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1. Introduction

According to the classical uniformization theorem, every smooth Riemann-
ian surface Z homeomorphic to the 2-sphere is conformally diffeomorphic
to S2 (the unit sphere inR3 equipped with the Riemannian metric induced by
the ambient Euclidean metric). The availability of a similar uniformization
procedure for spheres with a “generalized conformal structure” is highly de-
sirable, in particular in connection with Thurston’s hyperbolization conjec-
ture. This was addressed by Cannon in his combinatorial Riemann mapping
theorem [7]. He considers topological surfaces equipped with a sequence
of “shinglings”—a combinatorial structure that leads to a notion of approx-
imate conformal moduli of rings. He then finds conditions that imply the
existence of coordinate systems on the surface that relate these combinato-
rial moduli to classical analytic moduli in the plane.

In this paper we develop a uniformization theory for a different type of
generalized conformal structure. We start with a metric space Z homeo-
morphic to S2 and ask for conditions under which Z can be mapped onto
S2 by a quasisymmetric homeomorphism. The class of quasisymmetries
is an appropriate analog of conformal1 mappings in a metric space con-
text. Quasisymmetric homeomorphisms also arise in the theory of Gromov
hyperbolic metric spaces—quasi-isometries between Gromov hyperbolic
spaces induce quasisymmetric boundary homeomorphisms. Our setup has
the advantage that we can exploit recent notions and methods from Analysis
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1 A homeomorphism between compact Riemannian manifolds is quasisymmetric iff it

is quasiconformal. There seems to be no hope of a general existence theory for conformal
mappings beyond the Riemannian setting: by any reasonable definition, two norms on
R

2 define locally conformally equivalent metrics iff the corresponding normed spaces are
isometric.
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on metric spaces. Our main result, Theorem 11.1, gives a necessary and suf-
ficient condition for Z to be quasisymmetrically equivalent to S2. Since the
formulation of this theorem requires some preparation, we postpone stating
it until Sect. 11 (see Corollary 11.4 for a more accessible special case). In
this introduction we formulate two consequences of our methods that are
easier to state. The first result answers a question of Heinonen and Semmes
affirmatively (cf. [16], Question 3, and the discussion in [28], Sect. 8) and
was the original motivation for this paper.

Theorem 1.1. Let Z be an Ahlfors 2-regular metric space homeomorphic
to S2. Then Z is quasisymmetric to S2 if and only if Z is linearly locally
contractible.

We recall that a metric space Z is Ahlfors Q-regular if there is a constant
C > 0 such that the Q-dimensional Hausdorff measure H Q of every open
r-ball B(a, r) satisfies

C−1r Q ≤ H Q(B(a, r)) ≤ Cr Q,

when 0 < r ≤ diam(Z). A metric space is linearly locally contractible if
there is a constant C such that every small ball is contractible inside a ball
whose radius is C times larger; for closed surfaces linear local contractibility
is equivalent to linear local connectedness, see Sect. 2.

The statement of Theorem 1.1 is quantitative in a sense that will be ex-
plained below (see the comment after the proof of Theorem 1.1 in Sect. 10).

The problem considered here is just a special case of the general problem
of characterizing a metric space Z up to quasisymmetry. Particularly inter-
esting are the cases when Z isRn or the standard sphere Sn. Quasisymmetric
characterizations of R and S1 have been given by Tukia and Väisälä [33]. If
n ≥ 3 then results by Semmes [27] show that natural conditions which one
might expect to imply that a metric space is quasisymmetric to Sn (or Rn),
are in fact insufficient; at present these cases look intractable.

A result similar to Theorem 1.1 has been proved by Semmes [24] under
the additional assumption that Z is a smooth Riemannian surface. The
hypothesis of 2-regularity in the theorem is essential. A metric 2-sphere
containing an open set bilipschitz equivalent to the unit disk B(0, 1) ⊂ R2

with the metric

dα((x1, y1), (x2, y2)) = |x1 − x2| + |y1 − y2|α,
where 0 < α < 1, will never be quasisymmetrically homeomorphic to S2,
see [31,36]. We also mention that the construction of Laakso [17] provides
examples of Ahlfors 2-regular, linearly locally contractible 2-spheres which
are not bilipschitz homeomorphic to S2; this shows that one cannot replace
the word “quasisymmetric” with “bilipschitz” in the statement of the theo-
rem. Finally we point out that the n-dimensional analog of Theorem 1.1
is false for n > 2 according to the results by Semmes [27]: for n > 2
there are linearly locally contractible and n-regular metric n-spheres which
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are not quasisymmetric to the standard n-sphere. However, if an n-regular
n-sphere admits an appropriately large group of symmetries, then it must
be quasisymmetrically homeomorphic to the standard n-sphere, see [2].

Theorem 1.1 is closely related to a theorem of Semmes [26] which shows
that an Ahlfors n-regular metric space that is a linearly locally contractible
topological n-manifold satisfies a (1, 1)-Poincaré inequality (see Sect. 7)
and hence has nice analytic properties. His result shows in particular that a
2-sphere as in our theorem satisfies a Poincaré inequality. We will not use
this result, since it does not substantially simplify our arguments, and in fact
our theorem together with a result by Tyson [34] gives a different way to
establish a Poincaré inequality in our case. Our methods could also easily
be adapted to show this directly.

From an analytic perspective it is interesting to consider metric spaces
that satisfy Poincaré inequalities by assumption (cf. [15,26,12,3,4,18]). For
an Ahlfors Q-regular metric space a (1, Q)-Poincaré inequality is equivalent
to the Q-Loewner property as introduced by Heinonen and Koskela [15], see
Sect. 7. It turns out that in dimension 2, this is a very restrictive condition:

Theorem 1.2. Let Q ≥ 2 and Z be an Ahlfors Q-regular metric space
homeomorphic to S2. If Z is Q-Loewner, then Q = 2 and Z is quasisym-
metric to S2.

By the result of Semmes [26] the space Z will actually satisfy a (1, 1)-
Poincaré inequality.

The analog of Theorem 1.2 in higher dimensions is false—one has the
examples of Semmes cited above. Also, the standard Carnot metric on the
3-sphere is Ahlfors 4-regular and 4-Loewner. In view of these examples one
can summarize Theorem 1.2 by saying that there are no exotic geometric
structures on S2 that are analytically nice.

Another source of examples of Ahlfors regular, linearly locally con-
tractible metric spheres is the theory of Gromov hyperbolic groups. The
boundary ∂∞G of a hyperbolic group G has a natural family of Ahlfors
regular metrics which are quasisymmetric to one another by the identity
homeomorphism. When ∂∞G is homeomorphic to a sphere, then these met-
rics are all linearly locally contractible. Cannon [7] has conjectured that
when ∂∞G is homeomorphic to S2, then G admits a discrete, cocompact,
and isometric action on hyperbolic 3-space H3. This conjecture is a major
piece of Thurston’s hyperbolization conjecture for 3-manifolds2. By a theo-
rem of Sullivan [30] Cannon’s conjecture is equivalent to the following
conjecture:

Conjecture 1.3. If G is a hyperbolic group and ∂∞G is homeomorphic
to S2, then ∂∞G (equipped with one of the metrics mentioned above) is
quasisymmetric to S2.

2 The Hyperbolization Conjecture is part of the full Geometrization Conjecture. It says
that a closed, irreducible, aspherical 3-manifold admits a hyperbolic structure provided its
fundamental group does not contain a copy of Z× Z.
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It is an interesting problem (especially in view of Theorem 1.2) to find
additional assumptions on the hyperbolic group G which imply that ∂∞G
is quasisymmetric to a space with “nice” analytic properties, i.e., to a Q-
regular metric space with a (1, Q)-Poincaré inequality. A natural question is
whether this is always true if ∂∞G is connected and has no local cut points.
By work of Bestvina-Mess, Bowditch, and Swarup, this last property of
∂∞G is equivalent to the property that the Gromov hyperbolic group G
is non-elementary and none of its finite index subgroups (including itself)
virtually splits over a virtually cyclic group.

Recently, M. Bourdon and H. Pajot answered this question in the nega-
tive [5]: they found examples of infinite hyperbolic groups G such that
∂∞G is connected and has no local cut points, but such that ∂∞G is not
quasisymmetric to any Q-regular metric space satisfying a (1, Q)-Poincaré
inequality.

We now turn to the problem of finding necessary and sufficient condi-
tions for a metric space to be quasisymmetric to S2. It follows easily from
the definitions that a compact metric space Z which is quasisymmetric to
a doubling (respectively linearly locally contractible) metric space is itself
doubling (respectively linearly locally contractible). Therefore any metric
space quasisymmetric to a standard sphere is doubling and linearly locally
contractible. In Sect. 10 we give two different necessary and sufficient con-
ditions for a metric 2-sphere to be quasisymmetric to S2, Theorems 10.1
and 10.4. Roughly speaking, Theorem 10.4 says that a doubling, linearly
locally contractible metric 2-sphere Z is quasisymmetric to S2 if and only
if the following condition is true. If one considers a sequence of finer and
finer “graph approximations” of Z, then the corresponding combinatorial
moduli of any pair of continua (E, F) are small provided the relative dis-
tance ∆(E, F) as defined in (2.9) is big. Theorem 10.1 is similar, except
that one assumes instead that if the moduli of the pair (E, F) are small then
the relative distance ∆(E, F) is big. We refer the reader to Sect. 10 for the
precise statements of these two theorems.

The problem of finding necessary and sufficient conditions for a metric
sphere to be quasisymmetric to S2 has some features in common with
Cannon’s work [7] on the combinatorial Riemann mapping theorem. We
will discuss this in Sect. 11. In this section we prove Theorem 11.1 which is
an improvement of Theorem 10.4. One can use Theorem 11.1 to verify that
certain self-similar examples are quasisymmetric to S2. We also formulate
another necessary and sufficient condition in Corollary 11.4; readers may
find the statement of Corollary 11.4 more accessible than Theorems 10.1,
10.4, and 11.1, as it does not rely on the language of K -approximations.

We now outline the proofs of Theorems 1.1 and 1.2.
The first step is to use the linear local contractibility to produce an em-

bedded graph with controlled geometry which approximates our space Z on
a given scale. This can actually be done for any doubling, linearly locally
connected metric space. If Z is a topological 2-sphere, then we can obtain
a graph approximation which is, in addition, the 1-skeleton of a triangula-
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tion. In the second step we apply a uniformization procedure. We invoke
the circle packing theorem of Andreev-Koebe-Thurston, which ensures that
every triangulation of the 2-sphere is combinatorially equivalent to the trian-
gulation dual to some circle packing, and then map each vertex of the graph
to the center of the associated circle. In this way we get a mapping f from
the vertex set of our approximating graph to the sphere3. The way to think
about the map is that it provides a coarse conformal change of the metric: the
scale attached to a given vertex of the graph approximation is changed to the
scale given by the radius of the corresponding disk in the circle packing. The
third step is to show that (after suitably normalizing the circle packing) the
mapping f has controlled quasisymmetric distortion. Since in some sense
f changes the metric conformally, we control its quasisymmetric distortion
(in fact it is the quasi-Möbius distortion which enters more naturally) via
modulus estimates. There are two main ingredients in our implementation of
this idea—the Ferrand cross-ratio (cf. [19,4]), which mediates between the
quasisymmetric distortion and the “conformal” distortion, and a modulus
comparison proposition which allows one to relate (under suitable condi-
tions) the 2-modulus of a pair of continua E, F ⊂ Z with the combinatorial
2-modulus of their discrete approximations in the approximating graph. In
the final step we take a sequence of graph approximations at finer and finer
scales, and apply Arzelà-Ascoli to see that the corresponding mappings
subconverge to a quasisymmetric homeomorphism from Z to S2.

We suggest that readers who are unfamiliar with modulus arguments read
the basic definitions in Sects. 2, 3, 7, and Proposition 9.1. The proposition
is a simplified version of later arguments which bound quasi-Möbius dis-
tortion.
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3 Alternatively, one can use the classical uniformization theorem to produce such a map.
To do this, one endows the sphere with a piecewise flat metric so that each 2-simplex
of the topological triangulation is isometric to an equilateral Euclidean triangle with side
length 1. Such a piecewise flat metric defines a flat Riemannian surface with isolated conical
singularities, and one can then apply the classical uniformization theorem to get a map from
this Riemann surface to S2.
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2. Cross-ratios

We use the notation N = {1, 2, 3, . . . }, N0 = {0, 1, 2, . . . }, R+ = (0,∞),
and R+0 = [0,∞).

Let (Z, d) be a metric space. We denote by BZ(a, r) and by B̄Z(a, r) the
open and closed ball in Z centered at a ∈ Z of radius r > 0, respectively.
We drop the subscript Z if the space Z is understood.

The cross-ratio, [z1, z2, z3, z4], of a four-tuple of distinct points (z1, z2,
z3, z4) in Z is the quantity

[z1, z2, z3, z4] := d(z1, z3)d(z2, z4)

d(z1, z4)d(z2, z3)
.

Note that

[z1, z2, z3, z4] = [z2, z1, z3, z4]−1 = [z1, z2, z4, z3]−1 = [z3, z4, z1, z2].
(2.1)

It is convenient to have a quantity that is quantitatively equivalent to the
cross-ratio and has a geometrically more transparent meaning. Let a∨ b :=
max{a, b} and a ∧ b := min{a, b} for a, b ∈ R. If (z1, z2, z3, z4) is a four-
tuple of distinct points in Z define

〈z1, z2, z3, z4〉 := d(z1, z3) ∧ d(z2, z4)

d(z1, z4) ∧ d(z2, z3)
. (2.2)

Then the following is true.

Lemma 2.3. Let (Z, d) be a metric space and η0(t) = 3(t ∨√t) for t > 0.
Then for every four-tuple (z1, z2, z3, z4) of distinct points in Z we have

〈z1, z2, z3, z4〉 ≤ η0([z1, z2, z3, z4]). (2.4)

Proof. Suppose there is a four-tuple (z1, z2, z3, z4) for which the left hand
side in (2.4) exceeds the right hand side. Let t0 = [z1, z2, z3, z4]. We may
assume d(z1, z3) ≤ d(z2, z4). Then

d(z1, z4) ≤ d(z1, z3)+ d(z3, z2)+ d(z2, z4)

≤ 2d(z2, z4)+ d(z2, z3).

