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Abstract. Cam-Clay nonassociative plasticity exhibits both hardening and softening
behaviour, depending on the loading. For many initial data the classical formulation of
the quasistatic evolution problem has no smooth solution. We propose here a notion of
generalized solution, based on a viscoplastic approximation. To study the limit of the
viscoplastic evolutions we rescale time, in such a way that the plastic strain is uniformly
Lipschitz with respect to the rescaled time. The limit of these rescaled solutions, as
the viscosity parameter tends to zero, is characterized through an energy-dissipation
balance, that can be written in a natural way using the rescaled time. As shown in
[4] and [6], the proposed solution may be discontinuous with respect to the original
time. Our formulation allows to compute the amount of viscous dissipation occurring
instantaneously at each discontinuity time.
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1. Introduction

Cam-Clay is a plasticity model giving the conceptual framework to analyse the inelastic
behaviour of fine grained soils. Some of its interesting features are its nonassociative char-
acter, and that it may lead to both hardening and softening behaviour, depending on the
loading conditions. The variables considered in the model are the displacement u(t, x), the
elastic and plastic strains e(t, x) and p(t, x), the stress σ(t, x), and the internal variables
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z(t, x) and ζ(t, x). All these functions are defined for positive time t and for x in the refer-
ence configuration Ω, a bounded open set in Rn , n ≥ 2, with Lipschitz boundary. As it is
typical in plasticity, the stress is constrained to lie in a compact convex set K(ζ) of the space
Mn×n

sym of symmetric n×n matrices, whose size is controlled by a scalar parameter ζ and
whose boundary represents the yield surface. Given a time-dependent body force f(t, x),
and denoting the normal cone to K(ζ) at σ by NK(ζ)(σ), the equations summarising the
model are

(a) constitutive equations: σ(t, x) = Ce(t, x) and ζ(t, x) = V (z(t, x)),
(b) additive decomposition: Eu(t, x) = e(t, x) + p(t, x),
(c) equilibrium condition : −div σ(t, x) = f(t, x),
(d) stress constraint: σ(t, x) ∈ K(ζ(t, x)),
(e) flow rule: ṗ(t, x) ∈ NK(ζ(t,x))(σ(t, x)),
(f) evolution law for the internal variable: ż(t, x) = % ? [(% ? trσ(t, ·)) tr ṗ(t, ·)](x),

accompanied by suitable boundary conditions. In the previous equations, C is the isotropic
elasticity tensor (see (2.8)), V is a nondecreasing globally Lipschitz function (see (2.45)),
div is the divergence operator with respect to the space variable x , and % is a smooth
convolution kernel (see (2.47)). In the typical applications, ∂K(ζ) are homothetic ellipsoids
passing through the origin in the space Mn×n

sym ; more in general we assume that 0 ∈ K(ζ)
and

K(ζ) := {σ ∈Mn×n
sym : (σ, ζ) ∈ K},

where K is a convex cone in Mn×n
sym×[0,+∞) with nonempty interior.

The above formulation contains two differences with respect to the classical one, where
V (z) = z and the convolution kernel is not present in the evolution law for the internal
variable. The main reason for introducing the convolution is technical: it ensures that a
very weak convergence of σ and ṗ implies strong convergence of the corresponding z . From
the point of view of mechanics, the convolution gives a nonlocal character to the evolution
law for the internal variable: it implies that the size of the yield surface at a point x is
affected by pressure and volumetric plastic strain rate in a small neighborhood of x , which
is not physically implausible.

The function V is assumed to satisfy the condition

V (z) ≥ ζmin > 0 for every z ∈ R ,
which implies that ζ(t, x) ≥ ζmin > 0 and prevents that the set K(ζ(t, x)) shrinks to
the origin. The classical case V (z) = z is recovered whenever the solution z(t, x) to the
evolution law is positive and bounded away from 0.

The study of the spatially homogeneous case (see [4] and [6]) shows that, for many initial
data, the problem has no smooth solutions. The aim of this paper is then to introduce a
notion of generalized solution, based on a viscoplastic approximation of Perzyna-type. Given
a viscosity parameter ε > 0, the corresponding viscoplastic evolution uε(t, x), eε(t, x),
pε(t, x), zε(t, x), σε(t, x), ζε(t, x) satisfies (a), (b), (c), and (f); condition (d) is dropped,
while (e) is replaced by

(eε ) regularized flow rule: ṗ(t, x) = Nε
K(ζ(t,x))(σ(t, x)),

where Nε
K(σ, ζ) := 1

ε

(
σ − πK(ζ)(σ)

)
and πK(ζ) is the projection onto K(ζ). In Section 3

we prove the existence of such an evolution. We first prove (Theorem 3.3) that for every
function ζ(t, x) in a suitable function space there exists a solution uζ

ε(t, x), eζ
ε(t, x), pζ

ε(t, x),
σζ

ε (t, x) of (a), (b), (c), and (eε ), adapting a result obtained by Suquet [29]. Then we prove
the existence of a viscoplastic evolution by a fixed point argument (Theorem 3.5).

An energy estimate (Theorem 3.4) allows to prove the existence of change of variables
t = t◦ε(s), uniformly Lipschitz with respect to s , such that the rescaled functions p◦ε(s, x) :=
pε(tε(s), x) are uniformly Lipschitz with respect to s , in a suitable function space. This
idea has already been used in [8, 17, 18] for rate independent dissipative problems in finite
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dimension. The authors of the last two papers have used the same idea to study a similar
problem in infinite dimension [22].

The Ascoli-Arzelà Theorem provides the existence of a subsequence (not relabelled), such
that

t◦ε(s) → t◦(s) and p◦ε(s, ·) ⇀ p◦(s, ·) ,
the latter in a weak topology. A further argument, based on the uniqueness of the solution
to an auxiliary variational problem, shows that

e◦ε(s, ·) ⇀ e◦(s, ·) , u◦ε(s, ·) ⇀ u◦(s, ·) , σ◦ε(s, ·) ⇀ σ◦(s, ·) .
The compactness ensured by the presence of the convolutions in the evolution law for the
internal variable allows to prove that

z◦ε(s, x) → z◦(s, x) and ζ◦ε(s, x) → ζ◦(s, x) ,

uniformly with respect to x . It is then easy to see that (a), (b), (c) are satisfied by the limit
functions (Section 5). As for (f), it holds only in a weak form since, in general, the limit
p◦(s, ·) is just a measure and this requires an ad-hoc definition for the derivative (Section 6).

Condition (d) is satisfied in the limit for those values of s for which t◦(s) is not locally
constant. Condition (e) is replaced by an energy-dissipation balance (see (4.8)) and a partial
flow rule (see (4.9)). The former is similar to the energy-dissipation balance of perfect
plasticity [5] with two main differences: first, the set K , and hence the plastic dissipation,
depend now on ζ◦(s, x); second, there is an additional dissipative term,

∫ S

0

∫

Ω

(
σ◦(s, x)− πK(ζ◦(s,x))(σ◦(s, x))

)
: ṗ◦(s, x) dx ds , (1.1)

which accounts for viscous dissipation in those intervals where t◦(s) is locally constant (the
colon denotes the scalar product between matrices). A similar term appears in [17], where
an evolution problem with nonconvex energy is studied through a viscosity approximation
and time rescaling.

To understand the meaning of this term, we observe that the convergence properties listed
above allow to prove (Lemma 5.3) that

uε(t, ·) ⇀ u(t, ·) , eε(t, ·) ⇀ e(t, ·) , pε(t, ·) ⇀ p(t, ·) , zε(t, ·) → z(t, ·) , (1.2)

for all t except for a countable subset, with u◦(s, ·)) = u(t◦(s), ·), . . . , z◦(s, ·) = z(t◦(s), ·).
The intervals where t◦(s) is locally constant correspond to times t where the limit evolu-
tion u(t, ·), e(t, ·), p(t, ·), z(t, ·) may be discontinuous and (1.1) measures the sum of the
instantaneous dissipations due to viscous effects, which survive in the limit as the viscosity
parameter ε tends to zero.

The partial flow rule (4.9) shows that the rate of plastic strain is parallel to σ◦(s, x) −
πK(ζ◦(s,x))(σ◦(s, x)) for those values of s where the stress constraint (d) is not satisfied for
a.e. x ∈ Ω. The proof of the energy-dissipation balance (4.8) and of the partial flow rule
(4.9) is given in the last three sections of the paper. One inequality (see (6.1)) is proved in
Section 6 passing to the limit in the energy balance (3.25) for the viscoplastic evolutions by
means of a lower semicontinuity argument. The opposite inequality (see (8.2)) is proved in
Section 8 using the properties of the limit functions p◦(s, ·), e◦(s, ·), and ζ◦(s, ·) and some
technical approximation arguments developed in Section 7.

In this paper we do not consider the following problems.
• Deduce from the energy-dissipation balance a weak formulation of the flow rule
ṗ◦(s, x) ∈ NK(ζ◦(s,x))(σ◦(s, x)) for almost all s where t◦(s) is not locally constant.

• Characterize the limit functions u(t, ·), e(t, ·), p(t, ·), z(t, ·) defined by (1.2) through
an energy-dissipation balance in terms of the original variable t .

We plan to address these interesting issues in a forthcoming paper.
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2. Preliminaries

Mathematical preliminaries. The Lebesgue measure on Rn is denoted by Ln , and the
(n− 1)-dimensional Hausdorff measure by Hn−1 . If X ⊂ Rn is locally compact and Ξ is a
finite dimensional Hilbert space, the space of bounded Ξ-valued Radon measures on X is
denoted by Mb(X; Ξ). When Ξ = R , it is omitted from the notation. The space Mb(X; Ξ)
is endowed with the norm ‖µ‖1 := |µ|(X), where |µ| ∈ Mb(X) is the variation of the
measure µ . By the Riesz Representation Theorem (see, e.g., [23, Theorem 6.19]) Mb(X; Ξ)
is identified with the dual of C0

0 (X; Ξ), the space of continuous functions ϕ : X → Ξ such
that {|ϕ| ≥ ε} is compact for every ε > 0. This defines the weak∗ topology in Mb(X; Ξ).

The space L1(X; Ξ) of ξ -valued Ln -integrable functions is regarded as a subspace of
Mb(X; Ξ), with the induced norm. The Lp norm, 1 ≤ p ≤ ∞ is denoted by ‖ · ‖p . We
adopt the convention

‖v‖p = +∞ whenever v /∈ Lp . (2.1)

The brackets 〈· , ·〉 denote the duality product between conjugate Lp spaces, as well as
between other pairs of spaces, according to the context.

The space of symmetric n×n matrices is denoted by Mn×n
sym ; it is endowed with the

euclidean scalar product ξ : η :=
∑

ij ξijηij and with the corresponding euclidean norm
|ξ| := (ξ : ξ)1/2 . The symmetrized tensor product a¯ b of two vectors a , b ∈ Rn is the
symmetric matrix with entries (aibj + ajbi)/2.

For every u ∈ L1(U ;Rn), with U open in Rn , let Eu be the Mn×n
sym -valued distribution on

U whose components are defined by Eiju = 1
2 (Djui+Diuj). The space BD(U) of functions

with bounded deformation is the space of all u ∈ L1(U ;Rn) such that Eu ∈Mb(U ;Mn×n
sym ).

It is easy to see that BD(U) is a Banach space with the norm ‖u‖1 + ‖Eu‖1 . It is possible
to prove that BD(U) is the dual of a normed space (see [14] and [26]), and this defines the
weak∗ topology of BD(U). A sequence uk converges to u weakly∗ in BD(U) if and only if
uk → u strongly in L1(U ;Rn) and Euk

∗
⇀ Eu weakly∗ in Mb(U ;Mn×n

sym ). For the general
properties of BD(U) we refer to [25]. If U is a bounded open set with Lipschitz boundary,
then

u ∈ L1(U ;Rn) and Eu ∈ L2(U ;Mn×n
sym ) =⇒ u ∈ H1(U ;Rn) . (2.2)

This can be obtained arguing as in the proof of [25, Chapter I, Proposition 1.1].
We will use boldface letters to denote functions defined in an interval [a, b] ⊂ R and

with values in a possibly infinite dimensional Banach space Y . We recall that a function
f : [a, b] → Y is said to be absolutely continuous if for every ε > 0 there exists δ > 0 such
that

∑
i ‖f(ti) − f(si)‖Y < ε, whenever a ≤ s1 < t1 ≤ s2 < t2 ≤ · · · ≤ sk < tk ≤ b and∑

i(ti − si) < δ . The space of these functions is denoted by AC([0, T ];Y ). For the general
properties of absolutely continuous functions with values in reflexive Banach spaces we refer
to [1, Appendix]. When Y is the dual of a separable Banach space, one can prove (see [5,
Theorem 7.1]) that the weak∗ limit

ḟ(t) := w∗- lim
s→t

f(s)− f(t)
s− t

(2.3)

exists for L1 -a.e. t ∈ [a, b] . Note that in this general situation it may happen that ḟ is not
Bochner integrable. If ϕ : [c, d] → [a, b] is nondecreasing and absolutely continuous, then
the function g(s) := f(ϕ(s)) is absolutely continuous and

ġ(s) = f̂(ϕ(s))ϕ̇(s) for L1-a.e. s ∈ [c, d], (2.4)

where f̂(t) = ḟ(t) if the derivative (2.3) exists, while f̂(t) = 0 otherwise. It follows that
∫ d

c

h(ϕ(s))ϕ̇(s) ds =
∫ ϕ(d)

ϕ(c)

h(t) dt (2.5)
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for every h ∈ L1([a, b];Y ). Indeed, the derivatives with respect to d of both sides in (2.5)
coincide L1 -a.e. by (2.4).

The reference configuration. Throughout the paper the reference configuration Ω is a
bounded connected open set in Rn , n ≥ 2, with Lipschitz boundary ∂Ω = Γ0 ∪ Γ1 ∪N . We
assume that Γ0 and Γ1 are relatively open, Γ0 ∩ Γ1 = Ø, Γ0 6= Ø, and Hn−1(N) = 0.

On Γ0 we will prescribe a Dirichlet boundary condition. This will be done by assigning
a function w ∈ H1/2(∂Ω;Rn), or, equivalently, a function w ∈ H1(Ω;Rn), whose trace on
Γ0 (also denoted by w ) is the prescribed boundary value. The set Γ1 will be the part of
the boundary on which the traction is prescribed.

We shall frequently use the following closed linear subspace of H1(Ω;Rn):

H1
Γ0

(Ω;Rn) := {u ∈ H1(Ω;Rn) : u = 0 Hn−1-a.e. on Γ0} . (2.6)

Stress and strain. For a given displacement u ∈ BD(Ω) and a boundary datum w ∈
H1(Ω;Rn), the elastic and plastic strains e ∈ L2(Ω;Mn×n

sym ) and p ∈ Mb(Ω ∪ Γ0;Mn×n
sym )

satisfy the weak kinematic admissibility condition

Eu = e+ p in Ω ,
p = (w − u)¯ νHn−1 on Γ0 ,

(2.7)

where ν is the outer unit normal to ∂Ω. The stress σ ∈ L2(Ω;Mn×n
sym ) is defined by

σ := Ce , (2.8)

where C is the elasticity tensor , considered as a symmetric positive definite linear operator
C : Mn×n

sym → Mn×n
sym . We assume that C is isotropic, so that we have Cξ = 2µξ + λ(trξ)I ,

where λ and µ are the Lamé constants. Let Q : Mn×n
sym → [0,+∞) be the quadratic form

associated with C , defined by
Q(ξ) := 1

2Cξ : ξ

It turns out that there exist two constants αQ and βQ , with 0 < αQ ≤ βQ < +∞ , such
that

αQ|ξ|2 ≤ Q(ξ) ≤ βQ|ξ|2 (2.9)

for every ξ ∈Mn×n
sym . These inequalities imply

|Cξ| ≤ 2βQ|ξ| . (2.10)

The stored elastic energy Q : L2(Ω;Mn×n
sym ) → R is given by

Q(e) =
∫

Ω

Q(e(x)) dx = 1
2 〈σ, e〉 .

It is well known that Q is lower semicontinuous on L2(Ω;Mn×n
sym ) with respect to weak

convergence.
If σ ∈ L2(Ω;Mn×n

sym ) and div σ ∈ L2(Ω;Rn), then we can define a distribution [σν] on
∂Ω by

〈[σν], ψ〉∂Ω := 〈div σ, ψ〉Ω + 〈σ,Eψ〉Ω (2.11)

for every ψ ∈ H1(Ω;Rn). It turns out that [σν] ∈ H−1/2(∂Ω;Rn) (see, e.g., [25, Chapter I,
Theorem 1.2]). If, in addition, σ ∈ L∞(Ω;Mn×n

sym ) and div σ ∈ Ln(Ω;Rn), then (2.11) holds
for ψ ∈ W 1,1(Ω;Rn). By Gagliardo’s extension result [10, Theorem 1.II], it is easy to see
that in this case [σν] ∈ L∞(∂Ω;Rn) and that

[σkν] ⇀ [σν] weakly∗ in L∞(∂Ω;Rn), (2.12)

whenever σk ⇀ σ weakly∗ in L∞(Ω;Mn×n
sym ) and div σk ⇀ div σ weakly in Ln(Ω;Rn).
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Let u ∈ BD(Ω), w ∈ H1(Ω;Rn), e ∈ L2(Ω;Mn×n
sym ), and p ∈Mb(Ω∪Γ0;Mn×n

sym ) such that
(2.7) holds. According to [3, Section 3], for every σ ∈ L∞(Ω;Mn×n

sym ) with div σ ∈ Ln(Ω;Rn)
we can define the distribution [σ : p] on Ω by setting

〈[σ : p], ϕ〉 := −〈ϕu, div σ〉 − 〈σ, u¯∇ϕ〉 − 〈σ, ϕe〉
for every ϕ ∈ C∞c (Ω). It turns out that [σ : p] does not depend on the functions u , w , e
satisfying (2.7), and that [σ : p] is a bounded Radon measure on Ω. As in [3, Section 3] we
extend the definition of [σ : p] by setting

[σ : p] := [σν] · (w − u)Hn−1 on Γ0 ,

so that [σ : p] ∈Mb(Ω ∪ Γ0), and we define

〈σ, p〉 := [σ : p](Ω ∪ Γ0). (2.13)

It follows from [3, formula (3.9)] that

|〈σ, p〉| ≤ ‖σ‖∞‖p‖1. (2.14)

The following proposition provides a useful integration-by-parts formula.

Proposition 2.1. Let σ ∈ L∞(Ω;Mn×n
sym ) , u ∈ BD(Ω) , w ∈ H1(Ω;Rn) , e ∈ L2(Ω;Mn×n

sym ) ,
p ∈Mb(Ω∪Γ0;Mn×n

sym ) , f ∈ Ln(Ω;Rn) , g ∈ L∞(Γ1;Rn) . Assume that (2.7) holds, −div σ =
f in Ω , and that [σν] = g on Γ1 . Then

〈[σ : p], ϕ〉+ 〈ϕσ, e− Ew〉+ 〈σ, (u− w)¯∇ϕ〉 = 〈f, ϕ(u− w)〉Ω + 〈g, ϕ(u− w)〉Γ1 (2.15)

for every ϕ ∈ C1(Ω) . Moreover

〈σ, p〉+ 〈σ, e− Ew〉 = 〈f, u− w〉Ω + 〈g, u− w〉Γ1 . (2.16)

Proof. See [3, Proposition 3.2]. ¤

The following closed linear subspace of L2(Ω;Mn×n
sym ) will be used in our proofs:

Σ0(Ω) := {σ ∈ L2(Ω;Mn×n
sym ) : div σ = 0 in Ω, [σν] = 0 on Γ1}. (2.17)

It turns out that
Σ0(Ω)⊥ = {Eϕ : ϕ ∈ H1

Γ0
(Ω;Rn)} , (2.18)

since the latter space is closed in L2(Ω;Mn×n
sym ) as a consequence of Poincaré’s and Korn’s

inequalities.

The constraint set and its support function. Let K be a closed convex cone in
Mn×n

sym×[0,+∞) with nonempty interior. For every ζ ∈ [0,+∞) we define the closed convex
set K(ζ) by

K(ζ) := {σ ∈Mn×n
sym : (σ, ζ) ∈ K} . (2.19)

When ζ > 0 the set K(ζ) has nonempty interior and

K(ζ) = ζ K(1) . (2.20)

We assume that 0 ∈ K(1), hence

0 ∈ K(ζ) for every ζ ∈ [0,+∞) , (2.21)

and that
|σ| ≤MKζ for every (σ, ζ) ∈ K (2.22)

for a suitable constant MK < +∞ . Since K is a convex cone, (2.21) implies that

0 ≤ ζ1 ≤ ζ2 =⇒ K(ζ1) ⊂ K(ζ2) . (2.23)

For every closed convex set C ⊂ Mn×n
sym let πC : Mn×n

sym → C be the minimal distance
projection onto C . It follows from (2.20) that

πK(ζ)(σ) = ζπK(1)

(σ
ζ

)
(2.24)
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for every ζ > 0 and every σ ∈Mn×n
sym .

Lemma 2.2. The map (σ, ζ) 7→ πK(ζ)(σ) from Mn×n
sym×[0,+∞) into Mn×n

sym satisfies the
Lipschitz estimate

|πK(ζ2)(σ2)− πK(ζ1)(σ1)| ≤ |σ2 − σ1|+ 2MK |ζ2 − ζ1| (2.25)

for every (σ1, ζ1), (σ2, ζ2) ∈Mn×n
sym×[0,+∞) .

