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QUASI-SYMMETRIC EMBEDDINGS IN EUCLIDEAN SPACES
BY

JUSSI VÄISÄLÄ

Abstract. We consider quasi-symmetric embeddings/: G -, R", G open in Rp,
p < n. If p = n, quasi-symmetry implies quasi-conformality. The converse is true if
G has a sufficiently smooth boundary. If p < n, the Hausdorff dimension of fG is
less than n. If fG has a finite /»-measure, / preserves the property of being of
/»-measure zero. If p < n and n > 3, R" contains a quasi-symmetric/»-cell which is
topologically wild.

We also prove auxiliary results on the relations between Hausdorff measure and
Cech cohomology.

1. Introduction.
1.1. The quasi-symmetric (QS) embeddings were introduced in [TV] as a natural

generalization of quasi-conformal maps/: R" —, R". Let us recall the definition.
Suppose that X and Y are metric spaces. The distance between two points a, b in
either space is written as \a — b\. An embedding/: A' -, y is QS or tj-QS if there is
a homeomorphism 17: [0, 00) —»[0, 00) such that \f(a) — f(x)\ < t](p)\fib) — fix)\
whenever p > 0 and \a — x\ < p\b — x\. If this is only supposed to be true for
p = 1, we say that/is weakly QS or weakly //-QS, H = p(l).

In this paper we shall mainly consider the case X c Rp and Y = R", p < n.
Moreover, X is usually assumed to be an open set G c Rp. In the case/? = n, there
is a close connection between quasi-symmetry and quasi-conformality. This will be
studied in §2. In §3 we present auxiliary results on Cech cohomology and
Hausdorff measure, which may be of independent interest. In §4 we prove that if
p < n, the Hausdorff dimension of fG is always less than n. §5 deals with the case
where the /»-measure of fG is finite. This case has been considered by F. W.
Gehring [Ge3] for maps which are restrictions of «-dimensional quasi-conformal
maps. We shall extend all his results to QS embeddings. In §6 we show that a QS
/»-cell can be topologically wild in every R", n > ma\(p + 1, 3). In this respect,
they differ from Lipschitz/»-cells, which are topologically flat in R" if n > 3p + 1.

1.2. Terminology and notation. We shall use the same terminology as in [TV]. All
spaces are assumed to be metric, lip < n, we identify Rp with the subspace Rp X 0
of R". The open ball {y: \y — x\ < r] in a metric space X is written as B(x, r). If
X = R", we may use the notation B"(x, r) and the abbreviation B" = B"(0, 1).
Similarly, S(x, r) = [y: \y - x\ = r), S"~\x, r), and S*~l. Furthermore, /" will
denote the closed unit n-cube [-1, 1]" in R", and 2""1 its boundary 9/". The
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normalized Hausdorff /»-measure,/? > 0, of a set A in a metric space X is written as
mp(A). For the definition, see [Fe, 2.10.2]. In particular, if X = R", m„ is the
ordinary Lebesgue measure. The Hausdorff dimension dimw A of A is
inf{/»: mp(A) = 0} = sup{/»: mp(A) = oo}. We set fi„ = mn(B") and «„ = mn(S").

2. Quasi-symmetry and quasi-conformality.
2.1. In this section we shall consider embeddings/: G —» R", G open in R",

n > 2. For such maps, quasi-symmetry implies quasi-conformality (Theorem 2.3).
The converse is not true. For example, a Möbius transformation of a ball onto a
half-space is quasi-conformal (even conformai) but not QS, since a QS image of a
bounded set is bounded [TV, 2.6]. In the spherical metric, Möbius transformations
are QS, but there is no r/ such that every Möbius transformation of S" is tj-QS. We
shall show, however, that in some particular cases quasi-conformality implies
quasi-symmetry. Moreover, the concepts locally QS and locally quasi-conformal
are equivalent for embeddings/: G —»/?", G open in R".

We use the abbreviation QC for quasi-conformal. For the basic theory of QC
maps, see [Va,].

2.2. Definitions. Let /: X —» Y be an embedding (or more generally, an immer-
sion). If every point x of X has a neighborhood U such that f\ U is QS, / is said to
be locally QS. The concepts locally tj-QS, locally weakly QS, locally weakly //-QS,
locally QC, and locally A"-QC are defined similarly. Observe, however, that a
locally ÄT-QC embedding is K-QC.

2.3. Theorem. Let G be open in R", n > 2, and let f: G -, R" be a locally weakly
H-QS embedding. Then f is H"~l-QC.

Proof. This is well known, see [Vä,, Remark 34.2].    fj

2.4. Theorem. Suppose that G is open in R", n > 2, and that f: G —> R" is K-QC.
Suppose also that x0 G G, a > 1, r > 0 such that B(x0, ar) c G. Then f\B(x0, r) is
T]-QS where r\ depends only on n, K and a.

Proof. The following proof is due to J. Sarvas. It is published with his
permission, and it simplifies the author's original proof.

By [TV, 2.16], it suffices to show that/is weakly H-QS with H = H(n, K, a). We
may normalize r = 1. Let h: B(x0, 4)^ B(x0, a) be a AT.-QC radial homeomor-
phism with h\B(x0, 1) = id and Kx = Kx(n, a). Then g = fit: B(xQ, 4)—» R" is a
KKX-QC embedding, and g = fin B(x0, 1). Let a, b, x G B(x0, 1) with 0 < \a — x\
< \b - x\. We want to estimate the ratio p' = \f(a) - f(x)\/\f(b) - f(x)\.

