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Abstract. We consider a quasistatic problem of frictional contact between a de-
formable body and a moving foundation. The material is assumed to have nonlinear
viscoelastic behavior. The contact is modeled with normal compliance and the associ-
ated law of dry friction. The wear takes place on a part of the contact surface and its rate
is described by the Archard differential condition. The main novelty in the model is the
diffusion of the wear particles over the potential contact surface. Such phenomena arise
in orthopaedic biomechanics where the wear debris diffuse and influence the properties
of joint prosthesis and implants. We derive a weak formulation of the model which is
given by a coupled system with an evolutionary variational inequality and a nonlinear
evolutionary variational equation. We prove that, under a smallness assumption on some
of the data, there exists a unique weak solution for the model.

1. Introduction. Frictional contact between deformable bodies can be frequently
found in industry and everyday life. The contact between a train wheel and the rails,
a shoe and the floor, the car's braking pad and the wheel, or contact between tectonic
plates are only a few examples. Considerable progress has been made in modeling and
analyzing static contact problems and the literature on this topic is extensive. Only
recently, however, have the quasistatic and dynamic problems been considered in the
mathematical literature. The reason lies in the considerable difficulties that the process
of frictional contact presents in the modeling and analysis because of the complicated
nonlinear surface phenomena involved.
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Quasistatic elastic contact problems with normal compliance and friction have been
considered in [4] and [15], where the existence of weak solutions has been proven. The ex-
istence of a weak solution to the, technically very complicated, problem with Signorini's
contact condition has been established in [7]. General models for thermoelastic frictional
contact were derived from thermodynamical principles in [12, 29, 30]. Quasistatic fric-
tional contact problems for viscoelastic materials can be found in [19, 23] and those for
elastoviscoplastic materials in [2, 3, 26]. Dynamic problems with normal compliance were
first considered in [16]. The existence of weak solutions to dynamic thermoelastic contact
problems with frictional heat generation has been proven in [5] and, when wear is taken
into account, in [6], Models and problems with wear can be found in [5, 20, 21, 29, 30, 32].

The mathematical, mechanical, and numerical state of the art in Contact Mechanics
can be found in the proceedings [17, 18], in the special issue [22], and in the recent
monographs [11] and [24]. In the latter, a more comprehensive literature on problems
with wear is provided.

In this work, we consider the process of contact with friction and wear between a
viscoelastic body and a moving foundation. We assume that the forces and tractions
change slowly in time so that accelerations in the system are negligible. This leads to
the quasistatic approximation for the process. The material is assumed to be nonlinearly
viscoelastic. The contact is modeled with a normal compliance condition and friction
with a general law of dry fiction. The wear takes place only on a part of the contact
surface and the wear rate is described by the differential Archard condition. The main
novelty in the model is that it takes into account the diffusion of the wear particles or
debris over the whole of the contact surface. Such phenomena can be found in many
engineering settings; however, in all mathematical publications on wear, it is assumed
that the wear particles are removed from the surface once they are formed. Here, they
are assumed to remain and diffuse on the contact surface.

This work is motivated by biomechanical applications. Indeed, such problems arise in
joints after arthroplasty (knee, hip, shoulder, elbow, etc.), where debris are produced by
articulating parts of the prosthesis and are transported to the bone-implant interface.
These debris cause the deterioration of the interface and are believed to be an important
factor leading to prosthesis loosening (see, e.g., [20, 21] and references therein). Hence
there is a considerable interest in modeling such complex contact problems arising in im-
planted joints. This pertains to both cementless (the so-called "press-fit") and cemented
implants. Our paper opens a new way to studying contact problems with friction and
wear diffusion. In fact, for many contact problems, one should also take into account the
process of adhesion that is coupled with friction and wear diffusion. For instance, clinical
practice shows that adhesion plays an important role at the bone-implant interface, and
for further details we refer to the references in [20, 21], We hope to deal with contact
problems with friction, adhesion, and wear diffusion in the near future.

Our aim here is threefold: we describe the mechanical model for the processes, derive
its variational formulation, and prove an existence and uniqueness of the solution. These
results form the background for the numerical treatment of the problem and represent a
first step in the study of more complicated frictional contact problems with wear, with
emphasis on applications in orthopaedic biomechanics. In later stages the assumption
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that the contacting surfaces are planar will be relaxed, leading to diffusion on manifolds.
Other assumptions can and will be relaxed, too, to have the model better reflect reality.
A related paper is [25], where this model has been announced.

The paper is organized as follows. In Sec. 2 we describe the classical model. In Sec. 3
we list the assumptions on the problem data and derive its variational formulation. It is in
a form of a system coupling an evolutionary variational inequality with an evolutionary
variational equation. Then, we present our main existence and uniqueness result in
Theorem 3.1. It states that, under a smallness assumption on the normal compliance
function and the coefficient of friction, there exists a unique weak solution for the model.
The proof of the Theorem is presented in Sec. 4. It is based on arguments of parabolic
evolutionary equations, elliptic variational inequalities, and a fixed point theorem. A
short summary can be found in Sec. 5, where some open problems are mentioned.

2. The model. We are interested in the following process and setting. A viscoelastic
body occupies a domain fl C M3 and is acted upon by volume forces and surface tractions,
and consequently its mechanical state evolves. The body may come into frictional contact
with a moving foundation and, as a result of friction, a part of the surface undergoes wear.
The wear particles or debris produced in this manner diffuse on the whole of the contact
surface. This is in contrast to the usual assumption that the wear debris is removed
instantly from the surface (see, e.g., [5, 20, 21, 29, 30, 32] and references therein). The
presence of these particles influences the process considerably. If the debris is made of a
material that is harder than that of the body, it may produce grooves and cause damage
to the contacting surface; if it is softer, it may act as a lubricant.

To proceed we introduce the following notation. E3 represents the space of second
order symmetric tensors on R3 while and || ■ || denote the inner product and the
Euclidean norm, respectively, on the spaces R2, R3, or E3. Also, v denotes the outward
unit normal to Q and [0, T] is the time interval of interest, for T > 0.

