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Introduction. An initial and boundary value problem for materials with a rate-type
constitutive equation of the form1

(T = + F(<7, e) (0.1)

is considered. Such equations are used in order to describe the behavior of real
materials like rubbers, metals, rocks, and so on. Various results and mechanical
interpretations concerning constitutive equations of the form (0.1) may be found,
for instance, in the papers of Freudenthal and Geringer [8], Cristescu and Suliciu
[3], Gurtin, Williams, and Suliciu [9], Suliciu [16], and Podio-Guidugli and Suliciu
[15].

For particular forms of F, Eq. (0.1) reduces to some classical models used in
viscoelasticity and viscoplasticity. In the case when F depends only on cr, existence
results for such materials may be found, for instance, in Duvaut and Lions [6], Djaoua
and Suquet [5], Anzellotti [1], and Anzellotti and Giaquinta [2],

In this paper we are interested in existence results for materials obeying (0.1) for
which a full coupling in stress and strain is involved in F. A relatively simple one-
dimensional example of a constitutive equation of this type (see Cristescu and Suliciu
[3, p. 35]) is

(-k\Fx{o - gx(e)) if cr >#,(£),
0 if g2(e) < a < gi(e), (0.2)
k2F2(g2{e) - o) if o < g2{e),

where k\,k2 > 0 are viscosity constants and F\, F2 are increasing functions with
F,(0) = F2(0) = 0.

The function F is supposed to be Lipschitz continuous, and no monotony proper-
ties of F are required in order to obtain an existence and uniqueness result (Theorem
3.1) and the continuous dependence of the solution upon initial and boundary data
(Theorem 4.1). Since F depends both on a and e, the monotony arguments used
in the above-mentioned papers do not work. For this reason a different technique is

*Received June 24, 1986.
1 Everywhere in this paper the dot represents the derivative with respect to the time variable.
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used, based on the equivalence between the studied problem and an ordinary differ-
ential equation in a Hilbert space. The reduction of an evolution problem concerning
elastic viscoplastic materials with internal variables to an ordinary differential equa-
tion was also used by Necas and Kratochvil [19].2

In the papers of Suliciu [16] and Podio-Guidugli and Suliciu [15], it is assumed
that there exists a strong monotone function G such that F(i7,e) = 0 iff a = G(e).
Starting from this assumption in order to get a better insight on the model and on
its connection with elasticity, we particularize F in (0.1) as

F{a, e) = —k(a — G(s)), (0.3)

where k > 0 is a viscosity coefficient. Let us remark that if in (0.2) we put k\ = k2 — k,
Fx = F2 =identity, and gi = g2 — G we again obtain (0.3).

In this case the asymptotic stability of every solution is obtained (Corollary 4.2),
and for periodic external data, the existence of a unique periodic solution is proved
(Theorem 5.1).

The study of the asymptotic behavior of the solution upon the viscosity coefficient
k shows that elasticity is a proper asymptotic theory for viscoelastic materials de-
scribed by (0.1) and (0.2) (Theorem 6.1). Finally it is proved that the solution of the
elastic problem can characterize in some cases the large time behavior of the solution
of the viscoelastic problem (Theorem 7.1).

1. Problem statement. Let Q be a bounded domain in R" (n = 1,2,3) with a
smooth boundary dQ = T, and let Ti be an open subset of T and T2 = T- IY We
suppose mesT] > 0. Let us consider the following mixed problem:

Find the displacement function u : R+ x £2 —> R" and the stress function a :
R+ xQ-»y such that

div o(t) + b{t) =0, (1.1)
e("(0) = i(Vw(0 + Vtm(0), (1.2)
a(t) = g?e(u(t)) + F(a(t), e(u(t))) in £2, (1.3)

"(0lr,= £(0. (I-4)
o(t)v |r2= f(t) for all t > 0,. (1.5)
u(0) = u0, (1.6)
a(0) = er0 'n (1.7)

where S? is the set of second-order symmetric tensors on Rn and v is the exterior
unit normal at T. The equations (1.1) are Cauchy's equilibrium equations in which
b : R+ x Q —R" is the given body force, and (1.2) defines the strain tensor of small
deformations. (1.3) represents a rate-type viscoelastic or viscoplastic constitutive
equation in which If is a fourth-order tensor and F : QxJ?7 xJ?7 —> S? is a constitutive
function. The functions w0 and are the initial data and f g are the given boundary
data.

2It seems that this technique was also used by Laborde [20] and Suquet [21],
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2. Notations and preliminaries. We denote by ■ the inner product on the spaces
R" and S? and by | • | the euclidean norms on these spaces. The following notations
are used:

& = {* = (?<j) I ?u = Tji e L2(Q), i,j= 1 n},
L-{u- («,) | Uj G L2(Q), i = 1 n),

^ = {T £ \ div T e L},
H = {u- (Uj) | Uj e i = 1,.

