncoupled system of diver- 

gence type 

div [(G -1 (x )Vf  i, V f  i) (n-2)/2G-1 ( x )V f  i] -- O, (4.10) 

for i= 1, 2, ..., n and f E  Wl_ljoc(f/ ,  R n) weakly K-quasiregular. 

Finally, we wish to record one more equation concerning quasiregular mappings 

related to the above. If the matrix G(x)=J(x,  f ) -2 /nDt f (x )Df (x )  of f is twice contin- 

uously differentiable, then after differentiation of the Beltrami equation we obtain the 

linear elliptic equation for the function 

U(x) = g(x, f)(.-2)/(2n) 

n - 2  
E G'J(x)U~J - E G'J(x)F~J Uk + ~ R ( x ) U = O .  (4.11) 
i,j  i , j ,k 

where here F~kj are the Christoffel symbols and R(x) is the scalar curvature of the metric 

tensor G(x) on ~. In the conformal case, this reduces to the Laplacian and we find U is 

harmonic. Solutions of linear elliptic equations have special properties and it would be 

of great value to give a meaning to (4.11) if G is only assumed measurable. 

5. Liouvi l le  T h e o r e m  in even  d i m e n s i o n s  

A rather interesting situation arises in the system of equations (4.9) when n=21. W e  

are then assuming fEWll, lor R ~) is weakly K-quasiregular and we have the system of 

equations 

d[G# ,d f  i~ Adf i2 A...Adf i'] = 0 (5.1) 

for each/-tuple I----(il, i2 ,  . - . ,  il). If f is weakly 1-quasiregular, then for each/-tuple 

6 [df il Adf i2 A...Adf i'] = 0. (5.2) 

In other words the form dfilAdfi2A...Adf i~ is exact and coexact. This implies that  in 

the distributional sense the Laplace equation 

A(df ~ Adf i2 A... Adf ~') = (d~f+~d)(df i~ Adf i2 Adf it) = O. 
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Hence by Weyl's Lemma, the/ - form df il A d f i 2 A . . . A d f  it is harmonic in the usual sense. 

In particular it is C ~ smooth. So too is the Jacobian determinant because 

J(x, f )  Vol = df a Adf 2 A... Adf z A d f  l+l Adf 1+2 A ... Adf n. 

At this point the first part of Theorem 1 follows from the earlier proof of the Liouville 

Theorem for f~W~,loc(~t, R~). 

The sharpness of Theorem 1 is proved by example in w 

Remark 5.3. In fact we have shown that  every determinant of an l • l minor of the 

Jacobian matrix is harmonic. On the other hand, from the equation AAt=(det A) 2/n Id 

we find that  

(det A)6Ij = /_.,K-" AK A J 
K 

where I, J and K are ordered l-tuples. If we put I =  J and sum we find 

l d ( x , f ) = y ~  Ox J 
J : K  

This shows that  not only is J ( x , f ) E C ~ ( ~ )  but also v /J (x , f )  is locally a Lipschitz 

function. These additional regularity results considerably simplify the existing proofs of 

the Liouville Theorem, cf. [BI]. 

6. Hodge theory in LP(~t) 

In order to extend the approach to integrability theory which is suggested in the previous 

section to quasiregular mappings we need to develop some Hodge theory in LP(~). In 

particular we first need the following version of the Hodge Decomposition Theorem. 

THEOREM 6.1. If wELP(Rn, Ak), l < p < c %  then there is a (k-1)-form a and a 

( k + l )-form 13 such that 

w=da+5~  

and da, &3ELP(R n, Ak). Moreover the forms da and 5t3 are unique and 

a E K e r S N L ~ ( R " , A  k-l) 

ZeKerdnL (R",h k+i) 

(6.2) 

(6.3) 

and we have the uniform estimate 

IlalIL~(R~) +III311L~(R. ) <<. Cp(k, n)llWllp (6.4) 
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for some constant Cp(k, n) independent of w. 

Proof. Let us first prove uniqueness. Assume that  

d~+~i]7 = 0 with d(l, 6~7 E LP (R  ~, Ak). 

Differentiating this equation we find that  

5d(~ = 0 and d~ff~-- 0 

at least in a distributional sense. Hence d~(da)=O and 5d(5~)=O. We also have the 

trivial identities 5d(da)=O and d~f(5~)---o from which we find 

Adc~ = 0 and A~fj3 = 0. 

That  is the forms da and 5f~ are harmonic and L p integrable. By Weyl's Lemma it 

follows that  da  and 5f~ are harmonic in the usual sense and since they are L p integrable 

we find that  da=O and 5/7=0. 

To prove existence, we first solve the Poisson equation 

w = A~. 

There is a solution ~ expressed by the Riesz potential 

1/ 
~(x) = ~ ~o(y) log Ix-yl  dy in dimension 2 

and 
r(n/2-1) f ~,(y) dy 

~(x) - 4~r,~/2 . ,  i x _ y p _  2 in dimension n )  3 

see [S, w We write ~--vi(~) .  The second order derivatives of the coefficients of ~o are 

found from the formula 

02~ 
OXiOX j -~ - - ~ i v i j  ( A ~ )  = --vii~)~j (03) 

for i= l ,  2, ..., n, where Vii are the Riesz transforms 

r ( ( n + l ) / 2 )  i a  (x~-y~)f(y) dy (6.5) 
Vii(f)(x) = 7r(,+l)/~. . lx_yl,~+ 1 

From the standard L p theory of Riesz transforms [S, w it follows that  not only is 

~e/~(Rn, A k ) 
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but also 

We now find that 

]}~IIL~(Rn) ~ Cp(]g, n)[[o.gHp. (6.6) 

w = (dS+Sd)~ = da+5~ 

where aEKer 5NLP (R n, A k-l)  and fleKer dNLP(R n, Ak+l). The estimate (6.4) follows 

directly from (6.6). 

Next, in dimension n=21 the decomposition of AI=A + @ A -  applies pointwise to 

differential forms in the spaces LPm (f~, At). It is immediate that for an open subset g~ of 
R21 

L~ (12, A t) = LP~(~, A +) (bL~ (f/, A-)-  

The exterior derivative d: L p (12, A z-l) -~Lp(~,/~') naturally splits as d=d + +d- via 

composition with the obvious projection. More precisely, for a EL p (f~, At- l ) ,  

d+a=(do~)+=�89 and d-o~=(do~)_=�89 (6.7) 

We will make use of the following lemma. 

LEMMA 6.8. Let oIEL2(R2t,AI-1 ). Then 

Proof. From Lemma 3.4 

Hence 

fR21 (da, *da) dx = O. 

1 / (ida § (_i) l ,da[ 2 _ Ida- ( - i )  t *dal 2) ([d+ a [2- ld -a [  ) = -~ 

=Re{i' /(d~, ,d~) ) =O 

7. T h e  B e l t r a m i  e q u a t i o n  in e v e n  d i m e n s i o n s  

Let fEwl t (~ ,R2 / ) ,  l~<p<co, be weakly K-quasiregular and suppose J(x, f)>~O. Then 

we can define a measurable mapping G: ~---*S(n) by the rule 

G(x) = J(x, f)-X/tDt f (x )D f(x) .  
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Pointwise a.e. the transpose differential Dtf  of f is G-conformal and so we can apply 

pointwise a.e. the exterior algebra developed in w In particular from (2.16) we define 

the Beltrami coefficient of f as the bounded operator with measurable coefficients 

~f: LP(fi, A ~) -~ LP(fi, A t) 

given by 
G#(x)- Id  

lzf(x) = G#(z)+Id"  

We immediately obtain from Theorem 2.20, Lemma 2.21 and Lemma 2.23, the following 

useful facts about the Beltrami coefficient. 