Let T denote the boundary of f2. It is assumed to be Lipschitz, and is divided into
three disjoint measurable parts r#, Tjv, and Tc, such that measl^ > 0 and measFc > 0.
The body is clamped on To, prescribed surface tractions of density fN act on TV, and
volume forces of density f0 act on Q. An initial gap g exists between the potential
contact surface Tc and the foundation, and is measured along the outward normal v.
To simplify the model we assume that the coordinate system is such that Tc occupies a
regular domain in the Ox 1X2 plane and the foundation is moving with velocity v* in the
Oxix2 plane.

The wear resulting from friction happens on a part of Tp, and the wear particles or
debris diffuse on the whole Tp. To describe this process it is assumed that Tc is divided
into two subdomains D<i and Dw by a smooth curve 7*, and wear takes place only on
the part Dw, while the diffusion of the particles takes place in the whole of Tc- The
boundary 7 = dTc of Tc is assumed Lipschitz and is composed of two parts 7^ and 7^.
Then, dDw — 7„,U7* and dDj = 7dU7*. The setting is depicted schematically in Figs. 1
and 2.

We denote by u the displacement vector, a the stress tensor field, and e{u) the
linearized strain tensor field. On the boundary T, uv and uT represent the normal
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Fig. 1. The physical setting; Tc is the contact surface.
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Fig. 2. The contact surface Tc; wear debris is produced on Dw.

and tangential displacements, respectively, while av and crT represent the normal and
tangential stresses, respectively; a dot above a variable represents the time derivative
and, for the sake of simplicity, we do not show explicitly the dependence of various
functions on x € f2 U T and t € [0, T],

The viscoelastic constitutive law of the material is assumed to be

<t = A(e(u)) + Q(e(u)) in Q x (0, T), (2.1)

in which A is the viscosity tensor function and Q is the elasticity one; both are given
nonlinear constitutive functions. We recall that in linear viscoelasticity the stress tensor
cr = (<jl3) is given by

Oij aijkl^kli'il^) yijkl^kl (^) 5 (2-2)

where A = (fflijjt/) is the viscosity tensor and Q — {9ijki) the elasticity tensor, for i, j, k: I =
1,2,3.

We turn to model the process of surface wear and the diffusion of the wear particles or
debris. In this work we use a rather "simple" model; more sophisticated and elaborate
models will be considered in the future. Our interest lies in the case when the wear
of the surface resulting from material removal takes place only on Dw, while the wear
particles diffuse on the whole of the contact surface Tc- This choice is motivated by the
biomechanical applications, as mentioned in the Introduction (see [8, 20, 21] for details).
We describe the wear of the surface in terms of the wear function w = w(x,t), which
is defined on Dw and the diffusion of the wear particles by the wear particle surface
density function £ = £(cc, t), which is defined on To Notice that here x = (2:1,2:2,0),
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since Tc belongs to the plane Ox\X2- The wear function w measures the volume density
of material removed per unit surface area; thus, it describes the average depth of the
grooves on Dw and the corresponding change in the surface geometry. The function £
measures the surface density of the diffusing wear particles.

In this work we assume that w = r]( in Dw, where T] is a conversion factor from wear
debris surface density to wear depth, which we assume to be a positive constant. This
assumption simplifies the model, since it allows for the elimination of the wear function
w. However, it would be of interest to investigate a model without this assumption.
For the sake of convenience we extend w by zero to the whole of Tc, and below, when
confusion is unlikely, we use the same symbol for the function and its extension. Thus,

w = vCX{Dw] onrcx(0,T), (2.3)

where X[DW] is the characteristic function of the set Dw (i.e., X[Dw](x) — 1 when x € Dw
and X[Dw\(x) = 0 if x £ Dw).

The wear diffusion coefficient k is given by

k = fc(x) =

to allow for the different surface characteristics in Dw and D&- Then, the diffusion of the
particles or debris is described by the diffusion equation,

C-div(fcVC) = k||ov|| ||ut -v*\\x[dw\ inrcx(0,T). (2.4)

We use X[D„] on the right-hand side of (2.4) since the debris is produced only in Dw.
Here V and "div" denote the gradient and the divergence operators in the variables Xi
and X2, respectively, and k is the wear rate coefficient. We note that (2.4) contains the
rate form of Archard's law, which expresses the fact that the wear rate is proportional to
the intensity of the friction traction and the relative slip rate. Indeed, when the diffusion
of the wear particles is negligible, (2.4) may be written as

C = K|kr||||«T-t>*||x[i>„],
which is the differential form of Archard's law of wear (see, e.g., [5, 29, 30] and references
therein).

Now, to avoid some mathematical difficulties which arise when the slip rate is very
large, we replace the term ||ur — i>*|| in (2.4) by the term R*(\\iiT — u*||) where R* :
R+ —> is the truncation operator

„ . . [r if r < R,
R^=\„ "a (2'5)[i? if r > R,

R being a fixed positive constant. We note that from the applied point of view this does
not cause any real change in the model, since in practice the slip velocity is bounded and
no smallness assumption is imposed on R, thus it may be chosen as large as necessary
in each application. To conclude, wear diffusion is described by the following nonlinear
diffusion equation

C- div(fcVC) = «||<TT||i?*(||itr -uDxfD^] in Tc x (0, T). (2.6)
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We assume that once a wear particle reaches the boundary 7 = cTc it disappears;
i.e., we assume an absorbing boundary condition,

C = 0 on 7 x (0, T). (2.7)

Next, we describe the process of frictional contact on the surface Fc- We use a version
of the normal compliance condition to model the contact and a general law of dry friction
to model friction. We recall that in the case without wear, a general version of the normal
compliance condition is given by

-<7v = pAuv ~ g), (2-8)

where p„ is a prescribed positive function, such that p„(r) = 0 for r < 0; moreover,
the quantity uv — g, when positive, represents the interpenetration of the body's surface
asperities into those of the foundation. Such contact condition was proposed in [16] and
used in a number of publications; see, e.g., [5, 13, 14, 15] and references therein. In this
condition the interpenetration is allowed but penalized. In [14, 16], the following form
of the normal compliance function was employed,

Pv(r) = cv{r)+", (2.9)

where c„ is a positive constant, m„ is a positive exponent, and r+ = max{0, r}. Formally,
Signorini's nonpenetration condition is obtained in the limit c„ —> 00.