Using the standard notation (see for example [Vä„ p. 78]), we set

L = L(x,f, \a — x\)    and   / = l(x,f, \a — x\).
Observe that \a — x\ < 2 and thus B(x, \a — x\) c B(x0, 3). Clearly p' < L/l.
Choose z G S(x, \x — a\) such that | g(z) — g(x)\ = L. Let F be the ray from g(x)
through g(z), and let J c F be a segment joining g(z) to gS(x, 3) in gB(x, 3). Then
g"1/ is a continuum joining the spheres S(x, \x — a\) and S(x, 3). Set A =
B(fix), I). Then g~lA is a continuum joining x and S(x, \x — a\). Let T be the
family of all paths joining g~lA and g~lJ in B(x, 3). Then M(T) > cn > 0. This can
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QUASI-SYMMETRIC embeddings 193

be proved, for example, as [Väl5 Theorem 11.7(4)]. On the other hand, M(gT) <
un_x(log(L/l)y-". Since M(T) < KKxM(gT), we obtain L/l<e' with t =
(KKxUn_x/cn)^"-x\    D

2.5. Corollary. An embedding f: R" -> R" is QS if and only if it is QC. In this
casefR" = R".

Proof. The last statement follows from [Va,, 17.4].   □

2.6. Corollary. Let G be open in R" and let f: G —> R" be an embedding. Then
the following statements are equivalent:

(l)f is locally QC,
(2)f is locally QS,
(3)f is locally weakly QS.    Q

2.7. Theorem. Suppose that G is open in R", that F is compact in G and that f:
G —» R" is a K-QC embedding. Then f\F is QS. If G is connected, f\F is tj-QS,
where tj depends only on G, F, and K.

Proof. Since a locally QS embedding of a compact space is QS [TV, 2.23], the
first part of the theorem follows from Theorem 2.4.

Suppose that G is connected. Choose a connected compact polyhedron P such
that F c P C G. By [LV, 2.34], P is quasi-convex and hence of bounded turning.
It follows from [TV, 2.16] that in the second part of the theorem, it suffices to show
that /| P is weakly //-QS with H depending only on G, F, and K. Suppose that this
is not true. Then there is a sequence of K-QC embeddings/: G —* R" and points aJf
bj, Xj in P such that |a, — xy\ < \bj — xy\ and such that

pj = \fMj) - fAxj)Wjibj) - fÁxj)\ -» °°-
Replacing t by gjfi, where gj is a suitable similarity map, we may assume that

0 G/F and that d(fiP) = 1. Passing to a subsequence, we may assume that
aj —* ao> bj -» b0, Xj —» x0. By 2.4, x0 has a neighborhood in which each fj is tj-QS
with tj depending only on n and K. Hence b0 ¥= x0.

Since every/ omits oo and since/F c B", it follows from [Va,, 19.4(1)] that the
family of all / is equicontinuous. Hence we may assume that they converge to a
limit /: G —» R" uniformly in compact sets. Since d(fF) = 1, / is not constant. By
[Vä„ 21.1],/is a AT-QC embedding. Thus Pj -, \f(a0) - f(x0)\/\f(b0) - f(x0)\, which
gives a contradiction,    fj

2.8. Remarks. 1. The quantitative version of 2.6 is also true: The conditions (1)/
is K-QC, (2) / is locally tj-QS, (3) / is locally weakly H-QS, are equivalent in the
sense that, for example, (1) implies (2) with tj depending only on K and n.

2. The conditions (2) and (3) in 2.6 and in 2.8.1 are equivalent in the more
general case/: G -* R", G open in Rp,p < n. This follows from [TV, 2.16].

3. The quasi-conformality of an embedding/: G —» R", G open in R", n > 2, can
also be characterized by means of the linear dilatation

L(x, f, r)HL(x) = lim supV Kx,f,r).
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Indeed, / is QC if and only if HL is bounded in G [Vä,, 34.1]. Hence the local
boundedness of HL implies that / is locally QS. This result is not true for general
metric spaces, not even for homeomorphisms/: /? ' —» /? '. In fact, it is not difficult
to construct a homeomorphism /: /?'—>/?' which is not locally QS at some point
but which has a positive derivative at every point. Thus HL(x) = 1 for all x.
Another example will be given in 5.11.

4. If D and D' are bounded domains in R" such that dD and dD' are QC flat
(n — l)-spheres, then every QC homeomorphism/: D —» D' is QS. Indeed, the QC
Schoenflies theorem provides an extension of / to a QC homeomorphism R" —> R",
and the result follows from 2.5.

We give a more general result whose proof does not involve the Schoenflies
theorem:

2.9. Theorem. Let D be a bounded domain in R" with the following property: For
every point b G dD there exist a neighborhood U of b and a QC homeomorphism of U
onto B" such that U n D is mapped onto an open half-ball. Let D' be another
bounded domain with the same property. Then every QC homeomorphism f: D —» D'
is QS.

Proof. By [Vä,, 17.18],/can be extended to a homeomorphism/*: D —» D'. By
[Vä„ 35.5], every boundary point of D has a neighborhood U such that f\ U n D
can be extended to a QC embedding of U. By 2.6, /* is locally QS. Since D is
compact, f* is QS [TV, 2.23].    Q

3. Cohomology and measure.
3.1. The purpose of this section is to present auxiliary results on Cech cohomol-

ogy and on its relations with the Hausdorff measure. Lemma 3.2 will be needed in
§§4 and 5, and Theorem 3.6 in §5. It is possible that these results have independent
interest.