THEOREM 7.1. Let fEWpll(f~,R2l), l~<p<c~, be weakly K-quasiregular and let tti 

be the matrix dilatation of f .  Then ttf permutes the spaces LP(~t, A +) and LP(fl, A - )  

and 
Ksec(f ) -  1 K t - 1  

]# . f [ -  K s e c ( f ) + l  < ~ < 1. 

Also i,f J(x, f) >10, then 

(i) (f*w)+=#f(f*w)_, w e A - ,  

(ii) (f*w)_=#l(f*w)+, weA +, 
and if J(x,f)<.O, then 

(iii) (f*w)+=#l(f*w)_, weh +, 
(iv) (f*w)_=#f(f*w)+, we/k- ,  

and we have the pointwise a.e. estimates 

(v) IDf(z)ltlwl<..K~l(f* w)(x)l for all weA ~. 

Next, we obtain as a consequence of Theorem 7.1, Lemma 3.6 and the decomposition 

of the exterior derivative d--d + +d- (see (6.7)) the following theorem which will be quite 

important in what follows. 

THEOREM 7.2. Let f EWlptjoc(f~,R2t), l<~p<c~, be weakly K-quasiregular and let 

#f be the Beltrami coefficient of f .  Then for every ( l -  1)-form a with linear coefficients 

and such that 

d + a = O  

we have 

if J(x , f )~O and 

d+(f*~)=~yd-(f*~) (7.3) 

d-(f* a) = #fd+(f*a) (7.4) 
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if J(x, f )  <<. O. 

We call the equation (7.3) the Beltrami equation in even dimensions. Compare this 

equation with (0.4). 

We remark that  there is a little subtlety involved in Theorem 7.2. If a is any form 

with say C~(~t) coefficients we can easily make sense of d:t:f*a as a distribution. But 

then it is impossible to multiply this by the (at best measurable) matrix dilatation #I .  

However, if a has linear coefficients, then actually d(f*a)=f*(da) is a function and so 

multiplication by #I  presents no difficulties. 

8. The Beurling-Ahlfors operator 

Let wELP(R n, Ak), l < p < o c .  We recall the Hodge decomposition of w from w as 

w=da+5~,  

where aeKerSnL~(Rn, A k-l) a n d / ~ e K e r d n L ~ ( R n ,  Ak+l). We define an operator 

LP(a h Lp A k) 

by the rule 

Sw = d a -  513. 

Because of the uniform estimate on the Hodge decomposition (6.4) we find that  S is 

bounded in all the spaces LP(Rn,Ak),  l < p < o c ,  k=0,  1,. . . ,n, 

I}Swl}p <<. Ap(n, k)l}w}l p. 

Because of the strong analogy with the planar case (compare (0.6) and (0.7) with what 

follows below) we call S the Beurl ing-Ahlfors operator, see [BA]. From the construction 

of the Hodge decomposition we find that formally 

S = (dS-Sd)oA -~ 

and as A -1 is expressible in terms of the Riesz potential we see that  S is a singular 

integral operator of a rather natural type. We record the following simple facts about S. 

THEOREM 8.1. The operator S has the following properties: 

(i) S acts as the identity on exact forms, 

S(da) =da 
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for all e with d e e L P ( R  n, Ak). 

(ii) S acts as minus the identity on coexact forms, 

S(aa) = - a s  

for all a with a e e L P ( R  n, Ak). 

(iii) S is selfadjoint 

S o S = I d  and S = S - * .  

(iv) S anticommutes with the Hodge star 

(v) 

(vi) 

Thus 

On functions S = -  Id and on n-forms S = I d .  

In dimension n=21, S permutes the spaces L'(R2i,A +) and LP(R2t,A-). 

Sod + = d -  and S o d - = d  + 

for all ( l -1)- forms a with daELP(R  " ,  A ' ) .  

Proof. The identities (i)-(iii) follow from the uniqueness of the Hodge decomposi- 

tion. The identity (v) is clear and (vi) follows from (iv) and (6.7). Thus we prove (iv). 

Let ~e/P(R ~, Ak), w = d e + a Z .  As , de  is coexact and *aft is exact, by (i) and (ii) we 

have 

(S*)w = S(*de) + S(*afl) = - *  de +*aft  

= - , ( d e - r i f t )  = - , S ( w ) .  

Let us now choose w E L 2 ( R " , A  k) with w=de+afl; ee/~(R",h k-l) and fie 

/~(a",Ak+'). We compute 

where we have once again used Lemma 3.4. We therefore find that we have proven 

THEOREM 8.2. The operator S: L 2 (R  n, A k) -*L 2 (R  n, A k) is an isometry, HSH2 = 1. 

Thus for all n and k, 

A2 (n, k) = 1. 
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From this we also find that for o eLp(P  ,A k) and  eLq(l n,A k) 
(again from Lemma 3.4) 

f (w,7)=/(Sw, S~) 
and so from Theorem 8.1 (iii) 

with 1 / p + l / q = l  

/< SoJ, 7> = / < w ,  $7) ~< IIWHpllSTHq <. Aq(n, k)llWllpllTII q. 

As lISwllp=sup{f ( Sw, 7> : 11711q =1} <. Aq(n, k )llwllp, we conclude that Ap(n, k) <. Aq(n, k ). 

Interchanging the roles of p and q we additionally find 

LEMMA 8.3 .  
1 1 

Ap(n ,k )=Aq(n ,k )  ] o r - + - = 1 .  
P q 

As S can be defined in terms of Riesz transforms, it is of weak (1, 1)-type. From 

[S, pp. 5-7] and a standard interpolation argument, together with the duality above, we 

find 

THEOREM 8.4. There is a constant C(n) such that 

A p ( n , k ) < . C ( n ) m a x { p l ~ l , P - 1 } ,  l < p < c o .  

CONJECTURE 8.5 .  C(n)=l  for each n. 

The operator S: L 2 ( R  n, A t) --*L2(R n, A l) commutes with translations and thus it 

has a multiplier. The multiplier of S is a linear transformation M(~): /~l(R'~)-~At(Rn ) 

defined for each ~ 6 R n \ { 0 } .  It has a matrix representation whose entries are linear 

combinations of the multipliers --~j~kl~l-2 of the Riesz transforms ffijiRk, j, k= 1, 2, ..., n. 

There is however an elegant description of M(~) as the lth exterior power of an orthogonal 

transformation of R n (the Jacobian matrix of the inversion in the unit sphere!). To 

compute this multiplier we begin with an/- form ~0=~i ( f l l d x l  say  of class C ~  (lcU ~, At). 

Let 

To simplify the following calculations we need to introduce some notation. Given a 

multiindex I=( i l ,  i2, ..., k, ..., il) we denote by I - k + j  the multi-index (il, i2, ..., j ,  ..., il). 