Since our process involves the wear of the contacting surfaces we need to take into
account the change in the geometry by replacing the initial gap function g with g + w
during the process. Therefore, keeping in mind (2.8) and (2.3), we obtain

-OV = Pp(uu - r?CX[Dw] - g) on Tc x (0,T). (2.10)

The precise assumptions on pu will be given below. The associated friction law is chosen
as

\Wt\\< P-Wv\i on rc X (0,T),
iiT-v* (2.11)

if uT =/=■ v* then crT = —p\av\
uT — ir

Here, p, is the coefficient of friction which is assumed to depend on the density of the
wear particles and 011 the slip rate, that is

p = p{C, |K - v* ||),

and will be described below.
We note that this is a novelty to have the friction coefficient depend on the wear.
To conclude, keeping in mind (2.1), (2.6), (2.7), (2.10), and (2.11), the classical for-

mulation of the problem of frictional contact of a viscoelastic body with wear diffusion is
as follows.
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Problem P. Find a displacement field u : SI x [0, T] —> R3, a stress field cr : Q x [0, T\ —>
E^, and a surface particle density field C : Tc x [0, T] —> R, such that

cr = A(£{u)) + g(e(u)) in fi x (0, T), (2.12)

diver + /0 = 0 in SI x (0, T), (2-13)

■u = 0 on To x (0, T), (2-14)
crv' = fN on rN x (0,r), (2-15)

-au=pu on Tp x (0, T), (2.16)

lkr|| < Wv,
U — u*

(Tt = -hpu—l -r if iiT ± 0 on Tc x (0, T), (2.17)
||itr - v*\\

C — div(fcVC) = khp„R*(\\ut — f*||)x[D„] onrcx(0,r), (2.18)
C = 0 on 7 x (0, T), (2.19)

it(0) = Uo, ((0) = Co in (2.20)

Here, fi = /i(C, ||ttT — u*||) and Pu = pv{uu — ilC\[Dm] ~ p); (2-13) is the equilibrium equa-
tion, since the process is assumed to be quasistatic; (2.14) and (2.15) are the displacement
and traction boundary conditions, respectively; and (2.20) are the initial conditions, in
which uo and Co are given.

3. Variational formulation. To obtain a variational formulation for problem P we
need additional notation and some preliminaries. We use the standard notation for Lp
and Sobolev spaces associated with the domains fi C R3 and Vc C R2 (see, e.g., [1]).
Moreover, we let

H={v= (vi) | Vi e L2(Q)j = i2(0)3,

H1 = {v = (Vi) | vid e L2(0)} = H\n)3,

Q = {t = (nj) I nj = Tji e l2(Q)} = L2(fi)3x3,

Qi = {r e Q | Tijj 6 H}.

Here and throughout this paper, i,j 6 {1, 2,3}, the summation convention over repeated
indices is employed, and an index following a comma indicates a partial derivative with
respect to the corresponding variable.

The spaces H, Q, Hi, and Q j are real Hilbert spaces endowed with inner products
given by

{u,v)H - / UiVidx, (<t,t)q= / lTijTijdx,
Jn Jn

(it, v)Hl = (it, v)H + (e(it), s(v))q, (cr. r)Ql = (cr. t)q + (diver, divt)h,

respectively. Here £ : H\ —> H and div : Hi —► # are the deformation and divergence
operators, respectively, defined by

e(tt) = (£ij(u)), £ij(it) = ^(w»j + Wj,i), (diver); = (ct^j).
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The associated norms on the spaces H, Hi, Q, and Qi are denoted by || ■ || h, II ' ||Hi,
II ' IIq, and II ' llQi, respectively.

For an element v € Hi we denote by v its trace on T and by i>„ = vu and vT = v—vuu
its normal component and tangential part on the boundary. We also denote by cr„ and
crT the normal and tangential traces of a € Q\. If <r is a regular function (e.g., C1),
then av{<ru) ■ v and crT = cru — Moreover, the following Green formula holds:

(<r,e(v))q + (diver, v)h = J (Tv vdS Vv € Hi, (3.1)

where dS is the surface measure on T.
Let V be the closed subspace of Hi given by

V = {v € Hi \ v = 0 on Td},

and denote
{u,v)v = (e(u),e(v))Q Vu, v € V. (3.2)

Since meas(r£>) > 0 it follows from Korn's inequality that is a real Hilbert
space, and the associated norm is denoted by || • ||y. By the Sobolev trace theorem there
exists a constant cp > 0, which depends on T2, F£>, and Fc, such that

IMlL2(rc)3 ̂ cHMIk Vv£V. (3.3)
Recall that Tc is assumed to be a regular domain in the Oxi,x2 plane with Lipschit.z

boundary 7. Keeping in mind the boundary condition (2.19), for the surface particle
density function we shall use the space

Ho(rc) = {£ e Hl(rc) | £ = 0 on 7}.