Proof. See [4, Lemma 2.1]. ¤

Let H : Mn×n
sym×[0,+∞) be defined by

H(ξ, ζ) = sup
σ∈K(ζ)

σ : ξ , (2.26)

so that H(·, ζ) is the support function of K(ζ). By (2.20) for every (ξ, ζ) ∈Mn×n
sym×[0,+∞)

we have
H(ξ, ζ) = ζH(ξ, 1) . (2.27)

For every ζ ∈ [0,+∞) the function ξ 7→ H(ξ, ζ) is convex and positively one-homogeneous
on Mn×n

sym . In particular, it satisfies the triangle inequality

H(ξ1 + ξ2, ζ) ≤ H(ξ1, ζ) +H(ξ2, ζ) (2.28)

for every ξ1, ξ2 ∈ Mn×n
sym and every ζ ∈ [0,+∞). From (2.21), (2.22), and (2.27) it follows

that

0 ≤ H(ξ, ζ) ≤MKζ|ξ| , (2.29)
|H(ξ2, ζ)−H(ξ1, ζ)| ≤MKζ|ξ2 − ξ1| , (2.30)
|H(ξ, ζ2)−H(ξ, ζ1)| ≤MK |ξ||ζ2 − ζ1| , (2.31)

for every ξ, ξ1, ξ2 ∈Mn×n
sym and every ζ, ζ1, ζ2 ∈ [0,+∞).

Stress constraint and plastic dissipation. Given ζ ∈ C0(Ω)+ , we define

K(ζ) := {σ ∈ L∞(Ω;Mn×n
sym ) : σ(x) ∈ K(ζ(x)) for Ln-a.e. x ∈ Ω} . (2.32)

When ζ is the internal variable, K(ζ) is the corresponding stress constraint. For every
closed convex set C ⊂ L2(Ω;Mn×n

sym ), let πC : L2(Ω;Mn×n
sym ) → C be the minimal distance

projection onto C . For every σ ∈ L2(Ω;Mn×n
sym ) we define

d2(σ, C) := ‖σ − πC(σ)‖2 , (2.33)

the L2 -distance from σ to C . It is easy to see that, if σ ∈ L2(Ω;Mn×n
sym ), then

σ̂ = πK(ζ)σ ⇐⇒ σ̂(x) = πK(ζ(x))(σ(x)) for Ln-a.e. x ∈ Ω . (2.34)

Using the theory of convex functions of measures developed in [11], we introduce the
functional H : Mb(Ω ∪ Γ0;Mn×n

sym )×C0(Ω)+ → R defined by

H(p, ζ) :=
∫

Ω∪Γ0

H( dp
dλ (x), ζ(x)) dλ(x) , (2.35)

where λ ∈ Mb(Ω ∪ Γ0)+ is any measure such that p ¿ λ ; note that the homogeneity
of H with respect to ξ implies that the integral does not depend on λ . In particular, if
p ∈ L2(Ω;Mn×n

sym ), we have

H(p, ζ) =
∫

Ω

H(p(x), ζ(x)) dx .

When p is the rate of plastic strain and ζ the internal variable, H represents the rate of
plastic dissipation.
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For every p ∈ L2(Ω;Mn×n
sym ) and ζ ∈ C0(Ω)+ the symbol ∂pH(p, ζ) denotes the subdif-

ferential in L2(Ω;Mn×n
sym ) of H(·, ζ) at p . Using [21, Corollary 23.5.3] and [9, Proposition

IX.2.1] it is easy to show that
∂pH(0, ζ) = K(ζ) . (2.36)

As H(p, ζ) is positively homogeneous with respect to p we have

∂pH(p, ζ) ⊂ ∂pH(0, ζ) = K(ζ) (2.37)

for every p ∈ L2(Ω;Mn×n
sym ) and every ζ ∈ C0(Ω)+ .

To prepare our treatment of the viscoplastic approximation, for every ε > 0 we introduce
the function Hε : Mn×n

sym×[0,+∞) → R defined as

Hε(ξ, ζ) = H(ξ, ζ) + ε
2 |ξ|2, (2.38)

and the corresponding integral functional Hε : L2(Ω;Mn×n
sym )×C0(Ω)+ → R defined by

Hε(p, ζ) :=
∫

Ω

Hε(p(x), ζ(x)) dx .

Its subdifferential ∂pHε with respect to p satisfies the equality

∂pHε(p, ζ) = ∂pH(p, ζ) + εp (2.39)

for every (p, ζ) ∈ L2(Ω;Mn×n
sym )×C0(Ω)+ .

The convex conjugate H∗
ε : Mn×n

sym×[0,+∞) → R of Hε with respect to ξ is defined by

H∗
ε (σ, ζ) := sup

ξ∈Mn×n
sym

{σ : ξ −Hε(ξ, ζ)} .

Since the convex conjugate H∗ of H with respect to ξ satisfies H∗(σ, ζ) = 0 for σ ∈ K(ζ)
and H∗(σ, ζ) = +∞ for σ 6∈ K (see [21, Theorem 13.2]), using [21, Theorem 16.4] one can
prove that

H∗
ε (σ, ζ) = 1

2ε |σ − πK(ζ)(σ)|2 . (2.40)

This implies that H∗
ε is differentiable with respect to σ , and that its gradient is given by

∂σH
∗
ε (σ, ζ) = Nε

K(σ, ζ) := 1
ε

(
σ − πK(ζ)(σ)

)
. (2.41)

Note that Nε
K(σ, ζ) is Lipschitz continuous on Mn×n

sym×[0,+∞) by Lemma 2.2
Let H∗ε : L2(Ω;Mn×n

sym )×C0(Ω)+ → R be the convex conjugate of Hε with respect to p ,
and let N ε

K : L2(Ω;Mn×n
sym )×C0(Ω)+ → L2(Ω;Mn×n

sym ) be defined by

N ε
K(σ, ζ) := 1

ε

(
σ − πK(ζ)(σ)

)
. (2.42)

It follows from (2.34) that

p = N ε
K(σ, ζ) ⇐⇒ p(x) = Nε

K(σ(x), ζ(x)) for Ln-a.e. x ∈ Ω , (2.43)

so that N ε
K : L2(Ω;Mn×n

sym )×C0(Ω)+ → L2(Ω;Mn×n
sym ) is Lipschitz continuous. By a general

property of integral functionals (see, e.g., [9, Proposition IX.2.1]) we have

H∗ε(σ, ζ) =
∫

Ω

H∗
ε (σ(x), ζ(x)) dx ,

so that, by the Dominated Convergence Theorem and by (2.43), its gradient ∂σH∗ε(σ, ζ)
with respect to σ satisfies

∂σH∗ε(σ, ζ) = N ε
K(σ, ζ) Ln-a.e. in Ω . (2.44)

The internal variables. There are two internal variables z ∈ C0(Ω) and ζ ∈ C0(Ω)+ .
They are linked by the equality

ζ := V (z) , (2.45)
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where V : R → (0,+∞) is a globally Lipschitz nondecreasing function. We assume that
there exists a constant ζm > 0 such that

V (z) ≥ ζm for every z ∈ R . (2.46)

The evolution law for the internal variable is nonlocal and involves a convolution. Let
ρ ∈ C1

c (Rn)+ be a fixed kernel with
∫

Rn

ρ(x) dx = 1 . (2.47)

For µ ∈Mb(Ω ∪ Γ0), the convolution ρ ? µ is defined for every x ∈ Ω by

(ρ ? µ)(x) :=
∫

Ω∪Γ0

ρ(x− y) dµ(y) . (2.48)

It is clear that ρ ? µ ∈ C1(Ω) and that

‖ρ ? µ‖∞ ≤ ‖ρ‖∞‖µ‖1 and ‖∇(ρ ? µ)‖∞ ≤ ‖∇ρ‖∞‖µ‖1 , (2.49)

hence the linear map µ 7→ ρ ? µ is continuous from Mb(Ω ∪ Γ0) to C1(Ω).

The data of the problem. We assume that the body force f(t), the surface force g(t),
and the prescribed boundary displacement w(t) satisfy the following assumptions:

f ∈ H1
loc([0,+∞);Ln(Ω;Rn)) ,

g ∈ H1
loc([0,+∞);L∞(Γ1;Rn)) ,

w ∈ H1
loc([0,+∞);H1(Ω;Rn)) .

(2.50)

For every t ∈ [0,+∞) the total load L(t) ∈ BD(Ω)′ applied at time t is defined by

〈L(t), u〉 = 〈f(t), u〉Ω + 〈g(t), u〉Γ1 for every u ∈ BD(Ω) . (2.51)

Under our assumptions L belongs to H1
loc([0,+∞);BD(Ω)′) and its time derivative is given

by

〈L̇(t), u〉 = 〈ḟ(t), u〉Ω + 〈ġ(t), u〉Γ1 for every u ∈ BD(Ω) . (2.52)

Throughout the paper we will assume also the following uniform safe-load condition:
there exist a function χ ∈ H1

loc([0,+∞);L2(Ω;Mn×n
sym )) and a constant r0 > 0 such that

−divχ(t) = f(t) in Ω and [χ(t)ν] = g(t) on Γ1 for every t ∈ [0,+∞) , (2.53)
B(χ(t, x), r0) ⊂ K(ζm) for every t ∈ [0,+∞) and Ln-a.e. x ∈ Ω , (2.54)

χ̇(t) ∈ L∞(Ω;Mn×n
sym ) for L1-a.e. t ∈ [0,+∞) , (2.55)

t 7→ ‖χ̇(t)‖∞ belongs to L1
loc([0,+∞)) , (2.56)

where χ(t, x) denotes the value of χ(t) at x ∈ Ω, and B(σ, r) denotes the open ball in
Mn×n

sym with centre σ and radius r . By (2.23) inclusion (2.54) implies

H(ξ, ζ) ≥ χ(t, x) : ξ + r0|ξ| (2.57)

for Ln -a.e. x ∈ Ω and every(ξ, ζ) ∈Mn×n
sym×[ζm,+∞).

3. The viscoplastic solutions

In this section, given a viscosity paramater ε > 0, we study the existence of a solution to
the Perzyna-type viscoplastic evolution problem (see, e.g., [29, Section 1.2.(ii)]) correspond-
ing to Cam-Clay plasticity.
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Definition 3.1. Let f , g , and w be as in (2.50), let u0 ∈ H1(Ω;Rn), e0 ∈ L2(Ω;Mn×n
sym ),

p0 ∈ L2(Ω;Mn×n
sym ), z0 ∈ C0(Ω), and let ε > 0. An ε-viscoplastic evolution with data f ,

g , and w , and initial condition (u0, e0, p0, z0) is a function (uε, eε,pε,zε), with

uε ∈ H1
loc([0,+∞);H1(Ω;Rn)) , eε ∈ H1

loc([0,+∞);L2(Ω;Mn×n
sym )) ,

pε ∈ H1
loc([0,+∞);L2(Ω;Mn×n

sym )) , zε ∈ H1
loc([0,+∞);L2(Ω)),

zε(t) ∈ C0(Ω) for every t ∈ [0,+∞) ,
(3.1)

such that, setting
σε(t) := Ceε(t) and ζε(t) := V (zε(t)) , (3.2)

the following conditions are satisfied:

(ev0)ε initial condition: (uε(0),eε(0),pε(0),zε(0)) = (u0, e0, p0, z0);
(ev1)ε kinematic admissibility: for every t ∈ [0,+∞)

Euε(t) = eε(t) + pε(t) Ln-a.e. in Ω ,
uε(t) = w(t) Hn−1-a.e. in Γ0 ;

(3.3)

(ev2)ε equilibrium condition: for every t ∈ [0,+∞)

−divσε(t) = f(t) in Ω , [σε(t)ν] = g(t) on Γ1. (3.4)

(ev3)ε regularized flow rule: for L1 -a.e. t ∈ [0,+∞)

ṗε(t) = N ε
K(σε(t), ζε(t)) Ln-a.e. in Ω , (3.5)

where N ε
K is defined by (2.42).

(ev4)ε evolution law for the internal variable: for L1 -a.e. t ∈ [0,+∞)

żε(t) = ρ ?
(
aε(t) tr ṗε(t)

) Ln-a.e. in Ω , (3.6)

where
aε(t) := ρ ? trσε(t) . (3.7)

Remark 3.2. Let us fix t ∈ [0,+∞) such that the derivatives ṗε(t) exists. Then the
following conditions are equivalent:

ṗε(t) = N ε
K(σε(t), ζε(t)) Ln-a.e. in Ω , (3.8)

σε(t) ∈ ∂pHε(ṗε(t), ζε(t)) Ln-a.e. in Ω , (3.9)
σε(t)− εṗε(t) ∈ ∂pH(ṗε(t), ζε(t)) Ln-a.e. in Ω . (3.10)

Indeed, by (2.44) we have ∂σH∗ε(σε(t), ζε(t)) = N ε
K(σε(t), ζε(t)), so that (3.8) and (3.9)

are equivalent by a standard property of conjugate functions (see, e.g., [9, Corollary I.5.2]).
The equivalence between (3.9) and (3.10) follows immediately from (2.39).

To prove the existence of an ε-viscoplastic evolution we will use a fixed point argument.
To this end, in the next theorem we prove existence and continous dependence on the data
for a similar problem with prescribed ζ .

Theorem 3.3. Let ζ ∈ C0([0,+∞);L2(Ω)+) and let f , g , w , u0 , e0 , p0 , ε be as in
Definition 3.1. Assume that (u0, e0, p0) satisfies the kinematic admissibility condition at
t = 0 :

Eu0 = e0 + p0 Ln-a.e. in Ω ,
u0 = w(0) Hn−1-a.e. in Γ0 ,

(3.11)

and that the safe load condition (2.53)-(2.56) holds. Then there exists a unique function
(uζ

ε ,e
ζ
ε ,p

ζ
ε ) , with

uζ
ε ∈ H1

loc([0,+∞);H1(Ω;Rn)) , eζ
ε ∈ H1

loc([0,+∞);L2(Ω;Mn×n
sym )) ,

pζ
ε ∈ H1

loc([0,+∞);L2(Ω;Mn×n
sym )) , (3.12)
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such that setting
σζ

ε (t) = Ceζ
ε (t),

the following conditions are satisfied:

(ev0)ζε initial condition: (uζ
ε (0),eζ

ε (0),pζ
ε (0)) = (u0, e0, p0) ;

(ev1)ζε kinematic admissibility: for every t ∈ [0,+∞)

Euζ
ε (t) = eζ

ε (t) + pζ
ε (t) Ln-a.e. in Ω ,

uζ
ε (t) = w(t) Hn−1-a.e. in Γ0 ;

(3.13)

(ev2)ζε equilibrium condition: for every t ∈ [0,+∞)

−divσζ
ε (t) = f(t) in Ω , [σζ

ε (t)ν] = g(t) on Γ1. (3.14)

(ev3)ζε regularized flow rule: for L1 -a.e. t ∈ [0,+∞)

ṗζ
ε (t) = N ε

K(σζ
ε (t), ζ(t)) Ln-a.e. in Ω , (3.15)

where N ε
K is defined by (2.42).

Since the right-hand side of (3.15) belongs to C0([0,+∞), L2(Ω,Mn×n
sym )) by (2.25), it follows

that
pζ

ε ∈ C1([0,+∞), L2(Ω,Mn×n
sym )) . (3.16)

Moreover, for every T > 0 there exists a constant Cε,T such that

max
t∈[0,T ]

‖σζ1
ε (t)− σζ2

ε (t)‖2 ≤ Cε,T max
t∈[0,T ]

‖ζ1(t)− ζ2(t)‖2 (3.17)

max
t∈[0,T ]

‖ṗζ1
ε (t)− ṗζ2

ε (t)‖2 ≤ Cε,T max
t∈[0,T ]

‖ζ1(t)− ζ2(t)‖2 (3.18)

for every ζ1 , ζ2 in C0([0,+∞);L2(Ω)+) .

Proof. Let A := C−1 . If a triple (uζ
ε , e

ζ
ε ,p

ζ
ε ) satisfies conditions (ev0)ζε -(ev3)ζε , then for

L1 -a.e. t ∈ [0,+∞)

Eu̇ζ
ε (t)− Aσ̇ζ

ε (t) = N ε
K(σζ

ε (t), ζ(t)) Ln-a.e. in Ω . (3.19)

Let us define τ ζ
ε ∈ H1

loc([0,+∞);L2(Ω;Mn×n
sym )) by

τ ζ
ε (t) := σζ

ε (t)− χ(t). (3.20)

By (2.17), (2.53), and (3.14) we have τ ζ
ε (t) ∈ Σ0(Ω) for every t ∈ [0,+∞) and hence,

integrating by parts, for L1 -a.e. t ∈ [0,+∞) we obtain

〈Aτ̇ ζ
ε (t), σ̂〉 = −〈N ε

K(χ(t) + τ ζ
ε (t), ζ(t)), σ̂〉+ 〈Eẇ(t)− Aχ̇(t), σ̂〉 (3.21)

for every σ̂ ∈ Σ0(Ω). The initial condition for τ ζ
ε is given by

τ ζ
ε (0) = σ0 − χ(0) , (3.22)

where σ0 := Ce0 .
Conversely, assume that τ ζ

ε ∈ H1
loc([0,+∞); Σ0(Ω)) and that (3.21) holds for L1 -a.e.

t ∈ [0,+∞). If we define σζ
ε (t) through (3.20), then (3.14) follows from (2.53). Moreover,

for L1 -a.e. t ∈ [0,+∞), we obtain by (3.21) that Aσ̇ζ
ε (t) + N ε

K(σζ
ε (t), ζ(t)) − Eẇ(t) are

orthogonal to Σ0(Ω) in L2(Ω;Mn×n
sym ). Therefore, by (2.18), for L1 -a.e. t ∈ [0,+∞) there

exists vζ
ε (t) ∈ H1

Γ0
(Ω;Rn) such that Evζ

ε (t) = Aσ̇ζ
ε (t) +N ε

K(σζ
ε (t), ζ(t)) − Eẇ(t) Ln -a.e.

in Ω. If we define

uζ
ε (t) := w(t) +

∫ t

0

vζ
ε (τ) dτ + u0 −w(0) , eζ

ε (t) = Aσζ
ε (t) , pζ

ε (t) := Euζ
ε (t)− eζ

ε (t) ,

then the triple (uζ
ε ,e

ζ
ε ,p

ζ
ε ) satisfies conditions (ev1)ζε -(ev3)ζε . If, in addition, (3.22) holds,

then the initial condition (ev0)ζε is satisfied.
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We assume for the moment that

ζ ∈ Liploc([0,+∞);L2(Ω)+) and χ ∈ Liploc([0,+∞);L2(Ω;Mn×n
sym ))

(we do not need conditions (2.54)-(2.56)), and we apply the arguments of [29] with

ϕ(x, t, σ) := H∗
ε (ζ(t, x), σ + χ(t, x)) ,

where H∗
ε is defined by (2.40), while ζ(t, x) and χ(t, x) denote the values of ζ(t) and χ(t)

at x ∈ Ω. Note that

∂σϕ(x, t, σ) = 1
ε (σ + χ(t, x)− πK(ζ(t,x))(σ + χ(t, x))) .

The Lipschitz continuity conditions (22) and (24) of [29] follow from the Lipschitz continuity
of ζ and χ , thanks to Lemma 2.2. Following the arguments of [29, Section 1.4] it is possible
to prove that there exists a unique solution of problem (3.21) with initial condition (3.22).

We now prove the existence result for a general ζ ∈ C0([0,+∞);L2(Ω)+) and χ ∈
H1

loc([0,+∞);L2(Ω;Mn×n
sym )) satisfying (2.53). Let us fix T > 0. Consider two sequences

ζk ∈ Lip([0, T ];L2(Ω)+) and χk ∈ Lip([0, T ];L2(Ω;Mn×n
sym )) such that

ζk → ζ in C0([0, T ];L2(Ω)) , χk → χ in H1([0, T ];L2(Ω;Mn×n
sym )) ,

and χk(0) = χ(0) for every k . Let σk be the corresponding solutions, with initial conditions
σk(0) = σ0 , and let τ k := σk − χk . Subtracting (3.21) corresponding to τh and τ k and
taking σ̂ = τh(t)− τ k(t) as test function we obtain

d
dt

1
2‖τh(t)− τ k(t)‖2A = −〈N ε

K(σh(t), ζh(t))−N ε
K(σk(t), ζk(t)), τh(t)− τ k(t)〉 −

− 〈χ̇h(t)− χ̇k(t), τh(t)− τ k(t)〉A,
where 〈σ, τ〉A := 〈Aσ, τ〉 and ‖ · ‖A is the corresponding norm. By (2.9) and Lemma 2.2

d
dt

1
2‖τh(t)− τ k(t)‖2A ≤

≤ C
[‖χh(t)− χk(t)‖2 + ‖τh(t)− τ k(t)‖A + ‖ζh(t)− ζk(t)‖2

]‖τh(t)− τ k(t)‖A +
+ ‖χ̇h(t)− χ̇k(t)‖A‖τh(t)− τ k(t)‖A ,

where C is a constant depending on αQ , βQ , and MK . Taking into account the uniform
convergence of ζk and χk , and the L2 -convergence of χ̇k , by Gronwall inequality we
get that σk(t) is a Cauchy sequence in C0([0, T ];L2(Ω;Mn×n

sym )). Thus there exists σ ∈
C0([0, T ];L2(Ω;Mn×n

sym )) such that

σk → σ in C0([0, T ];L2(Ω;Mn×n
sym )). (3.23)

To prove the convergence of the time derivatives σ̇k we subtract (3.21) corresponding to
τh and τ k and take σ̂ = τ̇h(t)− τ̇ k(t) as test function . We obtain

‖τ̇h(t)− τ̇ k(t)‖2A = −〈N ε
K(σh(t), ζh(t))−N ε

K(σk(t), ζk(t)), τ̇h(t)− τ̇ k(t)〉 −
−〈χ̇h(t)− χ̇k(t), τ̇h(t)− τ̇ k(t)〉A.

By (2.9) and Lemma 2.2

‖τ̇h(t)− τ̇ k(t)‖A ≤
√

2βQ

ε
√

αQ

[‖σh(t)− σk(t)‖2 + 2MK‖ζh(t)− ζk(t)‖2
]
+ ‖χ̇h(t)− χ̇k(t)‖A.

Thus σ̇k is a Cauchy sequence in L2([0, T ];L2(Ω;Mn×n
sym )). This implies that σ belongs to

H1([0, T ];L2(Ω;Mn×n
sym )) and σk → σ strongly in H1([0, T ];L2(Mn×n

sym )). Therefore we can
pass to the limit in the equations satisfied by σk and we conclude that σ satisfies (3.21)
and (3.22).