The Cech cohomology groups with integral coefficients of a space X are written
as HJ(X). If & is a family of sets in X, we let A(6B) and Hj(&) denote the nerve of
6£ and the y'-dimensional cohomology group of N(&), respectively. If éB is an open
covering of X, there are canonical homomorphisms y: HJ(&) —* H\X). If i: E —* X
is an inclusion, we set 681F = { U n E: U G 6E}. There is a natural simplicial map
tp: N(&\E) -» N((£) and a commutative diagram:

<p*
HJ(&)      ->     HJ(&\E)

4yi 4y2
Hj(X)      -,        Hj(E)

i*
The homomorphism y2<p* = i*yx: HJ(&) -, HJ(E) will also be called canonical.

Let 9)p be the covering of Rp \ 0 consisting of open half-spaces Wj, = {x G Rp:
Xj > 0} and Wp+j = {x G R": x, < 0}, 1 < / < p. Observe that a subfamily 9> of
9)p has an empty intersection if and only if there is / such that {Wj, rVp+j} C 9>.
We shall later also make use of the sets W* = {x G Rp: Xj > \x¡\ for all /' =£j) and
W£+j = {x (E Rp: Xj < -\x¡\ for all i ¥=j}. Observe that W* \ 0 c W„ and that
{Wf,. . ., Wl,} is a covering of Rp.
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quasi-symmetric embeddings 195

3.2. Lemma. Let E be a compact set in Rp separating Ofrom oo. Then the canonical
homomorphism y: Hp~l(9)p)^> Hp~l(E) is not the zero map.

Proof. Choose r2 > rx > 0 such that E is contained in the annulus A = {x:
rx < \x\ <r2). Since all intersections of the elements of 9)p\A are cohomologically
trivial and since <p: N(9)p\A)-, N(9)p) is a simplicial isomorphism, the canonical
homomorphisms y,: HJ(9)p) —* HJ(A) are isomorphisms. See [Go, p. 213]; an
elementary proof can in this case also be given. Let i: E -^ A be the inclusion.
Since y = i*yx, it suffices to show that i*: HP~\A)^> HP~\E) is not the zero
map. By Alexander duality, i* can be identified with the mapjy. H0(RP \A)—>
H0(RP \ E) induced by the inclusion. Since the two components of Rp \ A are
contained in different components of Rp \ E,j\ ^ 0.    □

3.3. The rest of this section will be devoted to the study of the relations between
the Hausdorff measure of a set and the cohomological properties of its neighbor-
hoods. In view of the applications in §5, we shall work in 2", but it is clear that
similar results hold in R ". The results and the methods were inspired by [GeJ.

We introduce some notation. If b G R" and A c R", we let bA denote the
rectilinear join of b and A, consisting of all segments ba, a G A. If A c 2" and
t > 0, A(t) is the open r-neighborhood of A in 2", A(t) = {x G 2": d(x, A) < t).
Given z G Rn+1 and 0 < s < 2, we shall consider the decomposition K of /?"+1 to
congruent closed cubes by the planes x, ■» z} + ks, 1 < / < n + 1, k G Z. The
base point z will be chosen in such a way that none of these planes is of the form
Xj = ±1. Then K induces a decomposition L of 2". Let Kk and Lk be the
/c-skeletons of K and L, respectively. Then Lk = Kk + l n 2". Each Lk is a union of
PL A:-cells Qk, where y runs through a finite index set Jk. These cells are ordinary
A:-cubes of side j except for those intersecting the (n — l)-skeleton of 2"_1.
Anyway, every Qk can be written as a join xkEk where Ek is the manifold
boundary of Qk and Ek c L*-1. Moreover, d(Qk) <s(n + 1)1/2 for all k and/

3.4. Lemma. Let A be a compact set in 2", let p G [0, n] be an integer, and let
A n L"~p = 0. Then there is a compact set C c 2" such that Hq(C) = 0 for all
q > p, and A c C c A(t), where t = s(n + l)l/2.

Proof. This is a modification of the proof of [Ge^, Lemma 4]. We set C~p = 0
and construct inductively compact sets Ck c Lk îot n — p < k < n as follows:
Suppose that C*-1 has been constructed. Let Bk = (A u C*"1) n Qk. If Bk = 0,
we set Ck = 0; otherwise Ck = xkBk. Then let Ck = U {Ck:j G Jk). We claim
that C = C has the desired properties. Observe that C n Lk = Ck.

It follows from the construction that A c C and that Cfl Qf ¥= 0 implies
/(n^V 0. Hence C c A(t).

Since C n L° = 0, C is a proper subset of 2", and therefore Hq(C) = 0 for
q > n.lt remains to show that Hq(C) = 0 whenever/» < q < n — 1.

We say that P c 2" is a A-set, 0 < k < n, if F is a union of some of the PL cells
Qj, i < &. We shall prove by induction on k that Hq(C n P) = 0 for every £>set F
and for every q e. [p + k — n, n — I]. Since 2" is an «-set, this will prove the
theorem.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



196 JUSSI VÄISÄLÄ

If k < n - p, C n F = 0, and thus Hq(C n P) = 0 for ail q. Suppose that
H"(C n F) = 0 for ail fc-sets F with k < / - 1 and for ail q G [p + k - n, n -
1]. Let P be an /-set and let p + l-n<q<n— 1. Let a be the number of /-cells
g/ in P. If a = 0, then F is an (/ - l)-set and thus Hq(C n F) = 0. Proceeding by
a subinduction on a, we assume that Hq(C (~\ P) = 0 whenever a < b — 1, and let
a = />. Choose an /-cell g/ in F. Then F' = cl(F \ Q.') is also an /-set. Setting
Ex — C n F' and E2 = C n Cj we consider the Mayer-Vietoris sequence

//«-'(£, n E2) -, Hq(Ex u F2) -, Hq(Ex) 0 //'(Fj).