This is a real Hilbert space endowed with the inner product

(C,0^(rc) = (VC, VC)L2(rc)2,
where V : Hq(Tc) L2(Vc) denotes the gradient operator, that is V£ = ($,i1,^,x2)-
Note that by the Friedrichs-Poincare inequality there exists a constant Cr > 0, which
depends on Fc, such that

IICIU2(rc) < cr||CllH»(rc) WCeH^Tc). (3.4)
We use the notation H~l{Fc) for the dual of the space Hq(Fc)- Identifying L2(Tc)

with its own dual we can write J/g(Fc) C L?(Tc) C H~l{Tc)- Below, (•, ■) represents
the duality pairing between H~1{Tc) and Hq(Tc), and || • ||ij-i(rc) denotes the norm
on the dual space i/-1(rc). Also, (C,£) = (C>£)z.2(rc) f°r C e L2(Tc) and £ e ^o(Fc)-

Finally, if (X, (|| • J)x) is a real Banach space and T > 0, we denote by C([0, T\\X)
and C1([0, T];X) the spaces of continuous and continuously differentiable functions from
[0,T] to X, with norms

IMIc([0,T];X) = maxMi)||x, IMIch[o,t];x) = max ||^(i)||x + max ||p(*)IU-
1 J te[o,T] u.j. t6[o,T] te[o,r]

Moreover, we use the Lebesgue space L2(0,T; X) with the usual norm

IMIl2(0,T;X) = f [ WfWWx dt J .
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To study the mechanical problem P we make the following assumptions on the problem
data.

The viscosity operator A : ft x E^ —> Eg satisfies the following: there exist two positive
constants L^ and m_4 such that

(a) ||^4.(a3. £1) — A(x, £2)|| £ La\\£i — £21| Vei,e2 G Eg, a.e. x G fl;

(b) (A(x, £1) A(x, £2)) • (£1 -£2) > m^||£i — £2II2

V£i,£2 G E^, a.e. x G (3.5)

(c) x i—> A(x, e) is Lebesgue measurable on SI Ve 6 E^;

(d) x ! * A(x, 0) G Q.

The elasticity operator Q : Q. x Eg —> Eg satisfies the following: there exists a positive
constant Lg such that

(a) \\Q(x,£i) - Q(x,£2)\\ < Lg\\ei - e2\\ Vei,£2 G E®, a.e. x e O;

(b) x i—» Q(x,e) is Lebesgue measurable on Q Ve G Ef; (3.6)

(c) x i > Q(x, 0) G Q.

The normal compliance function p„ : Tc x R —» R+ satisfies the following: there exist
two positive constants Lv and p* such that

(a) \pu(x,ui)-p„(x,u2)\ < Lv\u\ - m2| Vui,w2 G R, a.e. a; e rc;

(b) x M- pv(x, ix) is Lebesgue measurable on Tp Vu G R;
(3.7)(c) x i-t pv(x, u) = 0 for u < 0, a.e. a; e Lc;

(d) pv(x,u)<p* Vu G R, a.e. a; G Tc-

The coefficient of friction p : Tc x R2 —> R+ satisfies the following: there exist two
positive constants and /x* such that

(а) |/x(a;,ai,£)i) - /x(x,a2, &2)| < iM(|ai - a2| + |£>i - 62|)

Voi, a2, 6i, &2 G R, a.e. i 6 Tc;

(б) x i—> /j(x, a, b) is Lebesgue measurable on Fp Va, 6eR;

(c) p(x, a, 6) < /x* Va, 6 E R, a.e. a: £ Tc-

(3.8)

The assumptions (3.5) on the viscosity operator are rather routine, and effectively
follow from the linear case (2.2), and so are the assumptions (3.6) on the elasticity
operator Q. The main restriction on pu in (3.7) is its boundedness. Although the function
Pv in (2.9) does not satisfy condition (3.7), the truncated function

pP{r) =
c„(r+)TO" if r < p,

cu(r+)rnu if r > p,

does, for a given p > 0, and p£ coincides with pu on (—oo, p). Since the interpenetration of
body's surface asperities into those of the foundation are supposed to be small, replacing
the normal compliance function (2.9) with the regularized normal compliance function
p? does not represent a practical restriction of the model. A similar comment could
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be made on the assumptions (3.8) on the coefficient of friction which is assumed to be
Lipschitz continuous and bounded.

The forces and tractions are assumed to satisfy

/0eC([0,T];tf), f N £ C([0,T]; L2(rjv)d); (3.9)

the initial gap function satisfies

g £ L2(Tc), g > 0 a.e. on Tc; (3.10)

the wear diffusion coefficient satisfies

keL°°(rc), k > k* > 0 a.e. on Tc; (3.11)

and the wear rate coefficient satisfies

k £ L°°(Tdw), k > 0 a.e. on T(3-12)

Finally, we assume that the initial displacements and the initial surface particle density
satisfy

U0 e v, Co G l2(rc). (3.13)
Next, we define the vector valued function / : [0, T] —> V as

(f{t),v)v=[ fo(t) ■ vdx + f f N{t) ■ vdS, (3.14)
J q J rN

for all v £ V, t £ [0. T\. We also define the functional j : L2(Vc) x V3 —> K by

j{C, u, v, w) = / pj$pv - rjC\[dw] - g)wv dS
J rc

+ I MC IK - V*\\)pv(uv - 77CX[D,„] - 9)\\w-r - u*|| dS,
Jvc

for all C £ i2(Tc), u,v,w £ V. The bilinear form a : Hq(Tc) x Hq(Tc) —» R is defined
as

a(C,£)= [ /.:VC • dS (3.16)
J re-

fer all £,£ G ifo(rc). Finally, the operator i7 : H,}(Fc) x V3 —» i^_1(rc) is given by

(F(C,u, u,u;),0

k/x(C, |K - u*||)p„(wi/ - r/C - ff)F(|«)r - u*||)^d5,
Dw

for all G //y(rc), u.v.w £ V.
We note that by conditions (3.7)—(3.11) the integrals in (3.14)-(3.17) are well defined.