To prove uniqueness and estimate (3.17) we consider two solutions σ1 and σ2 correspond-
ing to ζ1 and ζ2 in C0([0, T ];L2(Ω;Mn×n

sym )), respectively. Subtracting (3.21) corresponding
to τ 1 := σ1 − χ and τ 2 := σ2 − χ , taking σ̂ = σ1(t) − σ2(t) as test function, and using
Lemma 2.2 we obtain

d
dt

1
2‖σ1(t)− σ2(t)‖2A ≤ 1

ε

[‖σ1(t)− σ2(t)‖2 + 2MK‖ζ1(t)− ζ2(t)‖2
]‖σ1(t)− σ2(t)‖2.
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To get (3.17) it is enough to apply Gronwall inequality. The other inequality (3.18) follows
from (ev3)ζε using (2.25) and (3.17). ¤

The following theorem shows that the modified flow rule (ev3)ε can be replaced by a
suitable stress constraint and an energy-dissipation balance.

Theorem 3.4. Let ζ ∈ C0([0,+∞);L2(Ω)+) and let f , g , w , u0 , e0 , p0 , ε be as in
Definition 3.1. Assume that the safe load condition (2.53)-(2.56) holds. Let (uζ

ε , e
ζ
ε ,p

ζ
ε ) be

a function satisfying (3.12), the initial condition (ev0)ε , the kinematic admissibility (ev1)ζ
ε ,

and the equilibrium condition (ev2)ζ
ε of Theorem 3.3, with σζ

ε (t) := Ceζ
ε (t) .

Then (uζ
ε , e

ζ
ε ,p

ζ
ε ) satisfies the regularized flow rule (ev3)ζ

ε of Theorem 3.3 if and only if
the following properties are simultaneously satisfied:

(ev3 ′)ζε modified stress constraint: for L1 -a.e. t ∈ [0,+∞)

σζ
ε (t)− εṗζ

ε (t) ∈ K(ζ(t)) ; (3.24)

(ev3 ′′)ζε energy-dissipation balance: for every T > 0 we have

Q(eζ
ε (T ))−Q(e0) +

∫ T

0

(
H(ṗζ

ε (t), ζ(t))− 〈χ(t), ṗζ
ε (t)〉

)
dt+ ε

∫ T

0

‖ṗζ
ε (t)‖22 dt =

=
∫ T

0

〈σζ
ε (t)− χ(t), Eẇ(t)〉 dt−

∫ T

0

〈χ̇(t),eζ
ε (t)〉 dt+ 〈χ(T ), eζ

ε (T )〉 − 〈χ(0), e0〉 .
(3.25)

Proof. Suppose that (uζ
ε , e

ζ
ε ,p

ζ
ε ) satisfies (ev3)ζε . By (2.37) we have ∂pH(ṗζ

ε (t), ζ(t)) ⊂
K(ζ(t)). Therefore (3.10) implies (ev3 ′)ζε .

Since H(·, ζ) is convex and positively homogeneous of degree one, the Euler relation gives
〈σ, p〉 = H(p, ζ) whenever σ ∈ ∂pH(p, ζ). Therefore, (3.10) implies

H(ṗζ
ε (t), ζ(t)) = 〈σζ

ε (t)− εṗζ
ε (t), ṗζ

ε (t)〉 , (3.26)

which is equivalent to

H(ṗζ
ε (t), ζ(t)) + ε‖ṗζ

ε (t)‖22 = 〈σζ
ε (t), ṗζ

ε (t)〉 . (3.27)

By (3.13) we have

〈σζ
ε (t), ṗζ

ε (t)〉 = 〈σζ
ε (t), Eu̇ζ

ε (t)〉 − 〈σζ
ε (t), ėζ

ε (t)〉 . (3.28)

Since u̇ζ
ε (t)− ẇ(t) ∈ H1

Γ0
(Ω;Rn) by (3.13), using (2.53) and (3.14) we obtain

〈σζ
ε (t), Eu̇ζ

ε (t)〉 = 〈σζ
ε (t), Eẇ(t)〉+ 〈χ(t), Eu̇ζ

ε (t)〉 − 〈χ(t), Eẇ(t)〉 . (3.29)

Combining (3.27), (3.28), and (3.29), we deduce that

〈σζ
ε (t), ėζ

ε (t)〉+H(ṗζ
ε (t), ζ(t)) + ε‖ṗζ

ε (t)‖22 = 〈σζ
ε (t)− χ(t), Eẇ(t)〉+ 〈χ(t), Eu̇ζ

ε (t)〉 .
By (3.13) we have

〈σζ
ε (t), ėζ

ε (t)〉+H(ṗζ
ε (t), ζ(t))− 〈χ(t), ṗζ

ε (t)〉+ ε‖ṗζ
ε (t)‖22 =

= 〈σζ
ε (t)− χ(t), Eẇ(t)〉+ d

dt 〈χ(t),eζ
ε (t)〉 − 〈χ̇(t), eζ

ε (t)〉 . (3.30)

The energy-dissipation balance (ev3 ′′)ζε can be obtained from (3.30) by integration.
Conversely, assume that (uζ

ε ,e
ζ
ε ,p

ζ
ε ) satisfies conditions (ev3 ′)ζε and (ev3 ′′)ζε . By differ-

entiating (ev3 ′′)ζε we obtain (3.30). Thanks to (3.28) and (3.29), from (3.30) we deduce
(3.27), which is equivalent to (3.26). By (ev3 ′)ζε for L1 -a.e. t ∈ (0,+∞) we have

σζ
ε (t)− εṗζ

ε (t) ∈ K(ζ(t)) = ∂pH(0, ζ(t)) . (3.31)

Since H(·, ζ(t)) is convex and H(0, ζ(t)) = 0, condition (3.10) follows easily from (3.26)
and (3.31). ¤
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Theorem 3.5. Let f , g , w , u0 , e0 , p0 , ε be as in Definition 3.1. Assume that (u0, e0, p0)
satisfies the kinematic admissibility condition (3.11) at t = 0 and that the safe load condition
(2.53)-(2.56) holds. Then there exists an ε-viscoplastic evolution with data f , g , and w
and initial condition (u0, e0, p0, z0) .

Proof. Let us fix T > 0. We will apply a fixed-point argument in C0([0, T ];L2(Ω; Im)),
where Im := [ζm,+∞). Given ζ ∈ C0([0, T ];L2(Ω; Im)), by Theorem 3.3 we can find a
unique function (uζ

ε , e
ζ
ε ,p

ζ
ε ), satisfying (3.12) and (ev0)ζε -(ev3)ζε . Define

aζ
ε (t) := ρ ? trσζ

ε (t) . (3.32)

As trσζ
ε ∈ C0([0, T ];L2(Ω)), we deduce from (2.49) that aζ

ε ∈ C0([0, T ];C1(Ω)). By (3.16)
we have aζ

ε tr ṗζ
ε ∈ C0([0, T ];L2(Ω)), so that (2.49) gives ρ ? (aζ

ε tr ṗζ
ε ) ∈ C0([0, T ];C1(Ω)).

Let zζ
ε ∈ C1([0, T ];C1(Ω)) be defined by

zζ
ε (t) = z0 +

∫ t

0

ρ ? (aζ
ε (τ) tr ṗζ

ε (τ)) dτ . (3.33)

It satisfies

ζ(0) = z0 and żζ
ε (t) = ρ ? (aζ

ε (t) tr ṗζ
ε (t) for every t ∈ [0, T ] .

Let us define the operator G : C0([0, T ];L2(Ω; Im)) → C0([0, T ];L2(Ω; Im)) by

G(ζ) := V (zζ
ε ) . (3.34)

It follows from the definitions that, if ζ is a fixed point of G , then (uζ
ε , e

ζ
ε ,p

ζ
ε ,z

ζ
ε ) is an

ε-viscoplastic evolution with data f , g , and w and initial condition (u0, e0, p0, z0).
To find a fixed point we will apply Schauder’s theorem. In the rest of the proof C will

denote a positive constant, depending only on T , ε , Ω, e0 , w , χ , ρ , αQ , and βQ , which
may change from line to line. By (2.57) and (3.25) in Theorem 3.4 we have

max
t∈[0,T ]

‖eζ
ε (t)‖22 ≤ C + C max

t∈[0,T ]
‖eζ

ε (t)‖2 ,

which implies
max

t∈[0,T ]
‖eζ

ε (t)‖2 ≤ C . (3.35)

Using this inequality in (3.25) and taking into account (2.57), we obtain
∫ T

0

‖ṗζ
ε (t)‖22 dt ≤ C

ε . (3.36)

From (2.49), (3.32), and (3.35) it follows that

max
t∈[0,T ]

‖aζ
ε (t)‖∞ ≤ C . (3.37)

Thus, ‖aζ
ε (t) tr ṗζ

ε (t)‖2 ≤ C‖ṗζ
ε (t)‖2 , and hence, by (2.49),

‖żζ
ε (t)‖∞ ≤ C‖ṗζ

ε (t)‖2 and ‖∇żζ
ε (t)‖∞ ≤ C‖ṗζ

ε (t)‖2 . (3.38)

Inequalities (3.36) and (3.38) imply that the norm of żζ
ε in L2([0, T ];H1(Ω)) is bounded

by a constant independent of ζ . It follows that the norm of zζ
ε − z0 in H1([0, T ];H1(Ω))

uniformly bounded. Therefore

zζ
ε − z0 ∈ C0,1/2([0, T ];H1(Ω)) ,

and its norm is bounded by a constant independent of ζ This implies that there exists a
closed ball B in H1(Ω) such that

zζ
ε − z0 ∈ C0,1/2([0, T ];B) for every ζ ∈ C0([0, T ];L2(Ω; Im)) .

Since B is compact in L2(Ω), the set {zζ
ε : ζ ∈ C0([0, T ];L2(Ω; Im))} is relatively compact

in C0([0, T ];L2(Ω; Im)) by the Arzelà-Ascoli Theorem. Therefore the operator G defined
by (3.34) maps C0([0, T ];L2(Ω; Im)) into a compact subset of C0([0, T ];L2(Ω; Im)).
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To apply Schauder’s Theorem, it is enough to show that the operator G is continu-
ous from C0([0, T ];L2(Ω; Im)) to C0([0, T ];L2(Ω; Im)). The continuity of the map ζ 7→
σζ

ε follows from (3.17). Then (2.49) and (3.32) imply the continuity of ζ 7→ aζ
ε from

C0([0, T ];L2(Ω; Im)) to C0([0, T ];C1(Ω)). Using (2.49) and (3.18) we obtain the continuity
of ζ 7→ ρ ? (aζ

ε tr ṗζ
ε ) from C0([0, T ];L2(Ω; Im)) to C0([0, T ];C1(Ω)). Then (3.33) gives the

continuity of ζ 7→ zζ
ε from C0([0, T ];L2(Ω; Im)) to C1([0, T ];C1(Ω)). The continuity of G

follows now easily from (3.34). ¤

4. Quasistatic evolution

Definition 4.1. Let f , g , and w be as in (2.50), let u0 ∈ BD(Ω), e0 ∈ L2(Ω;Mn×n
sym ),

p0 ∈ Mb(Ω ∪ Γ0;Mn×n
sym ), and z0 ∈ C0(Ω). We say that (u◦, e◦,p◦,z◦, t◦) is a rescaled

viscosity evolution with data f , g , and w and initial condition (u0, e0, p0, z0, 0) if

u◦: [0,+∞) → BD(Ω) is weakly∗ continuous ,
e◦: [0,+∞) → L2(Ω;Mn×n

sym ) is weakly continuous ,
p◦: [0,+∞) →Mb(Ω ∪ Γ0;Mn×n

sym ) is locally Lipschitz ,
z◦: [0,+∞) → C0(Ω)+ is locally Lipschitz ,

t◦: [0,+∞) → [0,+∞) is nondecreasing, surjective, and locally Lipschitz,

(4.1)

and, setting

σ◦(s) := Ce◦(s) and ζ◦(s) := V (z◦(s)) for every s ∈ [0,+∞) , (4.2)

ṗ◦(s) := w∗- lim
h→0

p◦(s+ h)− p◦(s)
h

(w∗-topology of Mb(Ω ∪ Γ0;Mn×n
sym )) , (4.3)

the following conditions are satisfied:

(ev0)◦ Initial condition: (u◦(0),e◦(0),p◦(0), z◦(0), t◦(0)) = (u0, e0, p0, z0, 0).
(ev1)◦ Weak kinematic admissibility : for every s ∈ [0,+∞)

Eu◦(s) = e◦(s) + p◦(s) in Ω ,
p◦(s) = (w(t◦(s))− u◦(s))¯ νHn−1 in Γ0 .

(4.4)

(ev2)◦ Equilibrium condition: for every s ∈ [0,+∞)

−divσ◦(s) = f(t◦(s)) in Ω , [σ◦(s)ν] = g(t◦(s)) on Γ1. (4.5)

(ev3 ′)◦ Partial stress constraint :

σ◦(s) ∈ K(ζ◦(s)) for every s ∈ [0,+∞) \ U◦, (4.6)

where

U◦ := {s ∈ (0,+∞) : t◦ is constant in a neighbourhood of s}. (4.7)

(ev3 ′′)◦ Energy-dissipation balance: for every S ∈ [0,+∞)

Q(e◦(S))−Q(e0) +
∫ S

0

H(ṗ◦(s), ζ◦(s)) ds+
∫ S

0

‖ṗ◦(s)‖2 d2(σ◦(s),K(ζ◦(s))) =

=
∫ S

0

(
〈σ◦(s), Eẇ(t◦(s))〉 − 〈L(t◦(s)), ẇ(t◦(s))〉

)
ṫ◦(s) ds− (4.8)

−
∫ S

0

〈L̇(t◦(s)),u◦(s)〉 ṫ◦(s) ds + 〈L(t◦(S)),u◦(S)〉 − 〈L(0), u0〉 ,

where d2 is defined in (2.33).
(ev3 ′′′)◦ Partial flow-rule: for L1 -a.e. s ∈ [0,+∞) with σ◦(s) /∈ K(ζ◦(s)) we have ṗ◦(s) ∈

L2(Ω;Mn×n
sym ) and

〈σ◦(s)− πK(ζ◦(s))(σ◦(s)), ṗ
◦(s)〉 = ‖ṗ◦(s)‖2 d2(σ◦(s),K(ζ◦(s))) . (4.9)
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(ev4)◦ Evolution law for the internal variable: for L1 -a.e. s ∈ [0,+∞) the strong C0(Ω)-
limit

ż◦(s) := s- lim
h→0

z◦(s+ h)− z◦(s)
h

(4.10)

exists, and

ż◦(s) = ρ ?
(
a◦(s) tr ṗ◦(s)

)
in Ω for L1-a.e. s ∈ (0,+∞) , (4.11)

where
a◦(s) := ρ ? trσ◦(s) .

Remark 4.2. For every ζ ∈ C0(Ω)+ the function s 7→ H(ṗ◦(s), ζ) is measurable on [0,+∞)
by [27, Theorem 3.12]. Approximating s 7→ ζ◦(s) by piecewise constant functions, we find
that s 7→ H(ṗ◦(s), ζ◦(s)) is measurable on [0,+∞), so the first integral in (4.8) makes sense.

Let ϕi be a dense sequence in the unit ball of L2(Ω;Mn×n
sym ), composed of continuous

functions with compact support. Since, taking into account (2.1),

‖ṗ◦(s)‖2 = sup
i
〈ϕi, ṗ

◦(s)〉,

the function s 7→ ‖ṗ◦(s)‖2 is measurable, so the second integral in (4.8) makes sense.

Remark 4.3. Define

A◦ := {s ∈ [0,+∞) : d2

(
σ◦(s),K(ζ◦(s))

)
> 0} . (4.12)

Then (4.9) easily implies that there exists a measurable function λ : A◦→ [0,+∞) such that

ṗ◦(s) = λ(s)
(
σ◦(s)− πK(ζ◦(s))(σ◦(s))

)
(4.13)

for L1 -a.e. s ∈ A◦. This justifies the choice of the name flow-rule for condition (ev3 ′′′)◦ in
Definition 4.1.

Proposition 4.4. Let f , g , and w be as in (2.50). Assume that u◦, e◦, p◦, z◦, and
t◦ satisfy (4.1), (4.4), and (4.5), and that the safe load condition (2.53)-(2.56) holds. For
every s ∈ [0,+∞) let us define

w◦(s) := w(t◦(s)) and χ◦(s) := χ(t◦(s)) . (4.14)

Then (4.8) is equivalent to

Q(e◦(S))−Q(e0) +
∫ S

0

(
H(ṗ◦(s), ζ◦(s)) + 〈χ̇◦(s),p◦(s)〉

)
ds−

− 〈χ◦(S),p◦(S)〉+ 〈χ(0), p0〉+
∫ S

0

‖ṗ◦(s)‖2 d2(σ◦(s),K(ζ◦(s))) ds = (4.15)

=
∫ S

0

〈σ◦(s)− χ◦(s), Eẇ◦(s)〉 ds−
∫ S

0

〈χ̇◦(s), e◦(s)〉 ds+ 〈χ◦(S), e◦(S)〉 − 〈χ(0), e0〉 ,

where 〈χ◦(s),p◦(s)〉 and 〈χ̇◦(s),p◦(s)〉 are defined according to (2.13) for every s ∈ [0,+∞) .

Proof. For every s ∈ [0,+∞) we define f◦(s) := f(t◦(s)), g◦(s) := g(t◦(s)), and L◦(s) :=
L(t◦(s)). Since L◦ ∈ H1

loc([0,+∞);BD(Ω)′) and w◦ ∈ H1
loc([0,+∞);H1(Ω;Rn)), the scalar

function s 7→ 〈L◦(s),w◦(s)〉 belongs to H1
loc([0,+∞)) and its derivative is given by s 7→

〈L̇◦(s),w◦(s)〉+ 〈L◦(s), ẇ◦(s)〉 . Therefore we have

−
∫ S

0

〈L◦(s), ẇ◦(s)〉 ds−
∫ S

0

〈L̇◦(s),u◦(s)〉 ds+ 〈L◦(S),u◦(S)〉 − 〈L◦(0), u0〉 =

=
∫ S

0

〈L̇◦(s),w◦(s)− u◦(s)〉 ds+ 〈L◦(S),u◦(S)−w◦(S)〉 − 〈L◦(0), u0 −w(0)〉 .
(4.16)

By (2.52), for L1 -a.e. s ∈ [0,+∞) we have

〈L̇◦(s),w◦(s)− u◦(s)〉 = 〈ḟ◦(s),w◦(s)− u◦(s)〉+ 〈ġ◦(s),w◦(s)− u◦(s)〉Γ1 . (4.17)
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By (2.55) χ̇◦(s) ∈ L∞(Ω;Mn×n
sym ), while (2.53) gives −div χ̇◦(s) = ḟ

◦
(s) in Ω and [χ̇◦(s)ν] =

ġ◦(s) on Γ1 for L1 -a.e. s ∈ [0,+∞). Therefore we can apply the integration-by-parts
formula (2.16), which together with (4.17) gives

〈L̇◦(s),w◦(s)− u◦(s)〉 = −〈χ̇◦(s),p◦(s)〉 − 〈χ̇◦(s), e◦(s)〉+ 〈χ̇◦(s), Ew◦(s)〉 (4.18)

for L1 -a.e. s ∈ [0,+∞). This proves that s 7→ 〈χ̇◦(s),p◦(s)〉 is measurable; by (2.56) and
by (2.14), we deduce that s 7→ 〈χ̇◦(s),p◦(s)〉 belongs to L1

loc([0,+∞)).
Similarly we prove

〈L◦(s),u◦(s)−w◦(s)〉 = 〈χ◦(s),p◦(s)〉+ 〈χ◦(s),e◦(s)〉 − 〈χ◦(s), Ew◦(s)〉 (4.19)

for every s ∈ [0,+∞). By (4.16), (4.18), and (4.19) we have

−
∫ S

0

〈L◦(s), ẇ◦(s)〉 ds−
∫ S

0

〈L̇◦(s),u◦(s)〉 ds+ 〈L◦(S),u◦(S)〉 − 〈L◦(0), u0〉 =

= −
∫ S

0

〈χ̇◦(s),p◦(s)〉 ds−
∫ S

0

〈χ̇◦(s),e◦(s)〉 ds−
∫ S

0

〈χ◦(s), Eẇ◦(s)〉 ds+

+ 〈χ◦(S),p◦(S)〉 − 〈χ(0), p0〉+ 〈χ◦(S), e◦(S)〉 − 〈χ(0), e0〉.

Therefore (4.8) is equivalent to (4.15). ¤

Theorem 4.5. Assume that the safe load condition (2.53)-(2.56) holds. Let w , u0 , e0 ,
p0 , z0 be as in Definition 4.1, and let

σ0 := Ce0 and ζ0 := V (z0). (4.20)

Assume that the following conditions are satisfied:

(in1) Weak kinematic admissibility:

Eu0 = e0 + p0 in Ω ,
p0 = (w(0)− u0)¯ νHn−1 in Γ0 .

(4.21)

(in2) Equilibrium condition:

−div σ0 = f(0) in Ω , [σ0ν] = g(0) on Γ1. (4.22)

(in3) Stress constraint:
σ0 ∈ K(ζ0). (4.23)

Then there exists a rescaled viscosity evolution with data f , g , and w , and initial condition
(u0, e0, p0, z0, 0) .

The proof will be given in Sections 5, 6, and 8.

5. Proof of Theorem 4.5: Part one

We start with a technical lemma.