Here Hg(Ex) = 0 by the subinductive hypothesis. Since E2 is contractible, Hq(E2)
= 0. Since F, n E2 is an (/ — l)-set, the main induction implies Hq~x(Ex n E^ =
0. Hence Hq(C n F) = //"(F, u E2) = 0.    Q

3.5. Theorem. Lei 0 < r < l/(« + 1), let p G [1, n] be an integer, and let A be a
compact set in 2" such that mp(A) < rp. Then there is a compact set C C 2" such
that H"(C) = 0forallq>pandA c C C A(t), where t = 2(n + l)3/2r.

Proof. Set 5 = 2(n + l)r. Then 0 < 5 < 2, and we can introduce the corre-
sponding cube decomposition K of /?"+1 as in 3.3. By [Ge2, Lemma 1], we can
choose the base point z of K in such a way that mp_k(A n Kn+i~k) < sp~k for all
k G [0,/>]. For k = p this yields A r\ Kn + 1~p = 0. A slight change of z ensures
that no «-face of /n+1 is in K". Since V = 2" n if+I, ^ n Ln~p = 0, and the
theorem follows from 3.4.    □

3.6. Theorem. Suppose that A is a compact set in 2", that p G [1, «] is an integer
and that 0 < t < 2(« + 1)1/2. Suppose also that the homomorphism Hp(A(t)) —»
FF1^) is not the zero map. Then mp(A) > (t/2(n + if/2)".

Proof. Suppose that the theorem is false. Then mp(A) < rp for some r <
t/2(n + 1)3/2, which implies r < l/(« + 1). Let C be the set given by 3.5. Then the
map Hp(A(t))-, HP(A) factorizes through the zero group HP(C), which gives the
contradiction.    □

4. The Hausdorff dimension of fG.

4.1. Theorem. Let G be open in Rp, let p < n, and let f: G -> R" be a locally
weakly H-QS embedding. Then dimHfG < ß < « where ß depends only on n and H.

Proof. Let x0 G G. Choose a ball B = Bp(x0, r0) such that B c G and such that
/|B is weakly H-QS. Let Q be a closed «-cube in R" \f [G \ B]. Since fB can be
covered with a countable number of such cubes, it suffices to find an estimate
dim^ö n fB) < ß(n, //)<«. We shall prove that there is an integer k =
k(n, H) such that if Q is divided into k" congruent closed «-cubes, at least one of
these does not meet fB. It is well known that this yields the assertion. See, for
example, [Sa, 3.3].

First suppose that p = 1. This case could be included in the proof of the general
case, but the proof in this case is considerably simpler. Choose an integer k > 6
and divide Q into k" closed cubes Qj. Assume that every Q. meets fB. Choose a
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cube Qv which contains the center of Q. Next choose a point (Gfi with/(i) G Qv.
Then /(/) divides fB into two subarcs Ax, A2. Since both of these meet dQ and
since dQ is connected, we can find Q¡, Qj such that the sets Ax C\ Q¡, A2c\ Qj
and Qi n Q¡ D dQ are nonempty. Choose /,, t2 G 5 such that /(/,) G .4, n Ö,
and f(t2) e A2 n Qj. Then |r - r,| < \t2 - tx\, and hence \f(t) - f(tx)\ <
H\f(t2) - f(tx)\. On the other hand, let r be the side of Q. Then \f(t) - fitx)\ > r/2
- 2r/k and |/(/,) - f(t2)\ < 2rnl/2/k. This yields the desired estimate k < 4 +
4//«'/2.

We now turn to the case p > 2. Instead of the connectedness of dQ, we shall
make use of the fact that Hp~\dQ) = 0. Since B is convex, it follows from [TV,
2.16] that / is tj-QS with tj depending only on « and H. We claim that if
k > 8«1/2Tj(«l/2), then/5 does not meet all cubes Q-. Assume that fB meets every
Qj. Then there is xx G B such that f(xx) belongs to a cube of this subdivision
containing the center of Q. We may assume that xx = 0. Set

P = U {Qj: Qj n dQ ¥• 0}    and   F = /"!#».
Then P separates /(0) from /3F, and therefore E separates 0 from 35 and thus
from oo.

Consider the covering % = {Wx, . . ., W^} of Rp \ 0 and the sets W*, defined
in 3.1. If a, b G E and a G W*, b G W„, then |a| < pl/2\a - b\ < «1/2|a - ¿>|.
Since k > 8, this implies T,(«'/2)|/(a) - /(¿>)| > \f(a) - /(0)| > r/2 - 2r/k > r/4.
On the other hand, if Q¡ n Q¡ ¥= 0 and Q¡ u Ö, C F, then d(Q¡ u ßy) < 2rnl/2/k
< /■/4tj(«1/2). Consequently, if the set/"'f2,. u f~lQj meets W?, it is contained in
Wv. Replace each Q¡ by a slightly larger concentric open cube A¡, all of the same
size, such that these still have this property. Let 6B be the family of all A¡, and let
f~l& = {f~lA:A G &}. Observe that f~lA ^0 for all A G &.