Moreover, we used the Riesz representation theorem to define the vector valued function
/•

We now turn to derive a variational formulation of the mechanical problem P. To
that end we assume that {it. er. £} is a triplet of regular functions satisfying (2.12)-(2.20)
and let v £ V, £ £ Hq(Tc), and t £ [0,T\. Using (3.1) and (2.13) we have

(o-{t.),£(v)-£{u(t)))Q= I f0(t) ■ (v — ii(t)) dx + I a{t)v ■ (v — ii(t)) dS,
J n Jr

(3.15)
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and by (2.14), (2.15), and (3.14) we find

(a(t),e(v) - e{u(t)))Q = {f(t),v - u(t))v + I a(t)v ■ {v - u(t))dS. (3.18)
Jtc

Using now (2.16) and (2.17), it follows that

a{t)u ■ (v - u(t)) > -pv{uv{t) - vt(t)x\Da] ~ 9){v„ - u„{t))

- IKW - v*\\)pv{uv(t) - vC{t)x[Dw] - g)\\vT - «*||
+ n(C{t),\\uT(t) - v*\\)pu(uv(t) - nC(t)x{Dw] -g)\\uT{t) - J,

a.e. on Fc x (0, T) and, keeping in mind (3.15), we find

I a(t)v ■ (v - u(t.)) dS > u(t), u(t), - j(C(t),u(i),u(t),v). (3.19)
Jtc

Combining (3.18) and (3.19) yields

(<r(t), e(i>) - e(u(t)))Q + j(((t),u{t),u(t),v)
(3.20)

On the other hand, multiplying (2.18) with £, integrating the result on Tc, and using
the equality

I div(fcVC(i))£ dS = - f k\7({t) ■ V£ dS,
■hc Jrc

since £ € Hq(Fc), we find

f c(t)£ds+ [ fcVC(0 • V£ dS
JTo JTn/rc Jrc

= [ Kix(({t)y\\uT(t)-v*\\)p„(u„-riC(t) ^ g)R*(\\iiT ^v*\\)tdS.
Jdw

We use now (3.16) and (3.17) in the previous equality to obtain

(C (t),0 +o(C(t),0 = {F(((t),u(t),u(t),u(t)),£). (3.21)
To conclude, we obtain from (3.20), (3.21), (2.12), and (2.20) the following variational

formulation of problem P.

PROBLEM Py. Find a displacement field u : [0, T] —> V and a surface particle density
field (" : [0,T] —> Hq(Tc) such that

(A(e(u{t))),e(v) - e{u{t)))Q + (G{e(u{t))),£(v) - e(u(t)))Q (3.22)
+ J(C(t),u(t),ii(t), V) - j(C(t),u(t),u(t),u(t))

> (f(t),v - u(t))v Vv e v, t e [o,t],
(C(t),0 +a(C(t),£) = (3.23)

e Hq(Tc), a.e. t e (0, T),
u(0) = «o, C(0) = Co- (3.24)

Our main result concerning the well-posedness of problem Py is stated next and
established in Sec. 4.
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Theorem 3.1. Assume that (3.5)-(3.13) hold. Then, there exists a constant c* > 0,
which depends on cr, cr, L„, L||k||l~(d,„)i r)> and R such that, if p* < c* and
/i* < c*, then there exists a unique solution of problem Py. Moreover, the solution
satisfies

it £ C1([0, T\;V), (3.25)

C £ L2(0, T; Hq (Tc)) n C([0, T]; L2(Tc)), C G L2(0, T; (3.26)

Let now {u, C} denote a solution of Problem Py and let cr be the stress field given by
(2.12). Using (3.5) and (3.6) it follows that cr £ C([0,T];Q) and, using (3.22), (3.14),
and standard arguments, we find that divcr(i) + /o(0 = 0, \/t £ [0,T], It follows now
from (3.9) that diver £ C([0,T];H), which implies

aeC([0,T]-Q1). (3.27)

A triplet of functions {it, cr, £} which satisfies (2.12), (3.22)-(3.24) is called a weak
solution of the mechanical problem P. We conclude by Theorem 3.1 that, under the
assumptions (3.5)—(3.13), if the normal compliance function pu and the coefficient of
friction fi are small enough, then problem P has a unique weak solution which satisfies

(3.25)-(3.27).
We now comment on the variational problem Py. The following features make Py a

rather difficult mathematical problem and make the strong assumption discussed above
necessary:

• the dependence of the nonlinear and nondifferentiable functional j on the solution
{u, C}, as well as on the derivative ii;

• the dependence of the nonlinear operator F on the solution {it, (} and on the
derivative it;

• the strong coupling between the evolutionary variational inequality (3.22) and
the evolutionary variational equation (3.23).

Clearly, the problem of frictional contact of a viscoelastic body with wear diffusion
leads to a new and interesting mathematical model. We notice, however, that in the case
when the wear of the contact surface Tc is taken into account but there is no diffusion
of the wear particles, then the mechanical problem leads to a simplified mathematical
model for which the existence of a unique weak solution has been proved in [19].

We end this section with the remark that the viscosity term has a regularization
effect in the study of the problem Py. Indeed, the study of the corresponding inviscid
problem (i.e., problem (3.22)-(3.24) in which the viscosity tensor A vanishes) seems to
lead to severe mathematical difficulties; we have a good reason to believe that additional
smallness assumptions would be needed to prove the existence of a solution of the inviscid
problem, while the uniqueness of the solution seems to be an open problem.

4. Proof. The proof of Theorem 3.1 will be carried out in several steps, by using
arguments of evolutionary equations, time-dependent elliptic variational inequalities, and
a fixed point theorem. Similar arguments have been already used in [9, 10, 11, 19, 27]
and therefore, when the modifications are straightforward, we omit the details.
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We assume in what follows that (3.5)—(3.13) hold and, moreover,

crPtL» < mA• (4-1)

In the first step we solve the parabolic equation (3.23) under the assumption that F
is given. More precisely, let 9 G 72(0,7; i/-1(F^)) and consider the problem of finding
(g : [0,71 >' Hq(Tc) such that

(6(f), 0 + a(Cfl(t),0 = mu) W e H^Tc), a.e. t G (0,T), (4.2)
Cfl(O) = Co- (4.3)

Lemma 4.1. There exists a unique solution of problem (4.2)-(4.3). Moreover, it satisfies

c* 6 72(0,T;F01(rc))nC([0,T];L2(rc)), CeeL^O^H-^Tc)). (4.4)

Proof. The lemma follows from a well-known result for evolutionary equations with
linear continuous operators and may be found in [31, pp. 424-425]. □

In the next step we solve the variational inequality (3.22) when £ = (g. To that end,
let z G C([0,7];V) and w G C([0,T]; V) be given and consider the following auxiliary
variational inequality of finding vgzw : [0,7] —> V such that

{A{e{vezw(t))),e(v) - e(vgzw(i)))Q + {G{e(z{t))),e(v) - e(vgzw(t)))Q

+ j(Ce(t),z(t),w(t),v) - j(Ce(t),z(t),w(t),vgzw{t)) (4.5)

>{f{t),v-vgzw(t))v Vv G V,t G [0,7].