That  is we replace k by j in the same position in the index. It is a calculation, which we 

leave the reader to verify, that  

I k c I  J I 
k E I  
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As ~/k=--~j~tk(wI) we can express Sw in terms of the second order Riesz transforms 

Sr  ] �9 
i j r  ~ i 

kcl  

Whence 

A, 1 1~t2~(~)= ~ -  ~ ~ I d x I - 2  ~j~kw dx . (8.7) 
I j~I  kcI I Lj{~I - 

kcI 

Let us first suppose that w is a 1-form. The expression (8.7) then reduces to 

L ]~12~(~) = 1~12~ k dx k - 2  E ~J~k~J dxk. 
k = l  j,k=l 

This gives us the multiplier of S on one forms 

A 

Sw(~) = M(~)~(~) (8.8) 

where M(~)=(mi,j) is the n xn  matrix with entries homogeneous of degree 0 which in 

tensor notation we can simply write as 

M(~) =Id-2I~]-2(~|  for ~#0 .  (8.9) 

For ~ fixed, M(~) is easily seen to be an orthogonal transformation with determinant 

equal to -1 .  Next, for each l= l ,  2, 3, ..., n, we consider the lth exterior power of M, (see 

(2.7) for the definition) 214#: A~-*A t. This induces a map of the Fourier images of the 

/-forms. More precisely, given w EL 2 (R '~, A l) we define 

w(~) = E ~t  (~) dx z. 
I 

For ~ fixed this can be thought of as an/-vector and so M#(~)~(~) is defined. This then 

produces a rather nice formula for the multiplier of S. 

THEOREM 8.10. The Fourier multiplier of the operator S: L 2 (R n, At) ~ L2( Rn, hi)  

is the orthogonal transformation M#(~): Az--*A z. That is 

A 

Sw(~) = M# (~)~([) 

for each ~ e L 2 ( R  n, Al). 

Proof. We need only verify the above formula on forms of the type ~(~)dx I for I 

and ordered l-tuple. For simplicity and without loss of generality, we assume that 

w(x) = a(x) dx 1 Adx2A ...Adx I = a(x) dx I. 
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Then 

On the other hand assuming I~l=l, we have by (8.9) 

M ( ~ ) dx k = dx k - 2~k~ 

where 

-- ~1 dx 1 +~2 dx 2 +... + ~  dx n. 

Then by the definition of M#, 

M #  (4)(~d(~) dx I) = ~d(~)(Mdx 1 A M d x  2 A... A M d x  t ) 

= ~d(~)(dx 1 - 2~1~) A (dx 2 - 2~2~) A... A (dx 1 - 2~z~). 

We now expand this exterior product taking into account ~A~=0. We find 

! 

M# (~)(~(~)dx'): ~(~)[~xI_ 2 ~ ~k dx 1A A~xk-1Ar ~dx~§ ~dx~] 
k = l  

= "d(~) dx I - 2 ~ ~ dx I - 2 ~ ( j ( k  dx t A.. . /xdx k-~ AexJ Adx  k+~ A... dx I 

k = l  k<~l<j 

which agrees with (8.7) for I~1--1, and therefore proves the theorem. 

Remark 8.11. Because of the orthogonality of the multiplier we have that I Sw(~) l= 

I~(~)1 pointwise, which implies that S is an isometry in L2(Rn, Az ). As M(~) is sym- 

metric and orthogonal, so too is M#(~). Then M#(~)M#(~)--Id, which implies SoS=Id .  

Since the determinant of M(~) is equal to -1,  we find from Lemma 2.17, , M # = - , M #  

which implies * S = - S , .  

We can now give an explicit convolution formula for the operator S. 

THEOREM 8.12. For each l<p<c~ ,  the operator S:LP(Rn,AP)- - -*LP(R'~ ,A I) is 

represented by the following singular integral 

( S w ) ( x ) =  ( 1 - ~ )  w(x)  F(l+n/2)/n~n/2 . ~(x-y)w(Y)lx_y]n dy 

where 

1) id:A  l 
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Furthermore ~(r is a homogeneous matrix function of degree zero whose mean value on 

the unit sphere is zero. The entries of ~(r are spherical harmonics of degree 2, that is 

1r162 is a matrix of harmonic polynomials of degree 2. 

Proof. It follows from formula (8.7) that  any off diagonal entry of the matrix 1r 

has the form •162 with j ~ k  and so is clearly harmonic. The diagonal entry with index 

I - - ( i l ,  i2, ..., iz) can be written as 

jr k~1 

Thus Am~=2(n- l ) -21+2n(2 l /n-1)=O.  This also shows that  

s . - i  ~(r d~ = 0. 

We now decompose the multiplier of S as 

M#(r = n - 2 l  Id +~(r 
n 

Then according to IS, Theorem 5, pp. 73] the kernel of the transformation corresponding 

to the multiplier ~2(r is 

r ( l + n / 2 )  ~2(x-y) 

g ( x - y )  = 7r n/2 Ix-yl" 

and hence the formula of Theorem 8.12 follows. 

An especially interesting situation arises when n--21. Then we find 

THEOREM 8.13. The operator S:Lp(R~',AI)--~Lp(R2t, AI ) is represented by the 

singular integral 

Ix-y121 

We point out here that  M(~)=IeI2D4)(r where D4) is the Jacobian matrix of the 

inversion 4) in the unit sphere of lCt2k 

r 
4)(r = ir 

This again reinforces the analogy with the two-dimensional case, see (0.6). Then the 

kernel, 

K(r = 1r162 h ~ --, A z, 
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is induced by the differential DO: R21--*R2( More precisely 

=r 

In other words the entries of the matrix K(~) are the l • l minors of the Jacobian matrix 

of ~. As such K(~) is harmonic in R 21, is orthogonal and symmetric and permutes the 

spaces A + and A - .  Note too that  exactly half the eigenvalues of K(~) are +1 and the 

other half are -1 .  

It seems to us that  the formulae above will be important for future calculations of 

the p-norms of the operator S. There is considerable information, both geometric and 

analytic, to be obtained for quasiregular mappings if one finds reasonable estimates for 

the norms IlSllp, see w It is for this reason we now give such an estimate. A problem with 

the Beurling-Ahlfors operator S, and other operators with even kernels, is due in part to 

limitations of the presently available methods from probabalistic and harmonic analysis. 

It seems a little too optimistic to find the norm Ap(n, l) of S: L p (R "~, A l) --~L p (R n, At). 

A simpler problem is to show that  Ap(n, l) actually depends only on p. But for our 

purposes, we need a bound which depends at most polynomially on n. This problem is 

still nontrivial, the reason being that  the obvious estimate leads to exponential growth 

of Ap(n, l) in n, because the number of terms involved in an explicit formula for S is of 

order 2 n. We prove 

THEOREM 8.14. For each l=l ,2 , . . . ,n  and p>~2 

Ap(n, l) <<. (up) 2. 

Proof. The operator S depends linearly on the second order Riesz transforms 9~i9~j, 

i, jE{1,2 ,  ...,n}. We denote by hip the number 

Mp=max{]l~ig~jtlp;i,j=l,2,. . . ,n}, 1 < p < c ~ .  