We define simplicial maps <p, ̂ , t in the diagram

N(%)
tT \ ^

as follows: Firstly, <p is the map induced by /. Thus <p maps a vertex /-l4 of
A(/"'eE) to /I. Secondly, for every A G 6E we choose a member »% of ^ such that
f~xA meets W^*, and set ^(^4) = W„. By what was proved above, u> is simplicial.
Thirdly, we define t = t/^p. Then t is a projection map, that is, r(U) D ¿7 for every
U G /"' 6l. Passing to cohomology we obtain the commutative diagram

Hp~\%)

Hp-\E)       Í-       Hp-\f-x&)       «-       //"-'(dB)
Yl (p*

where y, and y2 are canonical homomorphisms. Since the elements of ÉÎ are
convex, the cohomology of 6E is isomorphic to the Cech cohomology of U & [Go,
p. 213]. This space is homotopy equivalent to Sn~\ Since p < «, HP~X((H) = 0.
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Thus y2 = 7i<p*i/'* is the zero map. This contradicts Lemma 3.2 and proves the
theorem.    □

4.2. Remark. P. Tukia has pointed out to the author that an alternative proof of
4.1 can be obtained using equicontinuity and Ascoli's theorem. This proof does not
give any explicit estimate for ß(n, H).

5. The case mp(fG) < oo.
5.1. In this section we consider QS embeddings /: G-,R", G open in RP,

2 < p < «, such that mp(fG) < oo. These maps have been studied by Gehring
[Gej] under the additional assumption that/is QC flat, that is, /is a restriction of a
QC map of an open set in R". Those maps do not include all QS embeddings, not
even all Lipschitz embeddings. For example, there is a Lipschitz embedding /:
B2—> R3 such that fB2 is not topologically flat [Ge„ p. 316]. Since/is Lipschitz,
m2(fB2) < oo.

We shall extend all results of [G^] for QS embeddings. In particular, we show
that / maps every set of /7-measure zero onto a set with the same property.
Moreover, we show that / is ACL'', differentiable a.e., and satisfies a path family
inequality. We shall closely follow the proofs of Gehring, but the linking arguments
will be replaced by cohomological considerations.

5.2. Theorem. Let G be a bounded open set in Rp, let I < p < n, and let f:
G ̂  R" be an i\-QS embedding. If x G G, then mp(fG) > cd(fix), fdGY where c is
a positive constant depending only on « and tj.

Proof. We remark that the result is trivial if p = 1 or if p = «. The theorem was
proved by Gehring [Ge3, Theorem 2] for QC flat embeddings.

Suppose that p < n. We normalize the situation by x = 0, fix) = 0. Let rx =
d(0,fdG)n~l/2, and let Qx be the cube rxI". It suffices to find a constant c > 0 such
that

mp_x(fG n rZ"-x) > er"'1 (5.3)

for all r G (0, rx). Indeed, setting g(x) = max,|x,| we obtain a 1-Lipschitz map g:
ß, -» Ä ', and then [Fe, 2.10.25] implies

ß„      rr> cüd(Q,fdGY
mp{fG n Qx) > Q-\f  mp_x{fG n r2""') dr '-iai-'o     ' pnp/2ttp_xQx.

So let 0 < r < rx. Set Q = ri", E = /~ldQ, and E' = fE = dQ n fG. Since 3ß
separates 0 from /3G, E separates 0 from 3G and hence from oo. Consider the
family 9)p of half-spaces Wx, . . . , W^ and the subsets W* c Wr defined in 3.1. If
a, b G E and if a G W*, b G Wv, then \a\ < p1/2|a - b\ < «1/2|a - b\, and there-
fore Tj(«1/2)|/(a) - f(b)\ > \f(a)\ > r. Consequently, if A is a subset of dQ with
d(A) < r/-q(n1/2) and if/"U meets W*, then/"1/! c W„.

Set / = r/5Tj(«1/2) and Vx = B(fix), t) n dQ for x G E. Let & be the family of
all Vx, x G E, and let/"^ = {f~lVx: x G E). Since fix) G Vx, the elements of &
and f~l& are nonempty. As in the proof of 4.1, we define simplicial maps <p:
N(f~x<£) -, N(<£) and \p: N(&) -, 9)p. Thus <p is induced by/, and \p maps a vertex
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Vx of N(&) to an element Wv G 9)p such that W* n f~lVx ¥= 0. The choice of /
ensures that if Vx n Vy ¥= 0, then f~1Vx u Z"1^ cannot meet both H^ and
Rp \ Wv. Hence xp is simplicial. The map t = \jxp: N(f~l&)—>N(9)p) is a projec-
tion, that is, r(U) D £/ for every Í/ G/_16E. Observe that the union of all Vx is
^'(0 = {y e 9ß: ¿(y, F') < í}. Let /': F' —> F'(f) be the inclusion. Then we have
the following commutative diagram:

H»-\%)

//*-'(/ ^)       4-        H"-\&)
Til 4 72 ^1 Y3

Hp-\E) «-       Hp-\E')      *-      Hp-\E'(t))
f* '*

Here each y, is a canonical homomorphism. The map y = y,T* is also a canonical
homomorphism. By Lemma 3.2, it is not the zero map. Since y = f*i*y3*p*, i* ¥= 0.
Using Theorem 3.6 and an auxiliary similarity map 3ß —» 2"~' we conclude that
mp_x(E') > (t/2(n + l)3/2y-\ This proves (5.3) with

c = (10(« + l)3/\(n^2))X-".   U

5.4. Notation. Suppose that G is open in Rp and that/: G -, R" is continuous.
For x G G and r G (0, d(x, dG)) we use the following (fairly standard) notation:

L(x,f, r) - sup{|/(y) - /(x)| : \y - x\ < r),       L(x,f) = lim sup L(*'/' r) ,
,-^n "/■-►O

Ö^x./.ry
mp(fBp(x, r)) r_0

»L(/y(v))
ft/x) = hm sup-—-.

r-M ilpr

If fis differentiable at x G G, then Jpf(x) will denote the /»-jacobian || /\ Df(x)\\
of/atx[Fe, 3.2.1].