Similarly, d(z2, z3) ≤ 2d(z2, z4) + d(z1, z4), and so by our assumption we
have

d(z1, z4) ∨ d(z2, z3) ≤ 2d(z2, z4)+ d(z1, z4) ∧ d(z2, z3)

≤
(

2+ 1

η0(t0)

)
d(z2, z4).
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Hence,

t0 = [z1, z2, z3, z4] = d(z1, z3)d(z2, z4)

(d(z1, z4) ∧ d(z2, z3))(d(z1, z4) ∨ d(z2, z3))

≥ d(z1, z3)η0(t0)

(d(z1, z4) ∧ d(z2, z3))(1+ 2η0(t0))

≥ η0(t0)2

1+ 2η0(t0)
> t0.

This is a contradiction. ��

Using the symmetry properties (2.1) for the cross-ratio which are also
true for the modified cross-ratio defined in (2.2), we obtain an inequality
as in (2.4) with the roles of the cross-ratios reversed and the function η0
replaced by the function t �→ 1/η−1

0 (1/t). In particular, we conclude that
[z1, z2, z3, z4] is small if and only if 〈z1, z2, z3, z4〉 is small, where the
quantitative dependence is given by universal functions.

A metric space (Z, d) is called λ-linearly locally contractible where
λ ≥ 1, if every ball B(a, r) in Z with 0 < r ≤ diam(Z)/λ is contractible
inside B(a, λr), i.e., there exists a continuous map H : B(a, r) × [0, 1] →
B(a, λr) such that H(·, 0) is the identity on B(a, r) and H(·, 1) is a constant
map. The space is called linearly locally contractible, if it is λ-linearly
locally contractible for some λ ≥ 1. Similar language will be employed for
other notions that depend on numerical parameters.

A metric space (Z, d) is called λ-L LC for λ ≥ 1 (L LC stands for
linearly locally connected) if the following two conditions are satisfied:
(λ-L LC1) If B(a, r) is a ball in Z and x, y ∈ B(a, r), then there exists
a continuum E ⊂ B(a, λr) containing x and y.
(λ-L LC2) If B(a, r) is a ball in Z and x, y ∈ Z \ B(a, r), then there exists
a continuum E ⊂ Z \ B(a, r/λ) containing x and y.

We remind the reader that a continuum is a compact connected set
consisting of more than one point.

Linear local contractibility implies the L LC condition for compact con-
nected topological n-manifolds, and is equivalent to it when n = 2:

Lemma 2.5. Suppose Z a metric space which is a compact connected
topological n-manifold. Then:

(i) If Z is λ-linearly locally contractible, then Z is λ′-L LC for each λ′ > λ.
(ii) If n = 2 and Z is L LC, then Z is linearly locally contractible. The

linear local contractibility constant depends on Z and not just on the
L LC constant.

Proof. (i) We first verify the L LC1 condition. If a ∈ Z, and r > diam(Z)/λ,
then B(a, λr) = Z, so in this case the λ-L LC1 condition follows from the
connectedness of Z. If r ≤ diam(Z)/λ, then the inclusion i : B(a, r) →
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B(a, λr) is homotopic to a constant map. Hence it induces the zero homo-
morphism on reduced 0-dimensional homology, which means that λ-L LC1
holds.

Let λ′>λ. To see that λ′-L LC2 holds, we have to show that if B(a, r ′)⊂ Z
is a ball with Z \ B(a, r ′) �= ∅, then the inclusion i : Z \ B(a, r ′) →
Z \ B(a, r ′/λ′) induces the zero homomorphism

H̃0(Z \ B(a, r ′)) 0→ H̃0(Z \ B(a, r ′/λ′)) (2.6)

for reduced singular homology with coefficients inZ2 . Note that Z \ B(a, r ′)
�= ∅ implies r ′ ≤ diam(Z). Moreover, we can find 0 < r < r ′ close
enough to r ′ such that B̄(a, r ′/λ′) ⊂ B(a, r/λ). Let K1 := B̄(a, r ′/λ′) and
K2 := B̄(a, r). Then K1 and K2 are compact, and we have B(a, r ′/λ′) ⊂
K1 ⊂ K2 ⊂ B(a, r ′). So in order to show (2.6), it is enough to show that
the inclusion i : Z \ K2 → Z \ K1 induces the zero homomorphism

H̃0(Z \ K2)
0→ H̃0(Z \ K1). (2.7)

It follows from the path connectedness of Z and the long exact sequence for
singular homology that the natural map ∂ : H1(Z, Z \ Ki)→ H̃0(Z \ Ki) is
surjective for i ∈ {1, 2}. Hence (2.7) is true, if the inclusion i : (Z, Z\K2)→
(Z, Z \ K1) induces the zero homomorphism

H1(Z, Z \ K2)
0→ H1(Z, Z \ K1). (2.8)

Now duality [29, Theorem 17, p. 296] shows that for each compact subset
K ⊂ Z we have an isomorphism H1(Z, Z \ K )  Ȟn−1(K ), where Ȟ∗
denotes Čech cohomology with coefficients in Z2. This isomorphism is
natural, and hence compatible with inclusions. Since K1 ⊂ B(a, r/λ) ⊂
B(a, r) ⊂ K2 and r < r ′ ≤ diam(Z), it follows from our assumptions that
K1 contracts to a point inside K2. Hence the inclusion i : K1 → K2 induces

the zero homomorphism Ȟn−1(K2)
0→ Ȟn−1(K1). Therefore, (2.8) holds

which implies (2.6) as we have seen.
(ii) Suppose Z is λ-L LC. It is enough to show that the inclusion

i : B(a, r) → B(a, λr) is homotopic to a constant map, if r > 0 is suf-
ficiently small independent of a ∈ Z. Since Z is a compact 2-manifold,
every sufficiently small ball lies precompactly in an open subset of Z home-
omorphic to R2. So without loss of generality we may assume that the sets
U := B(a, r) and V := B(a, λr) are bounded and open subsets of R2 with
U ⊂ V . Now λ-L LC1 implies that U lies in a single component of V . So
in order to show that U is contractible inside V , it is enough to show that
each component Ω of U is contained in a simply connected (and hence
contractible) subregion of V .

The condition λ-L LC2 implies that R2 \ V lies in one, namely the
unbounded component ofR2 \U . It follows in particular that if γ is a Jordan
curve in U , then the interior region I(γ) of γ is contained in V .
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A well-known fact from plane topology is that every bounded region Ω
can be written as an nondecreasing union Ω = ⋃∞

i=0 Ωi , where Ωi is a region
with Ω̄i ⊂ Ω whose boundary consists of finitely many disjoint Jordan
curves. One of the boundary components γi of Ωi is a Jordan curve whose
interior I(γi) contains Ωi . Now if Ω is a component of U , then γi ⊂ Ω ⊂ U ,
and so I(γi) ⊂ V as we have seen. Hence Ω ⊂ ⋃∞

i=0 I(γi) ⊂ V lies in the
union of a nondecreasing sequence of Jordan subregions of V . This union
is a simply connected subregion of V containing Ω. ��

In view of the lemma we prefer to work with the weaker L LC condition
instead of linear local contractibility in the following.

If E and F are continua in Z we denote by

∆(E, F) := dist(E, F)

diam(E) ∧ diam(F)
(2.9)

the relative distance of E and F.

Lemma 2.10. Suppose (Z, d) is λ-L LC. Then there exist functions δ1, δ2 :
R+ → R+ depending only on λ with the following properties. Suppose
ε > 0 and (z1, z2, z3, z4) is a four-tuple of distinct points in Z.

(i) If [z1, z2, z3, z4] < δ1(ε), then there exist continua E, F ⊂ Z with
z1, z3 ∈ E, z2, z4 ∈ F and ∆(E, F) ≥ 1/ε.

(ii) If there exist continua E, F ⊂ Z with z1, z3 ∈ E, z2, z4 ∈ F and
∆(E, F) ≥ 1/δ2(ε), then [z1, z2, z3, z4] < ε.

As the proof will show, the function δ2 can actually be chosen as a nu-
merical function independent of λ.

Proof. We have to show that [z1, z2, z3, z4] is small if and only if there exist
two continua with large relative distance containing {z1, z3} and {z2, z4},
respectively.

Suppose s = [z1, z2, z3, z4] is small. Then by Lemma 2.3 the quantity

t := 〈z1, z2, z3, z4〉 = d(z1, z3) ∧ d(z2, z4)

d(z1, z4) ∧ d(z2, z3)
. (2.11)

is small, quantitatively. We may assume t < 1 and r := d(z1, z3) ≤
d(z2, z4). Since Z is λ-LLC and z1, z3 ∈ B(z1, 2r), there exists a con-
tinuum E connecting z1 and z3 in B(z1, 2λr). Let R := r(1/t−1) > 0. Then
d(z1, z4) ≥ r/t > R and d(z1, z2) ≥ d(z2, z3)−d(z1, z3) ≥ r(1/t−1) = R.
Thus z2, z4 are in the complement of B(z1, R), and so there exists a con-
tinuum F connecting z2 and z4 in Z \ B(z1, R/λ). For the relative distance
of E and F we get
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∆(E, F) = dist(E, F)

diam(E) ∧ diam(F)
≥ R/λ− 2λr

4λr
> 1/(4λ2t)− 1,

which is uniformly large if s and so t are small.
Now suppose that there exist continua E, F ⊂ Z with with z1, z3 ∈ E

and z2, z4 ∈ F for which ∆(E, F) is large. Since

〈z1, z2, z3, z4〉 = d(z1, z3) ∧ d(z2, z4)

d(z1, z4) ∧ d(z2, z3)
≤ diam(E) ∧ diam(F)

dist(E, F)

= 1/∆(E, F),

we conclude from Lemma 2.3 that [z1, z2, z3, z4] is uniformly small. ��

In the proof of this lemma we used for the first time the expression “If
A is small, then B is small, quantitatively.” This and similar language will
be very convenient in the following, but it requires some explanation. By
this expression we mean that an inequality B ≤ Ψ(A) for the quantities A
and B holds, where Ψ is a positive function with Ψ(t) → 0 if t → 0 that
depends only on the data. The data are some ambient parameters associated
to the given space, function, etc. In the proof above the data consisted just
of the parameter λ in the L LC-condition for Z.

3. Quasi-Möbius maps

Let η : R+0 → R+0 be a homeomorphism, i.e., a strictly increasing nonneg-
ative function with η(0) = 0 and limt→∞ η(t) = ∞, and let f : X → Y be
an injective map between metric spaces (X, dX ) and (Y, dY ). The map f
is an η-quasi-Möbius map if for every four-tuple (x1, x2, x3, x4) of distinct
points in X, we have

[ f(x1), f(x2), f(x3), f(x4)] ≤ η([x1, x2, x3, x4]).
Note that by exchanging the roles of x1 and x2, one gets the lower bound

η([x1, x2, x3, x4]−1)−1 ≤ [ f(x1), f(x2), f(x3), f(x4)].
Hence the inverse f −1 : f(X)→ X is also quasi-Möbius.

Another way to express the condition that f is quasi-Möbius is to say that
the cross-ratio [x1, x2, x3, x4] of a four-tuple of distinct points is small if and
only if the cross-ratio [ f(x1), f(x2), f(x3), f(x4)] is small, quantitatively.
This is easy to see using the symmetry properties (2.1) of cross-ratios.

The map f is η-quasisymmetric if

dY ( f(x1), f(x2))

dY ( f(x1), f(x3))
≤ η

(
dX(x1, x2)

dX(x1, x3)

)

for every triple (x1, x2, x3) of distinct points in X. Again it is easy to see
that the inverse map f −1 : f(X) → X is also quasisymmetric. Two metric
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spaces X and Y are called quasisymmetric, if there exists a homeomorphism
f : X → Y that is quasisymmetric.

Intuitively, a quasisymmetry is a map between metric spaces that maps
balls to roundish objects that can be trapped between two balls whose radius
ratio is bounded by a fixed constant. Based on this it is easy to verify the
quasisymmetric invariance of properties like linear local contractibility or
linear local connectivity.

We list some properties of quasi-Möbius and quasisymmetric maps
(cf. [35]):

(1) Quasi-Möbius and quasisymmetric maps are homeomorphisms onto
their images.

(2) The post-composition of an η1-quasi-Möbius map with an η2-quasi-
Möbius map is an η2 ◦ η1-quasi-Möbius map.

(3) An η-quasisymmetric map is η̃-quasi-Möbius with η̃ depending only
on η.

Conversely, every quasi-Möbius map between bounded spaces is qua-
sisymmetric. This statement is not quantitative in general, but we have:

(4) Suppose (X, dX ) and (Y, dY ) are bounded metric spaces, f : X → Y
is η-quasi-Möbius, and λ ≥ 1. Suppose (x1, x2, x3) and (y1, y2, y3) are
triples of distinct points in X and Y , respectively, such that f(xi) = yi
for i ∈ {1, 2, 3}, dX(xi, x j) ≥ diam(X)/λ and dY (yi, y j) ≥ diam(Y )/λ
for i, j ∈ {1, 2, 3}, i �= j. Then f is η̃-quasisymmetric with η̃ depending
only on η and λ.

(5) An η-quasisymmetric map from a dense subset A of a metric space
X into a complete metric space Y has a unique extension to an η-
quasisymmetric map on X.

We will need the following convergence property of quasi-Möbius maps
which we state as a separate lemma.