The method of rotations, see [GR], and the fact that  the p-norm of the one dimensional 

Hilbert transform is ]lHiip =cot(Tr/2p) ~< 2PITt, for p~> 2, implies that  []~j lip ~< (7r/2)Hg[lp ~< 

p for all j = l , 2 ,  ...,n.(4) We then see 

Mp<.p 2, p>>.2. (8.15) 

Now let w �9 L p (R '~, At). We solve the Poisson equation A~-----w. So the coefficients satisfy 

w l = A ~  I and ~oleL~(R n) for each/-tuple I.  From (8.6) we have 

/ i } S w - ~  ~ - t - q o j ,  k d x  I - I - I - k + j  "-~-~O j ,  k a x  

I " j = k  " k E I ' j ~ I  

(4)Added in proof: We have recently shown that  [[9~j ][p= [[Hl[p, see [IM2]. 
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We do not specify the signs + because we are not going to use any cancellation of terms. 

Now fix an / - t up l e  K and compute the K t h  coordinate of Sw. We find 

i ) (sw)g dx K +~Kk+2E +~K--I,X__ K dx K, 
- -  I 

where the summation is over all l-tuples I such that  #{IUK}=l-1. There are at most 

n+2(n-l)n<<.n 2 terms in this sum. We therefore have the pointwise estimate 

[(sw)K[2 <~n2{EI~:K, d2+2EI~I_LI_K[2}, (8.16) 

" j - - - -k  ' I 

where the index I is restricted as above. We now sum (8.16) over all ordered l-tuples K 

and interchange the order of summation to obtain 

,Swl2<~n2(~g {j~k,~J,K[2}+2~g ( j ~  ,~jg[2) } 

k • K  

,} = n ~ I~o~,~ ~ (8.17) 

j , k = l  " K 

=n2j n,~k=l{~K 'fRJ~k(wK)'2}" 

Now we shall apply the following lemma. For a more general result concerning tensor 

products of operators acting on L p spaces see [FIP], Corollary 1.2. 

LEMMA 8.18. Let T: LP(~, d)~)--~LP(f~, d)~) be a bounded linear operator with norm 
I[T[[p, l < p < c ~ .  For hELP(~, Rm),  h=(h 1, h 2, ..., h m) define the tensor product 

7" -- Id | LB(~2, R m) ~ LP(~, R m) 

by 

Then 

:Th = ( Th 1, Th 2, ..., Thin). 

II~-hllp ~ IlZl}pllhllp. 

Proof. In view of the linearity of T we have for each s=(sl, s2, ..., sin)E S m-1 

and hence 

(s, :rh)=T(s,h) 

II<s, 7"h>llp ~ IITIIpll<s, h>llp. 
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We raise this inequality to the power p, integrate with respect to s and use Fubini's 

Theorem to obtain 

/~ {/sm_l l(s. Th},P ds} dA <<. llT,,~ /~ {/sm_ ,(s.h}lP ds} dA. 

On the other hand. because of the invariance of the spherical Haar measure ds under the 

rotation group of S m-1 we have the identity 

~m_l '(S,x)[P ds= [xiP ~m_z iSliP ds 
for each vector x E R  m. Therefore 

/ 'Th'P dA ~ "T'lP / 'h[ p dA, 

which proves the lemma. 

Remark. It follows from these arguments that the lemma remains valid in the case 

of a complex space LP(~t, dA) provided the operator T is the complexification of a real 

operator. That is if T(Re{f})=Re{T(f)}. Notice that this is the case for the operators 

Lemma 8.18 applied to the equation (8.17) for each of the operators 9~jg~k separately 

gives via the triangle inequality (so p>~2) 

( ~ K  \ 1/2 ll2 

j,k 

n4mp2 [Io.)[12p. 

Thus 

which establishes the theorem in view of our estimate for Mp. 
Next, a standard interpolation argument (via the Riesz-Thorin Convexity Theorem) 

implies 

COROLLARY 8.19. For all 2<~p<q<oc 

Ap(n, k) < (n2q2) q-~-~22" ~ . 

There is a corresponding result for the conjugate index l<p~<2. As a particular case 

Ap(n, k) <. n 4i2-pi 

for all 3<~p<3. 

Finally notice that the Convexity Theorem also implies 
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Ilsll~ 

I~1-1 . ,  

22 
, ,  

I)o qo 

Fig. 2 

PROPOSITION 8.20. The function p--+Ap(n,k) 

1 <p <~ 2 and continuously increasing for 2 <~p < oo. 

is continuously decreasing for 

9. Regula r i ty  t heo rems  for quas i regular  mappings  

In this section we give proofs of both Theorem 2 and Theorem 3. Thus let 

: E Wlpl,loc(f2, R2l), p~>l, 

be a weakly quasiregular mapping. Denote by # the Beltrami coefficient # / o f  f.  Define 

I~1 = I I~s l l~  <1. We shall investigate the L~otr of the Jacobian D f  for pE 

(Po,qo) where l<po<2<qo<oC are the critical exponents of # implicity defined by the 

equation 

I~1 IISIIpo = II.1 IISIlao = 1 

see Figure 2. Obviously Lemma 8.3 implies i/po + I/qo--I, and Proposition 8.20 implies 

l#l ilSllp < i, for all pe (Po, qo). In particular then, the operator 

I d - # S :  LP (R2', A ̀ ) ~ Lp (R2', A ̀ ) 

is invertible and 

t[( Id - # S )  -1 lip ~< (1 -[#[ [[S[[p) -1. 

Our theorems are derived by an obvious induction using the following lemma. 

(9.1) 
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LEMMA 9.2. I f  f e W l l , l o c ( ~ , R  21) for  some pe(po ,qo) ,  then f e W l l , l o c ( ~ , R  2l) for  

all q such that 

Po < q < mm 2-~--~_1 p, qo �9 

Proof. Let us assume that J ( x , f ) ) O  a.e. Then the Beltrami equation for f takes 

the form 

d + ( f * a )  = # d - ( f * a ) ,  (9.3) 

where we choose 

a = yl  dy2 A dy 3 A... A dy t - ( - i )  t yt+ 1 dyt+2 A dy l+a A... A dy 2t . 

Then da has constant coefficients, 

da -- dy I Ady  2 Ady 3 A... Ady  t - ( - i )  t dy 1+1 A dy t+2 Ady 1+3 A... A dy 2t r 0 

Id~l = v ~  and 

d+ a = O. 

The induced ( l -  1)-form 

f*  a = f l  df2 Ad f  3 A... Adf l  - (i)t f l+l  dfl +2 Adfl +a A... Adf  2t 

can be estimated pointwise a.e. as follows; 

If*a] 2 ~ ( I f ld f2A. . .Ad f t ]+l f l+ld f t+2Adf l+3A. . .Ad f2 t l )2  

<~ l f l  [21Dfl2t-2 + ifz+l12[Df[2t-2 ~ [fl2[Df[21-2, 

and hence we obtain the estimate 

If* a(x) l  <~ I f (x) l  ID f ( x ) l  1-1. (9.4) 

From the Imbedding Theorems we obtain 

f * a  e L~oc(fl, A~,I) .  (9.5) 

To see this, first notice that 2pt 2z fELloc(fl ,  R ). Indeed, if l~<p<2, then by the Sobolev 

Imbedding Theorem, " ~ fELloc(f~,R2Z), with s=(211p)/ (2l - lp)>.21p.  If p~>2, then f E  

W~i,~oc(~, R 21) which implies the integrability of f with arbitrary exponent. Now (9.5) 

follows from (9.4) by Hhlder's inequality. More precisely, 

Ifl IDf l  t-1 E L~oc(~ ) 

5-935201 Acre Mathematica 170. Imprim6 le 29 avril 1993 
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for any r~> 1 satisfying 
1 1 1-1 2 / -1  

r >~ ~ + lp 21p 

and so in particular with r=q. 