The spaces J*?, L, , H are Hilbert spaces with respect to the canonical inner prod-
ucts given by

(a, t) = / a ■ xdx, (2.1)
J a

((u,v))= [ u ■ v dx, (2.2)
Jn

(t, a)d = (t, ct) + ((div t, div a)), (2.3)

(m>v)w = ((m,v)) + (Vm.Vv). (2.4)

The norms induced by (2.1)—(2.4) will be denoted by || • ||, ||| ■ |||, || • \\d, || • ||//
respectively.

Let y0 : H —* Hr be the trace map, where we denote by Hr the space (//'/2(Q))"
and its norm by ||||r. Let V\ be the subspace of //given by V\ = {u e H \ y0(u) = Oon
Ti}, and let E be the subspace of Hr defined by E = yo{Vi) = {C € //r I C = 0 on T]}.
The operator e : H —► S? given by

e(u) = - (Vm + Vtm) (2.5)

is linear and continuous. Moreover, since mes H > 0, Korn's inequality holds:

||e(w)|| > C||w||w for all ueVh (2.6)

where C > 0 is a positive constant.
Everywhere in this paper C, C, Cj, i e N will represent strictly positive generic

constants that depend on F, Q, r i, T2 and do not depend on time or on input data.
If ct € then there exists yva e ///- (where (///•, || • ||o) is the strong dual of Hr)

such that
(yuC, 70v) = (a, e(v)) + ((div a, v)) (2.7)

for all v 6 H and
IMIo < C\\°\\d- (2-8)

By (to |r2 we shall understand the element of E' (the dual of E) that is the restriction
of yva on E. We denote by || • ||i the norm on E'.

Let us denote by V2 the following subspace of V2 = {a e \ diver = 0,
av |r2= 0}; e(Fi) is the orthogonal complement of V2 in S?. Hence,

(r,e(v)) = 0 for all v€ Vx,x e V2. (2.9)
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Let X be one of the above Hilbert spaces, and let us define the following spaces:

C°(i?+, X) = {z : R+ —+ X | z is continuous},
Cl(R+,X) — {z : R+ —* X | there exists z € C°(R+,X), the derivative of z},

where R+ = [0, +00). In a similar way the spaces C'(0, T, X), i — 0,1, can be defined,
and the norms on these spaces are given by

llzlkx,0 = \\z{t)\\x. 112" 117TA-. 1 - 11^| 177A-.0 + H^lk^O-

3. An existence and uniqueness result. The following hypotheses are considered:
<£ is symmetric and positively defined, i.e.,

(a) \^,jkh{x) |< Q for all i, j, k, h = 1,..., n, x e Q;
(b) i?(x)o ■ e = a • £?(x)e for all a, e e <9*, x e Q.\
(c) there exists a strictly positive constant d such that

for all a e 5?, x e Q we have (x)a ■ a > d\a\2.

(a) F is a Lipschitz function, i.e., there exists L > 0 such that
|F(x, (7i,£i) - F(x, a2, e2) |< L{W\ ~ ^i\ + \s\ - £2!)

for all (jj, E/6y,('= \,2,x e Q,
(b) F{x, 0,0) = 0 for all x e Q.

{&)beC\R+,L),f&C\R+,E')-
(b) there exists h e C1 (R+, Hr) such that h = g on H ,

(3.1;

(3.2)

(3.3)

uq g H, <To £ . (3.4)

The initial conditions fit with boundary data, i.e.,

(a) divffo + 6(0) = 0;
(b)ffo«|r2=/(0); (3.5)
(c) M0 Ir, = ^(0).

The main result of this section is given by

Theorem 3.1. Suppose that the hypotheses (3.1)—(3.5) are fulfilled. Then there exists
a unique solution u G C'(i?+, H), a e C[(R+,%f) of the problem (1.1)—(1.7).

Remark 3.1. Let us observe that if the problem (1.1)—(1.7) has a solution (u, a)
such that «eC' (/?+, H), a e C1 (R+, %*) then the hypotheses (3.3)—(3.5) are fulfilled.

Remark 3.2. Let us consider K c S? a convex closed set, 0 € K, PK : ^ K
the projector on K, and n > 0. If we put F(a,e) — (-l/(2/z))l?(<7 - Pko), then (3.2)
holds and problem (1.1)—(1.7) describes a quasistatic process for elastic-viscoplastic
bodies studied using different methods by Duvaut and Lions [6, Chapter 5] and by
Suquet [18, 17].