Lemma 3.1. Suppose (X, dX ) and (Y, dY ) are compact metric spaces, and
fk : Dk → Y for k ∈ N is an η-quasi-Möbius map defined on a subset Dk
of X. Suppose

lim
k→∞

sup
x∈X

dist(x, Dk) = 0

and that for k ∈ N there exist triples (xk
1, xk

2, xk
3) and (yk

1, yk
2, yk

3) of points
in Dk ⊂ X and Y, respectively, such that f(xk

i ) = yk
i , k ∈ N, i ∈ {1, 2, 3},

inf
{
dX

(
xk

i , xk
j

) : k ∈ N, i, j ∈ {1, 2, 3}, i �= j
}

> 0

and
inf

{
dY

(
yk

i , yk
j

) : k ∈ N, i, j ∈ {1, 2, 3}, i �= j
}

> 0.

Then the sequence ( fk) subconverges uniformly to an η-quasi-Möbius map
f : X → Y, i.e. there exists an increasing sequence (kn) in N such that

lim
n→∞ sup

x∈Dkn

dY ( f(x), fkn (x)) = 0.
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The assumptions imply that the functions fk are equicontinuous (cf. [35,
Thm. 2.1]). The proof of the lemma then follows from standard arguments,
and we leave the details to the reader.

Lemma 3.2. Suppose (X, dX ) and (Y, dY ) are metric spaces, and f : X→Y
is an η-quasi-Möbius map. Then there exists a function Φ : R+ → R+ with
limt→∞Φ(t) = ∞ depending only on η such that the following statement
holds.

If E, F ⊂ X are disjoint continua, then

∆( f(E), f(F)) ≥ Φ(∆(E, F)).

If f is surjective, and we apply the lemma to the inverse map f −1, we get
a similar inequality with the roles of sets and images sets reversed. These
inequalities say that the relative distance of two continua is large if and only
if the relative distance of the image sets under a quasi-Möbius map is large,
quantitatively.

Since every quasisymmetric map is also quasi-Möbius, this last state-
ment is also true for quasisymmetric maps.

Proof. Let E ′ := f(E) and F ′ := f(F). Then E ′ and F ′ are continua. Hence
there exist points y1 ∈ E ′ and y3 ∈ F ′ with dY (y1, y3) = dist(E ′, F ′).
Moreover, we can find points y4 ∈ E ′ and y2 ∈ F ′ with dY (y1, y4) ≥
diam(E ′)/2 and dY (y2, y3) ≥ diam(F ′)/2. Then

∆(E ′, F ′) ≥ 2〈y1, y2, y3, y4〉.
On the other hand, if xi := f −1(yi), then

∆(E, F) ≤ 〈x1, x2, x3, x4〉
by the very definition of these quantities.

Now if ∆(E, F) is large, then 〈x1, x2, x3, x4〉 is at least as large. Since f
is η-quasi-Möbius it follows from Lemma 2.3 that 〈y1, y2, y3, y4〉 and hence
∆(E ′, F ′) are large, quantitatively. ��

A metric space (Z, d) is called weakly λ-uniformly perfect, λ > 1, if
for every a ∈ Z and 0 < r ≤ diam(Z) the following is true: if the ball
B̄(a, r/λ) contains a point distinct from a, then B(a, r) \ B̄(a, r/λ) �= ∅.

This condition essentially says that at each point a ∈ Z the space is
uniformly perfect in the usual sense above the scale at which there exist
points different from a. Note that every connected metric space, or more
generally, every dense set in a connected metric space is weakly λ-uniformly
perfect for λ > 2.

A metric space (Z, d) is called C0-doubling, C0 ≥ 1, if every ball of
radius r > 0 can be covered by at most C0 balls of radius r/2. A set A ⊂ Z is
called ε-separated, ε > 0, if d(x, y) ≥ ε for x, y ∈ A, x �= y. Later we will
use the fact that for every ε > 0 there exists an ε-separated set A ⊂ Z that
is maximal (with respect to inclusion). This follows from Zorn’s lemma.
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If Z is C0-doubling, and A ⊂ Z is an ε-separated set in a ball of radius
r > 0, then the cardinality of A is bounded by a number only depending on
C0 and the ratio r/ε.

Lemma 3.3. Suppose (X, dX ) and (Y, dY ) are metric spaces, and f : X→Y
is a bijection. Suppose that X is weakly λ-uniformly perfect, Y is C0-
doubling, and there exists a function δ0 : R+ → R+ such that

[ f(x1), f(x2), f(x3), f(x4)] < δ0(ε)⇒ [x1, x2, x3, x4] < ε, (3.1)

whenever ε > 0 and (x1, x2, x3, x4) is a four-tuple of distinct points in X.
Then f is η-quasi-Möbius with η depending only on λ, C0, and δ0.

As we remarked above, a bijection is quasi-Möbius if it has the property
that a cross-ratio of four points is small if and only if the cross-ratio of
the image points is small, quantitatively. The lemma says that for suitable
spaces this equivalence, which consists of implications in two directions,
can be replaced by one of these implications.

Proof. We have to show that for every ε > 0 there exists δ = δ(ε, λ, C0,
δ0) > 0 such that

[x1, x2, x3, x4] < δ ⇒ [ f(x1), f(x2), f(x3), f(x4)] < ε, (3.5)

whenever (x1, x2, x3, x4) is a four-tuple of distinct points in X. By
Lemma 2.3, for this purpose it is enough to show the following: if ε ∈ (0, 1]
and (x1, x2, x3, x4) is a four-tuple of distinct points in X with 〈x1, x2, x3, x4〉
< δ and 〈y1, y2, y3, y4〉 ≥ ε, where yi = f(xi), i ∈ {1, 2, 3, 4}, then we
obtain a contradiction if δ is smaller than a positive number depending on
ε, λ, C0, and δ0.

We may assume that s := dX(x1, x3) ≤ dX(x2, x4). Let

t := min{dY (yi, y j) : i ∈ {1, 3}, j ∈ {2, 4}}. (3.6)

Then

dY (yi, y j) ≥ εt for i, j ∈ {1, 2, 3, 4}, i �= j. (3.7)

We have that

diam(X) ≥ min{dX(xi, x j) : i ∈ {1, 3}, j ∈ {2, 4}}
≥ dX(x1, x4) ∧ dX(x2, x3)− dX(x1, x3) ≥ (1/δ− 1)s.

Since we may assume that (1/δ− 1) > λ2, we can choose N ∈ N such that

λ2N < (1/δ − 1) ≤ λ2N+2. (3.8)

Since X is weakly λ-uniformly perfect, x3 ∈ B̄(x1, s) and λ2N s
< diam(X), there exist points zi ∈ X for i ∈ {1, . . . , N} such that

zi ∈ B(x1, λ
2is) \ B̄(x1, λ

2i−1s).
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Then

dX(zi, x1) ∨ dX(zi, x3) ≤ (λ2i + 1)s for i ∈ {1, . . . , N}
and

dX(zi, z j) ≥ λ2 j−2(λ− 1)s for i, j ∈ {1, . . . , N}, i < j.

It follows that

〈zi, p, z j , q〉 ≥ c(λ) > 0,

whenever i, j ∈ {1, . . . , N}, i �= j, p ∈ {x1, x3} and q ∈ {x2, x4}. By our
hypotheses and Lemma 2.3 there exists c1 ∈ (0, 1] depending only on δ0
and λ such that

〈 f(zi), u, f(z j), v〉 ≥ c1 > 0, (3.9)

whenever i, j ∈ {1, . . . , N}, i �= j, u ∈ {y1, y3}, and v ∈ {y2, y4}.
We claim that

dY ( f(zi), f(z j)) ≥ c1εt/3 =: c2t (3.10)

for i, j ∈ {1, . . . , N}, i �= j. For otherwise, by (3.7) we can pick u ∈ {y1, y3}
and v ∈ {y2, y4} such that

dist({ f(zi), f(z j)}, {u, v}) ≥ tε/3

and we get a contradiction to (3.9).
Choose u0 ∈ {y1, y3} and v0 ∈ {y2, y4} such that dY (u0, v0) = t. Then

at most one of the points f(zi) can lie outside B̄(u0, c3t) where c3 =
1+ 1/c1. For if this were true for f(zi) and f(z j), i �= j, then again we get
a contradiction to (3.9) with u = u0 and v = v0.

The doubling property of Y now shows that the number of points in
B̄(u0, c3t) which are (c2t)-separated is bounded by a constant C depending
only on C0, c2 = c2(ε, λ, δ0) and c3 = c3(ε, λ, δ0). Hence N − 1 ≤ C. By
(3.8) this leads to a contradiction if δ is smaller than a constant depending
on ε, λ, C0, and δ0. ��

4. Approximations of metric spaces

Suppose G is a graph with vertex set V . We assume that there are no loops
in G, i.e., no vertex is connected to itself by an edge, and that two arbitrary
distinct vertices are not connected by more than one edge. If v1, v2 ∈ V are
connected by an edge or are identical we write v1 ∼ v2. The combinatorial
structure of the graph is completely determined by the vertex set V and this
reflexive and symmetric relation ∼. Hence we will write G = (V,∼).

A chain is a sequence x1, . . . , xn of vertices with x1 ∼ x2 ∼ · · · ∼ xn .
It connects two subsets A ⊂ V and B ⊂ V if x1 ∈ A and xn ∈ B.
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If x, y ∈ V we let kG(x, y) ∈ N0 ∪ {∞} be the combinatorial distance
of x and y, i.e., kG(x, y) + 1 is the smallest cardinality #M of a chain
M connecting x and y. If G is connected, then (V, kG ) is a metric space,
and we define BG(v, r) := {u ∈ V : kG(u, v) < r} and B̄G(v, r) :=
{u ∈ V : kG(u, v) ≤ r} for v ∈ V and r > 0. We drop the subscript G
if the graph under consideration is understood. The cardinality of the set
{u ∈ V : kG(u, v) = 1} is the valence of v ∈ V . The valence of G is the
supremum of the valences over all vertices in G.

Now let (Z, d) be a metric space. We consider quadruples A = (G, p,
r,U), where G = (V,∼) is a graph with vertex set V , p : V → Z,
r : V → R+ and U = {Uv : v ∈ V } is an open cover of Z indexed by
the set V . We let pv := p(v) and rv := r(v) for v ∈ V . Let

Nε(U) := {z ∈ Z : dist(z, U) < ε}
for U ⊂ Z and ε > 0, and define the L-star of v ∈ V with respect to A for
L > 0 as

A-StL(v) :=
⋃
{Uu : u ∈ V, k(u, v) < L}.

We simply write StL(v), if no confusion can arise. We call A a K -approxi-
mation of Z, K ≥ 1, if the following conditions are satisfied:

(1) Every vertex of G has valence at most K .
(2) B(pv, rv) ⊂ Uv ⊂ B(pv, Krv) for v ∈ V .
(3) If u ∼ v for u, v ∈ V , then Uu ∩ Uv �= ∅, and K−1ru ≤ rv ≤ Krv. If

Uu ∩Uv �= ∅ for u, v ∈ V , then k(u, v) < K .
(4) Nrv/K (Uv) ⊂ StK (v) for v ∈ V .
(5) If v ∈ V , z1, z2 ∈ Uv, then there is a path γ in Z connecting z1 to z2 so

that γ ⊂ StK (v).

The point pv should be thought of as a basepoint of Uv. By condition
(2) we can think of the number rv as the “local scale” associated with v.
Condition (3) says that the local scale only changes by a bounded factor
if we move to a neighbor of a vertex, and that the incidence pattern of the
cover U resembles the incidence pattern of the vertices in G, quantitatively.
Condition (4) means that we can thicken up a set Uv by a fixed amount
comparable to the local scale by passing to the K -star of v. Finally, condition
(5) allows us to connect any two points in Uv by a path contained in the
K -star of v.

We point out some immediate consequences of the conditions (1)–(5):

(6) If Z is connected, then G is connected; this follows from (3).
(7) The multiplicity of U is bounded by a constant C = C(K ): if Uv1 ∩

. . . ∩ Uvn �= ∅ then {v1, . . . , vn} ⊂ B(v1, K ) by (3), and #B(v1, K ) ≤
C = C(K ) by (1). Similarly, it can be shown that for fixed L > 0,
the multiplicity of the cover {StL(v) : v ∈ V } is bounded by a number
C = C(K, L).
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(8) For the curve γ in (5) we have diam(γ) ≤ Crv with C = C(K ); this
follows from (2) and (3).

The mesh size of the K -approximation A is defined to be

mesh(A) := sup
v∈V

rv.

The next lemma shows that K -approximations behave well under qua-
sisymmetric maps.

Lemma 4.1. Suppose (X, dX ) and (Y, dY ) are connected metric spaces,
and f : X → Y is an η-quasisymmetric homeomorphism. Suppose K ≥ 1
and A = ((V,∼), p, r,U) is a K-approximation of X. Assume that

mesh(A) < diam(X)/2. (4.2)

For v ∈ V define p′v := f(pv), U ′
v := f(Uv) and

r ′v := inf{dY ( f(x), p′v) : x ∈ X, dX(x, pv) ≥ rv}. (4.3)

Let U′ = {U ′
v : v ∈ V }. Then A′ = ((V,∼), p′, r ′,U′) is a K ′-approxima-

tion of Y with K ′ depending only on K and η.

We emphasize that the underlying graphs of A and A′ are the same.
Note that by condition (4.2) the set in (4.3) over which the infimum is

taken is nonempty. The continuity of f −1 implies that r ′v is positive. The
number r ′v is roughly the diameter of U ′

v. Up to multiplicative constants,
it is essentially the only possible choice for r ′v. Our particular definition
guarantees BY (p′v, r ′v) ⊂ f(BX(pv, rv)) ⊂ f(Uv) = U ′

v.
Up to this ambiguity in the choice of r ′v, the K ′-approximation A′ is

canonically determined by A and the map f . In this sense we can say that
A′ is the “image” of A under f .

Proof. We denote image points under f by a prime, i.e., x ′ = f(x) for
x ∈ X. We also denote by K1, K2, . . . positive constants that can be chosen
only to depend on η and K .