In order to apply the Beurling-Ahlfors operator we should multiply f*a by a test 

function, say ~eC~(f~). Obviously .f*aeLq(R2t,A' ) and 

d(nf*a ) = , f*  (do) +d~/A f*a  (9.6) 

is a compactly supported regular distribution of class LP(R 2t, At). This then justifies 

the following permutation formula (cf. (0.7)), 

d- (~f* a ) = S[d + (~f*a)]. (9.7) 

On the other hand we have the Beltrami equation and so we find that 

d+(.f* a ) - # d - ( ~ f *  a) = (d.A f* a)+-#(d~A f* a)_ =w, 

say. From (9.4) we have pointwise a.e. 

IT(x)[ <. x/2(l+l#l)ld, A f* al <. 4IV,[ If[ [Df] ~-1 (9.8) 

and then by (9.5), T e L  q (R 2*, A t) nLP(R 2', At). Now (9.7) reduces to the integral equa- 

tion 

d+(~f*a) = (Id -#S ) -1~ .  

Using (9.7) again we obtain 

d(~f* a) = (d+ +d- ) ( . f *  a) = (Id +S)(Id - #S ) - l w .  (9.9) 

This shows that d( . f*a)ELq(R  2z, A z) and that moreover we have the uniform estimate 

l+llSIIq II~tlq< 8tlSHq IiIV~ll.filDfiZ_lll q 
lld("f*a)liq ~ 1-Itz] IlSI]q 1-]#] IlS[Iq 

which follows from (9.8). This together with the estimate of (9.4) and the identity (9.6) 

imply 
[[.f*(doOl[q <~ []d(.f* a)[IqW lldg?A f* a[[ q 

8[[S[]q 
+-x/~) [[IV.[ If[ [Df[t-l[[q. 

~< (1-1.111Sllq 
(9.10) 

Finally, we have the pointwise a.e. estimate 

v~lDf(x)]  z ~ Kttf*(da)l, (9.11) 
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lq 
by Theorem 7.1. Then from (9.10) we conclude that DfeLloc(f~ , GL(n)). This completes 

the proof of the lemma. 

As we have mentioned, an easy induction now establishes Theorems 2 and 3. We 

want to point out that we have also proven the following uniform estimate 

8gtllStlq II IV~/I Ifl IDfll-lllq. (9.12) II'~lDf(x)lZllq < 1-1~1 IlSllq 

Remark 9.13. In [IM1] we have proved that each K-quasiregular mapping f:  fl--*R 2 

belongs to W~,~oc(f~ ) with p=2Ka/(K'~-l)  for some a, 1~<a~<7.283. 

Remark 9.14 (HSlder regularity). Equation (5.1) can be used (as in the proof of 

Liouvitle's Theorem) to derive the C k+l''~ regularity properties of a quasiregular map- 

ping that we spoke of in Theorem 4. However, a simpler method can be found using the 

Beltrami equation (7.3). Thus suppose f EW~z,lor R 21) and that the Beltrami coeffi- 

cient # = # y  belongs to the H61der class Clko'~(fl, GL(2l)) for some a and k with 0<a~<l 

and kEN. 

We shall outline the idea of the proof, which is simply to apply the operator S to 

(7.3). Consider the equation (9.9) above with w=(dw~f*a)+-#(doAf*a)_. Let ~2' be 

an arbitrary open set compactly contained in fL We choose the compactly supported 

test function r/so that ~7=1 on ~2'. It is important to notice the following property of the 

pseudo-differentiM operator 

(Id +S) (Id -#S)-a: L 2 (R 2`, A') --* L2 ( a2`, A'). 

Namely that if caffn2(R 2., A*), then ( I d + S ) ( I d - # S ) - l w  is of class C k,~ outside the 

support of w. This can be viewed as a hypoellipticity type property of the operator 

( I d - # S )  with #EC k,~, [[/z[[oo<l. Accordingly, 

f*(da)eC~ko':(~',A ~) 

because w(x) vanishes on ~' and d(~lf*a)--f*(de~) on ~'. As ~' is arbitrary we may set 

in place of ~r above. Then the /-vector da E A -  (in view of the definition following 

(9.3)) satisfies 

d(~Ada = - 2 ( - i )  z Vol. 

Applying f* we obtain 

-2(- i ) t  g(x, f) Vol = f*(3-a)A f*(da) ~ Qko'~ (fl ). 

Hence the Jacobian determinant belongs to the class Clko'r Now in much the same 

way we can show that f*(d )eQko'2( ,A for each /-vector di~EA +. In conclusion 

the l xl minors of the differential Df(x) are of class Clko'~(~). This improved regularity 

considerably simplifies the remainder of the existing proofs. See [I2] for further details 

in this setting, and [Ma] for another approach to proving Theorem 4. 
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10. The Caccioppoli type estimate 

Apriori estimates in quasiconformal analysis have been extensively used from the early 

days of the theory. Much of the information about the differential of a quasiregular map- 

ping is contained in certain Caccioppoli type estimates. These estimates are derived from 

the fact that every quasiregular mapping of R n achieves the minimum value of its own 

associated Dirichlet integral. This integral unfortunately requires the L~-integrability of 

the differential. From these estimates, via Gehring's Lemma [G2], higher integrability 

results follow. However to remove nontrivial singularities of a quasiregular mapping one 

needs L p estimates for p less than the dimension of the space. Some previous efforts have 

been made to achieve such results but have been largely unsuccessful. The following 

result is perhaps the first of its kind. 

THEOREM 10.1. Let fEWplz,loc(12, R21), l < p < 2  be weakly quasiregular with Bel- 

trami coefficient #f  and where p is such that 

I ,st ItSll~ < 1, 

T h e n  

, l~(x)Df(x)l pt dx ~ Cp(I,K) A IV~(x)lP'lf(x)- f~ dx 

for each test function ~ C ~ ( ~ )  and foER 2t. 

Proof. We apply (9.12) to the function ~(x)=~t(x). Then by HSlder's inequality 

81KlHSllP I[IV~llflt~Dfl '-~ll ,  Ill~Df(~)l'll, <~ 1-1~r 

<~ Cp(l,K) 1/("t) lIlv~l'lfl~I[~/~ [[[~Df[~[[: -~/z , 

where 

( 81K'llSllp ~pz 
C p ( l , K ) = \ 1 - -~$  ~ ]T-~] p ] . 

The result now follows for f0=0, by dividing out the common factor. 

course, we may replace f by f - f o .  

In general, of 

11. Removability theorems for quasiregular mappings 

In this section we generalize the classical removable singularity theorems for holomorphic 

functions to quasiregular mappings in all even dimensions. Thus let 12 be a domain in R n 
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and E a compact subset of fL For all l < s < c ~ ,  the s-capacity of the condenser (E, Q) is 

defined as 

s-Cap(E, fl)=inf { fa FV~(x)l~ dx } 

where the infimum is taken over all functions qoEC~(f/) which are identically equal 

to one in a neighbourhood of E. Given E C R  '~, if s-Cap(E, f l )=0  for some bounded 

f~ (equivalently for every f2) we say E has zero s-capacity. A closed set E has zero 

s-capacity if every compact subset of E has zero s-capacity. 