Lemma 5.1. Let u ∈ BD(Ω) . Then there exists a sequence uk of Lipschitz functions from
Ω into Rn , with uk = 0 on ∂Ω , such that

uk → u strongly in L1(Ω;Rn), (5.1)
Euk ⇀ (Eu) Ω− u¯ νHn−1 Γ0 weakly∗ in Mb(Ω ∪ Γ0;Rn). (5.2)

Proof. It is enough to prove the theorem in a neighbourhood of each point of ∂Ω: the global
result can be obtained through a partition of unity. Since Ω has Lipschitz boundary, we
may assume that it is the subgraph of a Lipschitz function, i.e.,

Ω := {x ∈ Rn : x̂ ∈ A , a < xn < h(x̂)} ⊂ R := A×(a, b) , (5.3)
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where x̂ := (x1, . . . , xn−1), A is an open rectangle in Rn−1 , a, b ∈ R , a < b , and h : A →
(a, b) is a Lipschitz function. We may also assume that suppu ⊂⊂ R and that Γ0 ⊂ R∩∂Ω.

Since Ω has Lipschitz boundary, by a standard approximation result (see, e.g., [25, Chap-
ter II, Theorem 3.2]) there exists a sequence vk ∈ C∞(Ω̄;Rn), with such that

vk → u in L1(Ω;Rn),
Evk ⇀ (Eu) Ω weakly∗ in Mb(Ω̄;Rn), (5.4)

‖Evk‖1 → ‖Eu‖1,
and therefore (see, e.g., [25, Chapter II, Theorem 3.1])

vk → u in L1(∂Ω;Rn). (5.5)

Since suppu ⊂⊂ R , we may assume that supp vk ⊂⊂ R for every k .
Using the special form (5.3) of Ω, we can define a sequence of Lipschitz functions ψj : Ω →

[0, 1] by ψj(x) := min{j(h(x̂) − xn), 1} . Then ψj = 0 on the graph of h , ψj → 1 on Ω,
and ∇ψj ⇀ −νHn−1 Γ0 weakly∗ in Mb(Ω ∪ Γ0;Rn). Therefore for every k we have

ψjvk → vk in L1(Ω;Rn),
E(ψjvk) ⇀ Evk − vk ¯ νHn−1 Γ0 weakly∗ in Mb(Ω ∪ Γ0;Rn).

(5.6)

Since the weak∗ convergence is metrisable on bounded sets of Mb(Ω∪Γ0;Rn), it follows
from (5.4), (5.5) and (5.6), that for every k we can select jk so that (5.1) and (5.2) are
satisfied by uk := ψjk

vk , which vanishes on ∂Ω by the properties of ψj and vk . ¤

Proof of Theorem 4.5. If we apply Lemma 5.1 to u = u0 −w(0) we find a sequence uε
0 in

H1(Ω;Rn) such that

uε
0 = w(0) Hn−1-a.e. in Γ0, (5.7)

uε
0 ⇀ u0 weakly∗ in BD(Ω), (5.8)

Euε
0 ⇀ (Eu0) Ω + (w(0)− u0)¯ νHn−1 Γ0 weakly∗ in Mb(Ω ∪ Γ0;Rn). (5.9)

We define pε
0 := Euε

0 − e0 . From the weak kinematic admissibility condition (4.21), and
from (5.9), we have

pε
0 ⇀ p0 weakly∗ in Mb(Ω ∪ Γ0;Rn). (5.10)

By Theorem 3.5 there exists an ε-viscoplastic evolution (uε, eε,pε,zε) with boundary
datum w and initial condition (uε

0, e0, p
ε
0, z0). The energy equality (3.25), together with

(2.46) and (2.57), implies that for every T > 0 there exists a constant CT , independent of
ε , such that

sup
t∈[0,T ]

‖eε(t)‖2 ≤ CT and sup
t∈[0,T ]

‖σε(t)‖2 ≤ CT (5.11)

(see the proof of (3.35)). The same equality and the same estimates, together with (5.11),
give also that for every T > 0 there exists a constant MT , independent of ε , such that

∫ T

0

‖ṗε(t)‖1 dt ≤MT < +∞ . (5.12)

Let s◦ε : [0,+∞) → [0,+∞) be the absolutely continuous, increasing, and bijective func-
tion defined by

s◦ε(t) :=
∫ t

0

(‖ṗε(τ)‖1 + ‖χ̇(τ)‖∞ + ‖Eẇ(τ)‖2 + 1) dτ. (5.13)

It is easy to see that

s◦ε(t2)− s◦ε(t1) ≥ t2 − t1 for every 0 ≤ t1 < t2 < +∞. (5.14)

Let t◦ε : [0,+∞) → [0,+∞) be the inverse of s◦ε . By (5.14) t◦ε satisfies

0 < t◦ε(s2)− t◦ε(s1) ≤ s2 − s1 for every 0 ≤ s1 < s2 < +∞.
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By the Arzelà-Ascoli Theorem we may assume that t◦ε converges uniformly on compact sets
to a function t◦: [0,+∞) → [0,+∞) such that

0 ≤ t◦(s2)− t◦(s1) ≤ s2 − s1 for every 0 ≤ s1 < s2 < +∞.

We observe that t◦(0) = 0. Let us prove that

t◦(s) → +∞ when s→ +∞ (5.15)

Indeed, by (2.56), (5.11), (5.12), and (5.13), for every T > 0 there exists a constant sT ,
independent of ε , such that s◦ε(T ) < sT . This gives T ≤ t◦ε(sT ) for every ε , which implies
T ≤ t◦(sT ), and concludes the proof of (5.15).

Define the rescaled functions on [0,+∞) by

u◦ε(s) := uε(t◦ε(s)) , e◦ε(s) := eε(t◦ε(s)) , p◦ε(s) := pε(t
◦
ε(s)) , z◦ε(s) := zε(t◦ε(s)) ,

f◦ε(s) := f(t◦ε(s)) , g◦ε(s) := g(t◦ε(s)) , w◦ε(s) := w(t◦ε(s)) , (5.16)
σ◦ε(s) := σε(t◦ε(s)) , ζ◦ε(s) := ζε(t

◦
ε(s)) , χ◦ε(s) := χ(t◦ε(s)) .

Note that by (3.2)
σ◦ε(s) := Ce◦ε(s) and ζ◦ε(s) := V (z◦ε(s)) (5.17)

for every s ∈ [0,+∞). Since t◦ε(s) → t◦(s) uniformly on compact sets, the continuity
properties of f , g , w , and χ imply that for every s ∈ [0,+∞) we have that

f◦ε(s) → f◦(s) strongly in Ln(Ω;Rn) , g◦ε(s) → g◦(s) strongly in L∞(Γ1;Rn) ,

w◦ε(s) → w◦(s) strongly in H1(Ω;Rn) , χ◦ε(s) → χ◦(s) strongly in L2(Ω;Rn) ,
(5.18)

where

f◦ ∈ H1
loc([0,+∞);Ln(Ω;Rn)) , g◦ ∈ H1

loc([0,+∞);L∞(Γ1;Rn)) ,
w◦ ∈ H1

loc([0,+∞);H1(Ω;Rn)) , χ◦ ∈ H1
loc([0,+∞);L2(Ω;Mn×n

sym ))

are defined by

f◦(s) := f(t◦(s)) , g◦(s) := g(t◦(s)) , w◦(s) := w(t◦(s)) , χ◦(s) := χ(t◦(s)). (5.19)

From the definitions of s◦ε and t◦ε we obtain easily that

‖p◦ε(s2)− p◦ε(s1)‖1 + ‖χ◦ε(s2)− χ◦ε(s1)‖∞ + ‖Ew◦ε(s2)− Ew◦ε(s1)‖2 ≤ s2 − s1 (5.20)

for every 0 ≤ s1 < s2 , hence

‖ṗ◦ε(s)‖1 + ‖χ̇◦ε(s)‖∞ + ‖Eẇ◦ε(s)‖2 ≤ 1 for L1-a.e. s ∈ [0,+∞) . (5.21)

Let M is an upper bound of ‖pε
0‖1 (see (5.10)). From (5.20) we get

‖p◦ε(s)‖1 ≤M + s (5.22)

for every s ∈ [0,+∞). Passing to the limit in (5.20), we obtain

‖χ◦(s2)− χ◦(s1)‖∞ + ‖Ew◦(s2)− Ew◦(s1)‖2 ≤ s2 − s1 (5.23)

for every 0 ≤ s1 < s2 , hence

‖χ̇◦(s)‖∞ + ‖Eẇ◦(s)‖2 ≤ 1 for L1-a.e. s ∈ [0,+∞) . (5.24)

For every S > 0, let

BS := {p ∈Mb(Ω ∪ Γ0;Mn×n
sym ) : ‖p‖1 ≤M + S} .

There exists a distance dS on BS inducing the weak∗ convergence such that

dS(p, q) ≤ ‖p− q‖1 for every p, q ∈ BS . (5.25)

By (5.20) we have that p◦ε(s) ∈ BS for every s ∈ [0, S] and every ε > 0. By (5.20)
and (5.25), the sequence p◦ε(s) is equicontinuous on [0, S] with respect to the distance dS .
We then apply the Arzelà-Ascoli Theorem for every S > 0 and we find that there exists a
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subsequence, still denoted by p◦ε , and a function p◦: [0,+∞) → Mb(Ω ∪ Γ0;Mn×n
sym ) such

that
p◦ε(s) ⇀ p◦(s) weakly∗ in Mb(Ω ∪ Γ0;Mn×n

sym ) (5.26)
for every s ∈ [0,+∞). By lower semicontinuity we obtain from (5.20)

‖p◦(s2)− p◦(s1)‖1 ≤ s2 − s1 (5.27)

for every 0 ≤ s1 < s2 , hence

‖ṗ◦(s)‖1 ≤ 1 for L1-a.e. s ∈ [0,+∞) . (5.28)

where the time derivative ṗ◦(s) is defined as in (2.3) with X = Mb(Ω ∪ Γ0;Mn×n
sym ) and

Y = C0
0 (Ω ∪ Γ0;Mn×n

sym ). Moreover, from (5.20) and (5.26) we obtain that

p◦ε(sε) ⇀ p◦(s) weakly∗ in Mb(Ω ∪ Γ0;Mn×n
sym ) (5.29)

for every s ∈ [0,+∞) and every sε → s .
We now show that for every s ∈ [0,+∞) there exist e◦(s) ∈ L2(Ω;Mn×n

sym ) and u◦(s) ∈
BD(Ω) such that (u◦(s), e◦(s),p◦(s),w◦(s)) satisfies the weak kinematic admissibility con-
dition (4.4), σ◦(s) := C e◦(s) satisfies the equilibrium condition (4.5), and

e◦ε(sε) ⇀ e◦(s) weakly in L2(Ω;Mn×n
sym ) , (5.30)

u◦ε(sε) ⇀ u◦(s) weakly∗ in BD(Ω) , (5.31)

for every sε → s .
Let us fix s ∈ [0,+∞). By (5.11) the sequence ‖e◦ε(s)‖2 is bounded uniformly with

respect to ε , thus there exists a subsequence e◦εj
(s) of e◦ε(s), possibly depending on s , and

a function e◦(s) ∈ L2(Ω;Mn×n
sym ) such that

e◦εj
(s) ⇀ e◦(s) weakly in L2(Ω;Mn×n

sym ) . (5.32)

By (5.26) and (5.32), the kinematic admissibility condition (3.3) implies that the sequence
uεj (s) is bounded in BD(Ω). Therefore, up to extracting a further subsequence, it converges
weakly∗ in BD(Ω) to a function u◦(s) ∈ BD(Ω) such that Eu◦(s) = e◦(s) + p◦(s) in Ω.
By considering suitable extensions and arguing as in [5, Lemma 2.1] we obtain also that
p◦(s) = (w◦(s) − u◦(s))¯ νHn−1 in Γ0 . Therefore weak kinematic admissibility condition
(4.4) is satisfied.

Passing to the limit in (3.4) we obtain the equilibrium condition (4.5). This implies

Q(e◦(s)) ≤ Q(e◦(s) + Eϕ)− 〈f◦(s), ϕ〉Ω − 〈g◦(s), ϕ〉Γ1 (5.33)

for every ϕ ∈ H1
Γ0

(Ω;Rn). By strict convexity the inequality is strict, unless Eϕ = 0 Ln -
a.e. in Ω. It remains to prove (5.30) and (5.31) for an arbitrary sequence sε → s . As in the
previous step, we see that ‖e◦ε(sε)‖2 is bounded uniformly with respect to ε . Let e◦ε̂j

(sε̂j )
be a subsequence of e◦ε(sε) which converges to a function ê(s) weakly in L2(Ω;Rn). The
previous arguments, together with (5.29), show that there exists a function û(s) ∈ BD(Ω)
such that u◦ε̂j

(sε̂j ) ⇀ û(s) weakly∗ in BD(Ω), Eû(s) = ê(s) + p◦(s) in Ω, and p◦(s) =
(w◦(s)−û(s))¯ νHn−1 in Γ0 . By difference we obtain that E(û(s)−u◦(s)) = ê(s)−e◦(s) in
Ω and (û(s)−u◦(s))¯ ν = 0 Hn−1 -a.e. on Γ0 . By (2.2) we have û(s)−u◦(s) ∈ H1(Ω;Rn)
and û(s)− u◦(s) = 0 on Γ0 .

By (5.33) we have Q(e◦(s)) ≤ Q(ê(s))− 〈f◦(s), û(s)−u◦(s)〉Ω − 〈g◦(s), û(s)−u◦(s)〉Γ1 .
Exchanging the roles of e◦(s) and ê(s) we obtain Q(e◦(s)) = Q(ê(s)) − 〈f◦(s), û(s) −
u◦(s)〉Ω − 〈g◦(s), û(s) − u◦(s)〉Γ1 . The strict convexity argument mentioned after (5.33)
yields e◦(s) = ê(s) Ln -a.e. in Ω, which in turn gives u◦(s) = û(s) Ln -a.e. in Ω. This
shows that the limit does not depend on the subsequence, and concludes the proof of (5.30)
and (5.31).

Let us prove that
e◦ is weakly continuous in L2(Ω;Mn×n

sym ). (5.34)
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Let sk be a sequence converging to s . For every fixed k , we can apply (5.30) with sε = sk for
every ε , and we find εk > 0 such that dw(e◦εk

(sk),e◦(sk)) < 1
k , where dw is a distance which

metrises the weak topology on bounded subsets of L2(Ω;Mn×n
sym ). By (5.30), e◦εk

(sk) ⇀ e◦(s)
weakly in L2(Ω;Mn×n

sym ), so that the previous inequality gives e◦(sk) ⇀ e◦(s) weakly in
L2(Ω;Mn×n

sym ). This concludes the proof of the weak continuity of e◦. In a similar way we
can prove that u◦: [0,+∞) → BD(Ω) is weakly∗ continuous.

Define now for every s ∈ [0,+∞)

a◦ε(s) := aε(t◦ε(s)) = ρ ? trσ◦ε(s) , (5.35)
a◦(s) := ρ ? trσ◦(s) , (5.36)

so that, by (3.6) and (5.16),

ż◦ε(s) = ρ ?
(
a◦ε(s) tr ṗ◦ε(s)

)
(5.37)

for L1 -a.e. s ∈ [0,+∞). Using (2.49) and (5.11), we can prove that for every S > 0 there
exists a constant C◦S , independent of ε , such that

sup
s∈[0,S]

‖a◦ε(s)‖∞ ≤ C◦S , sup
s∈[0,S]

‖∇a◦ε(s)‖∞ ≤ C◦S . (5.38)

Therefore for every s , the functions a◦ε(s) are equicontinuous and equibounded on Ω. Since
σ◦ε(s) ⇀ σ◦(s) weakly in L2(Ω,Mn×n

sym ), the sequence a◦ε(s) converges to a◦(s) pointwise in
Ω. It follows that

a◦ε(s) → a◦(s) strongly in C0(Ω) (5.39)
for every s ∈ [0,+∞).

By (5.28) and (5.38) we have ‖a◦ε(s) tr ṗ◦ε(s)‖1 ≤
√
nC◦S for L1 -a.e. s ∈ [0, S] , and hence

by (2.49) and (5.37)

‖ż◦ε(s)‖∞ ≤ √
nC◦S‖ρ‖∞ and ‖∇ż◦ε(s)‖∞ ≤ √

nC◦S‖∇ρ‖∞ . (5.40)

This implies that

‖z◦ε(s2)− z◦ε(s1)‖∞ + ‖∇z◦ε(s2)−∇z◦ε(s1)‖∞ ≤M◦
S |s2 − s1| (5.41)

for every s1, s2 ∈ [0, S] , where M◦
S :=

√
nC◦S(‖ρ‖∞ + ‖∇ρ‖∞).

We can then apply the Arzelà-Ascoli Theorem as in the proof of (5.26). This gives a
subsequence, still denoted z◦ε , such that z◦ε(s) ⇀ z◦(s) weakly∗ in W 1,∞(Ω) for every
s ∈ [0,+∞), which implies

z◦ε(s) → z◦(s) strongly in C0(Ω) . (5.42)

Using (5.41), we deduce that

z◦ε → z◦ strongly in C0([0, S];C0(Ω)) . (5.43)

Passing to the limit in (5.41), we get

‖z◦(s2)− z◦(s1)‖∞ + ‖∇z◦(s2)−∇z◦(s1)‖∞ ≤M◦
S |s2 − s1| (5.44)

for every s1, s2 ∈ [0, S] .
Let us fix r > n . Since W 1,r(Ω) is reflexive, it follows from (5.44) that the strong W 1,r

limit

ż◦(s) := s- lim
h→0

z◦(s+ h)− z◦(s)
h

(5.45)

exists for L1 -a.e. s ∈ [0,+∞), and that ż◦ ∈ L∞loc([0,+∞);W 1,r(Ω)). Since the embedding
of W 1,r(Ω) into C0(Ω) is continuous, the limit in (5.45) takes place in C0(Ω) and ż◦ ∈
L∞loc([0,+∞);C0(Ω)). Moreover, from (5.41) and (5.42) we obtain that

z◦ε(sε) → z◦(s) strongly in C0(Ω) (5.46)

for every s ∈ [0,+∞) and every sε → s .
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The initial condition (ev0)◦ follows easily from the definitions of u◦, e◦, p◦, z◦, and t◦,
thanks to (5.8) and (5.10).

For every s ∈ [0,+∞) let us define

ζ◦(s) := V (z◦(s)) . (5.47)

To prove (ev3 ′)◦ we need the following Lemmas. ¤

We start with an elementary result about the convergence of inverse functions.

Lemma 5.2. For every t ∈ [0,+∞) let

s◦−(t) := sup{s ∈ [0,+∞) : t◦(s) < t} , (5.48)
s◦+(t) := inf{s ∈ [0,+∞) : t◦(s) > t} , (5.49)

with the convention sup Ø = 0 , so that s◦−(0) = 0 . Then

s◦−(t) ≤ s◦+(t) and t◦(s◦−(t)) = t = t◦(s◦+(t)) (5.50)

for every t ∈ [0,+∞) , and
s◦−(t◦(s)) ≤ s ≤ s◦+(t◦(s)) (5.51)

for every s ∈ [0,+∞) . Moreover the set

S◦ := {t ∈ [0,+∞) : s◦−(t) < s◦+(t)} (5.52)

is at most countable, and the set U◦ introduced in (4.7) satisfies

U◦ =
⋃

t∈S◦
(s◦−(t), s◦+(t)) . (5.53)

Finally
s◦−(t) ≤ lim inf

ε→0
s◦ε(t) ≤ lim sup

ε→0
s◦ε(t) ≤ s◦+(t) (5.54)

for every t ∈ [0,+∞) .

Proof. All assertions are well-known properties of monotone functions, except for the last
one. We only prove the first inequality in (5.54). If s◦−(t) = 0 the inequality is obvious.
If s◦−(t) > 0 we fix 0 < s < s◦−(t). By the definition of s◦− , we have t◦(s) < t ; for ε
small enough, this implies t◦ε(s) < t , hence s < s◦ε(t). This gives s ≤ lim infε s

◦
ε(t), and the

conclusion follows form the arbitrariness of s < s◦−(t). ¤

Lemma 5.3. Let t ∈ [0,+∞) \ S◦, where S◦ is the set defined in (5.52). Then

uε(t) ⇀ u◦(s◦−(t)) weakly∗ in BD(Ω) , (5.55)

eε(t) ⇀ e◦(s◦−(t)) weakly in L2(Ω;Mn×n
sym ) , (5.56)

pε(t) ⇀ p◦(s◦−(t)) weakly∗ in Mb(Ω ∪ Γ0;Mn×n
sym ) , (5.57)

zε(t) → z◦(s◦−(t)) strongly in C0(Ω̄) . (5.58)

Proof. Since t /∈ S◦, Lemma 5.2 gives s◦ε(t) → s◦−(t). By (5.16) we have uε(t) = u◦ε(s
◦
ε(t)),

eε(t) = e◦ε(s
◦
ε(t)), pε(t) = p◦ε(s

◦
ε(t)), zε(t) = z◦ε(s

◦
ε(t)). Therefore the conclusion follows

from (5.29), (5.30), (5.31), and (5.46). ¤

Proof of Theorem 4.5 (continuation). By (2.46), (2.57), (3.25), and (5.11), for every T > 0
we have

ε2
∫ T

0

‖ṗε(t)‖22dt→ 0 .

This implies that a subsequence, not relabelled, satisfies

εṗε(t) → 0 strongly in L2(Ω;Mn×n
sym )
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for L1 -a.e. t ∈ [0,+∞). This fact, together with Lemma 5.3, yields that

σε(t)− εṗε(t) ⇀ σ◦(s◦−(t)) weakly in L2(Ω;Mn×n
sym ) ,

ζε(t) → ζ◦(s◦−(t)) strongly in C0(Ω̄) ,

for L1 -a.e. t ∈ [0,+∞). Since K is convex, the inclusion σε(t) − εṗε(t) ∈ K(ζε(t)),
established in (3.24), passes to the limit and we obtain

σ◦(s◦−(t)) ∈ K(ζ◦(s◦−(t))). (5.59)

By (5.34), (5.44), and the left continuity of s◦, (5.59) holds for every t ∈ [0,+∞). A similar
proof shows that

σ◦(s◦+(t)) ∈ K(ζ◦(s◦+(t))). (5.60)
Let U◦ be the set defined in (4.7) and let s ∈ [0,+∞)\U◦. By (5.51) and (5.53) we have

either s = s◦−(t◦(s)) or s = s◦+(t◦(s)) . (5.61)

The partial stress constraint (ev3 ′)◦ of Definition 4.1 follows now from (5.59), (5.60), and
(5.61).