Since X is connected and the complement of BX(pv, rv) is nonempty,
for every v ∈ V we can choose a point xv ∈ X with with dX(xv, pv) = rv.
The quasisymmetry of f implies

r ′v ≤ dY (x ′v, p′v) ≤ K1r ′v.

If x ∈ X and dX(x, pv) < Krv then

dY (x ′, p′v) < dY (x ′v, p′v)η(K ) ≤ K2r ′v.

This and the definition of r ′v show

BY(p′v, r ′v) ⊂ f(BX(pv, rv)) ⊂ f(Uv) = U ′
v ⊂ f(BX(pv, Krv))

⊂ BY(p′v, K2r ′v). (4.4)
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If u ∼ v, then Uu ∩Uv �= ∅ and ru ≤ Krv. In particular,

dX(pu, pv) ≤ K(ru + rv) ≤ K3rv

and

dX(xu, pv) ≤ dX(xu, pu)+ dX(pu, pv) ≤ ru + K3rv ≤ K4rv.

Hence

r ′u ≤ dY (x ′u, p′u) ≤ dY (p′u, p′v)+ dY (x ′u, p′v)
≤ dY (x ′v, p′v)(η(K3)+ η(K4)) ≤ K5r ′v.

(4.5)

Suppose z ∈ Uv. Since dY (x ′v, p′v) ≥ r ′v, there exists y ∈ {pv, xv} such
that dY (y′, z′) ≥ r ′v/2. Then dX(y, z) ≤ 2Krv. If now x ∈ X is an arbitrary
point with dX(x, z) ≥ rv/K , then

r ′v ≤ 2dY (y′, z′) ≤ 2dY (x ′, z′)η(2K2) ≤ K6dY (x ′, z′).

This implies that

BY(z′, r ′v/K6) ⊂ f(BX(z, rv/K )) ⊂ f(A-StK (v)) = A′-StK (v) for z ∈ Uv.
(4.6)

The assertion now follows from the fact that A is a K -approximation and
(4.4)–(4.6). ��
Lemma 4.7. Suppose (Z, d) is a connected metric space and ((V,∼), p,
r,U) is a K-approximation of Z. Suppose L ≥ K and W ⊂ V is a maximal
set of combinatorially L-separated vertices. Then M = p(W ) ⊂ Z is
weakly λ-uniformly perfect with λ depending only on L and K.

Proof. Note that property (3) of a K -approximation implies

K−k(u,v) ≤ r(u)

r(v)
≤ Kk(u,v) for u, v ∈ V.

Since d(p(u), p(v)) ≤ K(r(u) + r(v)) whenever u, v ∈ V with u ∼ v, we
obtain

d(p(u), p(v)) ≤ 2r(u)k(u, v)K1+k(u,v) for u, v ∈ V.

Let λ = 16L2 K4+4L . Suppose w0, w1 ∈ W such that for z0 = p(w0) and
z1 = p(w1) we have that z0 �= z1 and z1 ∈ B̄(z0, r/λ), where 0 < r ≤
diam(M) ≤ diam(Z). We claim that B(z0, r) \ B̄(z0, r/λ) contains a point
in M. Since w0 �= w1 we have k(w0, w1) ≥ L ≥ K and so Uw0 ∩Uw1 = ∅
by property (3) of a K -approximation. This implies

r(w0) ≤ d(z0, z1) ≤ r/λ. (4.8)
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Since λ > 4 there exist points in Z outside B(z0, r/
√

λ). The connectedness
of Z then implies that there actually exists z ∈ Z with d(z0, z) = r/

√
λ.

Since U is a cover of Z, we have z ∈ Uv for some v ∈ V . Then

r(v) ≤ Kr/
√

λ. (4.9)

For otherwise,

dist(z0, Uv) ≤ d(z0, z) = r/
√

λ < r(v)/K,

and so z0 ∈ Nr(v)/K (Uv) ⊂ StK (v). This implies k(w0, v) ≤ 2K which leads
to

r(w0) ≥ K−2Kr(v) ≥ K1−2Kr/
√

λ > r/λ,

contradicting (4.8).
Since W is a maximal L-separated set in V , there exists w2 ∈ W such

that k(w2, v) < L . Let z2 = p(w2) ∈ M. We claim that d(z2, z0) >
r/λ. Otherwise, d(z2, z0) ≤ r/λ. If w2 �= w0, then similarly as above we
conclude r(w2) ≤ r/λ. But by (4.8) this is also true if w2 = w0. Hence we
get in this case

r/
√

λ = d(z0, z) ≤ d(z0, z2)+ d(z2, p(v))+ d(p(v), z)
≤ r/λ+ r(w2)2L K L+1 + Kr(v)
≤ r/λ+ (2L K L+1 + K L+1)r(w2)

≤ (1+ 2L K L+1 + K L+1)r/λ < r
√

λ,

which is a contradiction.
Moreover, by (4.9)

d(z0, z2) ≤ d(z0, z)+ d(z, p(v))+ d(p(v), z2)

≤ r/
√

λ+ Kr(v)+ 2L K L+1r(v)

≤ (1+ K2 + 2L K L+2)r/
√

λ < r.

This shows that the point z2 ∈ M is contained in B(z0, r) \ B̄(z0, r/λ). ��

5. Circle packings

In Sects. 5 and 6 we will consider embeddings of a graph G in a metric
space Z. In this context we will regard G = (V,∼) as a topological space
by choosing a unit interval I := [0, 1] for each two-element set {u, v} ⊂ V
with u ∼ v, where we let the endpoints of I correspond to u and v. We then
glue these intervals together whenever endpoints of intervals correspond to
the same vertex in V . An embedding of G into Z is then just a map of this
topological space into Z which is a homeomorphism onto its image.

If the graph G is embedded in Z we will identify G with its image under
the embedding. This image is viewed as a subset of Z with certain points and
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arcs distinguished as vertices and edges, respectively, so that their incidence
pattern is the same as the incidence pattern of the graph. In this case we will
write G = (V, E), where V is the set of vertices and E is the set of edges
of G.

Suppose the graph G is combinatorially equivalent to the 1-skeleton of
a triangulation T of a topological 2-sphere. By the Andreev-Koebe-Thurston
circle packing theorem (cf. for example [20]) the graph G can be realized
as the incidence graph of a circle packing. This means the following. Let
G = (V,∼). Then there is a family C of pairwise disjoint open spherical
disks Cv, v ∈ V , in S2 such that C̄u ∩ C̄v �= ∅ for u, v ∈ V if and only if
u ∼ v.

We can always assume that the circle packing is normalized. By this
we mean that among the centers of the disks of the circle packing, there
are three normalizing points which lie on a great circle of S2 and are
equally spaced. A normalization of a circle packing can always be achieved
by replacing the original circles by their images under a suitably chosen
Möbius transformation. To see this note that the boundary circles of three
distinct disks D1, D2, D3 determine distinct hyperbolic planes H1, H2, H3
in hyperbolic three-space H3 (as viewed in the unit ball model). It is easy to
see that there exists a point z0 ∈ H3 that minimizes the sum of the (signed)
hyperbolic distances to the planes Hi . The unit vectors in the tangent space
Tz0H

3 ofH3 at z0 determined by the directions from z0 to the planes Hi will
then lie in a two-dimensional subspace of Tz0H

3 and form an equilateral
triangle. If we move the point z0 to the center of the unit ball by a Möbius
transformation g, the centers of the image disks g(D1), g(D2), g(D3) will
then be equally spaced points on a great circle.

In a normalized circle packing all disks are smaller than hemispheres.
In particular, if two different disks in the packing have a common boundary
point, then there is a unique geodesic joining the centers. If we join the
centers of adjacent disks in the circle packing in this way, then we get
an embedding of G on the sphere. The closures of the complementary
regions of this embedded graph are closed spherical triangles ∆ forming
a triangulation T ′ of S2 combinatorially equivalent to T . If v ∈ V let p(v)
be the center of the disk Cv corresponding to v, and let r(v) be the spherical
radius of Cv. Let Uv be the interior of the union of all triangles ∆ ∈ T ′
having p(v) as a vertex. Then Uv is open, starlike with respect to p(v) and
contains Cv. Moreover, the sets Uv, v ∈ V , form a cover U of S2.

Given these definitions we claim:

Lemma 5.1. Suppose G is combinatorially equivalent to a 1-skeleton of
a triangulation of S2, and C is a normalized circle packing realizing G.
Then (G, p, r,U) is a K-approximation of S2 with K depending only on
the valence of G.

Proof. It is a well-known fact that for a circle packing of Euclidean circles
the ratio of the radii of two adjacent disks in the packing is bounded by
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a constant depending only on the number of neighbors of (one of) these
disks (this is called the “Ring Lemma”; cf. [23]). For a packing of spherical
circles a similar statement is true if no disk in the packing is larger than
a hemisphere, in particular if the packing is normalized. In other words, if
u, v ∈ V and u ∼ v, then C−1 ≤ ru/rv ≤ C with C depending only on
the valence of G. Choosing K suitably depending on the valence of G, it
is easy to see that the conditions (1)–(5) of a K -approximation are true for
(G, p, r,U). We omit the details. ��

6. Construction of good graphs

In this section we will work with a modification of the L LC1-condition for
a metric space (Z, d):

(λ-L̃ LC1) If x, y ∈ Z, x �= y, then there exists an arc γ with endpoints
x and y such that

diam(γ) ≤ λd(x, y).

Here λ ≥ 1. Obviously, λ-L̃ LC1 implies (1 + 2λ)-L LC1. A similar
quantitative implication in the other direction will not be true in general,
unless Z is locally “nice”. For example, if Z is locally Euclidean, then
a simple covering argument shows that λ-L LC1 implies 3λ-L̃ LC1. So for
topological manifolds L LC1 and L̃ LC1 are quantitatively equivalent.

Lemma 6.1. Suppose (Z, d) is a metric space which is C0-doubling and λ-
L̃ LC1. Let 0 < r ≤ diam(Z) and suppose A ⊂ Z is a maximal r-separated
set. Then there exists a connected graph Γ = (V, E) which is embedded in
Z and has the following properties:

(i) The valence of Γ is bounded by K.
(ii) The vertex set V contains A.
(iii) If u, v ∈ A with d(u, v) < 2r, then Γ contains an edge path γ joining

u and v with diam(γ) ≤ Kr. Each edge in Γ belongs to one of these
paths γ .

(iv) For all balls B(a, r) ⊂ Z we have #(B(a, r) ∩ V ) ≤ K.

Here the constant K ≥ 1 depends only on C0 and λ.

Implicit in this statement is that Γ satisfies our standing assumptions on
graphs; namely, every edge in Γ has two distinct vertices as endpoints, and
two distinct vertices are connected by at most one edge.

Note that (iii) implies diam(e) ≤ Kr for e ∈ E. It follows from (iv) and
the doubling property of Z that a ball of radius R in Z meets at most C
vertices or edges of Γ, where C is a number depending only on C0, K and
R/r.
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Proof. For all two-element subsets {u, v} ⊂ A with d(u, v) < 2r choose an
arc α with endpoints u, v and diam(α) ≤ 2λr. Let A be the family of arcs
thus obtained.

We claim that there exists N = N(C0, λ) ∈ N such that A can be written
as a disjoint union A = A1 ∪ · · · ∪AN , where each of the subfamilies Ai
has the property that if α, α′ ∈ Ai are two distinct arcs, then

dist(α, α′) > 8λr. (6.2)

To see that this can be done, note first that since Z is C0-doubling there
exists N1 = N1(C0, λ) ∈ N such that

#(B̄(a, 12λr) ∩ A) < N1 for a ∈ Z.

Hence if α ∈ A, then

#{α′ ∈ A : dist(α, α′) ≤ 8λr} < N1(N1 − 1)/2. (6.3)

Let N = N1(N1 − 1)/2. An argument using Zorn’s lemma and (6.3) shows
that there exists a labeling of the arcs in A by the numbers 1, . . . , N such
that no two distinct arcs α, α′ ∈ A with dist(α, α′) ≤ 8λr have the same
label. If we define Ai to be the set of all arcs with label i, we get the desired
decomposition A = A1 ∪ · · · ∪AN .

Since Z is doubling, there exists N2 = N2(C0, λ) ∈ N such that each
arc in A can be covered by at most N2 open balls of radius r. Now define
graphs Γi = (Vi, Ei) for i = 1, . . . , N inductively as follows. The graphs
Γi will be embedded in Z, their edges will have diameter bounded by 2λr
and we will have

Mi := max
a∈Z

#{e ∈ Ei : e ∩ B(a, r) �= ∅} ≤ (2N2 + 4)i . (6.4)

Let Γ1 be the union of the arcs in A1, where we consider these arcs as
the edges of Γ1 and the set of their endpoints as the set of vertices. Note
that by (6.2) the graph Γ1 is embedded in Z and by the choice of the arcs in
A the diameter of each edge will be bounded by 2λr. Moreover, each ball
B(a, r) can only meet at most one arc in A1, so (6.4) is true for i = 1.

Suppose Γi−1 has been constructed. We consider an arbitrary arc α ∈ Ai
and will modify it to obtain an arc with the same endpoints such that for
each edge e ∈ Ei−1 the set α ∩ e is connected. Note first that the number of
edges in Ei−1 that α meets is bounded by N2 Mi−1, and in particular finite.
This follows from the definition of N2 and Mi−1.