5.5. We shall consider maps/: G -, R" which are locally weakly H-QS for some
// > Lit follows from [TV, 2.16] that if B = 5(x0, r) is a ball such that B c G
and /| 5 is weakly H-QS, then /| 5 is tj-QS where tj depends only on « and //.
Moreover, H0(x,f, r) < UpHp/c where c = c(«, //) is the constant given by 5.2.
Hence H0(x,f) < QpHp/c for all x G G. From [Gej, Lemma 3] we obtain the first
part of the following theorem.

5.6. Theorem. Suppose that G is open in Rp, that 2 < p < «, that f: G —> R" is
locally weakly H-QS, and that mp(fF) < oo for every compact F C G. Then f is
ACLP, differentiable a.e., and L(x,fy < C^(x) a.e. in G, where the constant C
depends only on « and H. Furthermore, MP(T) < CMp(fT) for every path family T in
G.
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Proof. It remains to prove the path family inequality. The modulus Mp is
defined in [Gej, p. 91]. Observe that MP(T) = Mp(T). Our proof is essentially the
same as in the case p = « [Vä„ 32.3]. It somewhat simplifies the proof of [G^,
Theorem 4].

Let T0 be the family of all locally rectifiable paths a G T such that/is absolutely
continuous on every closed subpath of a. Since/is ACLP, it follows from Fuglede's
theorem [Vä„ 28.2] that Mp(T0) = Mp(T). Hence it suffices to show that Mp(T¿) <
CMp(fT).

Let p':/<"->/?' u oo be a function in F(fT). This means that p' > 0 is a Borel
function and that the line integral of p' along every path in fT is at least one.
Define p: G -» R ' u oo by p(x) = p'(f(x))L(x,f). If a G ro, then a transformation
formula for line integrals [Vä,, 5.3] yields Ja p ds > ¡¡ „ a p' ds > 1. Hence p G F(r),
which implies

MP(T0) <fp"dmp=f p'(fix)YL(x,fY dmp(x)
G G

<C¡p'(fix)Y^(x)dmp(x).
JG

By a standard transformation inequality, for example, by a slightly generalized
version of [Vä,, 24.5], this implies Mp(TQ) < CjfG p'p dmp < C\R. p'p dmp. Taking
the infimum over all p' G F(/r) we obtain Mp(T0) < CMp(fT).   \J

5.7. Lemma. Suppose that G is a bounded open set in Rp, that 2 < p < n, that f:
G —> R" is an r¡-QS embedding and that mp(fG) < oo. Let x0 G G and let 0 < r0 <
n-l/2d(f(x0),fdG). Then

fjpfdmp >crp
J E

where E = f~l[f(x0) + r0In] and the constant c depends only on « and tj.

Proof. Our strategy is, as in [G^, Lemma 4], to approximate / by smooth maps
gj, and then apply the argument of the proof of 5.2 to the maps gj. To avoid
repetition we shall omit some details.

We normalize the situation by x0 = 0, f(x0) = 0. Replacing G by a slightly
smaller open set, we may assume that/is defined and tj-QS is a neighborhood U of
G. By 5.6, / is ACL^. Hence there is a sequence of C'-maps gj, defined in a
neighborhood of G, such that gj -, f uniformly in G and such that the partial
derivatives 3,gy converge to 3,/ in LP(G). It follows that Jpg}^-> JJ in LP(G). Set
Aj■ = E n g/'[r2"]. Arguing as in the proof of [Gej, Lemma 4] we see that it
suffices to find an estimate

lim inimp_x(gjAj)>cxrp-i (5.8)

for 0 < r < r0, where c, > 0 depends only on n and tj.
Fix r G (0, r0), and set e, = sup{| g.(x) — f(x)\: x G G}. Then e- -»0 as/ -> oo.

For large /, r2" separates gy(0) from gjdE, and therefore Aj separates 0 from oo.
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Consider again the sets Wv and W*, defined in 3.1. If a, b G Aj and a G W*,
b G Wv, then \a\ < «1/2|a - b\ and hence \f(a) - f(b)\ > |/(a)|/Tj(n1/2) >
(r - £,)/tj(«1/2), which implies |g/a) - gj(b)\ > (r - e,)/rj(«1/2) - 2ey >
r/27j(«1/2) for large/ say for/ >y0. Set / = /-/8t,(«1/2). If/ >jt>) C c 4, ¿(gyC)
< At, and C meets W*, then C c If,.

We can now proceed as in the proof of Theorem 5.2 and obtain mp_x(gjAf) >
(t/2(n + l)V2y-i for large 7. This proves (5.8) with c, = (16(« + l)3/xt](nx'2)f-n.
D

5.9. Theorem. Suppose that G is open in Rp, that 2 < p < «, that f: G —> R" is
locally QS, and that m (fF) < 00 for every compact F C G. Then f maps every set of
p-measure zero onto a set of p-measure zero. Furthermore, fij(x) = Jpf(x) a.e. in G,
ana

mp(fE)=j¡Jpfdmp

for every Borel set E c G.