It remains to prove the energy-dissipation balance (ev3 ′′)◦, the partial flow-rule (ev3 ′′′)◦,
and the evolution law for the internal variable (ev4)◦. In Section 6 we will prove that the
left-hand side of (4.8) is less than or equal to the right-hand side. The opposite inequality
will be proved in Secton 8, together with the partial flow-rule. The evolution law for the
internal variable will be obtained at the end of Section 6. ¤

6. Proof of the energy inequality and of the evolution law

The goal of the first part of this section is to prove that the functions u◦, e◦, p◦, z◦,
w◦, σ◦, ζ◦, and χ◦ introduced in the previous section satisfy the energy inequality

Q(e◦(S))−Q(e0) +
∫ S

0

(
H(ṗ◦(s), ζ◦(s)) + 〈χ̇◦(s),p◦(s)〉

)
ds−

− 〈χ◦(S),p◦(S)〉+ 〈χ0, p0〉+
∫ S

0

‖ṗ◦(s)‖2 d2(σ◦(s),K(ζ◦(s))) ds ≤ (6.1)

≤
∫ S

0

〈σ◦(s)− χ◦(s), Eẇ◦(s)〉 ds−
∫ S

0

〈χ̇◦(s), e◦(s)〉 ds+ 〈χ◦(S), e◦(S)〉 − 〈χ0, e0〉

for every S > 0, where χ0 := χ(0) = χ◦(0). To this aim we prove four lower semicontinuity
results concerning the integrals in the left-hand side of (6.1) and the functions p◦ε , σ◦ε , ζ◦ε ,
and χ◦ε defined in (5.16).

Lemma 6.1. For every S > 0 , ψ ∈ C0(Ω)+ , and ζ ∈ C0([0,+∞);C0(Ω)+) we have
∫ S

0

H(ψṗ◦(s), ζ(s)) ds ≤ lim inf
ε→0

∫ S

0

H(ψṗ◦ε(s), ζ(s)) ds . (6.2)

Proof. Since the function s 7→ ṗ◦(s) is weakly∗ measurable from [0,+∞) to Mb(Ω ∪
Γ0;Mn×n

sym ), it is possible to define µε , µ ∈Mb((0, S)×(Ω ∪ Γ0);Mn×n
sym ) by setting

〈ϕ, µε〉 :=
∫ S

0

〈ϕ(s, ·), ṗ◦ε(s)〉 ds and 〈ϕ, µ〉 :=
∫ S

0

〈ϕ(s, ·), ṗ◦(s)〉 ds

for every ϕ ∈ C0
0 ((0, S)×(Ω ∪ Γ0);Mn×n

sym ). If ϕ ∈ C1
c ((0, S)×(Ω ∪ Γ0);Mn×n

sym ), we have

〈ϕ, µε〉 = −
∫ S

0

〈∂sϕ(s, ·),p◦ε(s)〉 ds→ −
∫ S

0

〈∂sϕ(s, ·),p◦(s)〉 ds = 〈ϕ, µ〉,

by (5.22) and (5.26). Since ‖ṗ◦ε(s)‖1 ≤ 1 and ‖ṗ◦(s)‖1 ≤ 1 by (5.21) and (5.28), by uniform
approximation we obtain 〈ϕ, µε〉 → 〈ϕ, µ〉 for every ϕ ∈ C0

0 ((0, S)×(Ω ∪ Γ0);Mn×n
sym )), i.e.,

µε ⇀ µ weakly∗ in Mb((0, S)×(Ω ∪ Γ0);Mn×n
sym ). (6.3)
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Since s 7→ |ṗ◦(s)| is weakly∗ measurable from [0,+∞) to Mb(Ω∪Γ0), we define λε , λ ∈
Mb((0, S)×(Ω ∪ Γ0)) by setting

〈φ, λε〉 :=
∫ S

0

〈φ(s, ·), |ṗ◦ε(s)|〉 ds and 〈φ, λ〉 :=
∫ S

0

〈φ(s, ·), |ṗ◦(s)|〉 ds

for every φ ∈ C0
0 ((0, S)×(Ω ∪ Γ0)). It is easy to see that µε ¿ λε and µ¿ λ . Moreover

dµε

dλε
(s, x) =

dṗ◦ε(s)
d|ṗ◦ε(s)|

(x) and
dµ

dλ
(s, x) =

dṗ◦(s)
d|ṗ◦(s)| (x) .

Using the definition of H , see (2.35), it follows that
∫ S

0

H(ψṗ◦ε(s), ζ(s)) ds =
∫

(0,S)×(Ω∪Γ0)

H(ψ(x)
dµε

dλε
(s, x), ζ(s, x)) dλε(s, x) , (6.4)

∫ S

0

H(ψṗ◦(s), ζ(s)) ds =
∫

(0,S)×(Ω∪Γ0)

H(ψ(x)
dµ

dλ
(s, x), ζ(s, x)) dλ(s, x) . (6.5)

By (6.3) we can now apply Reshetnyak’s lower semicontinuity Theorem [20, Theorem 2] and
we obtain ∫

(0,S)×(Ω∪Γ0)

H(ψ(x)
dµ

dλ
(s, x), ζ(s, x)) dλ(s, x) ≤

≤ lim inf
ε→0

∫

(0,S)×(Ω∪Γ0)

H(ψ(x)
dµε

dλε
(s, x), ζ(s, x)) dλε(s, x) .

(6.6)

Inequality (6.2) follows now from (6.4), (6.5), and (6.6). ¤

Lemma 6.2. For every S > 0 , and every ψ ∈ C0(Ω)+ , we have
∫ S

0

H(ψṗ◦(s), ζ◦(s)) ds ≤ lim inf
ε→0

∫ S

0

H(ψṗ◦ε(s), ζ
◦
ε(s)) ds . (6.7)

Proof. As ζ◦ ∈ C0([0,+∞);C0(Ω)) by (5.44) and (5.47), we can apply Lemma 6.1 and we
obtain ∫ S

0

H(ψṗ◦(s), ζ◦(s)) ds ≤ lim inf
ε→0

∫ S

0

H(ψṗ◦ε(s), ζ
◦(s)) ds ,

for every S > 0. Using (2.27), (2.29), (5.21), and the definition of H we obtain for every
s ∈ [0,+∞)

|H(ψṗ◦ε(s), ζ
◦(s))−H(ψṗ◦ε(s), ζ

◦
ε(s))| ≤MK‖ψ‖∞‖ζ◦ε(s)− ζ◦(s)‖∞ .

By (5.17), (5.43), and (5.47) ‖ζ◦ε(s)−ζ◦(s)‖∞ → 0 uniformly on compact sets, and inequality
(6.7) follows. ¤

Lemma 6.3. For every S > 0 , we have
∫ S

0

(
H(ṗ◦(s), ζ◦(s)) + 〈χ̇◦(s),p◦(s)〉

)
ds− 〈χ◦(S),p◦(S)〉+ 〈χ0, p0〉 ≤

≤ lim inf
ε→0

∫ S

0

(
H(ṗ◦ε(s), ζ

◦
ε(s))− 〈χ◦ε(s), ṗ◦ε(s)〉

)
ds .

(6.8)

Proof. We consider a sequence ψk ∈ C∞(Ω̄) , with 0 ≤ ψk ≤ 1 in Ω̄ and ψk = 0 in a
neighbourhood of Γ̄1 , such that ψk(x) → 1 for every x ∈ Ω ∪ Γ0 . By (2.57) the function
H(ṗ◦ε(s), ζ

◦(s))− χ◦ε(s) : ṗ◦ε(s) is positive Ln -a.e. in Ω for every s ∈ [0,+∞), hence

H(ψk ṗ
◦
ε(s), ζ

◦(s))− 〈ψk χ
◦
ε(s), ṗ

◦
ε(s)〉 ≤ H(ṗ◦ε(s), ζ

◦(s))− 〈χ◦ε(s), ṗ◦ε(s)〉 . (6.9)
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Integrating by parts in time, we have
∫ S

0

〈ψk χ
◦
ε(s), ṗ

◦
ε(s)〉 ds = −

∫ S

0

〈ψk χ̇
◦
ε(s),p

◦
ε(s)〉 ds+

+ 〈ψk χ
◦
ε(S),p◦ε(S)〉 − 〈ψk χ0, p

ε
0〉 .

(6.10)

Performing the change of variables t = t◦ε(s), we get
∫ S

0

〈ψk χ̇
◦
ε(s),p

◦
ε(s)〉 ds =

∫ Tε

0

〈ψk χ̇(t),pε(t)〉 dt , (6.11)

where Tε := t◦ε(S). As ψk = 0 on Γ1 , integrating by parts in space and using (3.3), we
obtain for every t ∈ [0, Tε]

〈ψk χ̇(t),pε(t)〉 = −〈ψk χ̇(t),eε(t)− Ew(t)〉 −
− 〈χ̇(t), (uε(t)−w(t))¯∇ψk〉+ 〈ḟ(t), ψk (uε(t)−w(t))〉 .

which, thanks to Lemma 5.3 converges to

−〈ψk χ̇(t),e◦(s◦−(t))− Ew(t)〉 − 〈χ̇(t), (u◦(s◦−(t))−w(t))¯∇ψk〉+

+ 〈ḟ(t), ψk (u◦(s◦−(t))−w(t))〉 .
By (2.15), this expression equals to 〈[χ̇(t) :p◦(s◦−(t))], ψk〉 ; as ‖pε(t)‖1 is bounded by (5.10)
and (5.12), while ‖χ̇(t)‖∞ is locally integrable by (2.56), the Dominated Convergence The-
orem yields

lim
ε→0

∫ Tε

0

〈ψk χ̇(t),pε(t)〉 dt =
∫ T

0

〈[χ̇(t) :p(s◦−(t))], ψk〉 dt .
Let ω(t) := χ̇(t) if the derivative exists at t , and ω(t) = 0 otherwise. By (2.4) and

(5.19) we get
χ̇◦(s) = ω(t◦(s)) ṫ◦(s) for L1-a.e. s ∈ [0, S].

This equality, together with the change of variables formula (2.5), yields
∫ T

0

〈[χ̇(t) :p(s◦−(t))], ψk〉 dt =
∫ T

0

〈[ω(t) :p(s◦−(t))], ψk〉 dt =

=
∫ S

0

〈[χ̇◦(s) :p◦(s◦−(t◦(s)))], ψk〉 ds =
∫ S

0

〈[χ̇◦(s) :p◦(s)], ψk〉 ds ,

where the last equality follows from the fact that χ̇◦(s) = 0 for L1 -a.e. s ∈ U◦ and that
s◦−(t◦(s)) = s for L1 -a.e. s ∈ [0, S] \ U◦ (indeed, by (5.51) and (5.53), the only exceptions
are the points of the form s = s◦+(t) for t ∈ S◦). We conclude that

lim
ε→0

∫ S

0

〈ψk χ̇
◦
ε(s),p

◦
ε(s)〉 ds =

∫ S

0

〈[χ̇◦(s) :p◦(s)], ψk〉 ds . (6.12)

Another integration-by-parts argument, using (5.7), (5.8), (5.10), and (5.18), shows that

lim
ε→0

(
〈ψk χ

◦
ε(S),p◦ε(S)〉 − 〈ψk χ0, p

ε
0〉

)
= 〈[χ◦(S) :p◦(S)], ψk〉 − 〈[χ0 : p0], ψk〉 . (6.13)

By (6.7), (6.9), (6.12), and (6.13) we finally get
∫ S

0

(
H(ψk ṗ

◦(s), ζ◦(s)) + 〈[χ̇◦(s) :p◦(s)], ψk〉
)
ds− 〈[χ◦(S) :p◦(S)], ψk〉+

+ 〈[χ0 : p0], ψk〉 ≤ lim inf
ε→0

∫ S

0

(
H(ψk ṗ

◦
ε(s), ζ

◦
ε(s))− 〈ψk χ

◦
ε(s), ṗ

◦
ε(s)〉

)
ds ≤

≤ lim inf
ε→0

∫ S

0

(
H(ṗ◦ε(s), ζ

◦
ε(s))− 〈χ◦ε(s), ṗ◦ε(s)〉

)
ds .
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Using (2.29), (2.56), (5.27), (5.28), and (5.44) we can pass to the limit as k →∞ , applying
the Dominated Convergence Theorem, and we obtain (6.8) . ¤

We recall that we are adopting convention (2.1) about Lp -norms.

Lemma 6.4. Let S > 0 , let U◦ be as in (4.7), and let

A◦S := {s ∈ [0, S] : d2

(
σ◦(s),K(ζ◦(s))

)
> 0} . (6.14)

Then A◦S is open, A◦S ⊂ U◦, and∫

A◦S

‖ṗ◦(s)‖2 d2(σ◦(s),K(ζ◦(s))) ds ≤ lim inf
ε→0+

∫

A◦S

‖ṗ◦ε(s)‖2 d2(σ◦ε(s),K(ζ◦ε(s))) ds . (6.15)

Proof. By convexity, for every ζ ∈ C0(Ω̄)+ the function σ 7→ d2(σ,K(ζ)) is weakly lower
semicontinuous in L2(Ω;Mn×n

sym ). From (2.25), we deduce that

|d2(σ,K(ζ1))− d2(σ,K(ζ2))| ≤ 2MK‖ζ1 − ζ2‖2
for every σ ∈ L2(Ω;Mn×n

sym ) and every ζ1, ζ2 ∈ C0(Ω̄)+ . It follows that (σ, ζ) 7→ d2(σ,K(ζ))
is lower semicontinuous with respect to the weak topology in L2(Ω;Mn×n

sym ) and to the
strong topology of C0(Ω). Since e◦ is continuous for the weak topology of L2(Ω;Mn×n

sym )
by (5.34), and ζ◦ is continuous for the strong topology of C0(Ω) by (5.44), it follows that
s 7→ d2(σ◦(s),K(ζ◦(s))) is lower semicontinuous on [0,+∞). Therefore the set A◦S is open.
The inclusion A◦S ⊂ U◦ is a consequence of (4.6).

It only remains to prove (6.15). We fix a compact set C ⊂ A◦S and a continuous function
ψ : C → [0,+∞) such that

d2(σ◦(s),K(ζ◦(s))) > ψ(s) for every s ∈ C . (6.16)

We claim that, for ε sufficiently small, we have

d2(σ◦ε(s),K(ζ◦ε(s))) > ψ(s) for every s ∈ C . (6.17)

If not, there exist εk → 0 and sk ∈ C such that d2(σ◦εk
(sk),K(ζ◦εk

(sk))) ≤ ψ(sk). We
may assume that sk → s0 ∈ C ; now, by (5.30), (5.46), and (5.47), thanks to the lower
semicontinuity of d2(σ,K(ζ)), the previous inequality gives d2(σ◦(s0),K(ζ◦(s0))) ≤ ψ(s0),
which contradicts (6.16). This proves (6.17).

By a standard approximation argument from below, in order to prove (6.15), it suffices
to prove ∫

C

‖ṗ◦(s)‖2 ψ(s) ds ≤ lim inf
ε→0+

∫

C

‖ṗ◦ε(s)‖2 ψ(s) ds, (6.18)

for every compact C ⊂ A◦S and every continuous function ψ : C → [0,+∞). To this end, let
ϕi be a dense sequence in the unit ball of L2(Ω;Mn×n

sym ), composed of continuous functions
with compact support. Since

‖ṗ◦(s)‖2 = sup
i
〈ϕi, ṗ

◦(s)〉,

by the Localisation Lemma (see, e.g., [2, Lemma 2.3.2]) we have
∫

C

‖ṗ◦(s)‖2 ψ(s) ds = sup
k∑

i=1

∫

Ci

〈ϕi, ṗ
◦(s)〉ψ(s) ds, (6.19)

where the supremum is taken over all integers k and over all finite Borel partitions C1, . . . , Ck

of C . For every i the real-valued functions s 7→ 〈ϕi,p
◦
ε(s)〉 are equi-Lipschitz on [0, S]

(by (5.20)) and converge to s 7→ 〈ϕi,p
◦(s)〉 for every s (by (5.26)), hence the functions

s 7→ 〈ϕi, ṗ
◦
ε(s)〉 converge 〈ϕi, ṗ

◦(s)〉 weakly∗ in L∞([0, S]) . It follows that
k∑

i=1

∫

Ci

〈ϕi, ṗ
◦(s)〉ψ(s) ds = lim

ε→0

k∑

i=1

∫

Ci

〈ϕi, ṗ
◦
ε(s)〉ψ(s) ds ≤ lim inf

ε→0

∫

C

‖ṗ◦ε(s)‖2ψ(s) ds.
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Inequality (6.18) follows now from (6.19). ¤
We are now in a position to prove the energy inequality (6.1).

Proof of Theorem 4.5 (continuation). Let us fix S > 0 and define Tε := t◦ε(S). By (3.25)

Q(eε(Tε))−Q(e0) +
∫ Tε

0

(
H(ṗε(t), ζ(t))− 〈χ(t), ṗε(t)〉

)
dt+ ε

∫ Tε

0

‖ṗε(t)‖22 dt =

=
∫ Tε

0

〈σε(t)− χ(t), Eẇ(t)〉 dt−
∫ Tε

0

〈χ̇(t), eε(t)〉 dt+ 〈χ(Tε), eε(Tε)〉 − 〈χ0, e0〉 ,

where χ0 := χ(0). By (3.5) we have

Q(eε(Tε))−Q(e0) +
∫ Tε

0

(
H(ṗε(t), ζ(t))− 〈χ(t), ṗε(t)〉

)
dt+

+
∫ Tε

0

‖ṗε(t)‖2 d2(σε(t),K(ζε(t))) dt =
∫ Tε

0

〈σε(t)− χ(t), Eẇ(t)〉 dt−

−
∫ Tε

0

〈χ̇(t),eε(t)〉 dt+ 〈χ(Tε), eε(Tε)〉 − 〈χ0, e0〉 .

Performing the change of variable t = t◦ε(s) in the left-hand side, we obtain

Q(e◦ε(S))−Q(e0) +
∫ S

0

(
H(ṗ◦ε(s), ζ

◦
ε(s))− 〈χ◦ε(s), ṗ◦ε(s)〉

)
ds+

+
∫ S

0

‖ṗ◦ε(s)‖2 d2(σ◦ε(s),K(ζ◦ε(s))) ds =
∫ Tε

0

〈σε(t)− χ(t), Eẇ(t)〉 dt− (6.20)

−
∫ Tε

0

〈χ̇(t),eε(t)〉 dt+ 〈χ(Tε), e◦ε(S)〉 − 〈χ0, e0〉 .

By the lower semicontinuity of Q , in view of (5.30) we have

Q(e◦(S)) ≤ lim inf
ε→0

Q(e◦ε(S)). (6.21)

By (5.11) and (5.56) we have
∫ T

0

〈σ◦(s◦−(t))− χ(t), Eẇ(t)〉 dt = lim
ε→0

∫ Tε

0

〈σε(t)− χ(t), Eẇ(t)〉 dt , (6.22)

where T := t◦(S). Let ω(t) := Eẇ(t) if the derivative exists at t , and ω(t) = 0 otherwise.
By (2.4) and (5.19) we get

Eẇ◦(s) = ω(t◦(s)) ṫ◦(s) for L1-a.e. s ∈ [0, S].

This equality, together with the change of variables formula (2.5), yields
∫ T

0

〈σ◦(s◦−(t))− χ(t), Eẇ(t)〉 dt =
∫ T

0

〈σ◦(s◦−(t))− χ(t),ω(t)〉 dt =

=
∫ S

0

〈σ◦(s◦−(t◦(s)))− χ◦(s), Eẇ◦(s)〉 ds =
∫ S

0

〈σ◦(s)− χ◦(s), Eẇ◦(s)〉 ds,

where the last equality follows from the fact that Eẇ◦(s) = 0 for L1 -a.e. s ∈ U◦ and that
s◦−(t◦(s)) = s for L1 -a.e. s ∈ [0, S] \ U◦ (see the proof of Lemma 6.3). Therefore, (6.22)
gives ∫ S

0

〈σ◦(s)− χ◦(s), Eẇ◦(s)〉 ds =
∫ Tε

0

〈σε(t)− χ(t), Eẇ(t)〉 dt. (6.23)

Similarly, we prove
∫ S

0

〈χ̇◦(s), e◦(s)〉 ds = lim
ε→0

∫ Tε

0

〈χ̇(t), eε(t)〉 dt (6.24)

Inequality (6.1) follows now from (5.30), (6.8), (6.15), (6.20), (6.21), (6.23), and (6.24).
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To prove the evolution law (4.11) we need two technical results on the convergence of ṗ◦ε
to ṗ◦. ¤

Lemma 6.5. Let S > 0 and ϕ ∈ L1([0, S];C0(Ω;Mn×n
sym )) . Then s 7→ 〈ϕ(s), ṗ◦(s)〉 is

integrable on [0, S] and
∫ S

0

〈ϕ(s), ṗ◦ε(s)〉 ds→
∫ S

0

〈ϕ(s), ṗ◦(s)〉 ds as ε→ 0 . (6.25)

Proof. By (5.27) we have p◦ ∈ C0([0, S],Mb(Ω ∪ Γ0;Mn×n
sym )). Since

〈ϕ(s),
p◦(s+ h)− p◦(s)

h
〉 → 〈ϕ(s), ṗ◦(s)〉 as h→ 0

for L1 -a.e. s ∈ [0, S] , the function s 7→ 〈ϕ(s), ṗ◦(s)〉 is measurable on [0, S] . By (5.28) we
have |〈ϕ(s), ṗ◦(s)〉| ≤ ‖ϕ(s)‖∞ for L1 -a.e. s ∈ [0, S] . Since s 7→ ‖ϕ(s)‖∞ is integrable on
[0, S] , the same property holds for s 7→ 〈ϕ(s), ṗ◦(s)〉 .