Let e1, . . . , ek ∈ Ei−1 be the edges that meet α. Assume inductively that
we have modified α into an arc (also called α by abuse of notation) such
that

the sets α ∩ e1, . . . , α ∩ e j−1 are connected. (6.5)

Let γ be the smallest (possibly degenerate) subarc of α which contains α∩e j .
Then the endpoints of γ are contained in e j , and α \ γ is disjoint from e j .
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Replace γ ⊂ α by the subarc of e j which has the same endpoints as γ .
This new curve α is an arc and the set α ∩ e j is connected. Since the edges
in Ei−1 are nonoverlapping (i.e., they have disjoint interiors), the statement
(6.5) is still true for the new arc α (some of the intersections in (6.5) may
have become empty) and there are no new edges that α meets. After at most
k modifications, the arc α will have the same endpoints as before, and will
have a subdivision into nonoverlapping subarcs which consists of the sets
α∩ e for e ∈ Ei−1 and their complementary subarcs. Hence α is subdivided
into at most 2k+1 ≤ 2N2 Mi−1+1 subarcs which all have diameter bounded
by 2λr. Note that the endpoints of these subarcs will always belong to the
original arc α. Hence the diameter of the new arc α will be bounded by
2λr + supe∈Ei−1

diam(e) ≤ 4λr. Let Ãi be the set of the new arcs α. Then
for any two distinct arcs in Ãi we have

dist(α, α′) > 2λr. (6.6)

The graph Γi = (Vi, Ei) is now obtained from Γi−1 and the set of
modified arcs Ãi as follows. If for e ∈ Ei−1 there exists α ∈ Ãi which
meets e, subdivide e by introducing new vertices into at most three new
edges such that e ∩ α becomes a vertex or an edge. Every edge e ∈ Ei−1

is subdivided at most once, since it cannot meet two distinct arcs in Ãi by
(6.6). To this graph obtained by subdividing some of the edges of Γi−1,
we add the edges and vertices from the subdivision of the arcs α ∈ Ãi .
Obviously, Γi is embedded in Z and all its edges have diameter bounded by
2λr. It can be shown inductively that Γi has the property that every edge in
Γi has two distinct vertices as endpoints, and that two distinct vertices are
connected by at most one edge.

If B(a, r) is an arbitrary ball, then an edge e ∈ Ei meeting B(a, r) is
either a subset of an edge in Ei−1 meeting B(a, r) or it is an edge obtained
from the subdivision of some arc α ∈ Ãi . By (6.6) all these latter edges lie
on the same arc α. Hence

Mi ≤ 3Mi−1 + 2N2 Mi−1 + 1 ≤ (2N2 + 4)i .

Now let Γ = ΓN . Then the underlying set of Γ is equal to the union of
the arcs in A1 ∪ Ã2 ∪ · · · ∪ ÃN . This shows (ii) and (iii). These conditions
imply that Γ is connected. Suppose v is a vertex of Γ. If an edge e has
a vertex v as an endpoint, then e ∩ B(v, r) �= ∅. From (6.4) it follows that
the number of edges with endpoint v is bounded by MN which gives (i).
Finally, (iv) follows from (6.4) and

#(B(a, r) ∩ V ) ≤ 2#{e ∈ E : e ∩ B(a, r) �= ∅}. ��
Proposition 6.7. Suppose (Z, d) is a metric space homeomorphic to S2.
If (Z, d) is C0-doubling and λ-L LC, then for given 0 < r ≤ diam(Z)
and any maximal r-separated set A ⊂ Z there exists an embedded graph
G = (V, E) which is the 1-skeleton of a triangulation T of Z such that:
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(i) The valence of G is bounded by K.
(ii) The vertex set V of G contains A.
(iii) If e ∈ E, then diam(e) < Kr. If u, v ∈ V and d(u, v) < 2r, then

kG(u, v) < K.
(iv) For all balls B(a, r) ⊂ Z we have #(B(a, r) ∩ V ) ≤ K.

Here the constant K ≥ 1 depends only on C0 and λ.

Note that (iii) implies: If u, v ∈ V and d(u, v) ≤ Lr, then we have
kG(u, v) ≤ C(L, K, C0, λ).

Since G is embedded in Z, the vertices and edges of G are subsets
of Z. For v ∈ V let p(v) := v, r(v) := r and Uv := BZ(v, Kr). Then
U := {Uv : v ∈ V } is a cover of Z. Hence under the above assumptions we
immediately have:

Corollary 6.8. (G, p, r,U) is a K ′-approximation of Z, where K ′ depends
only on λ and C0.

Corollary 6.9. Suppose Z is a metric space homeomorphic to S2. If Z is
C0-doubling and λ-L LC, then there exist K ≥ 1 only depending on C0 and
λ and a sequence Ak = (Gk, pk, rk,Uk) of K-approximations of Z, whose
graphs Gk = (Vk, Ek) are 1-skeletons of triangulations Tk of Z and for
which

lim
k→∞

mesh(Ak) = 0.

Proof. This follows immediately from Corollary 6.8 if we apply Proposi-
tion 6.7 for a maximal (1/k)-separated set Ak . ��

Proof of Proposition 6.7. First we claim that every (continuous) loop
φ : S1 → Z such that φ(S1) ⊂ B(p, R) for some p ∈ Z and R > 0
is null-homotopic in B(p, λR). For this note that since Z is λ-L LC, the
compact set A = Z \ B(p, λR) is contained in a component of Z \ φ(S1).
Since Z is homeomorphic to S2 it follows that φ is null-homotopic in
Z \ A = B(p, λR).

Since Z is a topological manifold and λ-L LC, it is λ′-L̃ LC with λ′ = 3λ.
Let Γ1 = (V1, E1) be a graph embedded in Z that satisfies the conditions
(i)–(iv) of Lemma 6.1 with some constant K ′ depending on the data of Z.
The idea for constructing G is to subdivide the components of Z \ Γ1 into
triangles. For this to result in a graph as desired, we have to bound the
diameter of such a component. We need two lemmas.

Lemma 6.10. Given a continuous map f0 : S1 → Z, there is a continuous
map f1 : S1 → Γ1 ⊂ Z and a homotopy f0 ∼ f1 so that the tracks of the
homotopy have diameter bounded by C1r where C1 depends only on C0
and λ.
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Proof. Since A ⊂ V is a maximal r-separated set, we have dist(z, A) < r
for all z ∈ Z. Since f0(S

1) is compact, for some r ′ ∈ (0, r) we have
dist( f0(ζ), A) < r ′ for all ζ ∈ S1. Since f0 is uniformly continuous, we can
find a finite set S ⊂ S1 containing at least two points such that if J ⊂ S1− S
is a maximal complementary arc, then diam( f0(J)) < r − r ′. For each
ζ ∈ S we can find a point f1(ζ) ∈ A such that d( f0(ζ), f1(ζ)) < r ′. Let
J ⊂ S1− S be a maximal complementary arc and suppose its endpoints are
ζ, ζ ′ ∈ S. Then dist( f1(ζ), f1(ζ

′)) < 2r and so by property (iii) of Γ1 we
can extend f1 continuously to J̄ such that f1( J̄ ) is a path in Γ1 of diameter
at most K ′r. If we extend f1 in this way to all such arcs J̄ , then we get
a continuous map f1 : S1 → Γ1.

We build a homotopy H : S1× I → Z (where I = [0, 1]) from f0 to f1
as follows. We set H(ζ, 0) = f0(ζ) and H(ζ, 1) = f1(ζ) for all ζ ∈ S1. For
each ζ ∈ S, define H|{ζ}×I to be a path connecting f0(ζ) to f1(ζ) of diameter
bounded by λ′r = 3λr. We have defined H on (S1 × {0, 1}) ∪ (S × I ). If
J ⊂ S1 − S is a maximal complementary arc, then we can extend H to
J̄ × I so that the image of this set is contained in a ball of radius Cr where
C = C(C0, λ). Here we use the fact that the boundary of the “square”
J̄ × I is mapped into a ball of radius R = (3λ + K ′ + 1)r and this loop
is null-homotopic in a ball with the same center and radius λR. It follows
that the tracks t �→ H(ζ, t) of the homotopy have diameter bounded by C1r
with C1 = C1(C0, λ). ��
Lemma 6.11. The diameter of each connected component of Z \ Γ1 is
bounded by C2r where C2 depends only on C0 and λ.

Proof. We have to show that if C2 is large enough depending on the data,
then the set Γ1 separates every point p ∈ Z \Γ1 from every point q ∈ Z \Γ1
outside B(p, C2r). Indeed, with the notation of the last lemma we can choose
C2 = 4+ 2C1. To see this note first that

M := B̄
(

p, 1
2(C2 + 1)r

) \ B
(
p, 1

2(C2 − 1)r
)

separates p from q. Using the fact that Z is homeomorphic to S2, it is easy
to see that there is a Jordan curve in an arbitrarily small neighborhood of M
separating p from q. In particular, there exists a loop f0 : S1 → Z such that

f0(S
1) ⊂ B

(
p, 1

2 (C2 + 2)r
) \ B̄

(
p, 1

2(C2 − 2)r
)

and the winding number of f0 with respect to p differs from the winding
number of f0 with respect to q. By the previous lemma we can find a loop
f1 : S1 → Γ1 homotopic to f0 such that the tracks of the homotopy stay
inside

B
(

p, 1
2 (C2 + 2+ 2C1)r

) \ B̄
(

p, 1
2(C2 − 2− 2C1)r

) ⊂ B(p, C2r) \ {p}.
In particular, the winding number of f1 with respect to p will still be
different from the winding number of f1 with respect to q. Hence f1(S

1)
also separates p from q, and so does Γ1 ⊃ f1(S

1). ��
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Since Γ1 is connected, a component Ω of Z \ Γ1 is a simply connected
region whose boundary ∂Ω is a finite union of edges in Γ1. Note that by
the previous lemma, the number of these edges is bounded by a number
depending only on the data of Z.

Now define a new graph Γ2 = (V2, E2) as follows: Subdivide the edges
of Γ1 by choosing for each edge a point in its interior. Moreover for each
component Ω of Z \ Γ1 choose a point in its interior. These points together
with the set V1 form the vertex set V2 of Γ2. The edges of Γ2 consist of the
arcs obtained by the subdivision of the edges in Γ1 and new edges obtained as
follows for each component Ω of Z \Γ1. The vertices in V2 on the boundary
of Ω can be brought into a natural cyclic order v1, . . . , vN , vN+1 = v1,
possibly with repetitions, such that successive vertices are adjacent, i.e.,
endpoints of an arc obtained from the subdivision of the edges in Γ1. Note
that each vertex can occur at most twice in this given cyclic order. Hence
N is bounded by a number depending only on the data. Since Ω is simply
connected, we can connect the vertex v chosen in the interior of Ω with
each of the vertices vi by an arc ei such that ei \ {vi} ⊂ Ω and such that two
of these arcs have only the point v in common.

The graph Γ2 is embedded in Z, and has complementary regions whose
closures are topological triangles, i.e., there are exactly three different ver-
tices and edges in successive order on the boundary of such a region. One
of these vertices is a vertex contained in Z \ Γ1, one will be in the interior
of an edge e ∈ E1 and one vertex will be also a vertex of Γ1. In particular,
the components of Z \ Γ2 are Jordan regions. In general, the set of these
triangles which are the closures of components of Z \Γ2 will not be a trian-
gulation of Z, because it may happen that two such triangles have the same
vertex set without being identical. This situation arises from components of
Z \ Γ1 which are not Jordan regions.

Define a graph G = (V, E) obtained from Γ2 in the same way as Γ2 was
obtained from Γ1. Then the closures of the complementary components of
Z \G are topological triangles which triangulate Z so that the 1-skeleton of
this triangulation is G. The other desired properties of G follow immediately
from the previous lemma and the properties of Γ1. ��

7. Modulus

Suppose (Z, d, µ) is a metric measure space, i.e., d is a complete metric
and µ a Borel measure on Z. Moreover, we assume that µ is locally finite
and has dense support. The space (Z, d, µ) is called (Ahlfors) Q-regular,
Q > 0, if the measure µ satisfies

C−1 RQ ≤ µ(B(a, R)) ≤ CRQ (7.1)

for each open ball B(a, R) of radius 0 < R ≤ diam(Z) and for some
constant C ≥ 1 independent of the ball. The numbers Q and C are called
the data of Z. If (7.1) is true for some measure µ, then a similar inequality
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holds for Q-dimensional Hausdorff measure H Q . Hence, if in a Q-regular
space the measure is not specified, then we assume that the underlying
measure µ is the Hausdorff measure H Q .

Let U ⊂ Z be an open set. We call a Borel function ρ : U → [0,∞] an
upper gradient of a function u : U → R if

|u(x)− u(y)| ≤
∫

γ

ρ ds,

whenever x, y ∈ U and γ is a rectifiable path joining x and y in U . Here
integration is with respect to arclength on γ .

Suppose B = B(a, r) is an open ball in Z. If λ > 0 we let λB :=
B(a, λr). Moreover, if u : B → R is a locally integrable function on B, we
denote by uB the average of u over B, i.e.,

uB = 1

µ(B)

∫
B

u dµ.

The metric measure space is said to satisfy a (1, Q)-Poincaré inequality,
where Q ≥ 1, if there exist constants C > 0 and λ ≥ 1 such that

1

µ(B)

∫
B
|u − uB| dµ ≤ C(diam(B))

(
1

µ(λB)

∫
λB

ρQ dµ

)1/Q

,

whenever B is an open ball in Z, the function u is locally integrable on λB,
and ρ is an upper gradient of u on λB.

A density (on Z) is a Borel function ρ : Z → [0,∞]. A density ρ is
called admissible for a path family Γ in Z, if

∫
γ

ρ ds ≥ 1

for each rectifiable path γ ∈ Γ. Here integration is with respect to arclength
on γ . If Q ≥ 1, the Q-modulus of a family Γ of paths in Z is the number

ModQ(Γ) = inf
∫

ρQ dµ, (7.2)

where the infimum is taken over all densities ρ : Z → [0,∞] that are
admissible for Γ. If E and F are (nondegenerate) continua in Z, we let
ModQ(E, F) denote the Q-modulus of the family of paths in Z connecting
E and F.

Suppose Z is a rectifiably connected metric measure space. Then Z is
called a Q-Loewner space, Q ≥ 1, if there exists a positive decreasing
function Ψ : R+ → R+ such that

ModQ(E, F) ≥ Ψ(∆(E, F)) (7.3)
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whenever E and F are disjoint continua in Z. Recall that ∆(E, F) is the
relative distance of E and F as defined in (2.9). The number Q and the
function Ψ are the data of the Loewner space Z.