Notice that  E has zero s-capacity, 1 < s ~<n, implies that  the d-dimensional Hausdorff 

measure of E, Hd(E)=O, for all d > n - s .  Also, if E is a closed subset of R '~ of Hausdorff 

dimension less than k < n - 1 ,  then E has zero (n-k)-capacity,  and finally the countable 

union of sets of zero s-capacity has zero s-capacity, provided this union is closed. 

Proof of Theorem 5. Let E be a closed subset of R 21 with pl-capacity zero, 1~< 

p<2 and suppose that  f :  f I \E- -~R 2t is a bounded quasiregular mapping with Beltrami 

coefficient #f  such that  I~sl IISIIp<l. As n 2 t ( E ) = 0  it remains only to prove that  f � 9  

Wpll,lor R2Z). For then Theorem 2 implies f � 9  W21t,lor R2t), so f is quasiregular on f~. 

Let ~ �9  be an arbitrary test function, we may assume (without loss of generality) 

that  E is compact, but not necessarily contained in fL Then there exists a sequence of 

functions qoj � 9  2t) such that  for each j ,  

(i) 0~<~j<l,  

(ii) ~j = 1 on some neighbourhood U s of E, 

(iii) l im~j (x)=0 ,  for all x e R 2 t \ E ,  

(iv) lim IIV~j IIp~ =0. 
We set 

It is quite clear that  

ff'j = (1-~j)~7 �9 C~(f2\E) .  

and 

D(kOJ) = ~ jD f + f | Vk~ j E LPZ(R 2t, GL(2l) ). 

By the Caccioppoli type estimate Theorem 10.1 we obtain 

]]D( C~ j f)]]p~ <~ ]]f | V ~  j]lpt + llqd jD f]]pt 

<~C(p,l,K)ll Ifl IV~jl IIp~ 

<~C(p,Z,K) {111fl IV0111pt+l110fl IV~yl Ilpz} �9 

(11.1) 
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Now let j--*oc. We have ~jf---.~?f in LPt(R2t,R2t). Also, as f is assumed bounded, the 

right hand side of (11.1) remains bounded. Therefore q2jf--*~f in the weak topology of 

Wplt (R 2z, a2t).  In particular ~?fEWlpl(a 2t, R 21) and as a limit case of (11.1) we have the 

uniform estimate 

fiD(rlf)llpt ~< C(p, l, K)I I Ifl IVr/t IlpZ, 

which completes the proof. 

Remark 11.2. The assumption that  f is bounded is of course much more than we 

really need. Actually, all we require is that  the sequence 

remains bounded. 

case 

II b f l  IV~jl lip, j = 1,2,... 

Thus for instance it is clear that  Theorem 5 can be extended to the 

2p_L 
f E LS(f~\E, R2z), s/> 2 - p "  

This however requires the stronger restriction that  the set E has zero spl /(s-pl)-capacity .  

This follows simply from H61der's inequality. 

Theorem 5, together with the estimate of Corollary 8.14 has the following conse- 

quence concerning removability near half the dimension. 

THEOREM 11.3. Let 0 < c <  1 and let E C I=t 2l be either a closed set of ( l + e )l-capacity 

zero or a closed set of Hausdorff dimension d < ( 1 - ~ ) l .  Then E is removable under all 

bounded quasiregular mappings f:  Q \ E--~ R 2t provided that 

C(2l)bsl  <~. 

Indeed Conjecture 8.5 would imply that  the condition I#i[<c would suffice. Another 

interesting consequence arises from the estimate of Corollary 8.19, here we have p close 

to two. 

THEOREM 11.4. Let #El0,1) and let E c R " ,  n=2,4 ,6 , . . . ,  be a closed subset of 

Hausdorff dimension 

d ~< n(l-#____~) 
6 log(n)" 

Then every bounded quasiregular mapping f:  Q \ E--~ R n with Beltrami coefficient I# II <# 

extends to a quasiregular mapping of ~. 

Proof. E has (n-d)-capaci ty  zero. Thus the condition for the removability of E is 

d,, i ,or  2(1 
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In view of Corollary 8.19 
IlSllp ~ n 4(2-p) 

3 ~<p~<3. Hence a sufficient condition is easily seen to be because 5 

~tn 4(2-p) : / t n  4d/n < 1, 

that is d<-nlog#/41ogn. This, by elementary considerations, is satisfied for all d~< 

n ( 1 - # ) / 6  log n. 

12. Some examples  

In this section we give a number of examples. We show firstly that the regularity as- 

sumptions in our version of the Liouville Theorem cannot be improved at all; secondly, 

that the Regularity Theorem cannot be qualitatively improved and finally we give some 

examples concerning removable singularities for quasiregular mappings. 

n K  THEOREM 12.1. Let ~ be a domain in R '~ and let K>~I. Then for all pE [1, ~-~)  

there is a weak K-quasiregular mapping fEWpi3oc(~,R n) which is not quasiregular. 

Before proving this theorem we need to make some preliminary remarks and formu- 

late a couple of lemmas. Let us first fix K/> 1. 

The K-quasiconformal inversion in the sphere Sn-i(a, r) is defined as 

~2(x)=a+(x--a)(~x~a~) i+l/K 

For K = I ,  r = l  and a=0 we obtain the usual inversion in the unit sphere. The following 

lemma is easy. 

LEMMA 12.2. With the notation above 

( r ) 1+ l /K[  K + I  (x -a) |  
DO(x)=  ~ - ~  Id K ~-~-- a~  J" 

We shall be interested in the restriction of �9 to the ball B = B ( a ,  r). There we have 

the inequality 
r K +  1 

Ir Ix-al" 

We therefore obtain the estimate, for each l<<.q<Kn, 

/B ,dP(X)_x,q dx <~ rq+q/K /B dx Ix-a]q/K 
nKr q 

- -  nK_q  [B[. (12.3) 
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We now want to show that  0E Wpl (B) for every l<~p<nK/(K+l). To do this we compute 

the Hilbert-Schmidt norm of DO(x) using the formula of Lemma 12.2, 

DtO(x)DO(x)=(]-x-_~_a I I d - ( 1 - K - - - - - 5 ) [ x _ a [ ~  j 

Whence 

And thus 

[ r ,~2+2/K 
IDOI2=Traee{D tODO} <<. n~[--~_a[) �9 

B IDOIP dx <~ nP/2rP+P/ K [ dx 
JB [x-af p+p/K 

(12.4) 
np/2+l Kn n 

= n - p - p / K  ]BI ~< n K - p ( K + l )  IBI" 

Finally, since O(x)-x  vanishes on 0B we obtain from integration by parts 

/B Dt~?(x) [O(x)-x] dx= -/B[DtO-Id]~l(x) dx (12.5) 

for any test mapping ~EC~176 n, Rn). 

This shows that  O - I d  belongs to W~(B) for all p<nK/(K+l) .  