If ϕ ∈ C1
c ((0, S);C0(Ω;Mn×n

sym )) we can write
∫ S

0

〈ϕ(s),
p◦ε(s+ h)− p◦ε(s)

h
〉 ds =

∫ S

0

〈ϕ(s− h)−ϕ(s)
h

,p◦ε(s)〉 ds .

Passing to the limit as h→ 0 we obtain
∫ S

0

〈ϕ(s), ṗ◦ε(s)〉 ds = −
∫ S

0

〈ϕ̇(s),p◦ε(s)〉 ds . (6.26)

A similar formula holds for p◦. Thus (6.25) follows from (5.22) and (5.26).
Since ‖ṗ◦ε(s)‖1 ≤ 1 and ‖ṗ◦(s)‖1 ≤ 1 by (5.21) and (5.28), the same conclusion in the

case ϕ ∈ L1([0, S];C0(Ω;Mn×n
sym )) follows from the density of C1

c ((0, S);C0(Ω;Mn×n
sym )) in

L1([0, S];C0(Ω;Mn×n
sym )). ¤

Lemma 6.6. Let S > 0 and let ϕε,ϕ ∈ L1([0, S];C0(Ω;Mn×n
sym )) . Assume that ϕε → ϕ

strongly in L1([0, S];C0(Ω;Mn×n
sym )) . Then

∫ S

0

〈ϕε(s), ṗ
◦
ε(s)〉 ds→

∫ S

0

〈ϕ(s), ṗ◦(s)〉 ds as ε→ 0 .

Proof. Since ‖ṗ◦ε(s)‖1 ≤ 1 by (5.21), we have
∣∣∣
∫ S

0

〈ϕε(s), ṗ
◦
ε(s)〉 ds−

∫ S

0

〈ϕ(s), ṗ◦ε(s)〉 ds
∣∣∣ ≤

∫ S

0

‖ϕε(s)−ϕ(s)‖∞ds .

Since the right-hand side tends to 0 as ε→ 0, the conclusion follows from (6.25). ¤

We now prove the evolution law (4.11).

Proof of Theorem 4.5 (continuation). Let us fix S > 0. We first prove that
∫ S

0

〈ϕ(s),a◦ε(s) tr ṗ◦ε(s)〉 ds→
∫ S

0

〈ϕ(s),a◦(s) tr ṗ◦(s)〉 ds (6.27)

for every ϕ ∈ L1([0, S];C0(Ω)). We observe that we can write 〈ϕ(s),a◦ε(s) tr ṗ◦ε(s)〉 =
〈ϕ(s)a◦ε(s)I, ṗ

◦
ε(s)〉 and 〈ϕ(s),a◦(s) tr ṗ◦(s)〉 = 〈ϕ(s)a◦(s)I, ṗ◦(s)〉 . Therefore (6.27) follows

from Lemma 6.6, because ϕa◦εI → ϕa◦I strongly in L1([0, S];C0(Ω;Mn×n
sym )) thanks to

(5.38) and (5.39). Using the equalities 〈ϕ(s), ρ?
(
a◦ε(s) tr ṗ◦ε(s))

)〉 = 〈ρ̌ ?ϕ(s),a◦ε(s) tr ṗ◦ε(s)〉
and 〈ϕ(s), ρ ?

(
a◦(s) tr ṗ◦(s)

)〉 = 〈ρ̌ ?ϕ(s),a◦(s) tr ṗ◦(s)〉 , where ρ̌(x) := ρ(−x), from (2.49)
and (6.27) we obtain

∫ S

0

〈ϕ(s), ρ ?
(
a◦ε(s) tr ṗ◦ε(s)

)〉 ds→
∫ S

0

〈ϕ(s), ρ ?
(
a◦(s) tr ṗ◦(s)

)〉 ds (6.28)
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for every ϕ ∈ L1([0, S];L1(Ω)). By (5.37) and (6.28) we have
∫ S

0

〈ϕ(s), ż◦ε(s)〉 ds→
∫ S

0

〈ϕ(s), ρ ?
(
a◦(s) tr ṗ◦(s)

)〉 ds as ε→ 0 (6.29)

for every ϕ ∈ L1([0, S];L1(Ω)). On the other hand, if ϕ ∈ C1
c ((0, S);L1(Ω)), we have

∫ S

0

〈ϕ(s), ż◦ε(s)〉 ds = −
∫ S

0

〈ϕ̇(s),z◦ε(s)〉 ds ,
∫ S

0

〈ϕ(s), ż◦(s)〉 ds = −
∫ S

0

〈ϕ̇(s),z◦(s)〉 ds ,

so that (5.43) gives
∫ S

0

〈ϕ(s), ż◦ε(s)〉 ds→
∫ S

0

〈ϕ(s), ż◦(s)〉 ds as ε→ 0 .

By (6.29) this implies
∫ S

0

〈ϕ(s), ż◦(s)〉 ds =
∫ S

0

〈ϕ(s), ρ ?
(
a◦(s) tr ṗ◦(s)

)〉 ds

for every ϕ ∈ C1
c ((0, S);L1(Ω)), and hence

ż◦(s) = ρ ?
(
a◦(s) tr ṗ◦(s)

)
in Ω for L1-a.e. s ∈ [0, S] . (6.30)

This concludes the proof of (4.11).
The proof of Theorem 4.5 will be continued in Section 8. ¤

7. Some technical lemmas

In this section we establish some measure theoretic results that are used to prove the
opposite of inequality (6.1). The first four lemmas concern a discrete approximation of the
integral in the left-hand side of (6.1).

Given p : [0, S] →Mb(Ω∪Γ0,Mn×n
sym ) and ζ ∈ C0(Ω)+ , for every 0 ≤ a ≤ b ≤ S we define

Var(p, ζ; a, b) := sup
k∑

i=1

H(p(si)− p(si−1), ζ) , (7.1)

where the supremum is taken over all finite families s0, s1, . . . , sk such that a = s0 ≤ s1 ≤
· · · ≤ sk = b . The following two lemmas provide the properties of Var(p, ζ; 0, S) that will
be used in the proof of Lemma 7.3.

Lemma 7.1. Let S > 0 , let p : [0, S] → Mb(Ω ∪ Γ0,Mn×n
sym ) , let ζ ∈ C0(Ω)+ , and let

{si
k}0≤i≤ik

be a sequence of subdivisions of [0, S] , with

0 = s0k ≤ s1k ≤ · · · ≤ sik

k = S and ηk := max
1≤i≤k

(si
k − si−1

k ) → 0 . (7.2)

Suppose that p is left continuous in [0, S] with respect to the norm topology in Mb(Ω ∪
Γ0,Mn×n

sym ) . Then

Var(p, ζ; 0, S) = lim
k→∞

ik∑

i=1

H(p(si
k)− p(si−1

k ), ζ) . (7.3)

Proof. It follows immediately from (7.1) that is enough to prove the inequality

Var(p, ζ; 0, S) ≤ lim inf
k→∞

ik∑

i=1

H(p(si
k)− p(si−1

k ), ζ) . (7.4)
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Let us fix λ < Var(p, ζ; 0, S). By (7.1) there exist an integer h and a subdivision 0 = s0 ≤
s1 ≤ · · · ≤ sh = S such that

λ <

h∑

j=1

H(p(sj)− p(sj−1), ζ) . (7.5)

For every j and k , let ι(j, k) be the greatest integer i such that si
k ≤ sj . Since sj − ηk <

s
ι(j,k)
k ≤ sj and ηk → 0, inequality (7.5), together with the left continuity of p and the

continuity of H , gives

λ <

h∑

j=1

H(p(sι(j,k)
k )− p(sι(j−1,k)

k ), ζ)

for k large enough. By the triangle inequality (2.28), this implies

λ <

ik∑

i=1

H(p(si
k)− p(si−1

k ), ζ)

for k large enough. Inequality (7.4) follows from the arbitrariness of λ < Var(p, ζ; 0, S). ¤

Lemma 7.2. Let S > 0 , let p ∈ AC([0, S],Mb(Ω ∪ Γ0;Mn×n
sym )) , let ζ ∈ C0(Ω)+ , and let

{si
k}0≤i≤ik

be a sequence of subdivisions of [0, S] satisfying (7.2). Then

lim
k→∞

ik∑

i=1

∣∣∣H(p(si
k)− p(si−1

k ), ζ)−
∫ si

k

si−1
k

H(ṗ(s), ζ) ds
∣∣∣ = 0 . (7.6)

Proof. Arguing as in [5, Theorem 7.1] (see [27, Theorem 3.12]), we can prove that

Var(p, ζ; a, b) =
∫ b

a

H(ṗ(s), ζ) ds (7.7)

for every 0 ≤ a ≤ b ≤ S . Therefore Lemma 7.1 gives
∫ S

0

H(ṗ(s), ζ) ds = lim
k→∞

ik∑

i=1

H(p(si
k)− p(si−1

k ), ζ) . (7.8)

Since

H(p(si
k)− p(si−1

k ), ζ) ≤
∫ si

k

si−1
k

H(ṗ(s), ζ) ds

by (7.7), equality (7.6) is equivalent to (7.8). ¤

Lemma 7.3. Let S > 0 , let p ∈ AC([0, S],Mb(Ω∪Γ0;Mn×n
sym )) , let ζ ∈ C0([0, S], C0(Ω)+) ,

and let {si
k}0≤i≤ik

be a sequence of subdivisions of [0, S] satisfying (7.2). Then

lim
k→∞

ik∑

i=1

∣∣∣H(p(si
k)− p(si−1

k ), ζ(si−1
k ))−

∫ si
k

si−1
k

H(ṗ(s), ζ(s)) ds
∣∣∣ = 0 , (7.9)

lim
k→∞

ik∑

i=1

∣∣∣H(p(si
k)− p(si−1

k ), ζ(si
k))−

∫ si
k

si−1
k

H(ṗ(s), ζ(s)) ds
∣∣∣ = 0 . (7.10)

Proof. Since s 7→ ζ(s) is continuous, for every ε > 0 there exists δ(ε) > 0 such that

‖ζ(s′)− ζ(s)‖∞ < ε for every s′, s ∈ [0, S] with |s′ − s| < δ(ε) . (7.11)

Let us fix ε > 0 and a subdivision 0 = s0 < s1 < · · · < sh = S such that sj − sj−1 < δ(ε)
for every j = 1, . . . , h . By Lemma 7.2 we have

lim
k→∞

ik∑

i=1

∣∣∣H(p(si
k)− p(si−1

k ), ζ(sj))−
∫ si

k

si−1
k

H(ṗ(s), ζ(sj)) ds
∣∣∣ = 0 (7.12)
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for every j = 1, . . . , h .
If sj−1 < si

k ≤ sj , by (7.2) for every si−1
k ≤ s ≤ si

k we have |s − sj−1| < δ(ε) and
|s− sj | < δ(ε) for k sufficiently large. Therefore (2.31), (2.35), and (7.11) give

|H(p, ζ(s))−H(p, ζ(sj−1))| ≤MKε‖p‖1 and |H(p, ζ(s))−H(p, ζ(sj))| ≤MKε‖p‖1
for every p ∈Mb(Ω∪Γ0,Mn×n

sym ) and every si−1
k ≤ s ≤ si

k . Since p is absolutely continuous,
this implies, thanks to [5, Theorem 7.1],

|H(p(si
k)− p(si−1

k ), ζ(si−1
k ))−H(p(si

k)− p(si−1
k ), ζ(sj))| ≤

≤MKε‖p(si
k)− p(si−1

k )‖1 ≤MKε

∫ si
k

si−1
k

‖ṗ(s)‖1ds ,

∣∣∣
∫ si

k

si−1
k

H(ṗ(s), ζ(s)) ds−
∫ si

k

si−1
k

H(ṗ(s), ζ(sj)) ds
∣∣∣ ≤MKε

∫ si
k

si−1
k

‖ṗ(s)‖1ds ,

Therefore
ik∑

i=1

∣∣∣H(p(si
k)− p(si−1

k ), ζ(si−1
k ))−

∫ si
k

si−1
k

H(ṗ(s), ζ(s)) ds
∣∣∣ ≤

≤
h∑

j=1

ik∑

i=1

∣∣∣H(p(si
k)− p(si−1

k ), ζ(sj))−
∫ si

k

si−1
k

H(ṗ(s), ζ(sj)) ds
∣∣∣ + 2MKε

∫ S

0

‖ṗ(s)‖1ds ,

so (7.12) gives

lim sup
k→∞

ik∑

i=1

∣∣∣H(p(si
k)− p(si−1

k ), ζ(si−1
k ))−

∫ si
k

si−1
k

H(ṗ(s), ζ(s)) ds
∣∣∣ ≤ 2MKε

∫ S

0

‖ṗ(s)‖1ds .

Equality (7.9) follows now from the arbitrariness of ε > 0. The proof of (7.10) is similar. ¤

Lemma 7.4. Let S > 0 and let p ∈ C0([0, S],Mb(Ω ∪ Γ0;Mn×n
sym )) . Suppose that χ ∈

H1([0, S];L2(Ω;Mn×n
sym )) satifies (2.53)-(2.56) for suitable f ∈ H1([0, S];Ln(Ω;Rn)) and

g ∈ H1([0, S];L∞(Γ1;Rn)) , and let {si
k}0≤i≤ik

be a sequence of subdivisions of [0, S] satis-
fying (7.2). Assume that there exist a weakly∗ -continuous function u : [0, S] → BD(Ω) , a
weakly continuous function e : [0, S] → L2(Ω;Mn×n

sym ) , and w ∈ H1([0, S];H1(Ω;Rn)) , such
that for every s ∈ [0, S]

Eu(s) = e(s) + p(s) in Ω ,
p(s) = (w(s)− u(s))¯ νHn−1 in Γ0 .

Then

lim
k→∞

ik∑

i=1

∣∣∣〈χ(si
k)− χ(si−1

k ),p(si−1
k )〉 −

∫ si
k

si−1
k

〈χ̇(s),p(s)〉 ds
∣∣∣ = 0 , (7.13)

lim
k→∞

ik∑

i=1

∣∣∣〈χ(si
k)− χ(si−1

k ),p(si
k)〉 −

∫ si
k

si−1
k

〈χ̇(s),p(s)〉 ds
∣∣∣ = 0 , (7.14)

where all duality products are defined according to (2.13) for every s ∈ [0, S] .

Proof. Let ψ := χ or ψ := χ̇ . Then the integration-by-parts formula (2.16), together with
(2.53)-(2.55), gives

〈ψ(s),p(s′)〉 = 〈ψ(s), Ew(s′)−e(s′)〉+〈f(s),u(s′)−w(s′)〉+〈g(s),u(s′)−w(s′)〉Γ1 (7.15)
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for every s, s′ ∈ [0, S] . This shows that s 7→ 〈χ̇(s),p(s)〉 belongs to L1([0, S]) and that for
every s′ ∈ [0, S] the function s 7→ 〈χ(s),p(s′)〉 is absolutely continuous on [0, S] and its
derivative is 〈χ̇(s),p(s′)〉 for L1 -a.e. s ∈ [0, S] . Therefore,

〈χ(si
k)− χ(si−1

k ),p(si−1
k )〉 =

∫ si
k

si−1
k

〈χ̇(s),p(si−1
k )〉 ds (7.16)

for every k and every i . Let us fix δ > 0. Since p is continuous, by (2.14) and (7.2) for k
large enough we have

∣∣∣
∫ si

k

si−1
k

〈χ̇(s),p(s)− p(si−1
k )〉 ds

∣∣∣ ≤

≤
∫ si

k

si−1
k

‖χ̇(s)‖∞‖p(s)− p(si−1
k )‖1 ds ≤ δ

∫ si
k

si−1
k

‖χ̇(s)‖∞ ds .

(7.17)

It follows from (7.16) and (7.17) that
ik∑

i=1

∣∣∣〈χ(si
k)− χ(si−1

k ),p(si−1
k )〉 −

∫ si
k

si−1
k

〈χ̇(s),p(s)〉 ds
∣∣∣ ≤ δ

∫ S

0

‖χ̇(s)‖∞ ds.

As the right-hand side is finite by (2.56), the arbitrariness of δ proves (7.13). The same
argument proves (7.14). ¤

We now prove three lemmas that will be used to obtain a discrete approximation of the in-
tegrals in the right-hand side of (6.1). We begin with a lemma concerning the approximation
of Lebesgue integrals by Riemann sums.

Lemma 7.5. Let S > 0 , let X be a Banach space, and let ψ : [0, S] → X be a Bochner
integrable function. Then there exists a sequence (si

k)0≤i≤ik
of subdivisions of the interval

[0, S] satisfying (7.2) such that

lim
k→∞

ik∑

i=1

∫ si
k

si−1
k

‖ψ(s)−ψ(si−1
k )‖ ds = 0 = lim

k→∞

ik∑

i=1

∫ si
k

si−1
k

‖ψ(s)−ψ(si
k)‖ ds . (7.18)

In particular we have

lim
k→∞

ik∑

i=1

ψ(si−1
k )(si

k − si−1
k ) =

∫ S

0

ψ(s) ds = lim
k→∞

ik∑

i=1

ψ(si
k)(si

k − si−1
k ) , (7.19)

lim
k→∞

ik∑

i=1

‖ψ(si
k)−ψ(si−1

k )‖(si
k − si−1

k ) , (7.20)

where the limits in (7.19) are in the strong topology of X .

Proof. We omit the proof since (7.19) is well-known (see [12]). For the application we have
in mind we need the stronger result (7.18), which is related to the Saks-Henstock lemma
(see [24] and [13]) used in the theory of Henstock-Kurzweil integral (see, e.g., [15]). An
elementary proof in the framework of Lebesgue integration, based on Fubini’s theorem, can
be obtained by adapting the arguments developed in [7, page 63]. Equality (7.20) follows
from (7.18) by the triangle inequality. ¤

Remark 7.6. If Xj is a sequence of Banach spaces and ψj : [0, S] → Xj is a sequence
of Bochner integrable function, then there exists a sequence of subdivisions (si

k)0≤i≤ik
,

independent of j and satisfying (7.2), such that (7.18) holds simultaneously for each function
ψj . Indeed, we can consider the Banach space X of all sequences x := (xj) such that
xj ∈ Xj for every j and

∑
j ‖xj‖j < +∞ , ‖ · ‖j being the norm in Xj , endowed with

the norm ‖x‖ :=
∑

j ‖xj‖j . To obtain the result it is enough to apply Lemma 7.5 to the
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function g : [0, S] → X whose components gj are given by gj(s) := 2−jψj(s)/Fj , where
Fj :=

∫ S

0
‖ψj(s)‖j ds .

Lemma 7.7. Let S > 0 , let X be a Banach space, let ψ : [0, S] → X be a Bochner integrable
function, let A be a measurable set in [0, S] such that ψ = 0 on A , let B := [0, S] \A , and
let (si

k)0≤i≤ik
be a sequence of subdivisions of [0, S] satisfying (7.2) and (7.18), and hence

(7.19). Let us define

IA
k := {i : 1 ≤ i ≤ ik, s

i−1
k ∈ A, si

k ∈ A} , (7.21)

IB
k := {i : 1 ≤ i ≤ ik, s

i−1
k ∈ B, si

k ∈ B} , (7.22)

JA−
k := {i : 1 ≤ i ≤ ik, s

i−1
k ∈ A, si

k ∈ B} , (7.23)

JA+
k := {i : 1 ≤ i ≤ ik, s

i−1
k ∈ B, si

k ∈ A} , (7.24)

JA
k := JA−

k ∪ JA+
k . (7.25)

Then

lim
k→∞

∑

i∈IB
k

ψ(si−1
k )(si

k − si−1
k ) =

∫ S

0

ψ(s) ds = lim
k→∞

∑

i∈IB
k

ψ(si
k)(si

k − si−1
k ) , (7.26)

lim
k→∞

∑

i∈JA
k

(‖ψ(si−1
k )‖+ ‖ψ(si

k)‖)(si
k − si−1

k ) = 0 , (7.27)

lim
k→∞

∑

i∈IA
k ∪JA

k

∫ si
k

si−1
k

‖ψ(s)‖ ds = 0 , (7.28)

where the limits in (7.26) are in the strong topology of X .

Proof. By (7.18) we have

lim
k→∞

∑

i∈IB
k

∫ si
k

si−1
k

‖ψ(s)−ψ(si−1
k )‖ ds = 0 = lim

k→∞

∑

i∈IB
k

∫ si
k

si−1
k

‖ψ(s)−ψ(si
k)‖ ds , (7.29)

lim
k→∞

∑

i∈JA+
k

∫ si
k

si−1
k

‖ψ(s)−ψ(si−1
k )‖ ds = 0 = lim

k→∞

∑

i∈JA−
k

∫ si
k

si−1
k

‖ψ(s)−ψ(si
k)‖ ds , (7.30)

lim
k→∞

∑

i∈IA
k ∪JA−

k

∫ si
k

si−1
k

‖ψ(s)‖ ds = 0 = lim
k→∞

∑

i∈IA
k ∪JA+

k

∫ si
k

si−1
k

‖ψ(s)‖ ds . (7.31)

Equality (7.28) follows from (7.31). Applying the triangle inequality we obtain (7.27) from
(7.28) and (7.30). On the other hand, taking into account (7.21)-(7.24), we have

ik∑

i=1

ψ(si−1
k )(si

k − si−1
k ) =

∑

i∈IB
k

ψ(si−1
k )(si

k − si−1
k ) +

∑

i∈JA+
k

ψ(si−1
k )(si

k − si−1
k ) , (7.32)

and the last sum tends to 0 by (7.27). Therefore, the first equality in (7.26) follows from
(7.19) and (7.32). The proof of the other equality is similar. ¤
Remark 7.8. Let S , A , and B be as in Lemma 7.7, and let (si

k)0≤i≤ik
be a sequence of

subdivisions of [0, S] satisfying (7.2) and

lim
k→∞

ik∑

i=1

∫ si
k

si−1
k

|1B(s)− 1B(si−1
k )| ds = 0 = lim

k→∞

ik∑

i=1

∫ si
k

si−1
k

|1B(s)− 1B(si
k)| ds , (7.33)

where 1B denotes the characteristic function of B , defined by 1B(s) = 1 for s ∈ B and
1B(s) = 0 for s /∈ B . It follows from Lemma 7.7, applied to X = R and ψ(s) = 1B(s),
that

lim
k→∞

∑

i∈JA
k

(si
k − si−1

k ) = 0 = lim
k→∞

∑

i∈IA
k ∪JA

k

L1(B ∩ [si−1
k , si

k]) . (7.34)
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Lemma 7.9. Let S > 0 , let X be a Banach space, let ψ : [0, S] → X be a bounded Bochner
integrable function, let A be a relatively open set in [0, S] , let B := [0, S]\A , let (si

k)0≤i≤ik

be a sequence of subdivisions of [0, S] satisfying (7.2), (7.18), and (7.33), and let IA
k , IB

k ,
JA−

k , JA+
k , and JA

k be defined as in (7.21)-(7.25). For every i ∈ JA−
k let si− 1

2
k be the

supremum of the connected component of A containing si−1
k , and for every i ∈ JA+

k let
si− 1

2
k be the infimum of the connected component of A containing si

k . If 1 ≤ i ≤ ik and
i /∈ JA

k , we set si− 1
2

k := si
k . Then the subdivision (ŝi

k)0≤i≤2ik
defined by ŝi

k := s
i/2
k satisfies

(7.2), (7.18), and (7.33). Moreover, if ĴA−
k , ĴA+

k , and ĴA
k are defined by (7.23), (7.24),

and (7.25), with ŝi
k instead of si

k , then (ŝi−1
k , ŝi

k) ⊂ A for every i ∈ ĴA
k .