In order to prove Theorem 3.1 we need some preliminary results.
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Lemma 3.1. Let (3.1), (3.3) hold. Then there exists a unique couple of functions
ii € C\R+,H), a € C\R+,^) such that

divd-(r) + b(t) = 0, (3.6)
d(t) = %s(u(t)), (3.7)
"(0lr,= £(0. (3-8)
*(0»lr 2=/(0 (3.9)

for all t e R+. Moreover, we have

o(t) = £?e(u(t)) for all t e R+, (3.10)

and if we denote by Uj, a,, i = 1,2, the solution of (3.6)—(3.9) for the data bit f, gt,
the following inequalities hold:

\\u\{t) - u2{t)\\H + \\ax{t) - d2{t)\\d

< C[|||M0 - Z>2(0lll + II/. (0 - /2WII1 + l|Ai(0 - A2(0||r].
Pi(0 - "2(011// + ll^i(0 - <M0IU (312)

< C[\\Mt) - 62(0111 + II/,(0 - /2WII1 + ||Ai(0 - MOIIr]
for all t e R+ (the constant C depends only on Q, r1; Q, and d).

Proof. The statement of the above lemma can be easily obtained using standard
existence theorems for linear elasticity.

Denoting by m0 = u0 - w(0), = cr0 - <7(0), let us homogenize the boundary
conditions of (1.4)—(1.5) by considering the following problem:

Find u : R+ x Q —> R", a : R+ x Q -+ 5? such that

div(f(0 = 0, (3.13)
t[t) = %e(w(0) + F(o(t) + a{t), e(u(t)) + e{u(t))), (3.14)
M(0lr,= 0, (3.15)
or(Of|r2=0 for all t > 0, (3.16)
17(0)=% (3.17)
W( 0) = o0. (3.18)

The following lemma can be easily obtained:

Lemma 3.2. The pair (u,a) is a solution of (1.1)—(1.7) iff the pair (u,a) defined by
u = u - u, 0 = 0-0 is a solution of (3.13)-(3.18).

Let V = V\ x V2 be the product space with the norm denoted by || • \\y which is
given by the following inner product:

(x,y)v = (re(M),e(v)) + (r-,o;T) (3.19)
for all x, y £ V, x = (u, o), y = (v, r).

Using (3.1) and (2.6) we observe that || ■ ||y is equivalent with the natural norm
on V. Let A : R+ x V —> V be the operator defined as follows:

{A{t,x),y)v= ~{F{o+ d{t),e{u) + s{u{t))),e{v))
+ (?~lF(o + &{t),e(u) + e(u(t))).T), 1 ' '
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for all x, y e V, x = (u, a), y - (v, t), t e R+. We let x0 = (u0,a0), and using (3.5)
we get xq € V.

Lemma 3.3. The pair (u,a) e Cl(R+,H x %?) is a solution of (3.13)—(3.18) iff x =
(u, a) e C'(R+, V) is a solution of the following Cauchy problem:

x(t) = A(t, x(t)) for all t > 0, (3.21)
x(0) = Xq. (3.22)

Proof. Let y — (v, r) e V. Multiplying (3.14) by e(v), after integrating on Q and
using (2.9) we get

0 = (%e(t(t)), e(v)) + (F(a(t) + d(t),e(u(t)) + e{u{t))), e(v)). (3.23)

Multiplying (3.14) by f_1 on the left and by t on the right and integrating on Q,
from (2.9) we obtain

(If ~lW(t), t) = (%"xF(o{t) + a(t),e(u(t)) + e(u(t))), t). (3.24)

From (3.23), (3.24), (3.20), and (3.19) we get

{x{t),y)v = {A{t,x{t)),y)v for all y e V (3.25)

Conversely, let x = (u,a) e Cl{R+, V) be a solution of (3.21)—(3.22). Let B(t) e
S? be given by

B[t) = &(t) - - F{o(t) + a(t), e(u(t)) + e(u(t))). (3.26)

Taking y = (v, 0) in (3.25) and using (2.9) we get

(5(/).«(v)) = 0 for all v e Fj. (3.27)

If we put y = (0, t) in (3.25) and we use (2.9) we obtain

(^~lB(t),z) = 0 for all r € V2. (3.28)

Since the orthogonal complement of e(Vi) inSf is V2, from (3.27) we get B(t) e V2~,
thus we may put x = B(t) in (3.28) and from (3.1) we deduce B(t) — 0, for all t > 0.
Hence (3.9) holds.