We construct our example by gluing a number of these reflections together in a 

careful way. To do this we need the following notion. Let f~ be a domain in R n. Then 

an exact packing of f~ by balls is a disjoint family 5r= {B/: I  ~<j <oo} of open balls Bj C 

such that ~ B j  for any j and 
O C  

~-UB~ =o. 

The existence of such a packing for an arbitrary domain ~ follows from Vitali's Covering 

Theorem. We omit the proof. 

LEMMA 12.6. Every open subset f~ of R n has an exact packing by balls of radius 

less than 1. 

Proof of Theorem 12.1. We assume for convenience that  I~tl<c~. Let 5r={Bj}  be 

an exact packing of ~. It is clear that  5 r has infinitely many elements. Let Oj be the K- 

quasiconformal reflection in the spheres OBj. We define a function F: ~t-~R n piecewise 

a s  

F(x) = Oj(x) if x E Bj  and F(x) =x otherwise. 

Inequality (12.3) immediately implies that  

nK = nK___jn ] < [F(x)-x[ q dx = j=l-  Bj IOj(x)--x[ a dx <" nK-------q j = l  
(X) , 
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for every qE[1,nK). Thus FELq(i2, R'~). Next define a matrix function A(x) as 

A(x) :DOj(x) if x E Bj  and A(x) = I d  otherwise. 

From inequality (12.4) we have 

ia Kn~ IA(x)l p dx nK- (K+I)lal < 

for every l~p<nK/(K+l). Therefore to prove that  FEW~(fl, R ~) we need only verify 

that  A(x) coincides with DF(x) in the sense of distributions. Thus let 17EC~~ R n) be 

a test mapping. Integration by parts and identity (12.5) applied to Oj gives 

~ Dt~(x)F(x)dx=~ Dtrl(x) [F(x)-x] dx+i  Dtrl(x)xdx 

= Dry(x) [Oj (x ) -x ]  dx - rl(x) dx 
"= j 

It is readily seen from Lemma 12.2 that  for K = I ,  FEWI(f~, R~), l<~p<n/2, is weakly 

1-quasiregular and that more generally F E W 1([2, R ~), 1 ~<p < nK/(K + 1) is weakly K- 

quasiregular. 

However, it is easy to see J(x, F)~<-1 a.e. in ft. To obtain a map whose Jacobian is 

positive almost everywhere, compose F with an orientation reversing conformal mapping. 

It remains only to observe that  F is not quasiregular as it is not even bounded near the 

boundaries of the bails in the exact packing ~ .  

Remark. Recall that our condition for improved regularity (in even dimensions 

n=2 / )  was that  

lal f lSll,, < 1. 

From Lemma 12.2 and a little calculation we find that  in our example 

K - 1  

I ~ I : K +  1 �9 

As pl < nK/(K + 1) we obtain the following theorem 
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COROLLARY 12.8. In dimension 21 we have the following estimate for the p-norms 

of the Beurling-Ahlfors operator: 

1 
[]Slip ~> p _ l ,  l<p ~<2 .  

By duality (see Lemma 8.3) we also have 

IIsllp >~ p - 1 ,  2 <~ p < ~ .  

We have conjectured these bounds to be sharp in Conjecture 8.5. 

This suggests that  our example in Theorem 12.1 might be best possible (it is for 

K =  1 and n even because of our sharp version of Liouville's Theorem). Indeed we make 

the following conjecture. 

CONJECTURE 12.9. Every weakly K-quasiregular mapping f E V~,loc ( ~, R ~) with 

n K  

K + I  

is K-quasiregular. 

Perhaps even the weaker assumption that  ng n fELlo ~ (~, R ) is weakly K-quasiregular 

implies f is K-quasiregular. Notice that  in the example above we did actually show that  

FELP(gt,  R n) for all p<nK.  

The following theorem (which seems well known) shows that (at least in the plane) 

Theorem 5 is qualitatively best possible. 

THEOREM 12.9. For each 0 < e < l ,  there is a bounded K-quasiregular mapping 

f :  R 2 \ E - - + R  2, where HI_~(E)=O, and f does not extend over E. Moreover as ~---*0, 

K--* I. 

Proof. Recall a theorem of T~akia which states that  for each e > 0  there is a quasi- 

symmetric map g: R - ~ R  and a set E of Hausdorff dimension less than l - e ,  with the 

linear measure of g ( E ) > 0  [Tu]. Moreover, as ~--~0 the quasisymmetry constant tends 

to 1. We can then extend this map to a quasiconformal map of the entire plane with 

the same properties, say via the Beurling-Ahlfors extension. Given such a set E and 

quasiconformal g there is a bounded holomorphic function h defined in the complement 

of g(E) which is not extendable over 9(E). Here it is important that g(E) lies on the line, 

because it implies that  the analytic capacity is positive (the existence of such h does not 

follow for general sets of positive linear measure [Ga]). The composition hog defined in 

the complement of E is bounded and quasiregular and E is not a removable set. Notice 

too that the dilatation tends to 1 as the Hausdorff dimension of E approaches 1. 
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The following example gives a general method in all dimensions to construct sets 

E and quasimeromorphic mappings defined in the complement of E which cannot be 

extended over any point of E.  Here by quasimeromorphic we simply mean that  the map- 

ping may assume the value infinity. Tha t  is we consider the mapping to be quasiregular 

and valued in the sphere S ~. 

THEOREM 12.10. There are sets E of arbitrarily small Hausdorff dimension (E can 

even be a point) and quasimeromorphic mappings S'~\ E - * S  n which cannot be extended 

continuously to any point of E. 

Proof. Let F be a compact type, torsion free group of conformal transformations 

acting on S n and E=L(F)  the limit set of F. Tha t  is ( S n \ L ( F ) ) / F = M  n is a compact 

orientable manifold. Such a group may be obtained as an index two subgroup of a group 

generated by reflections in a collection of disjoint round spheres with the property tha t  

no sphere separates the collection. It  is well known tha t  the Hausdorff dimension of 

L(F) >0, but can be arbitrarily small. (We could just take the Poinca% extension to the 

appropriate  dimension of a Fuchsian group of the second kind. The dimension could also 

be quite large, for instance any round sphere of codimension 2 or more is possible.) If 

we want E to be one or two points, we take F to be a (Euclidean) crystallographic group 

or simply the group generated by a dilation F=(x--*Ax), where A > I  (in these latter 

two cases we view S '* as the one point compactification of R~). As M is a compact  n- 

manifold (it will be a simple handle body if one uses the sphere construction, possibly an 

n-torus in the Euclidean crystallographic case, or S ~-1 x S 1 in the case of a dilation) we 

can use the Whitney trick as follows: take any triangulation of M, take the barycentric 

subdivision, decompose S ~ as the union of two simplices A1 ,A2, in t (A1)Nin t (A2)=O,  

and then identify each simplex of the subdivision with a Ai via a piecewise linear map, 

this produces a piecewise linear map M--~ S ~. Now the projection Sn/L(F)---~M is locally 

conformal and then it is easy to see the composition 

S~/L(r) -~ M --, S ~ 

is quasimeromorphic. (The branch set of the mapping is just the codimension two skele- 

ton of A~.) This map is automorphic with respect to F and not constant. Since the orbit 

of any point under the group F accumulates at every point of L(F), the image of any 

neighbourhood of any limit point covers the sphere. It  is quite clear that  this map has 

no continuous extension. 