Proof. Let M is an upper bound of ‖ψ(s)‖ on [0, S] . Since si− 1
2

k = si
k for i /∈ JA

k and
‖ψ(s)−ψ(si− 1

2
k )‖ ≤ ‖ψ(s)−ψ(si−1

k )‖+ 2M for every i ∈ JA
k and every s ∈ [0, S] , we have

ik∑

i=1

( ∫ si− 1
2k

si−1
k

‖ψ(s)−ψ(si−1
k )‖ ds+

∫ si
k

si− 1
2k

‖ψ(s)−ψ(si− 1
2

k )‖ ds
)
≤

≤
ik∑

i=1

∫ si
k

si−1
k

‖ψ(s)−ψ(si−1
k )‖ ds+ 2M

∑

i∈JA
k

(si
k − si−1

k ) .

Since the right-hand side tends to 0 by (7.18) and (7.34), we obtain the first equality in
(7.18) for ŝi

k . A similar argument proves the other equality, as well as (7.33). The final
statement of the lemma follows immediately from the definition of si− 1

2
k . ¤

8. Proof of Theorem 4.5: Conclusion

In this section f , g , w , u0 , e0 , p0 , and z0 are as in Definition 4.1 and satisfy the
uniform safe-load condition (2.53)-(2.56). We assume that u◦, e◦, p◦, z◦, t◦, σ◦, and
ζ◦ satisfy (4.1) and (4.2), together with conditions (ev0)◦, (ev1)◦, (ev2)◦, and (ev3 ′)◦ of
Definition 4.1. We define χ◦(s) := χ(t◦(s)) and w◦(s) := w(t◦(s)), and we assume that
(5.24) is satisfied. Let us fix S > 0 and let A◦S be the open set defined in (6.14). We assume
also that ∫

A◦S

‖ṗ◦(s)‖2 d2(σ◦(s),K(ζ◦(s))) ds < +∞ , (8.1)

so that ṗ◦(s), defined by (4.3), belongs to L2(Ω;Mn×n
sym ) for L1 -a.e. s ∈ A◦S .

The goal of this section is to prove that the functions u◦, e◦, p◦, z◦, w◦, σ◦, ζ◦, and
χ◦ satisfy the energy inequality

Q(e◦(S))−Q(e0) +
∫ S

0

(
H(ṗ◦(s), ζ◦(s)) + 〈χ̇◦(s),p◦(s)〉

)
ds−

− 〈χ◦(S),p◦(S)〉+ 〈χ0, p0〉+
∫

A◦S

〈σ◦(s)− πK(ζ◦(s))(σ◦(s)), ṗ
◦(s)〉 ds ≥ (8.2)

≥
∫ S

0

〈τ ◦(s), Eẇ◦(s)〉 ds−
∫ S

0

〈χ̇◦(s), e◦(s)〉 ds+ 〈χ◦(S), e◦(S)〉 − 〈χ0, e0〉 ,

where χ0 := χ(0) = χ◦(0) and τ ◦ := σ◦−χ◦. The first five lemmas concern the properties
of the functions u◦, e◦, and p◦ on A◦S .

Lemma 8.1. Let (a, b) be a connected component of A◦S , and let c ∈ (a, b) . Then p◦−
p◦(c) ∈ ACloc((a, b);L2(Ω;Mn×n

sym )) . In particular, for L1 -a.e. s ∈ (a, b) , ṗ◦(s) is the strong
limit in L2(Ω;Mn×n

sym ) , as h → 0 , of the difference quotient 1
h (p◦(s + h) − p◦(s)) , and

ṗ◦ ∈ L1
loc((a, b);L

2(Ω;Mn×n
sym )) . Moreover, for every s1, s2 ∈ (a, b) , we have

p◦(s2)− p◦(s1) ∈ L2(Ω;Mn×n
sym ) and p◦(s2)− p◦(s1) =

∫ s2

s1

ṗ◦(s) ds , (8.3)
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where the last term is a Bochner integral in L2(Ω;Mn×n
sym ) .

Proof. By the lower semicontinuity of d2

(
σ◦(s),K(ζ◦(s))

)
, obtained in the proof of Lemma

6.4, for every [a1, b1] ⊂ (a, b), there exists a constant η1 > 0 such that d2

(
σ◦(s),K(ζ◦(s))

) ≥
η1 for every s ∈ [a1, b1] . By (8.1) this gives

∫ b1

a1

||ṗ◦(s)||2 ds < +∞ . (8.4)

This inequality and the measurability of s 7→ 〈ϕ, ṗ◦(s)〉 for every ϕ ∈ C0
0 (Ω;Mn×n

sym ) im-
ply that s 7→ 〈ψ, ṗ◦(s)〉 is measurable for every ψ ∈ L2(Ω;Mn×n

sym ), hence ṗ◦: [a1, b1] →
L2(Ω;Mn×n

sym ) is weakly measurable. By Pettis Theorem it is also strongly measurable, so
that (8.4) implies that ṗ◦ ∈ L1

loc((a, b);L
2(Ω;Mn×n

sym )). For every ϕ ∈ C0
0 (Ω;Mn×n

sym ), the
function s 7→ 〈ϕ, ṗ◦(s)〉 is measurable and bounded, hence, for every s1, s2 ∈ (a, b), we have

〈ϕ,p◦(s2)− p◦(s1)〉 =
∫ s2

s1

〈ϕ, ṗ◦(s)〉 ds =
〈
ϕ,

∫ s2

s1

ṗ◦(s) ds
〉
,

where the last equality follows from the fact that the Bochner integral of ṗ◦ in the last
term is well defined in L2(Ω;Mn×n

sym ). By the arbitrariness of ϕ , this proves (8.3). The
inclusion p◦ − p◦(c) ∈ ACloc((a, b);L2(Ω;Mn×n

sym )) follows now from (8.3), as well as the
statement about the difference quotients, thanks to the Differentiation Theorem for Bochner
integrals. ¤

Lemma 8.2. Let (a, b) be a connected component of A◦S . Then, for every a < s1 < s2 < b ,

u◦(s2)− u◦(s1) ∈ H1
Γ0

(Ω;Rn) , (8.5)

where H1
Γ0

(Ω;Rn) is defined by (2.6).

Proof. Let us fix a < s1 < s2 < b . From the weak kinematic admissibility (4.4), we have

Eu◦(s2)− Eu◦(s1) = e◦(s2)− e◦(s1) + p◦(s2)− p◦(s1) in Ω , (8.6)
p◦(s2)− p◦(s1) = ((w◦(s2)−w◦(s1))− (u◦(s2)− u◦(s1)))¯ νHn−1 in Γ0 . (8.7)

As the measure p◦(s2)−p◦(s1) belongs to L2(Ω;Mn×n
sym ), it does not charge Γ0 , so that the

left-hand side of (8.7) is 0; since w◦(s) is constant in (a, b) by the inclusion A◦S ⊂ U◦ proved
in Lemma 6.4, we get u◦(s2)−u◦(s1) = 0 Hn−1 -a.e. on Γ0 . Moreover, the right-hand side
of (8.6) belongs to L2(Ω;Mn×n

sym ). By (2.2) we have u◦(s2)− u◦(s1) ∈ H1(Ω;Rn). ¤

Lemma 8.3. The function e◦ belongs to ACloc(A◦S ;L2(Ω;Mn×n
sym )) and

αQ‖ė◦(s)‖2 ≤ βQ‖ṗ◦(s)‖2 (8.8)

for L1 -a.e. s ∈ A◦S .

Proof. Let (a, b) be a connected component of A◦S and let a < s1 < s2 < b . By the inclusion
A◦S ⊂ U◦ proved in Lemma 6.4 and by (4.5) we have that σ◦(s2) − σ◦(s1) belongs to the
set Σ0(Ω) defined by (2.17), so that from (2.18), (8.5), and (8.6), we get

〈σ◦(s2)− σ◦(s1), e◦(s2)− e◦(s1)〉 = 〈σ◦(s2)− σ◦(s1),p◦(s1)− p◦(s2)〉 ; (8.9)

by (2.9) this yields 2αQ‖e◦(s2) − e◦(s1)‖2 ≤ 2βQ‖p◦(s1) − p◦(s2)‖2 , and the conclusion
follows from Lemma 8.1 ¤

Lemma 8.4. Let (a, b) be a connected component of A◦S . Then there exists an increasing
sequence sk → b such that d2(σ◦(sk),K(ζ◦(sk))) → 0 .
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Proof. We argue by contradiction. If the conclusion does not hold, there exist c ∈ (a, b) and
η > 0 such that d2(σ◦(s),K(ζ◦(s))) ≥ η for every s ∈ [c, b). Then (4.2), (8.1), and (8.8)
imply that ∫ b

c

||σ̇◦(s)||2 ds < +∞.

It follows that σ◦(s) has a strong limit in L2(Ω;Mn×n
sym ) as s → b− . Since σ◦(s) ⇀ σ◦(b)

weakly in L2(Ω;Mn×n
sym ) as s→ b− , we deduce that σ◦(s) → σ◦(b) strongly in L2(Ω;Mn×n

sym )
as s → b− . Since σ◦(b) ∈ K(ζ◦(b)), we conclude that d2(σ◦(s),K(ζ◦(s))) → 0 as s → b− ,
which contradicts our assumption on η . ¤

In the following lemma we use a weak L1 -estimate for gradients of solutions of the elliptic
system of linearized elasticity. For every measurable set B and for every measurable function
f defined on B with values in a finite dimensional Hilbert space, we define

‖f‖1,w,B := sup
t>0

tLn({|f | > t} ∩B) . (8.10)

It is well-known that ‖f‖1,w,B ≤ ‖f‖1,B (Chebychev Inequality) and that ‖f1 + f2‖1,w,B ≤
2‖f1‖1,w,B + 2‖f2‖1,w,B for every pair of functions f1, f2 .

Lemma 8.5. Let (a, b) be a connected component of A◦S . Then there exists an increasing
sequence sk → b such that σ◦(sk) → σ◦(b) strongly in L2(Ω;Mn×n

sym ) .

Proof. Let sk be the sequence given by Lemma 8.4. Let us fix h < k . By Lemma 8.2 we
have u◦(sh)−u◦(sk) ∈ H1

Γ0
(Ω;Rn), while σ◦(sh)−σ◦(sk) ∈ Σ0(Ω) by (4.5), thanks to the

inclusion A◦S ⊂ U◦ proved in Lemma 6.4. Then (8.6) implies that

−div (CE(u◦(sh)− u◦(sk))) = −div (C(p◦(sh)− p◦(sk))).

Let us fix an open set Ω′ ⊂⊂ Ω. We can apply the regularity result proved in the Appendix
(Theorem 9.1), and we find that there exists a constant C such that

‖E(u◦(sh)− u◦(sk))‖1,w,Ω′ ≤ C‖p◦(sh)− p◦(sk)‖1 + C‖u◦(sh)− u◦(sk)‖1 ;

then (4.2), (8.6), the Lipschitz continuity of p◦, and the strong continuity of u : [0, S] →
L1(Ω;Rn) entail that σ◦(sk) is a Cauchy sequence with respect to convergence in measure in
Ω. As σ◦(sk) ⇀ σ◦(b) weakly in L2(Ω;Mn×n

sym ), it follows that σ◦(sk) → σ◦(b) in measure.
We now consider the decomposition

σ◦(sk) = πK(ζ◦(sk))(σ◦(sk)) + (σ◦(sk)− πK(ζ◦(sk))(σ◦(sk)) . (8.11)

The sequence σ◦(sk)−πK(ζ◦(sk))(σ◦(sk)) converges to 0 strongly in L2(Ω;Mn×n
sym ) by Lemma

8.4. As σ◦(sk) → σ◦(b) in measure, this implies that πK(ζ◦(sk))(σ◦(sk)) → σ◦(b) in mea-
sure. Since πK(ζ◦(sk))(σ◦(sk)) is uniformly bounded in L∞(Ω;Mn×n

sym ), by the Dominated
Convergence Theorem we have πK(ζ◦(sk))(σ◦(sk)) → σ◦(b) strongly in L2(Ω;Mn×n

sym ), there-
fore (8.11) gives σ◦(sk) → σ◦(b) strongly in L2(Ω;Mn×n

sym ), as required. ¤

The next four lemmas provide a discrete approximation of the integrals in (8.2). Let

B◦S := {s ∈ [0, S] : σ◦(s) ∈ K(ζ◦(s))} = [0, S] \A◦S . (8.12)

Since A◦S is open, B◦S is compact. We recall that τ ◦ := σ◦− χ◦.
Lemma 8.6. For every s1, s2 ∈ B◦S with s1 < s2 we have

1
2 〈τ ◦(s1) + τ ◦(s2), Ew◦(s2)− Ew◦(s1)〉+ 1

2 〈χ◦(s1) + χ◦(s2), e◦(s2)− e◦(s1)〉 ≤
≤ Q(e◦(s2))−Q(e◦(s1)) + 1

2H(p◦(s2)− p◦(s1), ζ◦(s1)) +

+ 1
2H(p◦(s2)− p◦(s1), ζ◦(s2))− 1

2 〈χ◦(s1) + χ◦(s2),p◦(s2)− p◦(s1)〉 ,
(8.13)
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or equivalently
1
2 〈τ ◦(s1) + τ ◦(s2), Ew◦(s2)− Ew◦(s1)〉 − 1

2 〈χ◦(s2)− χ◦(s1), e◦(s2) + e◦(s1)〉 −
− 1

2 〈χ◦(s2)− χ◦(s1),p◦(s2) + p◦(s1)〉 ≤ Q(e◦(s2))−Q(e◦(s1)) +

+ 1
2H(p◦(s2)− p◦(s1), ζ◦(s1)) + 1

2H(p◦(s2)− p◦(s1), ζ◦(s2))−
− 〈χ◦(s2), e◦(s2)〉+ 〈χ◦(s1), e◦(s1)〉 − 〈χ◦(s2),p◦(s2)〉+ 〈χ◦(s1),p◦(s1)〉 .

(8.14)

Proof. The equivalence between (8.13) and (8.14) is trivial, hence we limit ourselves to
proving (8.13). Let s1 and s2 be as in the statement of the lemma. By (2.16) and (7.15)
we have

Q(e◦(s2))−Q(e◦(s1)) = 1
2 〈σ◦(s2) + σ◦(s1), e◦(s2)− e◦(s1)〉 =

= 1
2 〈τ ◦(s1) + τ ◦(s2), Ew◦(s2)− Ew◦(s1)〉 − 1

2 〈σ◦(s1) + σ◦(s2),p◦(s2)− p◦(s1)〉+

+ 1
2 〈χ◦(s1) + χ◦(s2),p◦(s2)− p◦(s1)〉+ 1

2 〈χ◦(s1) + χ◦(s2), e◦(s2)− e◦(s1)〉.
Since σ◦(si) ∈ K(ζ◦(si)) and ζ◦(si) ∈ C0(Ω) for i = 1, 2, we can adapt [3, Proposition
3.3], following the lines of [27, Proposition 3.2], and we obtain 〈σ◦(si),p◦(s2) − p◦(s1)〉 ≤
H(p◦(s2)− p◦(s1), ζ◦(si)). With this, (8.13) easily follows from the previous equalities. ¤

Lemma 8.7. Let (a, b) be a connected component of A◦S and let a ≤ s1 < s2 ≤ b . Then

〈χ◦(s2), e◦(s2)〉 − 〈χ◦(s1),e(s1)〉 ≤ Q(e◦(s2))−Q(e◦(s1)) +

+
∫ s2

s1

H(ṗ◦(s), ζ◦(s)) ds− 〈χ◦(s2),p◦(s2)〉+ 〈χ◦(s1),p(s1)〉+

+
∫ s2

s1

〈σ◦(s)− πK(ζ◦(s))(σ◦(s)), ṗ
◦(s)〉 ds .

(8.15)

Proof. We first observe that χ◦ is constant on (a, b) by the inclusion A◦S ⊂ U◦ proved in
Lemma 6.4. By Lemma 8.3 the function s 7→ 〈χ◦(s),e◦(s)〉 is locally absolutely continuous
on (a, b) and

d
ds 〈χ◦(s), e◦(s)〉 = 〈χ◦(s), ė◦(s)〉 (8.16)

for a.e. s ∈ (a, b). Similarly, by Lemma 8.1 and (2.14) the function s 7→ 〈χ◦(s),p◦(s)〉 is
locally absolutely continuous on (a, b) and

d
ds 〈χ◦(s),p◦(s)〉 = 〈χ◦(s), ṗ◦(s)〉 (8.17)

for a.e. s ∈ (a, b), where the right-hand side is the usual scalar product of L2 . These
continuity results, together with the weak lower semicontinuity of Q in L2(Ω;Mn×n

sym ), imply
that it is enough to prove the inequality in (8.15) when a < s1 . By Lemma 8.5 we may also
assume s2 < b .

Since s 7→ Q(e◦(s)) is locally absolutely continuous in (a, b) by Lemma 8.3, taking into
account (8.16) and (8.17), inequality (8.15) easily follows from the inequality 〈χ◦(s), ė◦(s)〉 ≤
d
dsQ(e◦(s)) + H(ṗ◦(s), ζ◦(s)) − 〈χ◦(s), ṗ◦(s)〉 + 〈σ◦(s) − πK(ζ◦(s))(σ◦(s)), ṗ

◦(s)〉 , which is
equivalent to

〈χ◦(s), ė◦(s)〉 ≤ 〈σ◦(s), ė◦(s)〉+H(ṗ◦(s), ζ◦(s))−
− 〈χ◦(s), ṗ◦(s)〉+ 〈σ◦(s)− πK(ζ◦(s))(σ◦(s)), ṗ

◦(s)〉 . (8.18)

As (σ◦− χ◦)(s) ∈ Σ0(Ω) by (2.53) and (4.5), from (2.18), (8.5), and (8.6) we get

〈(σ◦− χ◦)(s), e◦(s+ h)− e◦(s)〉 = −〈(σ◦− χ◦)(s),p◦(s+ h)− p◦(s)〉 ;
by Lemmas 8.1 and 8.3, we conclude that 〈(σ◦− χ◦)(s), ė◦(s)〉 = −〈(σ◦− χ◦)(s), ṗ◦(s)〉 ,
therefore (8.18) is equivalent to

〈σ◦(s), ṗ◦(s)〉 ≤ H(ṗ◦(s), ζ◦(s)) + 〈σ◦(s)− πK(ζ◦(s))(σ◦(s)), ṗ
◦(s)〉 ;
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this inequality can be proved by observing that

〈σ◦(s), ṗ◦(s)〉 = 〈πK(ζ◦(s))(σ◦(s)), ṗ
◦(s)〉+ 〈σ◦(s)− πK(ζ◦(s))(σ◦(s)), ṗ

◦(s)〉 ≤
≤ H(ṗ◦(s), ζ◦(s)) + 〈σ◦(s)− πK(ζ◦(s))(σ◦(s)), ṗ

◦(s)〉 ,
where the inequality follows from the definition of H . This concludes the proof. ¤

Lemma 8.8. Let (si
k)0≤i≤ik

be a sequence of subdivisions of [0, S] satisfying (7.2) and
(7.18), with ψ given by the following functions: σ◦, σ◦1B◦S , χ◦1B◦S , and 1B◦S , the first
three with X = L2(Ω;Mn×n

sym ) . Let IA
k , IB

k , and JA
k be defined by (7.21), (7.22), and (7.25),

with A = A◦S and B = B◦S . Then

lim
k→∞

∑

i∈IB
k

〈τ ◦(si−1
k ), Ew◦(si

k)− Ew◦(si−1
k )〉 =

∫ S

0

〈τ ◦(s), Eẇ◦(s)〉 ds , (8.19)

lim
k→∞

∑

i∈IA
k ∪JA

k

∫ si
k

si−1
k

(‖σ◦(s)‖2 + ‖χ◦(s)‖2 + 1) 1B◦S (s) ds = 0 , (8.20)

lim
k→∞

∑

i∈IB
k

〈χ◦(si
k)− χ◦(si−1

k ), e◦(si−1
k )〉 =

∫ S

0

〈χ̇◦(s), e◦(s)〉 ds , (8.21)

lim
k→∞

∑

i∈IB
k

〈χ◦(si
k)− χ◦(si−1

k ),p◦(si−1
k )〉 =

∫ S

0

〈χ̇◦(s),p◦(s)〉 ds . (8.22)

These equalities continue to hold if τ ◦(si−1
k ) , e◦(si−1

k ) , and p◦(si−1
k ) are replaced by τ ◦(si

k) ,
e◦(si

k) , and p◦(si
k) , respectively.