Using Lemma 3.3, the problem (3.13)—(3.18) was replaced by the Cauchy problem
(3.21)—(3.22) in the Hilbert space V. In order to prove the existence and the unique-
ness of the solution of (3.21)—(3.22) we use the following result (see Lovelady and
Martin [12] and Pavel and Ursescu [14]):

Lemma 3.4. Let V be a Hilbert space and A : R+ x V —* V a continuous operator
such that there exists D > 0 with

(A(t,x,) - A(t,x2),Xi - x2)v < D\\xx - x2\\v. (3.29)

for all f > 0 and all Xi,X2 £ V. Then, for all x0 € V, there exists a unique solution
x e C'(/?+, V) of the problem (3.21)—(3.22).

Lemma 3.5. The operator A given by (3.20) is continuous and satisfies (3.29).
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Proof. Let t\,t2 > 0, x\ = (Mi.cri), x2 = (u2,o2) e V. For all y — (v, t) e V we
have

\{A{ti,Xi) - A(t2,x2),y)v\
< |(F(<t, + a(tx), e(«i) + e{u(t))), e(v)) - (F(ct2 + cr{t2), e{u{t2))), e(v))|

+ \{£?~lF(pi +a{ti),e{ui) + e(u{ti))) - g~lF(o2 + a{t2), e(«2) + e(«(f2))). t)|.

Using (3.2) in the above inequality, after some estimations we get

\{A{thx 1) — -^2).

< C[||x, - x2\\v + ||m(/i) - u(t2)Wh + ||ff(*i) - o{t2)\\d]\\y\\v.

Therefore,
\\A{h,xx)-A{t2,x2)\\v

< C[||xx - x2\\v + ||w(?l) - u{t2)\\H + ||cr(^l) - o{t2)\\dl
Using (3.30) and Lemma 3.1, the continuity of A from i?+xF into V follows.

For t\ = t2 = t > 0, (3.30) becomes

\\A{t,x 1) - A(t,x2)\\v < C\\xi - x2\\v (3.31)
for all X\,x2e V; hence (3.29) holds.

Proof of Theorem 3.1 follows from Lemmas 3.1-3.5.
Remark 3.3. Theorem 3.3 (as well as Corollary 4.1 for j = 0 below) can even be

stated under weaker assumptions on the function F (see also [11]); namely, (3.2)(a)
can be replaced by

(i) F is a continuous function.
(ii) There exist L\,L2 > 0 such that

|F{x, a, e)|2 < L, + L2(|e|2 + |a|2)

for all x e Q and a, s e S?.
(iii) There exists L3 > 0 such that

- {F(x,ai,e,) - F{x,c72, e2)) • (d - e2)

+ ^~[(x){F{x, ox,£\) - F(x, 02, e2)) • {o\ - o2)
< L3(|ei — £2|2 + |cr| — cr2|2)

for all (7i, £1, a2, e2 € 5? and xefl.
Indeed, (ii) is a sufficient condition in order to have F(a, e) e S? for all cr, e e S?,

(i) assumes the continuity of A, and from (iii) we get (3.29).

4. The continuous dependence of the solution upon the input data. In this section
two solutions of the problem (1.1)—(1.7) for two different input data are considered.
An estimation of the difference of these solutions is given for finite time intervals
that give the continuous dependence of the solution upon all input data (Theorem
4.1). In this way, the finite-time stability of the solution is obtained (Corollary 4.1).

In order to get a better insight on the model and on its connections to the elasticity,
the constitutive equation (1.3) is particularized taking F{a,e) = -k(a - G(e)), with
G a strongly monotone function and k > 0. In this case, the asymptotic stability of
the solution is deduced (Corollary 4.2).
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Theorem 4.1. Let (3.1)—(3.2) hold and let (w/.er,-) be the solution of (1.1)—(1.7) for
the data 6,, f, gt, «o,, 0b/, ' = 1,2, such that (3.3)—(3.5) hold. For all T > 0 there
exists C(T) > 0 (which generally depends on Q, T, Q, d, L) such that

ll"i ~ ui\\t,hj + W°\ - oiWTjr.j ^ C{T) [||6, - biWzLj + ll/i ~ fiWzE'.j
+||/ji - hiWr.Hr.j + 11 "oi ~ w02 II// + I l°"oi - am\\d\ for 7 = 0,1. (4.1)

Corollary 4.1. Let the hypotheses of Theorem 4.1 hold. If b\ — b2, /, = f2,
gi=g2, then

||"i - u2\\zH,j + Iki - oiWzx.j <4
< C(T)[\\Uq\ - Uq2\\h + Ikoi - O02\\d]> J = 0' L

In order to avoid misunderstanding we recall some definitions of stability theory
following Hahn [10, Chap. 5]. A solution (u,a) of the problem (1.1)—(1.7) will be
called:

(i) stable if there exists m : R+ —> R+ a continuous increasing function with
m(0) = 0 such that

||"(0 - "i(0ll// + IMO - oi{t)\\d < rn{\\u0 - Moillw + l|o"o - Ooillrf) (4.3)
for all t e R+ and all (m0i, foi) satisfying (3.5), (3.4);