The Loewner condition was introduced in [15] and quantifies the idea
that a space has many rectifiable curves. According to Thm. 5.7 and Thm.
5.12 in [15], a proper Q-regular metric space Z satisfies a (1, Q)-Poincaré
inequality if and only if Z is Q-Loewner (note that the assumption of
ϕ-convexity in [15, Thm. 5.7] is unnecessary, since a proper Q-regular
metric space satisfying a (1, Q)-Poincaré inequality is quasiconvex [12,
Appendix]).

We will use the following fact about Loewner spaces.

Proposition 7.4. Suppose (Z, d, µ) is a Q-regular Q-Loewner space,
Q > 1. Then there exist constants λ ≥ 1 and C > 0 depending only
on the data of Z with the following property.

If z ∈ Z, s > 0, and Y1, Y2 ⊂ Z are continua with Yi ∩ B(z, s) �= ∅ and
diam(Yi) ≥ s/4 for i ∈ {1, 2}, then for every Borel function ρ : Z → [0,∞]
there exists a rectifiable path η in Z joining Y1 and Y2 such that

∫
η

ρ ds ≤ C

(∫
B(z,λs)

ρQ dµ

)1/Q

.

We will skip the proof of this proposition which is very similar to the proof
of Lem. 3.17 in [15]. Essentially, the result is true because the relative
distance of Y1 and Y2 is bounded by a fixed constant. Hence the regularity
and the Loewner condition imply that if λ is large enough depending on the
data, then the modulus of the family of paths inside B(z, λs) joining Y1 and
Y2 is bigger than a constant.

Suppose G = (V,∼) is a graph, and A, B are subsets of V . We will
define the combinatorial Q-modulus modG

Q(A, B) of the pair A and B as
follows. Call a weight function w : V → [0,∞] admissible for the pair A
and B, if

n∑
i=1

w(xi) ≥ 1,

whenever x1, . . . , xn is chain connecting A and B.
Now let

modG
Q(A, B) = inf

∑
v∈V

w(v)Q,

where the infimum is taken over all weights w that are admissible for A
and B. Note that modG

Q(A, B) ≥ 1 if A ∩ B �= ∅. We drop the superscript
G in modG

Q (A, B) if the graph G is understood.
If A ⊂ V and s > 0 we denote by Ns(A) the s-neighborhood of A, i.e.,

the set of all u ∈ V for which there exists a ∈ A with kG(a, u) < s.
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If we want to estimate the Q-modulus of the pair (A, B), then the
following lemma will allow us to change the sets A and B with quantitative
control.

Lemma 7.5. Suppose G = (V,∼) is a graph with valence bounded by
d0 ≥ 1. For every Q ≥ 1 and s > 0 there exists a number C = C(d0, s, Q)
with the following property: If A, B, A′, B′ ⊂ V, A′ ⊂ Ns(A), and B′ ⊂
Ns(B), then

modQ(A′, B′) ≤ CmodQ(A, B).

Proof. Note that if w is admissible for A and B, then w̃ : V → [0,∞]
defined by

w̃(v) =
∑

u∈B(v,s)

w(u) for v ∈ V

is admissible for (A′, B′). Moreover, since the valence of G is bounded
by d0, it follows that each ball B(v, s) has a cardinality bounded by a constant
depending only on s and d0. It follows that∑

v∈V

w̃(v)Q ≤ C
∑
v∈V

w(v)Q,

with C = C(s, d0, Q). The lemma follows. ��

8. K -approximations and modulus comparison

In this section we relate the Q-modulus on a metric space to the Q-modulus
on the graph of a K -approximation. Results of this general nature are well-
known. The (minor) novelty here is that the local scales may vary from
point to point.

Let (Z, d) be a metric space. Throughout this section A = (G, p, r,U)
will be a K -approximation of Z with graph G = (V,∼). For each subset
E ⊂ Z we define VE := {v ∈ V | Uv ∩ E �= ∅}. Note that VE ⊂ V depends
on A, but we suppress this dependence in our notation. If γ : J → Z is
a path, we will denote the image set γ(J) also by γ for simplicity.

Proposition 8.1. Let (Z, d, µ) be a Q-regular metric measure space,Q ≥ 1,
and let A be a K-approximation of Z. Then there exists a constant C ≥ 1
depending only on K and the data of Z with the following property:

If E, F ⊂ Z are continua and if dist(VE, VF ) ≥ 4K, then

ModQ(E, F) ≤ CmodQ(VE, VF ). (8.2)

Proof. Let w : V → [0,∞] be an admissible function for the pair (VE, VF ):
if v1 ∼ · · · ∼ vk is a chain in V with v1 ∈ VE and vk ∈ VF , then∑k

i=1 w(vi) ≥ 1. Define w̃ : V → [0,∞] by the formula
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w̃(v) =
∑

u∈B(v,K )

w(u),

and

ρ :=
∑
v∈V

(
w̃(v)

rv

)
χStK (v)

,

where χY denotes the characteristic function of Y ⊂ Z.

Mass bound for ρ. The cover {StK (v) : v ∈ V } has controlled overlap
depending on K and there exists a constant C = C(K ) such that StK (v) ⊂
B(pv, Crv) for v ∈ V . Moreover, Z is Q-regular and every K -ball in V has
cardinality controlled by C(K ). So we have that

∫
Z
ρQ dµ �

∑
v∈V

∫
Z

(
w̃(v)

rv

χStK (v)

)Q

dµ

�
∑
v∈V

w̃(v)Q �
∑
v∈V

w(v)Q .

(8.3)

Admissibility of ρ. Now let γ : J → Z be a rectifiable path connecting E
to F. Since U is a cover of the path γ , there exists a set W = {v1, . . . , vk}
in V such that γ ∩ Uvi �= ∅ for i ∈ {1, . . . , k}, Uvi ∩ Uvi+1 �= ∅ for
i ∈ {1, . . . , k − 1}, and v1 ∈ VE and vk ∈ VF . The combinatorial distance
of vi and vi+1 is less than K . Hence there exists a chain A in V connecting
VE and VF satisfying W ⊂ A ⊂ NK (W ).

For each v ∈ W , let Jv := γ−1(StK (v)) and γv := γ |Jv
. Then the

definition of ρ gives

ρ(γ(t)) ≥ w̃(v)/rv for t ∈ Jv.

By our assumption that dist(VE, VF ) ≥ 4K the path γ is not contained in
any K -star of a vertex. For if γ ⊂ StK (u), then there exist u1, u2 ∈ V
with k(u1, u) < K , k(u2, u) < K , Uv1 ∩ Uu1 �= ∅, and Uvk ∩ Uu2 �= ∅.
Then k(v1, u1) < K and k(vk, u2) < K which implies dist(VE, VF ) ≤
k(v1, vk) < 4K .

Since γ is not contained in any K -star of a vertex, we have that if a set
Uv meets γ , then length(γ ∩ StK(v)) ≥ rv/K by condition (4) of a K -
approximation. In particular, for each v ∈ W we have length(γv) ≥ rv/K ,
and so ∫

γv

ρ ds �
(

w̃(v)

rv

)
length(γv) � w̃(v).

Hence ∑
v∈W

∫
γv

ρ ds �
∑
v∈W

w̃(v) �
∑

v∈NK (W )

w(v) ≥ 1,
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since NK (W ) contains the chain A connecting VE and VF and w is admis-
sible. The sets StK (v) and hence the sets Jv ⊂ J for v ∈ W have controlled
overlap depending on K , giving

∫
γ

ρ ds �
∑
v∈W

∫
γv

ρ ds � 1. (8.4)

Combining (8.3) with (8.4) we get

ModQ(E, F) � modQ(VE, VF ). ��

It is an interesting question when an inequality like (8.2) holds in the
opposite direction. We will not need such a result for the proof of our theo-
rems, but we will nevertheless explore this question, because it illuminates
the general picture. In order to get the desired inequality, we have to add
an analytic assumption on Z to our hypotheses. It suffices to assume that
Z is a Q-regular Q-Loewner space, but as the next proposition shows it
is enough that a Loewner type condition holds locally on the scale of our
K -approximation A.

Proposition 8.5. Let (Z, d, µ) be a Q-regular metric measure space,
Q ≥ 1, and let A be a K-approximation of Z.

Suppose that there exist constants c1, C1 > 0 with the following prop-
erty: Let v ∈ V, z ∈ Uv, and 0 < s ≤ c1rv. If Y1, Y2 ⊂ Z are continua with
Yi ∩ B(z, s) �= ∅ and diam(Yi) ≥ s/4 for i ∈ {1, 2}, then for every Borel
function ρ : Z → [0,∞] there exists a rectifiable path η connecting Y1 and
Y2 such that

∫
η

ρ ds ≤ C1

(∫
StK (v)

ρQ dµ

)1/Q

. (8.6)

Then there exists a constant C ≥ 1 depending only on K, the data of
Z, and the constants associated to the analytic condition (8.6) with the
following property:

If E, F ⊂ Z are continua not contained in any set St2K(v) for v ∈ V,
then

modQ(VE, VF ) ≤ CModQ(E, F). (8.7)

Note that by Proposition 7.4 and by the properties of a K -approximation
every Q-regular Q-Loewner space Z with Q > 1 satisfies the analytic
condition (8.6) with appropriate constants depending only on K and the data
of Z. So Proposition 8.1 and Proposition 8.5 together imply the following
corollary.
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Corollary 8.8. Let Z be a Q-regular Q-Loewner space, Q > 1, and let A
be a K-approximation of Z. Then there exists a constant C ≥ 1 depending
only on K and the data of Z with the following property:

If E, F ⊂ Z are continua not contained in any (2K )-star and if
dist(VE, VF ) ≥ 4K, then

C−1ModQ(E, F) ≤ modQ(VE, VF ) ≤ CModQ(E, F). (8.9)

Proof of Proposition 8.5. Let ρ : Z → [0,∞] be an admissible Borel func-
tion for the pair (E, F), i.e. ∫

γ

ρ ds ≥ 1

for any rectifiable path γ joining E with F. Define w : V → [0,∞] by

w(v) :=
(∫

St3K (v)

ρQ dµ

)1/Q

.

Mass bound for w. Since the numbers #B(v, 3K ) for v ∈ V and the multipli-
city of the cover U are bounded by a constant depending only on K , we have

∑
v∈V

w(v)Q ≤
∑
v∈V

∑
u∈B(v,3K )

∫
Uu

ρQ dµ

�
∑
v∈V

∫
Uv

ρQ dµ (8.10)

�
∫

Z
ρQ dµ.

Admissibility of w. This step in the proof is modelled on arguments from [15],
and is based on repeated application of our analytic condition. We use this
near a single set Uv to prove that under our assumptions we have:

Lemma 8.11. Suppose v ∈ V, and Y1, Y2 ⊂ Z are continua with Yi ∩
StK (v) �= ∅, and diam(Yi) ≥ c0rv, where c0 > 0. Then there is a rectifiable
path η connecting Y1 and Y2 such that∫

η

ρ ds ≤ Cw(v), (8.12)

where C > 0 depends only on c0, K, and the data of Z.

Proof. Pick z1, z2 ∈ StK (v) so that zi ∈ Yi ∩ StK(v). Applying condition
(5) of a K -approximation repeatedly, we find a path γ joining z1 to z2 so
that γ ⊂ St2K(v). Let

s := (c0 ∧ c1) min
u∈B(v,2K )

r(u)  r(v),
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where c1 is the constant in the hypothesis of Proposition 8.5. Since Z
is Q-regular, it is doubling. Moreover, s  r(v) and diam(γ) � r(v).
Hence the cardinality of a maximal (s/2)-separated set on γ is bounded
by a number depending only on the data. Since γ is connected, we can
find an appropriate subset x1, . . . , xN of such a maximal set such that
d(z1, x1) < s, d(z2, xN ) < s, and d(xi−1, xi) < s for i ∈ {2, . . . , N}, where
N ∈ N is bounded by a number depending only on the data.

Now let λ1 := Y1 and λN+1 := Y2. Then diam(λ1)∧ diam(λN+1) ≥ s/4
by our assumptions. If N ≥ 2, we have diam(γ) ≥ s/2 and so in addition
we can find continua λi ⊂ γ with xi ∈ λi ⊂ B(xi, s) and diam(λi) ≥ s/4
for i ∈ {2, . . . , N}.

Now xi ∈ γ ⊂ St2K(v) and so xi ∈Uui for some ui ∈V with k(ui, v)<2K .
Then by definition of s we have s ≤ c1rui . Hence we can inductively find
rectifiable paths η1, . . . , ηN such that ηi joins λ1 ∪ η1 ∪ · · · ∪ ηi−1 and λi+1,
and∫

ηi

ρ ds �
(∫

StK (ui)

ρQ dµ

)1/Q

≤
(∫

St3K (v)

ρQ dµ

)1/Q

= w(v). (8.13)

This follows from an application of our analytic assumption to the ball
B(xi, s) and the pair λ1 ∪ η1 ∪ · · · ∪ ηi−1 and λi+1. Note that λi+1 meets
B(xi, s). The same is true for the set λ1 ∪ η1 ∪ · · · ∪ ηi−1, since it meets λi
by induction hypothesis. The union η1 ∪ . . .∪ ηN contains a rectifiable path
η connecting Y1 and Y2 with∫

η

ρ ds � Nw(v)  w(v). ��

Now suppose v1, . . . , vk are the vertices of a chain in G joining VE to VF .
Then Uv1 ∩ E �= ∅, Uvk ∩ F �= ∅, and Uvi−1 ∩ Uvi �= ∅ for i ∈ {2, . . . , k}.
Set λ1 := E, λk+1 := F, and for i ∈ {2, . . . , k} let λi be a continuum with
λi ⊂ StK(vi−1) ∩ StK (vi) and

diam(λi) ≥ (rvi−1 ∧ rvi )/(2K ) ≥ (rvi−1 ∨ rvi )/(2K2).

These sets exist by condition (4) of a K -approximation and the fact that
the complement of any K -star contains elements of E and F and is thus
nonempty.