Proof. Equality (8.20) follows from (7.28), with ψ given by σ◦1B◦S , χ◦1B◦S , and 1B◦S .
Now, recalling that Eẇ◦(s) = 0 for L1 -a.e. s ∈ A◦S by the inclusion A◦S ⊂ U◦ proved
in Lemma 6.4, and that ‖Eẇ◦(s)‖2 ≤ 1 for L1 -a.e. s ∈ [0, S] by (5.24), we get

∣∣∣
∑

i∈IB
k

〈τ ◦(si−1
k ), Ew◦(si

k)− Ew◦(si−1
k )〉 −

∫ S

0

〈τ ◦(s), Eẇ◦(s)〉 ds
∣∣∣ ≤

≤
∑

i∈IB
k

∫ si
k

si−1
k

∣∣〈τ ◦(si−1
k )− τ ◦(s), Eẇ◦(s)〉

∣∣ ds+
∑

i∈IA
k ∪JA

k

∫ si
k

si−1
k

|〈τ ◦(s), Eẇ◦(s)〉| ds ≤

≤
∑

i∈IB
k

∫ si
k

si−1
k

‖τ ◦(si−1
k )− τ ◦(s)‖2 ds+

∑

i∈IA
k ∪JA

k

∫ si
k

si−1
k

‖τ ◦(s)‖21B◦S (s) ds .

The first term in the right-hand side vanishes in the limit since τ ◦ = σ◦− χ◦ , σ◦ satisfies
(7.18), and χ◦ is continuous. As the second one tends to 0 by (8.20), equality (8.19) is
proved.

Since χ̇◦(s) = 0 for L1 -a.e. s ∈ A◦S ⊂ U◦, and ‖χ̇◦(s)‖∞ ≤ 1 for L1 -a.e. s ∈ [0, S] by
(5.24), by adapting the previous argument we can prove (8.21). We finally observe that, by
(2.14) and (5.24),

∑

i∈IA
k ∪JA

k

∣∣∣
∫ si

k

si−1
k

〈χ̇◦(s),p◦(s)〉 ds
∣∣∣ ≤M

∑

i∈IA
k ∪JA

k

∫ si
k

si−1
k

1B◦S (s) ds ,

where M is an upper bound of ‖p◦(s)‖1 on [0, S] , and the right-hand side vanishes in the
limit as k → ∞ by (8.20). Together with (7.13) and (7.14), this proves (8.22). The last
assertion of the lemma can be proved in a similar way. ¤
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Lemma 8.9. Let (si
k)0≤i≤ik

, IA
k , IB

k , and JA
k be as in Lemma 8.8. Assume that (si−1

k , si
k)

is contained in A◦S for every i ∈ JA
k . Then there exists a sequence Rk → 0 such that

∑

i∈IA
k ∪JA

k

(
Q(e◦(si

k))−Q(e◦(si−1
k )) +

∫ si
k

si−1
k

H(ṗ◦(s), ζ◦(s)) ds− 〈χ◦(si
k),p◦(si

k)〉+

+ 〈χ◦(si−1
k ),p◦(si−1

k )〉+
∫

Ai−1,i
k

〈σ◦(s)− πK(ζ◦(s))(σ◦(s)), ṗ
◦(s)〉 ds

)
≥

≥
∑

i∈IA
k ∪JA

k

(
〈χ◦(si

k),e◦(si
k)〉 − 〈χ◦(si−1

k ), e◦(si−1
k )〉

)
−Rk ,

(8.23)

where Ai−1,i
k := A◦S ∩ (si−1

k , si
k) .

Proof. Define

ÎA
k := {i ∈ IA

k ∪ JA
k : (si−1

k , si
k) ⊂ A◦S} and ǏA

k := {i ∈ IA
k : (si−1

k , si
k) ∩B◦S 6= Ø} ;

our assumption on JA
k implies that ÎA

k ∪ ǏA
k = IA

k ∪ JA
k . By Lemma 8.7, we have

∑

i∈ÎA
k

(
Q(e◦(si

k))−Q(e◦(si−1
k )) +

∫ si
k

si−1
k

H(ṗ◦(s), ζ◦(s)) ds− 〈χ◦(si
k),p◦(si

k)〉+

+ 〈χ◦(si−1
k ),p◦(si−1

k )〉+
∫

Ai−1,i
k

〈σ◦(s)− πK(ζ◦(s))(σ◦(s)), ṗ
◦(s)〉 ds

)
≥

≥
∑

i∈ÎA
k

(
〈χ◦(si

k), e◦(si
k)〉 − 〈χ◦(si−1

k ),e◦(si−1
k )〉

)
.

For every i ∈ ǏA
k , we define si− 2

3
k (respectively si− 1

3
k ) as the supremum (respectively the

infimum) of the connected component of A◦S containing si−1
k (respectively si

k ). Notice that
both si− 1

3
k and si− 2

3
k belong to the set B◦S . By Lemma 8.7, we have

∑

i∈ǏA
k

(
Q(e◦(si

k))−Q(e◦(si− 1
3

k )) +
∫ si

k

si− 1
3k

H(ṗ◦(s), ζ◦(s)) ds− 〈χ◦(si
k),p◦(si

k)〉+

+ 〈χ◦(si− 1
3

k ),p◦(si− 1
3

k )〉+
∫ si

k

si− 1
3k

〈σ◦(s)− πK(ζ◦(s))(σ◦(s)), ṗ
◦(s)〉 ds

)
≥

≥
∑

i∈ǏA
k

(
〈χ◦(si

k), e◦(si
k)〉 − 〈χ◦(si− 1

3
k ) , e◦(si− 1

3
k )〉

)

and
∑

i∈ǏA
k

(
Q(e◦(si− 2

3
k ))−Q(e◦(si−1

k )) +
∫ si− 2

3k

si−1
k

H(ṗ◦(s), ζ◦(s)) ds− 〈χ◦(si− 2
3

k ),p◦(si− 2
3

k )〉+

+ 〈χ◦(si−1
k ),p◦(si−1

k )〉+
∫ si− 2

3k

si−1
k

〈σ◦(s)− πK(ζ◦(s))(σ◦(s)), ṗ
◦(s)〉 ds

)
≥

≥
∑

i∈ǏA
k

(
〈χ◦(si− 2

3
k ), e◦(si− 2

3
k )〉 − 〈χ◦(si−1

k ),e◦(si−1
k )〉

)
.

Therefore to prove (8.23) it is enough to show that there exists Rk → 0 such that
∑

i∈ǏA
k

(
Q(e◦(si− 1

3
k ))−Q(e◦(si− 2

3
k )) +

∫ si− 1
3k

si− 2
3k

H(ṗ◦(s), ζ◦(s)) ds− 〈χ◦(si− 1
3

k ),p◦(si− 1
3

k )〉+

+ 〈χ◦(si− 2
3

k ),p◦(si− 2
3

k )〉+
∫

Ai− 2
3 ,i− 1

3
k

〈σ◦(s)− πK(ζ◦(s))(σ◦(s)), ṗ
◦(s)〉 ds− (8.24)

− 〈χ◦(si− 1
3

k ), e◦(si− 1
3

k )〉+ 〈χ◦(si− 2
3

k ),e◦(si− 2
3

k )〉
)
≥ −Rk ,



40 G. DAL MASO, A. DESIMONE, AND F. SOLOMBRINO

where Ai− 2
3 ,i− 1

3
k := A◦S ∩ (si− 2

3
k , si− 1

3
k ).

Let B̌k be the union of the intervals (si−1
k , si

k) for i ∈ ǏA
k . By the definition of ǏA

k each
point of B̌k has distance from B◦S less than the constant ηk introduced in (7.2). Since B◦S
is compact, we have L1(B̌k ∩A◦S) → 0. By (8.1) this implies that

∫

B̌k∩A◦S

‖ṗ◦(s)‖2 d2(σ◦(s),K(ζ◦(s))) ds→ 0 . (8.25)

By Lemma 8.6 we have

Q(e◦(si− 1
3

k ))−Q(e◦(si− 2
3

k )) + 1
2H(p◦(si− 1

3
k )− p◦(si− 2

3
k ), ζ◦(si− 2

3
k )) +

+ 1
2H(p◦(si− 1

3
k )− p◦(si− 2

3
k ), ζ◦(si− 1

3
k ))− 〈χ◦(si− 1

3
k ),p◦(si− 1

3
k )〉+

+ 〈χ◦(si− 2
3

k ),p◦(si− 2
3

k )〉 − 〈χ◦(si− 1
3

k ), e◦(si− 1
3

k )〉+ 〈χ◦(si− 2
3

k ),e◦(si− 2
3

k )〉 ≥
≥ 1

2 〈τ ◦(si− 2
3

k ) + τ ◦(si− 1
3

k ), Ew◦(si− 1
3

k )− Ew◦(si− 2
3

k )〉 −
− 1

2 〈χ◦(si− 1
3 )− χ◦(si− 2

3 ), e◦(si− 1
3 ) + e◦(si− 2

3 )〉 −
− 1

2 〈χ◦(si− 1
3 )− χ◦(si− 2

3 ),p◦(si− 1
3 ) + p◦(si− 2

3 )〉 .
Now, recalling that Eẇ◦(s) = 0 for L1 -a.e. s ∈ A◦S ⊂ U◦, and that ‖Eẇ◦(s)‖2 ≤ 1 for

L1 -a.e. s ∈ [0, S] by (5.24), we get
∣∣1
2 〈τ ◦(si− 2

3
k ) + τ ◦(si− 1

3
k ), Ew◦(si− 1

3
k )− Ew◦(si− 2

3
k )〉

∣∣ ≤

≤ C1‖Ew◦(si− 1
3

k )− Ew◦(si− 2
3

k )‖2 ≤ C1

∫ si− 1
3k

si− 2
3k

1B◦S (s) ds ≤ C1

∫ si
k

si−1
k

1B◦S (s) ds ,

where C1 is an upper bound of ‖τ ◦(s)‖2 on [0, S] . Similarly, as χ̇◦(s) = 0 for L1 -a.e.
s ∈ A◦S ⊂ U◦ and ‖χ̇◦(s)‖∞ ≤ 1 for L1 -a.e. s ∈ [0, S] by (5.24), we get

∣∣1
2 〈χ◦(si− 1

3 )− χ◦(si− 2
3 ), e◦(si− 1

3 ) + e◦(si− 2
3 )〉

∣∣ ≤ C2

∫ si
k

si−1
k

1B◦S (s) ds ,

where C2 is an upper bound of ‖e◦(s)‖1 on [0, S] . Arguing as before, by (2.14) and (5.24),
we can also prove that

∣∣1
2 〈χ◦(si− 1

3 )− χ◦(si− 2
3 ),p◦(si− 1

3 ) + p◦(si− 2
3 )〉

∣∣ ≤ C3

∫ si
k

si−1
k

1B◦S (s) ds ,

where C3 is an upper bound of ‖p◦(s)‖1 on [0, S] . Setting C := C1 + C2 + C3 , from the
previous inequalities we obtain that (8.24) holds with

Rk := C
∑

i∈ǏA
k

∫ si
k

si−1
k

1B◦S (s) ds+
∫

B̌k∩A◦S

‖ṗ◦(s)‖2 d2(σ◦(s),K(ζ◦(s))) ds+

+ 1
2

∑

i∈ǏA
k

(
H(p◦(si−1

3
k )− p◦(si− 2

3
k ), ζ◦(si−2

3
k ))−

∫ s
i−1

3
k

si− 2
3k

H(ṗ◦(s), ζ◦(s))ds
)

+

+ 1
2

∑

i∈ǏA
k

(
H(p◦(si− 1

3
k )− p◦(si− 2

3
k ), ζ◦(si− 1

3
k ))−

∫ si− 1
3k

si− 2
3k

H(ṗ◦(s), ζ◦(s)) ds
)
.

From Lemma 7.3 and from (7.28) and (8.25) we obtain Rk → 0, concluding the proof. ¤

Proof of Theorem 4.5 (conclusion). Let us fix S > 0 and let A◦S and B◦S be the sets defined
in (6.14) and (8.12). Let (si

k)0≤i≤ik
, IA

k , IB
k , and JA

k be as in Lemma 8.8. By Lemma
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7.9 we may assume that (si−1
k , si

k) ⊂ A◦S for every i ∈ JA
k . By Lemma 8.8 there exists a

sequence ρ1
k → 0 such that

∫ S

0

(
〈τ ◦(s), Eẇ◦(s)〉−〈χ̇◦(s),e◦(s)〉

)
ds+

∑

i∈IB
k

(
〈χ◦(si

k), e◦(si
k)〉−〈χ◦(si−1

k ), e◦(si−1
k )〉

)
≤

≤ 1
2

∑

i∈IB
k

〈τ ◦(si−1
k ) + τ ◦(si

k), Ew◦(si
k)− Ew◦(si−1

k )〉 −

− 1
2

∑

i∈IB
k

〈χ◦(si
k)− χ◦(si−1

k ), e◦(si−1
k ) + e◦(si

k)〉+

+
∑

i∈IB
k

(
〈χ◦(si

k),e◦(si
k)〉 − 〈χ◦(si−1

k ), e◦(si−1
k )〉

)
+ ρ1

k .

By Lemma 8.6 we then deduce that
∫ S

0

(
〈τ ◦(s), Eẇ◦(s)〉−〈χ̇◦(s),e◦(s)〉

)
ds+

∑

i∈IB
k

(
〈χ◦(si

k), e◦(si
k)〉−〈χ◦(si−1

k ), e◦(si−1
k )〉

)
≤

≤
∑

i∈IB
k

(Q(e◦(si
k))−Q(e◦(si−1

k ))) + 1
2

∑

i∈IB
k

H(p◦(si
k)− p◦(si−1

k ), ζ◦(si−1
k )) +

+ 1
2

∑

i∈IB
k

H(p◦(si
k)− p◦(si−1

k ), ζ◦(si
k)) + 1

2

∑

i∈IB
k

〈χ◦(si−1
k )− χ◦(si

k),p◦(si
k) + p◦(si−1

k )〉 −

−
∑

i∈IB
k

(
〈χ◦(si

k),p◦(si
k)〉 − 〈χ◦(si−1

k ),p◦(si−1
k )〉

)
+ ρ1

k .

By (8.22), Lemma 7.3 provides a sequence %2
k → 0 such that

∫ S

0

(
〈τ ◦(s), Eẇ◦(s)〉−〈χ̇◦(s),e◦(s)〉

)
ds+

∑

i∈IB
k

(
〈χ◦(si

k), e◦(si
k)〉−〈χ◦(si−1

k ), e◦(si−1
k )〉

)
≤

≤
∑

i∈IB
k

(Q(e◦(si
k))−Q(e◦(si−1

k ))) +
∑

i∈IB
k

∫ si
k

si−1
k

H(ṗ◦(s)), ζ◦(s)) ds+

+
∫ S

0

〈χ̇◦(s),p◦(s)〉 ds−
∑

i∈IB
k

(
〈χ◦(si

k),p◦(si
k)〉 − 〈χ◦(si−1

k ),p◦(si−1
k )〉

)
+ ρ1

k + ρ2
k .

Adding (8.23), where Ai−1,i
k := A◦S ∩ (si−1

k , si
k), we get

∫ S

0

〈τ ◦(s), Eẇ◦(s)〉 ds−
∫ S

0

〈χ̇◦(s), e◦(s)〉 ds+ 〈χ◦(S), e◦(S)〉 − 〈χ0, e0〉 ≤

≤
ik∑

i=1

(Q(e◦(si
k))−Q(e◦(si−1

k ))) +
ik∑

i=1

∫ si
k

si−1
k

H(ṗ◦(s)), ζ◦(s)) ds+
∫ S

0

〈χ̇◦(s),p◦(s)〉 ds−

− 〈χ◦(S),p◦(S)〉+ 〈χ0, p0〉+
∑

i∈IA
k ∪JA

k

∫

Ai−1,i
k

〈σ◦(s)− πK(ζ◦(s))(σ◦(s)), ṗ
◦(s)〉 ds+ ρ3

k ≤

≤ Q(e◦(S))−Q(e0) +
∫ S

0

H(ṗ(s), ζ◦(s)) ds+
∫ S

0

〈χ̇◦(s),p◦(s)〉 ds−

− 〈χ◦(S),p◦(S)〉+ 〈χ0, p0〉+
∫

A◦S

〈σ◦(s)− πK(ζ◦(s))(σ◦(s)), ṗ
◦(s)〉 ds+ ρ3

k ,
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with
%3

k := %1
k + %2

k +Rk +
∫

Bk∩A◦S

‖ṗ◦(s)‖2 d2(σ◦(s),K(ζ◦(s))) ds , (8.26)

where Bk is the union of the intervals (si−1
k , si

k) for i ∈ IB
k . By the definition of IB

k each
point of Bk has distance from B◦S less than the constant ηk introduced in (7.2). Since B◦S
is compact, we have L1(Bk∩A◦S) → 0. By (8.1) this implies that the integral in (8.26) tends
to 0 as k →∞ . Therefore %3

k → 0, and the last chain of inequalities yields (8.2). Together
with inequality (6.1), proved in Section 6, this gives (4.15) and (4.9). By Proposition 4.4
this proves (4.8) and concludes the proof of Theorem 4.5. ¤

9. Appendix

We now prove the regularity result used in Lemma 8.5.

Theorem 9.1. For every open set Ω′ ⊂⊂ Ω there exists a constant C depending only on
Ω′ , Ω , and C such that, if p ∈ L2(Ω;Mn×n

sym ) and u ∈ H1
loc(Ω;Rn) satisfies the equation

−div (CEu) = −div (Cp) in Ω , (9.1)

then we have the estimate

‖∇u‖1,w,Ω′ ≤ C(‖p‖1,Ω + ‖u‖1,Ω) , (9.2)

where ‖ · ‖1,w,Ω′ is defined in (8.10).

Proof. Let Ω′′ be an open set such that Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω, and let ϕ ∈ C∞c (Ω) be a cutoff
function with ϕ = 1 on Ω′′ and 0 ≤ ϕ ≤ 1. Let p and u be as in the statement, and let
q := Cp , and v := ϕu . It turns out that v has compact support and satisfies the equation

−div (CEv) = −div (ϕq) + q∇ϕ− (CEu)∇ϕ− div (C(u¯∇ϕ) in Rn . (9.3)

The fundamental solution of the operator −div (CEu) is given by

G(x) := a g(x) I + b∇g(x)⊗ x , (9.4)

where g is the fundamental solution of the Laplace operator, a = 1
2(λ+2µ) + 1

2µ , and b =
1

2(λ+2µ) − 1
2µ (see [19, Section 2.5.2] and [25, Chapter II, formula (1.46)]). Since v has

compact support, equation (9.3) gives the representation

vi(x) =
n∑

h,k=1

∫

Rn

DkGih(x− y)(ϕq)hk(y) dy +
n∑

h=1

∫

Rn

Gih(x− y)(q∇ϕ)h(y) dy −

−
n∑

h=1

∫

Rn

Gih(x− y)(CEu∇ϕ)h(y) dy +
n∑

h,k=1

∫

Rn

DkGih(x− y)(C(u¯∇ϕ))hk(y) dy .

For a.e. x ∈ Ω′ it follows that

Djvi(x) = α(x) + β(x)− γ(x) + δ(x) ,

where

α(x) :=
n∑

h,k=1

∫

Rn

DjDkGih(x− y)(ϕq)hk(y) dy ,

β(x) :=
n∑

h=1

∫

Ω\Ω′′
DjGih(x− y)(q∇ϕ)h(y) dy ,

γ(x) :=
n∑

h=1

∫

Ω\Ω′′
DjGih(x− y)(CEu∇ϕ)h(y) dy ,

δ(x) :=
n∑

h,k=1

∫

Ω\Ω′′
DjDkGih(x− y)(C(u¯∇ϕ))hk(y) dy .
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The function DjDkGih is homogeneous of degree −n . Using the explicit expression of
Gih given by (9.4) we can check that DjDkGih has mean value 0 on the boundary of each
ball around the origin. Therefore we can apply the Calderon-Zygmund estimate contained
in [28, Chapter II, Theorem 4], obtaining

‖α‖1,w,Ω ≤ C1‖p‖1,Ω , (9.5)

where the constant C1 only depends on the function G , and the elasticity tensor C .
To estimate the term γ(x) we introduce the cartesian components clmhk of the tensor C ,

defined by

(CEu)hk =
n∑

l,m=1

clmhkDlum .

It follows that

γ(x) =
n∑

h,k,l,m=1

clmhk

∫

Ω\Ω′′
DjGih(x− y)Dlum(y)Dkϕ(y) dy .

For x ∈ Ω′ , the function y 7→ Gih(x − y) is of class C∞ in Ω \ Ω′′ . Integrating by parts,
we obtain

γ(x) = −
n∑

h,k,l,m=1

clmhk

∫

Ω\Ω′′
DjDlGih(x− y)um(y)Dkϕ(y) dy −

−
n∑

h,k,l,m=1

clmhk

∫

Ω\Ω′′
DjGih(x− y)um(y)DlDkϕ(y) dy .

As DjDlGih(x−y) and DjGih(x−y) are uniformly bounded when x ∈ Ω′ and y ∈ Ω\Ω′′ ,
we obtain the estimate

‖γ‖∞,Ω′ ≤ C3‖u‖1,Ω , (9.6)
where the constant C3 depends on the function G , on the elasticity tensor C , on the pair
Ω′ , Ω′′ , and on the function ϕ .

In a similar, and easier, way we prove the estimates

‖β‖∞,Ω′ ≤ C2‖p‖1,Ω and ‖δ‖∞,Ω′ ≤ C4‖u‖1,Ω , (9.7)

where the constants C2 and C4 depend on the function G , on the elasticity tensor C , on
the pair Ω′ , Ω′′ , and on the function ϕ . Inequality (9.2) follows now from (9.5), (9.6), and
(9.7). ¤
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