(ii) finite time stable if (4.3) holds for a finite time interval;
(iii) asymptotically stable if there exists m as in (i) and n : R+ —> R+ a decreasing

continuous function with lim^oo n(t) = 0 such that

ll«(0 - "i(0ll» + llCT(0 - °\{t)Wd < w(ll"o - uQi\\H + ||tr0 - ooilld) ■ n{t)
for all t e R+ and all (woi.foi) satisfying (3.5), (3.4), where {u\,o\) is the solution of
(1.1)—(1.7) for the data (moi, Coi)-

Remark 4.1. From (4.2) we deduce the finite-time stability of every solution of
(1.1)—(1.7). Generally, stability does not hold (see Remark 4.2).

In order to prove Theorem 4.1, the following lemma will be useful.

Lemma 4.1. Let p : [0, T] —► R+ be a positive continuous function and a e R.
If ft : [0, T] —► R+ is an absolutely continuous positive function such that $(t) <
2aft(t) + 2\fd(t)p{t) a.e. t G [0, T], then

V&{t) < exp(a/)\/#(0) + [ p(s) exp(a(t - s)) ds (4.4)
Jo

for all t e [0, T].

Proof of Theorem 4.1. Let («,, ct,), i = 1,2, be the functions given by Lemma 3.1
for the data f, bj, gj, i = 1,2. We let u, = ut - ut, o, — cr, - a,, and x, = ('ut, ct,) e V,
i = 1,2. Let A, be given by (3.20) (replacing u, a by w,, a,). For all y, e V, i = 1,2,
and all t € R+, from (3.11), (3.2) it follows that

\\A\{t, y\) - A2{t, y2)\\v

< c(\\yi - y2\\v + |||6,(0 - 62(0111 + IIm - mII, + HMO - 62(0llr).
(4.5)
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Let Xoi = (uqi - w,(0), (To, - 17,(0)) e V. From Lemma 3.3, (4.5), and Lemma 4.1
for &{t) = ||xi (t) - x2(t)\\y we obtain

||xi(0-x2{t)\\v < exp(O)[||x0i -x02||k + ||6i - 62||tx,o
+ ||/i - fzWr.E',o + ll^i - ^Ikffr.o] for all / e [0, T], (4.6)

Using (4.6) we deduce (4.1) for j = 0. From (4.6), (2.6), and (3.12) we get (4.1)
for 7 = 1.

Further on we particularize the function F from (1.3) as

F{a,e) =-k{a - G{e)) (4.7)

for all a, e e <9", where k > 0 is a viscosity coefficient and G:Qxy-+ . In order
to satisfy (3.2) we suppose that

\G{x, £|) - G(x, £2)1 < L\t\ - £2! for all x € and e\, e2 € S",
G(x, 0) = 0, for all x e fi.

Moreover, we suppose that G is a strongly monotone function, i.e., there exists a
constant a > 0 such that

(G(x, £1) - G(x, £2)) • (£1 - £2) > fll£i - C2|2 for all x e Q and £i,£2 e (4.9)

Theorem 4.2. Let (3.1), (4.7)-(4.9) hold, and let («,-, cr,) be two solutions of (1.1)-
(1.7) for the data blt f, gt, w,o, cr0,, i = 1,2, for which (3.3)—(3.5) hold. Then there
exist two constants C, C > 0 (depending only on Q, Q, d, L, and a) such that for
all T > 0 we have

\\U\{t) - u2{t)\\H + \\ox{t) - o2{t)\\d

< C[(||«oi - "021|w + IKi - <T02||rf) exp{-Ckt)
+ ll&i - b2\\TfL,o + ll/i - fiWr.E'.o + ll^i - h2\\T,Hr.ol (4.10)

for all t e [0, T],

Corollary 4.2. Let the hypotheses of Theorem 4.2 hold. If b\ = b2, f\ = f2,
gi = g2, then

llwi(0 ~ u2{t)\\H + ||cri(0 - o2{t)\\d ^
< C(||m0i - u02\\„ + ||<t0i - (t02|U) exp {-Ckt),

for all t 6 R+ •
Remark 4.2. From (4.11) we deduce the asymptotic stability of every solution of

the problem (1.1)—(1.7), (4.7). One-dimensional examples can be given in order to
prove that if G is not a monotone function, stability generally does not hold.

In order to prove Theorem 4.2, the following lemma is useful.