Proof. Repeating the proof of [Gej, Lemma 5] with balls replaced by cubes, we
see that the first part of the theorem follows from Lemma 5.7. The rest of the
theorem can be proved as [Ge,, Lemma 6].    □

5.10. Question. Let/be as in 5.9. Does mp(fE) = 0 imply mp(E) = 0?
5.11. Example. Up = «, there is a converse of the first part of Theorem 5.6: If/:

G -> Ä" is ACL and if L(x,f)n < K^(x) a.e., then / is QC with K0(f)<K [Vä„
32.3 and 32.5.1]. If/» < «, the corresponding statement is no longer true. We show
this by giving an example, for all p and « with 1 < p < n, of an embedding /:
Bp -> R" which is Lipschitz and satisfies the condition L(x,fY < C¡i¿(x) a.e. but
which is not locally QS at the origin.

For every positive integer / let Aj a R2 be the broken line segment
with consecutive vertices 2~Jex, 2~Jex + 2~J~2e2, (2~J — 2'2j~2)ex + 2~J~2e2,
(2~J — 2~2j~2)ex, 2~J~lex, and let A be the union of all Aj and the origin. Then A is
an arc of length one. Let a = (a,, a2): [0, 1] —> R2 be the parametrization of A by
the arc-length with «(0) = 0. Define/: B" -+ R" by rotating a, that is, if e G dBp
andO < r < I, fire) = ax(r)e + a2(r)ep + x.

It is not difficult to verify that/is Lx -Lipschitz for some L, > 0. Moreover, there
is L2 > 0 such that /"' is locally L2-Lipschitz at every point of fBp \ 0. Conse-
quently, L(x,fY < LpLPi¿f(x) for every xefi'\0. However,/is not locally QS at
the origin, since f[rBp] is not of bounded turning for any r G (0, 1), cf. [TV, 2.11].

Observe that the linear dilatation HL of /, defined in 2.8.3, is bounded. In fact,
HL(0) = 1 and HL(x) < LXL2 for x ^ 0. Hence, for p < n, it is not possible to
characterize the quasi-symmetry of an embedding in terms of its linear dilatation.

6. Wild quasi-symmetric cells.
6.1. Definitions. A p-cell is a space X homeomorphic to Ip. If the homeomor-

phism can be chosen to be QS, X is a quasi-symmetric p-cell. A /»-cell X in R " is
(topologically) wild if there is no homeomorphism/: R" —> R" such that/Y = /'.
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6.2. Remarks. We shall show that R" contains a wild QSp-cell wheneverp < «
and « > 3. In this respect, the quasi-symmetric embeddings differ from Lipschitz
embeddings. In fact, if /: Ip -» R" is an embedding and Lipschitz (/"' need not be)
and if n > 3p + I, then flp is (topologically) flat [Vä^ 3.8]. In particular, a
Lipschitz arc is flat in R" for « > 4. On the other hand, the wild arc of Fox and
Artin in R3 [Ru, Example 2.4.2, p. 65] can be made Lipschitz (and hence QS).

6.3. Theorem. Let « > 3 and 1 < p < n. Then R" contains a wild QSp-cell.

Proof. Let E c R" be the necklace of Antoine-Blankinship [Bl]. Thus F is a
Cantor set such that no homeomorphism of R" carries E into a line. We shall
construct a QS p-cell X such that F c X c R". Then X is wild in R". This follows
from [Bl, Theorem 3E] or from the Klee trick ([Ru, Theorem 2.5.1, p. 74] applied to
Cantor sets). The construction is classical, see [Ru, Figure 2.4.16, p. 73]. However,
we must take care to make the homeomorphism/: Ip —» X QS. To do this, we make
all auxiliary constructions, including the construction of E, in the category PL.
Then/will be a limit of PL embeddings and in fact PL outside/"'F.

We first give a PL version of the construction of E. It is the intersection of a
descending sequence E0^ Ex Z) ■ ■ ■ of compact sets in R". The set E0 is a solid
«-torus, that is, a set PL homeomorphic to I2 X 21 X • • • X21 with « — 2
2'-factors. The set Ex is the union of disjoint solid «-tori Tx, . . ., Tm in int Eq,
suitably linked with each other. We may assume that d(E0) = 1 and that the sets Tj
are similar to F0 and mutually congruent. Thus there are a G (0, 1) and sense-pre-
serving similarity maps g,: /?"—»/?" such that gjE0 = T, and \gj(x) — gj(y)\ =
a\x — y| for ally > 0 and for all x, y G R". The integer m depends only on «.

To describe the general step we use the free monoid W generated by the set
{1, . . . , m). Thus W is the set of all words w = wx . . . wq, 1 < vv, < wi; also the
empty word 0 G W. The length l(w) of a word w = wx . . . wq is the number q > 0.

For every w = w, . . . wq G W we set gw = gw¡ . . . gw?, g0 = id, and Tw = gwE0.
Then Eq - U {Tw: l(w) = q). Observe that Tvw = gvTw c Tv for all words v, w
and that d(Tw) = al{w\

We next choose disjoint congruent oriented closed p-cubes Qx, . . . , Qm in int Ip
such that d(Q¡) < d(Q¡, 2'-') for all i and such that d(Q¡) < d(Q¡, Qf) for i ¥=j. In
each Qj we choose a smaller concentric cube D}, all of equal size, such that
d(Dj) < d(Dj, dQj). Let Aj be the annulus ß, \ int F>., and let C0 be the cheese
(disc-with-holes) cl(Ip \ (ß, u • • • U Qm))- Let «y: /?" -> R" be the similarity map
hj(x) = ßx + /», where 2/3 is the side and bj the center of Dj. Then /i,./' = £>,. For
every word w = w, ... wç we set hw = hw¡ . . . «^, «0 = id, and ö„ = AM,/'', Cw =
A^Cf,. Setting ß0 = «/'ß, and /10 = hJxAj = ß0 \ int /p (both independent of/) we
also define Qw = «„ßn and Aw = «^q. Then each annulus Aw, l(w) > 1, meets
exactly two cheeses, namely Cw (inside Aw) and Cw w (outside /i^). Moreover,
Ip = D0 is the union of a Cantor set F and all Q,, w G W, and /!„„ /(w) > 1.