We point out that  the idea of using the Whitney trick to construct quasimeromorphic 

mappings is not new. For related constructions see for instance [MS], [Tu2] and [Pe]. 
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Remark 12.11. The above example raises a couple of questions. By refining the 

triangulation of M can we make the dilatation smaller? In particular how close to 1 can 

we get? Notice that  in dimension 2 there is a meromorphic map M2--*$2! The point here 

is that  by the Stability Theorem for quasiregular mappings [R3], dilatation close to 1 

implies local injectivity (which is not the case for our examples). Quasiregular (and even 

quasimeromorphic) mappings which are locally injective and defined in the complement 

of a nice set are injective if the dilatation is small enough [MSa]. For instance if the 

complement is a uniform domain. Thus in dimension n~>3 it may be that  any set of 

dimension d<~n-2 is removable for quasimeromorphic mappings with dilatation close 

enough to 1 (it is a conjecture, at tr ibuted to O. Martio, that  there is no branching if 

K < 2 ) .  This at least shows that  a codimension 2 (or larger) set which is not removable 

for all bounded K-quasiregular mappings, K > 1 must be quite wild. 

Also, we could arrange that  M is noncompact by introducing parabolic elements 

into F (or even M could be ( s1 )mx R n-m, m~>0 in the Euclidean case). Is it possible 

t hat the noncompact manifold M ~ = (S ~ \ L (F ~))/F ~ admits a quasiregular mapping into 

R n (bounded?)? This is the case in the plane (take a Riemann surface F,  delete a Cantor 

set of large enough capacity so that  F \ E  has bounded holomorphic functions, and take 

a Schottky uniformisation of F\E.  One may do this by assuming that  F is the double 

of say F1, then uniformise F I \ E  via a Fuchsian group (of the second kind) and extend 

the group to the Riemann sphere by reflection. This is a Schottky uniformisation of F 

minus two copies of E).  The problem with compact M is that  quasiregular mappings 

are open and so the image must be onto S n. We also point out that  one may produce 

more exotic examples by looking at the orbit spaces of uniformly quasiconformal groups. 

Related and perhaps the most interesting examples of quasiregular mappings, are 

due to S. Rickman in his study of the Big Picard Theorem in higher dimensions, see for 

instance [Ril,2]. We have also very recently been informed by Rickman that  he has a 

construction of a bounded quasiregular mapping defined in the complement of certain 

Cantor sets in R ~. This Cantor set is then not removable. This example is very important  

as it is the only known example in higher dimensions of a bounded quasiregular mapping 

defined in the complement of any set of dimension less than n -  1 which is not removable, 

see [Ri3]. 

A p p e n d i x :  T h e  4 - d i m e n s i o n a l  case  

It is both rewarding and illuminating to discuss what we have done and to make some 

explicit calculations in the special case of dimension 4. Let us first observe that  in the 

two dimensional case, the multiplier of S: L 2 (R2, A 1) --~ L ~ (R2, A 1) can be factored into 
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the two odd multipliers 

In dimension 4, the corresponding 6 x 6 matrix [~I2M# (f) of quadratic polynomials is not 

factorisable in such a fashion. However, to obtain such a decomposition we factor the 

multiplier of the operator 

S| L 2 (R 4 , A - )  | ~ L2 ( R4 , A + ) | (R4) �9 

(Here the tensor product is defined by S| A)=(Sw, A) for weL  2 (R ' ,  A- )  and Ae 

L2(R4).) The following three 2-forms are a basis for A- :  

al-=dxlAdx2+dx3Adx 4, a2=dxlAdx3-dx2Adx 4 and a3 =dxlAdx4+dx2Adx 3. 

The corresponding basis in A + is 

T1--dxl Adx2-dx3 Adx 4, T2 =d:rl Adx3.-[-dx2 Adx 4 and "r3 -~dxl Adx4-dx2 Adx 3. 

We then write r or3 and Sca=blT1+b2T2+b373. To express the coeffi- 

cients {bi} in terms of the {ai} we solve the differential system 

d - a = w  and 60/=A (A1) 

for a=aldx l+0/2dx2+a3dx3+aadx4EL 2 (R 4, A1). Notice that we have introduced the 

auxiliary equation 60/= A to make the system well determined. Our system is equivalent 

to (subscripts as usual denote differentiation) 

1 2 3 
a l  ------0/2 nU0/lnU(:~4 --  0/4 

1 2 3 4 
a2 ~- --0/3 --0/4-{-0/1 -~0/2 

I 2 3 4 
a3 ---- --0/4-[-0/3 -- 0/2-~- 0/1 

/ ~ _  1 2 3 4 
0 / 1 + 0 / 2 + 0 / 3 + O / 4  �9 

In the same manner, the equations 

d+a=Sw and 60/=A (A2) 

lead to 

bl 1 2 3 4 
~ 0/2 -{-0/1 --  0/4 -~- O/3 

b2 1 2 3 4 
--OL3 -~0/4  nu 0/1 - -0 /2  

b3 1 2 3 4 .= - 0 / 4  - 0/3 -t- 0/2 ..~ 0/1 

1 2 3 4 
A = 0/i -~- 0/2 nt- 0/3 -~- 0/4 . 
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Taking Fourier transforms, the corresponding matrices of the systems are the quaternions 

and 

-~3 -~4 ~ ~2 a 2 = a2 (A3) 

-~4 ~ - ~  ~ ~ 
~1 ~2 ~3 ~4 ~4 

-~3 ~4 ~1 -~2 a 2 = b2 (A4) 

~1 (2 ~3 (4 a4 

Then the Fourier multiplier for the operator S| is obtained by eliminating a 1, a2, a3 

and a 4 in the above. We find 

1~I-2P(~)Q(~) 

{ 
[ 2~1~4§ 

_ ,~,-2 2~2~4 02~1~3 

-2~1~a +2~2~3 2~2~4 +2~1~3 

~2 r C2 2~3~4_2~1~ 2 
i - -  %2 ~3 - -  r 

2 ~ 3 ~ 4 §  2 2 2 ~ -~2 -~ +~ 
0 0 2 2 2 ~2+~2 +~3 +~ 

1 

where P(~) is the quaternion in (A4) and Q(~) is the transpose of the quaternion in (A3). 

This is very suggestive as to the form in the general case. Our calculations also show 

that the multiplier is the product of two odd multipliers (both of which are orthogonal 

matrices). The point is that S|  can be factored into two singular integral operators 

with odd kernels. These are analogues of the complex Riesz tranforms in the plane 

i /c f(~)d~Ad~ 
Tlf(Z) = ~ I ~  

and 
i /_ f(~)d~Ad~ 

Now we can apply the method of rotations to each of these operators individually to 

get an estimate of the p-norm of S: L 2 (R 4, A2)-~L 2 (a4, A2). We hope that these ideas 

will produce a general method for obtaining a dimension free estimate of IISIIp. Finally 

notice that the LV-estimates for S of w mean in this case that 

/R4(lal? +taxi  +ta3t ) q [Ap(4)l 2q/R (Iblt2+lb l q ~< 

q>�89 for arbitrary C ~  functions a l , a 2 , a a , a  a where al,a2,a3 are given by (A1) and 

bl, b2, b3 are given by (A2). The uniform estimate implies the same inequality is true in 
wl~m4). 
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