Lemma 4.2. Let T > 0, and let SeC1 (0, T, R) be a positive function and P,y > 0,
a > 0 constants. If

&{t) < -2ad{t) + 2pVd{i) + 2y for all / € [0, T], (4.12)
then

V${i) < v/tf(0)exp(-a0 + (/? + + ~4ay)(2a)~l for all t e [0, T\ (4.13)
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Proof. Suppose y / 0 (if y = 0 Lemma 4.1 can be used); let 8 > 0, and let Ms be
the set defined by

Ms = {te [0, T] | y/#(t) >S + v/?5(0)exp(-aZ) + {fi + yjp + 4ya){2a)~1}.

If Ms is not empty, since 0 £ Ms and Ms is a closed set we get 0 < t$ = inf Ms
and y/#(ts) = S + \/#(0) exp(-a^) + (/? + \J p2 + 4ya)(2a)_1. Using (4.12) and the
above equality we get

d/dt{\f0[t) - \Z#(0) exp(-otf)) \t=ls< {-aS2){&{ts)rl/2.

Hence Ms — 0 for all S > 0.
Proof of Theorem 4.2. The same notations as in the proof of Theorem 4.1 are

used. From (3.14) and (4.7) we get

^,(0 = e(Tii(t)) - k[Oi(t) + di{t) - G(e(Ui(t)) + e(w,•(/)))] (4.14)
for all / e R+, i = 1, 2.

If we take the difference in (4.14) for i — 1 and i = 2 and we put u = H\ - u2,
Zf = C\ - a2, u = «i - «2> ̂  - ff2> after multiplying by e{u{t)) and integrating
the result on £2, from (2.9) we get

= k{a(t),e{u{t))) - k{G{e{Ui(t))) - G{e{u2{t))),e{u{t))). (4.15)

We let &(t) = (fe(w(O).e(M(O)) and P(T) = ll&i ~ HW.l.0 + ll/i - fiWzE'jo +
ll^i - ^2117i//r.o- Then from (4.15), (4.8), (4.9), and (3.11), after some algebra we
obtain

d(0 < k(—2C\&(t) + 2C2p{T)\f&{t) + 2C2p2{T)) (4.16)
for all t e [0, T] with Q, C2 > 0, C\ < 1.

From (4.16) and Lemma 4.2 it follows

sfW) < %/^(0)exp(-kCxt) + P(T)(C2 + >/ci2 + 4C1C2)(2C1)-1 (4.17)
for all Z e [0, r]. Using (4.17), (3.1), and (2.6) in (4.17) we get

||"i(0 ~ ui{t)\\H < C3{\\u0i - W02II// exp(-kCit) + P(T)). (4.18)
In a similar way, if we take the difference in (4.14) for i — 1 and i = 2 and we

multiply by If-1 on the left and by a(t) on the right and integrate the result on £2,
using (2.9) we obtain

(r-'£(0,ff(0) = -k{%-xo{t),o{t)) - k{g-]d(t),a(t))
+ k{g-lG{e{ul{t)))-g-iG{e{u2{t))),a{t)) for all t e R+. (4.19)

Let #(/) = From (4.19), (3.11), and (4.8) we obtain

m < -2k&(t) + 2kC4(p(T) + ||M,(0 - u2{t)\\H)VW)
for all t G [0, T]. Using (4.18) in the above inequality we have

${t) < -2k&[t) + 2kC5{p(T) + ||woi - u02\\h e\p(-kCit))V(Hf)
for all t E [0, T], and from Lemma 4.1 we get

s/d{t) < v/d(0)exp(-kt) + C5P(T) + C5(l - Ci)_1 exp(—ArCjr)||M0i - "02II//- (4.20)
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Using (3.1), (4.20), and (3.11) we deduce

IMO _ °2(0IId ̂  QGNi - W02I\h + ||croi - 002|\d) exp(-fcCif) + C(,P{T)
for all t G [0. T], (4.21)

From (4.18) and (4.21) we obtain (4.10).

Periodic solutions. In this section we are interested in periodic solutions of the
problem (1.1)—(1.7), (4.9). The main result of this section is

Theorem 5.1. Let (3.1), (4.7)-(4.9) hold and let the data b, f, g satisfying (3.3) be
periodic functions with the same period co. Then there exists a unique initial data
(«o, ffo) satisfying (3.4)-(3.5) such that the solution of (1.1)—(1.7), (4.7) is a periodic
function with the same period co.

Remark 5.1. In the hypotheses of Theorem 5.1, using Corollary 4.2 we deduce that
for all initial data the solution of the problem (1.1)—(1.7), (4.9) approaches a unique
periodic function when t —> +00. In other words, if the external data are oscillating,
then the body will "begin" after a while to oscillate too.

Theorem 5.1 is a direct consequence of the asymptotic stability result (Corollary
4.2). For details of the proof see [11],

6. Approach to elasticity. The purpose of this section is to prove the convergence
when k —+ +00 of the solution {u^t), o^(t)) of (1.1)—(1.7), (4.7) for all t > 0 to the
solution of the following boundary value problem for an elastic body.