Lemma 4.2. There exists a unique solution vgzw G C([0,7];X) of problem (4.5).

Proof. It follows from standard arguments of variational inequalities (see for instance
[11]) that there exists a unique element vgzw(t) which solves (4.5) for each t G [0,7].
Let us show that vgzw : [0,7] —> V is continuous. Let t\,t2 G [0,7], and for the sake of
simplicity we employ the notation vgzw(ti) = Vi, £g(ti) = Q, z(ti) = z, and w(ti) = w,
for i = 1,2. Using (4.5) we easily derive the relation

(^(e(vi))-^(e(v2)),e(wi)-e(v2))Q < (G{e(zi)) - G{e{z2)), e(v2) - s(vi))q

+j(Cl,Z1,Wi,V2) -i(Cl,Zl,l«l,Vl) +j(C2, Z2,W2, Vi) - j((2,Z2,W2,V2)

+ if 1 - /2>«1 - V2)v-

Then, we use conditions (3.5)-(3.8) to obtain

mA\\v1 - v2\\v < (Lg + cl(Lv + n*Lv))\\zi - z2\\v

+ cr(Lvr] + n*Ll/rj+p*l,LIJ.) ||Ci — C2||x,=(rc7) (4-6)

+ crPtLAwi ~ ^21|v + ||/i - f2\\v-
We deduce that vgzw : [0,7] —> V is a continuous function. □

We now consider an operator Ag~ : C([0,7]; V) —► C([0,7]; V) defined by

A gzw = vgzw. (4.7)

We have the following result.

Lemma 4.3. The operator Agz has a unique fixed-point wgz G C([0,7]; V).
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Proof. Let w\,w2 G C([0, T]; V) and let u, denote the solution of (4.6) for w - w,.
i.e., Vi = vgZWi, i = 1,2. From the definition (4.7) we have

\\^ezwi{t) - Agzw2(t)\\v = \\vi(t) - f2(*)llv' W € [0,T].

An argument similar to the one used in the proof of (4.6) shows that

mA\\vi(t) - v2{t)\\v < clplL^Wwxtt) - w2(t)\\v Vt G [0,T].

Keeping in mind (4.1), the two inequalities show that the operator Agz is a contraction
on the Banach space C([0, T]\ V), which concludes the proof of the lemma. □

In what follows we denote by wgz the fixed-point function stated in Lemma 4.3 and
let vgz £ C([0,T]; A) be the function defined by

vgz = vgzw<jz. (4.8)

We have Agzwgz = wg. and

V0Z = Wgz (4.9)

by (4.7) and (4.8). Therefore, choosing w = wgz in (4.5) and using (4.8) and (4.9), we
see that vgz satisfies

(A{e{vez(t))),e(v) - e{vez(t)))Q + (G(e(z(t))),£(v) - e(vgz(t)))Q

+ z{t),v0z(t),v) - j{(g{t), z(t),vgz(t),vgz(t)) (4.10)

> (f(t),v - Vgz(t))v \/v € V) t e [0, T],

We denote by ugz G C1([0.T]; V) the function

Ug it) = I v9z(s)ds + u0 Vt G [0, T], (4.11)
J 0

and define the operator Ag : C([0,T]; V) —> C([0,T]; V) by

A gZ = Ugz. (4.12)

We have the following fixed-point result.

Lemma 4.4. The operator Ag has a unique fixed-point zg G C([0,T]; V).

Proof. Let 2:1,22 G C([0,T]; V) and denote vt = vg_, u, = ug. for i 1,2. Using
(4.10) and the estimates in the proof of Lemma 4.2 yield

[vnA - c£p*LM)||i>i(s) - v2(s)||y < (Lg + cl{Lv + fj,*Lv))\\z\(s) - z2(s)\\v, (4.13)

for all s G [0,T], Using now (4.11) (4.13) we obtain

||AgZl(t) - Agz2(t)\\v < L0 + crLAl + H*) r ||zi(s) _ Z2(s)|k ds_
mA Jo

for all t G [0,T], By reiterating this inequality we obtain that a power of Ag is a
contraction mapping on C([0, T]\ V), which concludes the proof of the lemma. □
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We are now ready to prove the unique solvability of the variational problem

{A{£(ue{t))),e(v) - e{u9(t)))Q + (|Q{e{ue(t))), e{v) - e{ue(t)))Q (4.14)

+ j{Qe(t),Ug(t),Ug(t),v) - j{Q(t),Ue{t),Ug{t),Ug{t))

> (f(t),V -Ug(t))v Vtt G V, t e [0, T],
Me (0) = uq. (4.15)

Lemma 4.5. There exists a unique function ug £ C1([0, T]; V) which satisfies (4.14) and

(4.15).

Proof. Let zg £ C([0, T];V) be the fixed point stated in Lemma 4.4 and let ug £
C1([0,T];V/) be the function defined by (4.11) for 2 = zg. We have ug = vg. and,
writing (4.10) for z = zg, we find

e(v) - e{u0{t)))Q + {Q{e{zg{t))), e{v) - e{ug{t)))Q

+ Zg(t),Ug(t),v) - j((g(t),Zg(t),Ug(t),Ug(t)) (4.16)

> (f(t),v - ug(t))v Vv E V, t E [0,T],

The inequality (4.14) follows now from (4.16) and (4.12) since ug = zg. Moreover, (4.15)
results from (4.11). We conclude that ug is a solution of (4.14) and (4.15).