We can inductively find rectifiable paths η1, . . . , ηk with∫
ηi

ρ ds ≤ C1w(vi)

so that ηi joins λ1 ∪ η1 ∪ . . .∪ ηi−1 to λi+1. Here C1 depends only on K and
the data of Z. This follows from an application of Lemma 8.11 with v = vi ,
Y1 := λ1 ∪ η1 ∪ . . . ∪ ηi−1, Y2 := λi+1, and a constant c0 only depending
on K . Indeed, note that Y2 meets StK (vi), and diam(Y2) ≥ rvi /(2K2). The
set Y1 = λ1 ∪ η1 ∪ . . . ∪ ηi−1 also meets StK (vi), since it meets λi by
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induction hypothesis. Moreover, since E = λ1 ⊂ Y1 and E is not contained
in any (2K )-star, condition (4) of a K -approximation shows that we have
diam(Y1) ≥ c(K )rvi , where c(K ) > 0 depends on K only.

The union η1 ∪ . . . ∪ ηk will contain a rectifiable path η joining E to F
with

1 ≤
∫

η

ρ ds ≤ C1

k∑
i=1

w(vi).

Therefore C1w is an admissible test function for (VE, VF). Hence by (8.10)

modQ(VE, VF) � ModQ(E, F).

This completes the proof of Proposition 8.5. ��

9. The Ferrand cross-ratio

If a map quantitatively distorts the modulus of path families, then in some
situations it follows that the map is quasi-Möbius. A result of this type is
the following proposition, which illustrates the importance of the concept
of a Loewner space (cf. Remark 4.25 in [15], where a related result is
mentioned without proof.)

Proposition 9.1. Let X and Y be metric spaces, f : X → Y a homeo-
morphism, and Q > 1. Suppose X is a Q-regular Q-Loewner space, Y is
Q-regular and L LC, and that there exists a constant K > 0 such that

ModQ(Γ) ≤ KModQ( f(Γ)) (9.2)

for every family Γ of paths in X.
Then f is η-quasi-Möbius with η depending only on K and the data of

X and Y.

Here f(Γ) is the family of all paths f ◦ γ with γ ∈ Γ.

Proof. Being a Loewner space, X is λ-L LC with λ depending on the data
of X, and in particular connected. Moreover, Y is C0-doubling with C0
depending only on the data of Y . So by Lemma 3.3 it is enough to show that
if (x1, x2, x3, x4) is a four-tuple of distinct points in X with [y1, y2, y3, y4]
small, where yi = f(xi), then [x1, x2, x3, x4] is small, quantitatively.

Now if [y1, y2, y3, y4] is small, then by Lemma 2.10 we can find continua
E ′, F ′ ⊂ Y with y1, y3 ∈ E ′, and y2, y4 ∈ F ′ such that ∆(E ′, F ′) is large,
quantitatively. Let Γ′ be the family of all paths in Y joining E ′ and F ′, and let
Γ be the family of all paths in X joining E := f −1(E ′) and F := f −1(F ′).
Then Γ′ = f(Γ) and so by our hypotheses we have

ModQ(E, F) = ModQ(Γ) ≤ KModQ(Γ′) = KModQ(E ′, F ′).
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Since Y is Q-regular, we have that

ModQ(E ′, F ′) � 1

(log(1+∆(E ′, F ′))Q−1
.

This is a standard fact following from the upper mass bound for the Haus-
dorff measure in Y . It can be be established similarly as Proposition 9.9
below. Hence if ∆(E ′, F ′) is large, then ModQ(E ′, F ′) and ModQ(E, F)
are small, quantitatively. But in a Loewner space, we have

Φ(∆(E, F)) ≤ ModQ(E, F),

where Φ : R+ → R+ is a positive decreasing function. It follows that
∆(E, F) is large, quantitatively. Finally, by Lemma 2.10 again, this means
that for the points x1, x3 ∈ E and x2, x4 ∈ F we have that [x1, x2, x3, x4] is
small, quantitatively. ��

We will actually not use this proposition, but rather corresponding dis-
crete versions of this result (the closest discrete analog is Proposition 9.8).
We included Proposition 9.1 to clarify the basic idea.

The relevant point in the preceding proof was that the cross-ratio of
four points can be quantitatively controlled by an appropriate modulus. So
suppose X is a metric measure space and let (x1, x2, x3, x4) be a four-tuple
of distinct points. For Q ≥ 1 define the Ferrand cross-ratio of the four
points to be

[x1, x2, x3, x4]Q = inf ModQ(E, F), (9.3)

where the infimum is taken over all continua E, F ⊂ X with x1, x3 ∈ E and
x2, x4 ∈ F.

Using Lemma 2.10, it is not hard to see that if X is a Q-regular Q-
Loewner space, then the cross-ratio [x1, x2, x3, x4] is small if and only if
the Ferrand cross-ratio [x1, x2, x3, x4]Q is small. Moreover, if X is only
L LC and Q-regular, then at least one of these implication holds. Namely, if
[x1, x2, x3, x4] is small, then [x1, x2, x3, x4]Q is small. The purpose of this
section is to establish similar results for vertices in a graph coming from a
K -approximation.

Assume Q ≥ 1 is fixed and let G = (V,∼) be a connected graph. Imi-
tating the definition of the Ferrand cross-ratio in a metric measure space Z,
we define the Ferrand cross-ratio of a four-tuple (v1, v2, v3, v4) of distinct
points in V by

[v1, v2, v3, v4]GQ = inf modG
Q(A, B),

where the infimum is taken over all chains A, B ⊂ V with v1, v3 ∈ A and
v2, v4 ∈ B. The superscript G will be dropped, if no confusion can arise.
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Proposition 9.4. Let Z be a metric space which is L LC, let A = (G, p,
r,U) be a K-approximation of Z, and Q ≥ 1. Suppose that there exist
a number L > 0 and a function Ψ : R+ → (0,∞] with limt→∞Ψ(t) = 0
such that

modQ(VE, VF ) ≤ Ψ(∆(E, F)), (9.5)

whenever E, F ⊂ Z are continua not contained in any L-star.
Then there exists a function δ : R+ → R+ depending only on K, L, Q,

Ψ and the data of Z with the following property:
If ε > 0 and (v1, v2, v3, v4) is an arbitrary four-tuple of vertices in G

such that k(vi, v j) ≥ 2(K + L) for i �= j, then we have:

[p(v1), p(v2), p(v3), p(v4)] < δ(ε)⇒ [v1, v2, v3, v4]Q < ε.

We will see below (cf. Proposition 9.9) that if Z is L LC and Q ′-regular
with Q′ ≤ Q, then condition (9.5) is satisfied with L = K and some
function Ψ only depending on K and the data of Z (and not on A).

Proof. Let pi = p(vi) for i ∈ {1, . . . , 4}. Our assumption on the com-
binatorial separation of the vertices vi and properties (2) and (3) of a K -
approximation imply that the points pi are distinct. Hence [p1, p2, p3, p4]
is well-defined.

We have to show that if k(vi , v j) ≥ 2(K+L) for i �= j and [p1, p2, p3, p4]
is small, then [v1, v2, v3, v4]Q is small, quantitatively. If [p1, p2, p3, p4] is
small, then by Lemma 2.10 there exist continua E and F with p1, p3 ∈ E,
p2, p4 ∈ F and ∆(E, F) large, quantitatively. Since E is a continuum, we
can find a chain A ⊂ NK (VE ) connecting v1, v3 ∈ VE . Similarly, we can
find a chain B ⊂ NK (VF ) connecting v2, v4 ∈ VF . Lemma 7.5 implies that
there exists a constant C = C(K ) such that

modQ(A, B) ≤ CmodQ(VE, VF ).

The set E ⊃ {p1, p3} is not contained in the L-star of any v ∈ V .
For if E ⊂ StL(v), then there exist u1, u2 ∈ V with k(v, u1) < L ,
k(v, u2) < L , p1 ∈ Uu1 , and p3 ∈ Uu2 . But then p1 ∈ Uu1 ∩ Uv1 which
implies k(v1, u1) < K by property (3) of a K -approximation. Similarly,
k(v3, u2) < K . Putting these inequalities together we get k(v1, v3) <
2(K + L) which contradicts our assumption on the combinatorial sepa-
ration of the vertices vi . In the same way we see that F cannot be contained
in any L-star either. Now from our assumption we obtain

[v1, v2, v3, v4]Q ≤ modQ(A, B) � modQ(VE, VF ) ≤ Ψ(∆(E, F)).

Since ∆(E, F) is large and Ψ(t) → 0 as t → ∞, this implies that
[v1, v2, v3, v4]Q is small, quantitatively. ��
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Proposition 9.6. Let Z be a metric space, let A = (G, p, r,U) be a K-
approximation of Z, and Q ≥ 1. Suppose that there exist a number M > 0
and a decreasing positive function Φ : R+ → R+ such that

Φ(∆(E, F)) ≤ modQ(VE, VF ), (9.7)

whenever E, F ⊂ Z are continua with dist(VE, VF ) ≥ M.

Then there exists a function δ : R+ → R+ depending only on K, M, Q,
and Φ with the following property:

If ε > 0 and (v1, v2, v3, v4) is an arbitrary four-tuple of vertices in G
such that k(vi, v j) ≥ K for i �= j, then we have:

[v1, v2, v3, v4]Q < δ(ε)⇒ [p(v1), p(v2), p(v3), p(v4)] < ε.

It follows from Proposition 8.1 that if Z is a Q-regular Q-Loewner
space, then condition (9.7) is satisfied with M = 4K and some function Φ
depending only on K and the data of Z (and not on A).

Proof. Let pi = p(vi) for i ∈ {1, . . . , 4}. Our assumption on the combina-
torial separation of the vertices vi implies that the points pi are distinct and
[p1, p2, p3, p4] is well-defined.

If [v1, v2, v3, v4]Q is small, then there exist chains A, B in G with
v1, v3 ∈ A and v2, v4 ∈ B for which modQ(A, B) is small, quantitatively.

We may assume dist(A, B) ≥ M+4K . Otherwise, A′ = NM+4K (A) and
B′ = NM+4K (B) have nonempty intersection which by Lemma 7.5 leads to

1 ≤ modQ(A′, B′) ≤ C(K, M, Q)modQ(A, B).

Since A is a chain connecting v1 and v3, there are elements ui in A
with u1 = v1 ∼ · · · ∼ un = v3. Then Uui ∩ Uui+1 �= ∅ and we can
find a path γi ⊂ StK(ui) ∪ StK (ui+1) connecting p(ui) and p(ui+1) for
i ∈ {1, . . . , n − 1}. The union E = γ1 ∪ · · · ∪ γn−1 is a continuum joining
p1 and p3 with

E ⊂
n⋃

i=1

StK (ui).

If u ∈ VE , then Uu ∩Uw �= ∅ for some w ∈ NK (A). Hence VE ⊂ N2K (A).
A continuum F in Z connecting p2 and p4 with VF ⊂ N2K (B) can be
constructed in the same way. Then dist(VE, VF ) ≥ dist(A, B) − 4K ≥ M
and so from our hypotheses and Lemma 7.5 we conclude

Φ(∆(E, F)) ≤ modQ(VE, VF ) � modQ(A, B).

Since modQ(A, B) is small, we see that ∆(E, F) is large, quantitatively.
Lemma 2.10 implies that [p1, p2, p3, p4] is small, quantitatively. ��

Now we can prove a discrete version of Proposition 9.1.
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Proposition 9.8. Let Q ≥ 1, and let X and Y be metric spaces with K-
approximations A = (G, p, r,U) and A′ = (G, p′, r ′,U′), respectively,
whose underlying graph G = (V,∼) is the same. Suppose X is connected,
and X and A satisfy condition (9.7) for some M > 0 and some function Φ.
Suppose Y is L LC and doubling, and Y and A′ satisfy condition (9.5)
for some L > 0 and some function Ψ. Assume W ⊂ V is a maximal set of
vertices with mutual combinatorial distance at least s, where s ≥ 2(K+L).
Let A = p(W ), B = p′(W ) and define

f : A → B, x �→ p′(p−1(x)).

Then f is η-quasi-Möbius with η depending only on K, Q, L, M, s,
Φ, Ψ, and the data of Y (i.e., the parameters in the L LC and doubling
conditions).

Since the concept of modulus on a graph is independent of the concept of
a K -approximation, the analog of (9.2) in this proposition is the assumption
that the underlying graphs of A and A′ are equal.

By the remarks following Propositions 9.4 and 9.6, this proposition can
be applied if A and A′ are K -approximations of a Q-regular Q-Loewner
space X with Q > 1 and of a Q ′-regular space Y with Q ′ ≤ Q, respectively.
This special case corresponds to the situation in Proposition 9.1.

Proof. By properties (2) and (3) of a K -approximation, the restrictions p′|W
and p|W are injective. Hence f is well-defined and a bijection.

By Lemma 4.7 the set A is weakly λ-uniformly perfect with λ depending
only on s and K . Since Y is doubling, the subset B is also doubling, quantita-
tively. Hence by Lemma 3.3, in order to establish that f is uniformly quasi-
Möbius it is enough to show that if (x1, x2, x3, x4) is a four-tuple of distinct
points in A, and [ f(x1), f(x2), f(x3), f(x4)] is small, then [x1, x2, x3, x4] is
small, quantitatively. To see this let vi = p−1(xi) = p′−1

( f(xi)). Then
Proposition 9.4 shows that if [ f(x1), f(x2), f(x3), f(x4)] is small, then
[v1, v2, v3, v4]Q is also small quantitatively. This in turn implies by Propo-
sition 9.6 that [x1, x2, x3, x4] is small, quantitatively. ��

As already mentioned, condition (9.5) is true if Q > 1 and Z is Q ′-
regular with Q ′ ≤ Q. This is proved in the following proposition.