Find the displacement function u : R+ x Q —► Rn and the stress function 0 :
R+ x Q —► S? such that

divff(?) + b{t) = 0, (6.1)
e(M(0) = ^(VM(0 + VTii(0), (6.2)
<7(0 = G{e{u{t))) in a (6.3)
"(0|r,= £(0. (6-4)
a(t)u |r = f(t) for all t e R+. (6.5)

Lemma 6.1. Let us suppose that (3.3), (4.10), (4.11) hold. Then the problem (6.1)-
(6.5) has a unique solution u e C°(R+, H), a e C°(R+,^). Moreover, for all T> 0,
u, d are absolutely continuous functions on [0, T], and there exists C > 0 (which
depends only on Q, Ti, L, and a) such that

ll"(0llh + ||£(0llrf ̂ C(||/(0lli + IIIM0III + P(0llr) a.e. in R+. (6.6)
Remark 6.1. The elastic problem (6.1)—(6.5) was considered by many authors with

different assumptions on the function G (see, for instance, Fichera [7], Duvaut and
Lions [6], Dinca [4], Mazilu and Sburlan [13], and others). However, a sketch of the
proof of this lemma can be found in [11],

The following lemma (which will also be useful in Sec. 7) evaluates the difference
between the solutions of (1.1)—(1.7), (4.7) and those of (6.1)—(6.5) for the same data
b.fg.
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Lemma 6.2. Let (3.1), (3.3), (4.9) hold, and let (u,a) be the solution of (1.1)—(1.7),
(4.7) and {it, a) the solution of (6.1)—(6.5). For all / 6 R+ we have

ll"(0 - "Mil// < C[||"o - m(0)||// exp(-Cfa)]

+ [\\\\b(s)\\\ + \\f(s)\\[+\\h(s)\\r)exp(-Ck(t-s))ds, (6.7)
J o

Mt)-B{t)\\d < C[\\<j0 - (T(0)||rfexp(-fc/)]

+ [ [fc||n(s) - m(j)||// + 111^(5)111 + Il/(s)||i + ||A(j)||r]exp(fc(j - t))ds, (6.8)
Jo

where the strictly positive constants C, C > 0, C > 1 depend only on Q.,T\,Q, d, L,
and a.

Proof. We let u = u - u, ~a = a - a, and from (1.3), (4.7), and Lemma 6.1 we get

a(t) + W(t) = % e(u(t)) + ^e(u(t))
- k[a(t) + G(e(u(t))) - G(e(u(t)) + e{u(t)))] a.e. t e R+. (6.9)

Multiplying (6.9) by s(u(t)), after integration on Q and use of (2.9) we get

(b(t)-%c(u(t)),e(u(t)))
= (re(fi(0), «("(0)) + k[(G(e(u(t)) + e(u(t))) - G(e(u(t))). e(u(t)))] a.e. t e R+.

Hence, from (6.6), (3.1), and (4.9) we obtain

(g?e(u(t)), e(u(t))) < -C\k(£?e(u(t)), e(u(t)))

+ QdHMOIII + 11/(011. + ||A(/)||r)(re(«(0).e(«(0))1/2 a.e. t e R+.
We let d(t) = (<fs(u(t)), e(u(t))) and use Lemma 4.1, (2.6), and (3.1) to get (6.7).
Applying to the left of (6.9) and taking the scalar product of it with a(t),

integrating the result on Q. and using (2.9) we get

(Ir-iw(t),o{t)) = - e(«(0).ff(0)
+ k(g?~lG(e(u(t)) + e(it(t))) - £?~lG(e(u(t))), a(t)) a.e. t e R+.

Using Lemma 6.1, (4.8), and (2.6) we have

< -k{%-xo{t),o{t))

+ C3(r-'a(0, m)ll2[k\\m\\H + 1116(0111 + ||/(0ll. + PWIIrL
a.e. t e R+. Using Lemma 4.1 here again for d(t) = (i?~lo(t), W(t)), we obtain (6.8).

Theorem 6.1. Suppose (3.1)—(3.5), (4.7)-(4.9) hold. Let (Uk,ak) be the solution of
the problem (1.1)—(1.7) for any k > 0, and let (it, d) be the solution of (6.1)—(6.5).
Then, for all t > 0 we have \\uk(t) - «(0ll// -> 0, \\ak(t) — ̂(Ollrf ~1' 0 when k —♦ +oo.

Remark 6.1. The behavior of (uk,ak) when k —► +oo was also studied (in the
dynamical case) in the papers of Suliciu [16] and Podio-Guidugli and Suliciu [15],
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where F{a,e) = -3?(a, e)(cr - G(e)) with 3£{a,z)x ■ r > A:|r|2 for all t e 5?, k =
constant > 0.