To prove the uniqueness of the solution, let ug be the solution of (4.14), (4.15) obtained
above and let Ug be any other solution such that u*g G C'1([0, T]; V). Let v*e = u*e. Using
(4.14) we obtain that v*9 satisfies

{A{£(v*e(t))),e(v) - e(v*g(t)))Q + {G{£{u*e{t))),e{v) - e{v*0{t)))Q

+ j((g(t),u*g(t),v*g{t),v)-j((g(t),u*g{t),v*e(t),v*9(t))

>(f(t),vMv*g(t))V VveV, te [0,T],

Clearly, this is an inequality of the form (4.10) with z = u*g and, therefore, it follows
from (4.13) that it has a unique solution, already denoted by vgu*. We conclude that
v*g = vgu>. Since v*e = u*g, it follows from (4.15) that

u*g(t)= [ vgu*(s)ds + u0 Mt € [0, T]. (4.17)
Jo

Comparing (4.11) and (4.17) we obtain u*e = ugu•, which shows that ug is a fixed point
of the operator Ag, defined by (4.12). Using now Lemma 4.4 we find

u*g = Zg. (4.18)

The uniqueness of the solution of problem (4.14) and (4.15) is now a consequence of the
fact that ug = zg and equality (4.18). □

To use the Banach fixed-point theorem again, we need to investigate the properties of
the operator F : Hq(Tc) x V3 —» H~l(Yc) given by (3.17). To that end, let

LF = Cr ||k||max{n*pier, (i*LvRcr, n* (Ln + i]Lu)Rcr,p*uL^RcT}.
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Lemma 4.6. The following inequality holds true:

< MHCi - C2II(rc) + IIM1 - u2|k + hi - ^21|v + ||«>1 - w2\\v) (4.19)
VCl,C2 G HQ{rC),Ui,U2,V1,V2,Wi,W2 G V.

Proof. Inequality (4.19) is obtained from (3.17) by an elementary but tedious com-
putation, based on (3.7)(a) and (d), (3.8)(a) and (c), on inequalities (3.3), (3.4), and on
the definition of the truncation operator (2.5). □

Notice that it follows from (3.17) and (3.7)(c) that F(0,0,0,0) = 0. Therefore,
keeping in mind that ( G L2(0, T; Hq(Tc)), ug G C1([0,T];VA) and Lemma (4.6), we
find that F(C,g,ug,ug,iig) G L2(Q,T] H~l(Yc))- This result allows us to consider the
operator A : L2(0, T; H^(rc)) -> L2(0, T; H"1 (rc)) defined by

Ad = F(Ce, ug, ug, iig). (4.20)

We now introduce the following positive constants:

Lg + CpL„(l + fl*)
mA - cj.pt

Cl = ' (4.2!)

C2 = cr(Lvri + ii*Luri + plL^) ^
m-A ~ crPtLp.

K = 2L2F(l + 2crC2)2, (4.23)

C = 2crTL2FCle2ClT(l + 2Ci)2. (4.24)

We have the following result.

Lemma 4.7. Let £ £2(0, T\ H~1(Tc)) and let Qz denote the functions obtained in
Lemma 4.1, for i = 1,2. Then, the following inequalities hold:

||AM*) - Ae2(t)\\H-Hrc) ^ ~ Ce2mU(rc) (4-25)

+C J ||fcW-&(«)ll2rj(ro)* a.e. £g(0,T),

(fc*)2^ KoAs)-te,(s)\\li(rc)ds<Jo H^i(s) — 02(s)|llf-i(rc) ds (4.26)

Vi G [0,T\.

Proof. Let ugt be the functions obtained in Lemma 4.5 and, for the sake of simplicity,
denote = (i, ugi = Ui, for i = 1,2. Using (4.20) and (4.19) we obtain

||A6>i(£) - A02(£)||i/-i(rc) ̂ -^fOICiW ~ C2(0ll^(rc) ^
+ ||m(t) - u2(t)||v + 2||«i(t) - ii2(t)||v) a.e. t G (0,T).

On the other hand, using in (4.16) an argument similar to that used in (4.6), we obtain

||«i(t) - u2(t)\\v < Ci||ui(t) - u2(t)\\y + C2IIC1W _ C2(0IU2(rc) a-e- t e (0'^)> (4.28)
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where C\ and C2 are given by (4.21) and (4.22), respectively. We use now (4.28) and
(4.15) to obtain

\\ui(t) - u2{t)\\v < I ||iti(s) - u2(s)||y ds
Jo

<cJ \\ui(s) - u2(s)\\v ds + C2 [ ||Ci(s) - (2(s)\\L2{rc)ds Vt G [0,T],
Jo Jo

and then Gronwall's inequality yields

\\Ul(t) - u2(t)\\v < C2ec^ f \\(1(s)-C2(s)\\mrc)ds V«g[0,T]. (4.29)
Jo

Inequality (4.25) is now a consequence of (4.27)-(4.29), keeping in mind (3.4), (4.23),
and (4.24).

It follows from a standard procedure and (4.2) that

(Ci(s) - C2OO, ClOO - C2(s)> + a(Ci(s) - C2W, Ci(s) ~ C2(s))
= (6i(s) - e2(s),Ci(s) - C2(s)) a.e. s G (0,T).

Let t G [0,T]. We integrate the previous inequality on [0,t] and use (4.3), (3.16), and
(3.11) to obtain

2 HCiW ~ C2(i)llz,2(p0) + k* f ||Ci(s) - C2(s)||^i(rc) ds
J 0

(4.30)
< [ ll^i(s) - ^2(s)||/f-1(rc)||Ci(s) ~ C2(s)||#i(rc) ds.