We now construct the embedding/: /' —» R". It will be a limit of PL embeddings
/ : Ip -, Eq. Let <p: Ip -, 3F0 be a similarity embedding. Choose a PL embedding
/n: Ip -, En such thatJ0 °
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(l)/0= <pinC0,
(2)/o = gjvh;1 in Dj, I < j < m,
(3)/0[int Aj] c int E0 \ Ex, 1 < j < m.

The existence of /0 is rather obvious. A rigorous proof can be based on the regular
neighborhood theory [RS, §3]; it is only necessary to consider the case/» = « — 1
in view of Remark 6.4.1. Then/o/L is a tube joining 3F0 and dTj. Suppose that we
have constructed/,, . . . ,fq_x. Then we set/? = / , outside the cubes Dw, l(w) =
q, and / = g^fg/ç1 m Ac- The maps / are PL embeddings which clearly converge
to an embedding /: Ip -, Eq. Outside the Cantor set F the convergence is trivial:
/ = fq outside the cubes Qw, l(w) = q + 2. Moreover, fDw = Tw n //' and/F = E.

It remains to show that / is QS. Since Ip is convex, it suffices to prove that / is
weakly QS [TV, 2.16]. So let a, b, x be distinct points in Ip with \a — x\ < \b — x\.
We must find an upper bound for the ratio p' = \f(a) — fix)\/\f(b) — f(x)\. The
proof is elementary but lengthy in view of the many cases and subcases that have
to be considered.

We choose X > 0 such that the following conditions are satisfied for i,j S [1, m]:
(l)X < d(T¡, 3F0),
(2)X<d(fAi,fQij),
(3)X<d(fQi,fQj),i*j.

We also choose L > 1 such that/, and/,"1 are L-Lipschitz.
Case 1. For no w G W and i G [1, m], {b, x] is contained in Aw u Cw or in

Awi u Cw. Then ¿> and x are separated by some Aw or Cw. Let w be the shortest
word for which this happens. Set q = l(w).

Subcase 1. Aw separates ¿» and x. Write v = wx . . . wq_x. Then Cv does not
separate ¿» and x. It follows that {b, x} c Dv, and therefore d(Dv) > |Z> — jc| > \a
— x\, which implies a G Du, u = wq_2. Hence \f(a) — f(x)\ < d(Tu) = aq~2. On
the other hand, \f(b) - f(x)\ > d(fDw,fCv) = aq-ld(Tj, 3F0) > aq~xX. Hence p'
< 1/aX.

Subcase 2. Aw does not separate b and x. Then Cw separates, and therefore
{b, x) c Qw. Hence d(Qw) > \b — x\ > \a - x\, which implies a G Dv, v =
wx . . . wq_x. Thus \f(a) - f(x)\ < d(Tv) = a«-1. On the other hand, \fib) - fix)]
> d(fAw,fQwj) for some / G [1, m] or \f(b) - f(x)\ > d(fQwi,fQWJ) for some i *j.
In both cases |/(Z») — f(x)\ > aqX. Hence p' < 1/aX.

Case 2. There is w G W such that {b, x) <z Awkj Cw. Set q = l(w) and v =
wx . . . wq_x. Let G be the union of Cv, Aw, Cw, and all Awi, i G [1, m]. Then/| G is
the composition of similarity maps and/,. Consequently, p' < L2 if a G G. Sup-
pose that a G G. Since |a - x| < |¿> — x\ < d(Qw), a G F>u. Since a G G, a G />„,,
for some / G [1, m]. Thus \b - x\> \a - x\> d(Cw, Dwi) > d(Dwi) > j89+1, which
implies \f(b)-f(x)\> aq-lL-lß^-q\b - x\> aq~lL-lß2. On the other hand,
\f(a) - f(x)\ < d(Tv) = a"-1. Hence p  < L//32.

Case 3. There are w G W and /' G [1, m] such that {/», x) c /^ U C^. Set
q = /(w), and let G' be the union of Aw, Cw, Awj, and CwJ over ally G [1, m]. If
a G G', we obtain p  < L2 as in Case 2. Suppose that a G G'. Then \a — x\ < |¿»
— x| < d(Dw), which implies a G ßw. Hence a G Qwjk for some/ /c G [1, m]. Then
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\b- x\>\a- x\> d(QwJk, AWJ) > d(QWJk) > ßq+2, which yields |/(¿») - fix)\ >
aqL-lß'q\b - x\ > aqL-lß2. On the other hand, \f(a) - fix)] < d(Tw) = a", and
we obtain p' < L/ß2.    □

6.4. Remarks. 1. Suppose that/» = « — 1. We may choose the cubes ß. so that
their centers lie on /'. Then also F c /'. We thus obtain a QS embedding /:
/"" ' -* R" such that flp is a wildp-cell for everyp G [1, « - 1].

2. Let Jp be a face of 2', let a: Jp -+ Ip be a similarity map, and let/: I" -> R"
be the QS embedding constructed in 6.3. Then it is easy to extend fa piecewise
linearly to a QS embeddingg: ~ZP -, R". Then gZp is a QSp-sphere which is wild in
R".

3. P. Tukia has pointed out to the author that using the idea in [Tu, §14] it is
possible to find a QS p-cell which is TOP flat but not QS flat in R".
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