For isolated bodies, assuming the existence and the smoothness of the solution and
using the energy function, in [15], [16] it is proved that 11^(0 -<j(£fc(0)ll ~1' 0 when
k —► +oo, for all t > 0. In [16] represents the small strain tensor (ek = e(w^)), and
in [15] Ef, represents the finite strain tensor.

Proof of Theorem 6.1. From (6.7), for t > 0 we get

||uk(t) - u(t)\\H < C[||m0 - m(0)||// exp(-Ckt)

+ (Ckrl(\\b\\t,L,o + WfWt.E'.o + \\h\\,Hr.o)l (6.10)

From (6.8) and (6.10) we obtain

< C[\\cjo - ff(0)||rfexp(-fcO + (C/( 1 - C))exp(-CfcOII"o - "(0)||//
+ (C + l)(Cfc)-l(||^||a,o + 11/11,,£',0 + IWUr.o)] (6.11)

and from (6.10), (6.11) the theorem follows.

7. Large-time behavior of the solution. In this section we consider the problem
(1.1)—(1.7), (4.7) for a fixed k > 0, and we study the behavior of the solution when
t —> oo. The main result is the following.

Theorem 7.1. Let (3.1), (3.3)—(3.5), (4.7)-(4.9) hold; we denote by (u, a) the solution
of (1.1)—(1.7) and by (u,d) the solution of (6.1)—(6.5). If

then

Km (P(0lll + l|A(0llr + ll/(0ll>) = 0.t—>+oo

lim (\\u(t)-u(t)\\H + \\o(t)-d(t)\\d) = 0. (7.1)
/—►+OO

Remark 7.1. Let us observe that for all / > 0 the functions u(t), a{t) are uniquely
determined by the data b(t),f(t), and g(t). From Theorem 6.1 we get that if
IIIMOIII + lll/Wllli + IIMOIIr —1• 0 when t —* +oo, then after a large enough time
the solution (u, a) will be "determined" only by the present values of b, f g. Hence,
in this case the initial data and the history of external data have "no influence" upon
the large-time behavior of the solution.

Remark 7.2. If lim/_+oo(|||/>(0lll + 11/(0111 + IIMOIIr) 7^ 0, the statement of
Theorem 6.1 cannot generally hold. For example, let b.fg be periodic functions
with the same period. Then u,a are periodic functions, and from Theorem 5.1 we
get that there exists an initial data (w0, 0o) f°r which the solution (u, a) of (1.1)-(1.7),
(4.7) is periodic. If we suppose that ||w(0 - "(Oil// '' 0 and ||er(0 - 6(011 d 0 when
t —> +oo, we get u = u, a = a, and from (1.3) we obtain a{t) = f (e(w(0)) for all
t e R+\ this equality is generally false if a ± 0, u ± 0, and G(e) Hence, if
the external data are periodic, then there exists a phase shift between the periodic
solutions (u,a) and (u,&).
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Corollary 7.1. Let the hypotheses of Theorem 7.1 hold. If in addition we suppose
that there exists b e L, f e E', and h e H such that

lim (|||6(0 - 6111 + 11/(0 - 711. + HMO - %) = 0 (7.2)
t—>+oo

and if we denote by (u, a) the solution of (6.1)—(6.5) for the data b,f, and h, then

lim (||m(0 - u\\H + |M0 - 0\\d) = 0- (7-3)t—>+oo

Proof. From the continuous dependence of the solution of (6.1)—(6.5) upon the
data fb,h and (7.2), we get

lim (||m(0-m||*+J|<t(0-£|L/) = 0,
l—►+oo

and from (7.1) we deduce (7.3).
Remark 7.3. Let the data b,fh be constant in time, and let (u, a) be the solution

of (1.1)—(1.7), (4.7) and (;u, a) the solution of (6.1)—(6.5). In this case the differential
equation (3.21), (3.22) is an autonomous one, and (u, a) is a stationary point of A.
From Theorem 4.2 we can obtain

l|w(0 - "II// + IHO ~o\\d<Cexp(-Cfa)(ll"o - u\\H + IK - o\\d). (7-4)
where C and C are defined in (6.7).

In order to give the proof of Theorem 7.1, the following lemma is useful.

Lemma 7.1. Let r : R+ —► R+ be a continuous function such that lim,_^+00 r(t) = 0
and p : R+ R+ given by p(t) = r(s) exp(-C(t - s)) ds with C > 0. Then
lim,_+00 p(t) = 0.

Proof of Theorem 7.1 easily follows from (6.7)-(6.8) and Lemma 7.1.
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