Jo

We now use the inequality ab < a2/2k* + b2k*/2 and (4.30) to obtain (4.26). □

Lemma 4.8. Assume that K < e_1. Then, there exists a unique element 6* G L2(0,T;
H-^Tc)) such that A6* = 9*.

Proof. We use arguments similar to those in [28]. Denote

/oW = ||CiW-C2(i)Hlri(rc), (4-31)

h(t) = J ||Ci(s) " C2(a)||^i(rc) da, (4.32)

and, for j = 2,3
rt pSj — i pSj—2

I At) ='j(f) = J{) JQ JQ "'J Ui(r)-<,2(r)\\2Hi{rc)drds1ds2...dsj-l. (4.33)

Let p G N, and we denote by C°p the binomial coefficients. Reiterating (4.25), using the
well-known recurrence identity C?p + C^-1 = Cp+1, using (4.31)-(4.33), and integrating
over [0,T], yield

f ||A ̂(t) - A"6»2(t)||^_1(rc)dt <j2CJpKv-i& f Ij{t)dt.
J 0 j__ 0 JO
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It follows from (4.26) that

rT 1 T'
ijWdt < ■ JY jo ll^i(s) -02{s)\\H-i(rc)ds,

and the last two inequalities imply
rT
f we.it)-^e2{t)\\2H^{Vc)dt

Jo
(4.34)

< jjip I JI ii«.(»)-92(»)ii5,-,(ro)<i».
Now, p\Kp/j\Ki < {Kp)p~\ and it is easy to check that

(4.35)Z—f V j I p\
3=0 J 1

From (4.34) and (4.35) we deduce that

||Ap0i - Ap6,2|||2(0:T;H-1 (Fc))

^ 1 (Kp + CTY (4.36)
- (fc*)2 ' pi W"1 W2||L2(0.T;ff-i(rc))-

Next, when K < e_1, the series <'Kp+p<\ T> converges, and consequently, its general
term converges to zero, thus,

]im = (4.37)
p—>co p\

We use now (4.36) and (4.37) and find that, for a sufficiently large p, the mapping Ap is
a contraction on the Banach space L2(0,T; H~l{Tc)), which concludes the proof of the
lemma. □

We now have all of the ingredients needed to prove our main result.
Proof of Theorem. 3.1

Choice of c*. It follows from (4.23), (4.19), and (4.22) that the constant K depends
on cr, cr, to.4, L„, Lm, V-. R- Pi, aild fi*. Moreover,

K —> 0 as p* —> 0 and /i* —> 0,

when cr, Cr, myi, Lu, L||k||l=°(d„,)) 7h and ^ are fixed. We conclude that there exists
c* > 0 which depends on cp, cr, m_A, ||/«||, >h and R such that, if pi < c*
and [i* < c*, then K < e~l. We may also assume that

c*<3^
~ c\l;

and therefore, if p* < c*, then (4.1) holds. With this choice of c* we assume in the sequel
that p* < c* and /i* < c* and we prove the existence of a unique solution of problem Py
which satisfies (3.25), (3.26).

Existence. Let 0* be the fixed point obtained in Lemma 4.8. W denote by ug* the
solution of problem (4.14) and (4.15) for 9 — 0* (see Lemma 4.5) and by Q* the solution
of problem (4.2) and (4.3) for 6 = 0* (see Lemma 4.1). Then, the pair {ug*, (g*} satisfies
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(3.22), (3.24)-(3.26) and, by using (4.20) and (4.2), we obtain that it satisfies Eq. (3.23),
too. This concludes the existence part.

Uniqueness. Let be the solution of problem Py obtained above and let
{it,C} be any other solution of problem Py satisfying (3.25) and (3.26). Define the
element 9 e L2(0,T; H~l(Yc)) by

9 = F((, it, tt, it). (4.38)

Then, by (3.23) and (3.24) it follows that ( is a solution of problem (4.2) and (4.3) and,
by the uniqueness part in Lemma 4.1, we obtain that ( = (g. We use this, (3.22), and
(3.24) to conclude that u is a solution of problem (4.14), (4.15); therefore, from the
uniqueness part in Lemma 4.5, we obtain that u = ug. We deduce from these and (4.20)
that 9 is a fixed point of the operator A and, therefore, it follows by Lemma (4.8) that
9 = 9\

We conclude that u = uq* and C — Ce* i which shows that the solution of problem Py
is unique.

5. Conclusions. The process of quasistatic wear of contacting bodies, resulting from
frictional contact, was modelled, allowing for the diffusion of the wear debris on the con-
tact surface. The model was in the form of a coupled system which includes the diffusion
equation for the wear particles and an evolution inequality for the frictional contact.
A variational formulation for the model was derived and the existence of the unique
weak solution established, under smallness assumptions on a part of the problem data.
The proof used various results from the theory of evolution inequalities and repeated
fixed-point, arguments.

This is the first result in the mathematical literature in which the diffusion of the
wear debris was taken into account, and moreover, the coefficient of friction was assumed
to depend on the wear, taking into account the changes due to wear of the contacting
surfaces.

The problem is strongly nonlinear and the result was proved under the assumption
of the smallness of the friction coefficient and the normal compliance function. Whether
the size restriction on these two coefficients is due to the mathematical method of inves-
tigation, or there is a physical underlying reason for such an assumption, is an important
open question. Indeed, it is of interest to find out if c* is essential and whether we need
estimates for it or it is a mathematical byproduct of the method of proof and a different
method may remove it.

For the sake of simplicity, it was assumed in the model that the wear depth was
proportional to the surface debris density. It may be of interest to relax this assumption.
Also, a model and its analysis of the dynamic problem remain open and important
problems.

Problems in which wear particles or debris remain on the contacting surfaces abound
in engineering systems, and this line of research is likely to attract increased attention,
because of its practical applications. The applications to biomechanics, which motivated
this study and were mentioned in the Introduction, are also of considerable interest, and
there is a need to add adhesion to the process. However, it is clear from the result in
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this work that such problems are intrinsically very difficult and some new mathematical
tools will have to be developed to address them.
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