Proposition 9.9. Suppose Q > 1 and let (Z, d, µ) be a metric meas-
ure space which is L LC and Q ′-regular for some Q ′ ≤ Q. Let A =
(G, p, r,U) be a K-approximation of Z. Then there exists a function
Ψ : R+ → (0,∞] with limt→∞Ψ(t) = 0 depending only on K, Q and
the data of Z such that

modQ(VE, VF ) ≤ Ψ(∆(E, F)), (9.10)

whenever E, F ⊂ Z are continua not contained in any K-star.
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Proof. We may assume ∆(E, F) ≥ 2 and R := diam(E) ≤ diam(F). Fix
z0 ∈ E. Since A is a K -approximation, we have that

|d(z0, p(u)) − d(z0, p(v))| ≤ C1r(u) for u, v ∈ V, u ∼ v, (9.11)

where C1 = C1(K ). If d(z0, p(v)) < r(v) for some v ∈ V , then Uv∩E �= ∅.
Hence r(v) ≤ C2diam(E), where C2 = C2(K ) > 0, because E is not
contained in StK(v). Therefore, there exists C3 = C3(K ) > 0 such that

r(v) ≤ C3(R + d(z0, p(v))) for v ∈ V. (9.12)

Together with (9.11) this shows that there exists C4 = C4(K ) ≥ 1 such that

C−1
4 ≤ R + d(z0, p(v))

R + d(z0, p(u))
≤ C4 for u, v ∈ V, u ∼ v. (9.13)

Now define w : V → R+ as follows. Let

w(v) = r(v)

log(∆(E, F))(R + d(z0, p(v)))

if 0 ≤ d(z0, p(v)) ≤ R∆(E, F) and let w(v) = 0 otherwise. There exists
N ∈ N such that

2N−1 ≤ ∆(E, F) < 2N . (9.14)

Let Bi := B(z0, 2i R) for i ∈ {0, . . . , N} and let B−1 := ∅. By prop-
erty (2) of a K -approximation and by (9.12) there exist C5 > 0 depend-
ing only on the data such that Uv ⊂ B(z0, C52i R) whenever v ∈ V and
p(v) ∈ Bi. Using (9.12) and the Q ′-regularity of µ we obtain for the total
mass of w

∑
v∈V

w(v)Q ≤
N∑

i=0

∑
p(v)∈Bi\Bi−1

w(v)Q

� 1

(log ∆(E, F))Q

N∑
i=0

∑
p(v)∈Bi\Bi−1

r(v)Q ′

(R + d(z0, p(v)))Q ′

� 1

(log ∆(E, F))Q

N∑
i=0

∑
p(v)∈Bi

µ(Uv)

2iQ ′ RQ ′

� 1

(log ∆(E, F))Q

N∑
i=0

µ(B(z0, C52i R))

2iQ ′ RQ ′

� N + 1

(log ∆(E, F))Q
� 1

(log ∆(E, F))Q−1
.

In the last inequality we used (9.14) and the fact ∆(E, F) ≥ 2.
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On the other hand, let u1 ∼ · · · ∼ un be an arbitrary chain with u1 ∈ VE
and un ∈ VF . Let di := R+d(z0, p(ui)), i ∈ {1, . . . , n}. Then there is a larg-
est number k ∈ N, k ≤ n, such that d(z0, p(ui)) ≤ R∆(E, F) = dist(E, F)
for i ∈ {1, . . . , k}.

We claim dk � R∆(E, F). For otherwise, d(z0, p(uk)) < dk <<
R∆(E, F). If k = n this implies r(uk)  diam(Uuk) � R∆(E, F), be-
cause Uuk then meets F and contains p(uk), which is close to E. But
r(uk) � R∆(E, F) is also true if k < n, because then by (9.11) we have
r(uk) � |dk+1 − dk|  d(z0, p(uk+1)) > R∆(E, F).

Now the inequalities d(z0, p(uk)) << R∆(E, F) and r(uk) �R∆(E, F)
are incompatible if ∆(E, F) is larger than a constant depending on the data,
which we may assume. For in this case E ⊂ Nr(uk)/K(Uuk) ⊂ StK (uk) which
is a contradiction.

Note that since r(v) � diam(E) for v ∈ VE , we have d1 � R.
Hence log(dk/d1) � log ∆(E, F), and by using (9.11) and (9.13) we
arrive at

n∑
i=1

w(vi) ≥ 1

log ∆(E, F)

k∑
i=1

r(ui)

di

� 1

log ∆(E, F)

k−1∑
i=1

|di+1 − di |
di ∧ di+1

≥ 1

log ∆(E, F)

k−1∑
i=1

∫ di+1

di

ds

s

= log(dk/d1)

log ∆(E, F)
� 1.

This and the mass bound for w show

modQ(VE, VF ) � 1

(log ∆(E, F))Q−1
.

The assertion follows from this and Q > 1. ��
In the previous proof we used (9.12) in the second of the inequalities

used to derive the mass bound for w. If we do not use (9.12), then the proof
actually shows

modQ(VE, VF ) ≤
(

mesh(A)

diam(E) ∧ diam(F)

)Q−Q ′ C

(log ∆(E, F))Q−1
,

(9.15)

where C is a constant depending only on K , Q and the data of Z. This
inequality will be useful in the proof of Theorem 1.2.

The goal in the proofs of Theorems 1.1 and 1.2 is the construction of
a quasisymmetric map between two spaces. Based on Proposition 9.8 one
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can prove a general result in this direction if one considers K -approximations
of the spaces with mesh size tending to zero.

Proposition 9.16. Let Q, K, K ′ ≥ 1, and let (X, dX ) and (Y, dY ) be com-
pact metric spaces. Assume that Ak = (Gk, pk, rk,Uk) and A′

k = (Gk, p′k,
r ′k,U

′
k) for k ∈ N are K-approximations of X and K ′-approximations of Y ,

respectively, whose underlying graphs Gk = (V k,∼) are the same.
Suppose that X is connected, and that there exist M > 0 and some

function Φ such that X and Ak for k ∈ N satisfy condition (9.7). Suppose Y
is L LC and doubling, and that there exist L > 0 and some function Ψ such
that Y and A′

k for k ∈ N satisfy condition (9.5).
Finally, suppose that there exist λ > 0 and vertices vk

1, v
k
2, v

k
3 ∈ V k for

k ∈ N such that

dX
(

pk
(
vk

i

)
, pk

(
vk

j

)) ≥ λdiam(X) and dY
(

p′k
(
vk

i

)
, p′k

(
vk

j

)) ≥ λdiam(Y )

for k ∈ N, i, j ∈ {1, 2, 3}, i �= j.
If limk→∞ mesh(Ak) = 0, then there exists an η1-quasisymmetric map

f : X → Y, where η1 depends only on the data.
If limk→∞ mesh(A′

k) = 0, then there exists an η2-quasisymmetric map
g : Y → X, where η2 depends only on the data.

The data here consist of K , K ′, L , M, Q, λ, the functions Φ and Ψ, and
the L LC and the doubling constants of Y . Note that we do not claim that
f or g are surjective. If both mesh(A′

k) → 0 and mesh(A′
k) → 0, then the

maps f and g can be constructed so that they are inverse to each other. In
this case the spaces X and Y are quasisymmetrically equivalent.

The natural question arises what the relation of the conditions
mesh(Ak) → 0 and mesh(A′

k) → 0 is. We will later see (cf. Proposi-
tion 11.7) that even under slightly weaker assumptions mesh(A′

k) → 0
actually implies mesh(Ak) → 0. The other direction is less clear.

We will apply this proposition in the case that X and Y are topological
2-spheres. In this case f and g are forced to be surjective, since a sphere
can not be embedded into a proper subset of an another sphere of the same
dimension (this fact easily follows from invariance of domain).

Proof. Increasing K or K ′ to K ∨ K ′, we may assume K = K ′.
If mesh(Ak) → 0 or mesh(A′

k) → 0, then the mutual combinatorial
distance of the vertices vk

1, v
k
2, v

k
3 becomes arbitrarily large as k →∞. So if

k is sufficiently large, k ≥ k0 say, then there exists a maximal (2K + 2L)-
separated set Wk ⊂ V k containing vk

1, v
k
2, v

k
3. Assume k ≥ k0 for the rest of

the proof.
Let Ak := pk(Wk), Bk := p′k(Wk) and fk : Ak → Bk, x �→ p′k(p−1

k (x)).
Then by Proposition 9.8, the maps fk are η̃1-quasi-Möbius with η̃1 depend-
ing on the data (and not on k). Hence the inverse maps gk = f −1

k : Bk → Ak

are η̃2-quasi-Möbius with η̃2 depending on the data. Moreover, let xk
i :=

p(vk
i ) and yk

i := p′k(v
k
i ) for i ∈ {1, 2, 3}. Then dX(xk

i , xk
j) ≥ λdiam(X) and
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dY (yk
i , yk

j) ≥ λdiam(Y ) for i, j ∈ {1, 2, 3}, i �= j, and we have fk(xk
i ) = yk

i

and gk(yk
i ) = xk

i .
Every vertex v ∈ V k has combinatorial distance at most 2K + 2L to

the set Wk. Moreover, the sets Uv, v ∈ V k, form a cover of X. It fol-
lows from the properties of a K -approximation that every point in X lies
within distance C(K, L)mesh(Ak) of the set Ak . So if mesh(Ak)→ 0, then
supx∈X dist(x, Ak)→ 0 as k →∞. In this case the maps fk subconverge to
an η̃1-quasi-Möbius map f : X → Y by Lemma 3.1.

Passing to appropriate subsequences we may assume that xk
i → xi ∈ X

and yk
i → yi ∈ Y as k → ∞, and f(xi) = yi for i ∈ {1, 2, 3}. Then

dX(xi, x j) ≥ λdiam(X) and dX(yi, y j) ≥ λdiam(Y ) for i, j ∈ {1, 2, 3},
i �= j. It follows from remark (4) in Sect. 3 that f is a η1-quasisymmetric
with η1 depending on λ and η̃1, and hence only on the data.

If mesh(A′
k) → 0, then by considering the maps gk one can construct

an η2-quasisymmetric map g : Y → X with η2 depending on the data in
a similar way.

If both mesh(Ak) → 0 and mesh(A′
k) → 0, then we first find a sub-

sequence ( fkl )l∈N of the sequence fk converging to a map f . Then a sub-
sequence of the sequence (gkl )l∈N will converge to a map g. Then f and g
will be quasisymmetries as desired, and we have in addition that f and g
are inverse to each other. ��

10. The proofs of Theorems 1.1 and 1.2

We will derive our Theorems 1.1 and 1.2 from more general theorems
that give necessary and sufficient conditions for a metric 2-sphere to be
quasisymmetric to S2. In Theorems 10.1 and 10.4 we will assume that Z is
linearly locally connected and doubling. These conditions are necessary for
Z to be quasisymmetric to S2. Moreover, by Corollary 6.9, a sequence of
K -approximations as specified always exists under these necessary a priori
assumptions.

Theorem 10.1. Let Z be metric space homeomorphic toS2 which is linearly
locally connected and doubling. Suppose K ≥ 1 and Ak = (Gk, pk, rk,Uk)
for k ∈ N are K-approximations of Z whose graphs Gk = (V k,∼) are
combinatorially equivalent to 1-skeletons of triangulations Tk of S2 and for
which

lim
k→∞

mesh(Ak) = 0. (10.2)

Suppose there exist numbers Q ≥ 2, k0 ∈ N, M > 0, and a positive
decreasing function Φ : R+ → R+ satisfying the following property:

If k ≥ k0 and E, F ⊂ Z are continua with dist(V k
E, V k

F ) ≥ M, then

Φ(∆(E, F)) ≤ modGk
Q

(
V k

E, V k
F

)
. (10.3)
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Then there exists an η-quasisymmetric homeomorphism f : Z → S2 with η
depending only on the data.

Conversely, if Z is quasisymmetric to S2, then condition (10.3) for the
given sequence Ak is satisfied for Q = 2, some numbers k0 ∈ N, M > 0,
and an appropriate function Φ.

The data in the first part of the theorem are Q, K , M, Φ, and the L LC
and doubling constants of Z.

Proof. Fix a triple (z1, z2, z3) of distinct points in Z such that d(zi, z j) ≥
diam(Z)/2 for i, j ∈ {1, 2, 3}, i �= j. Since mesh(Ak)→ 0, for sufficiently
large k, say k ≥ k1 ≥ k0, we can find vk

i ∈ V k such that for xk
i := pk(v

k
i ) we

have d(zi, xk
i ) < diam(Z)/8 for i ∈ {1, 2, 3}. Then d(xk

i , xk
j) ≥ diam(Z)/4

for i, j ∈ {1, 2, 3}, i �= j. Assume k ≥ k1 for the rest of the proof.
The triangulation Tk can be realized as a circle packing on S2 (Sect. 5).

We normalize the circle packing so that the vertices vk
1, v

k
2, v

k
3 correspond

to points y1, y2, y3 in S2 equally spaced on some great circle. The circle
packings induce canonical K ′-approximations A′

k = (Gk, p′k, r ′k,U
′
k) of S2,

where K ′ depends only on the valence of Gk and hence only on K . Then
p′k(v

k
i ) = yi and so the vertices vk

i satisfy the condition in Proposition 9.16,
where λ is a numerical constant.

Since S2 is L LC and 2-regular, and Q ≥ 2, we see by Proposition 9.9
that condition (9.5) is true for the space S2 and the K ′-approximations
A′

k with L = K ′ and a uniform function Ψ independent of k. There-
fore, the hypotheses of Proposition 9.16 are satisfied for X = Z, Y = S2

and our sequence of approximations. We conclude that there exists an η-
quasisymmetry f : Z → S2 where η depends only on the data. Since Z
is a topological sphere, this embedding has to be surjective and is hence
a homeomorphism.

Conversely, assume that there exists an η-quasisymmetry f : Z → S2.
Since (10.2) implies the condition (4.2) in Lemma 4.1 for sufficiently
large k, say for k ≥ k0, we can use the quasisymmetric images of the
K -approximations Ak as in Lemma 4.1 to obtain K ′-approximations A′

k =
(Gk, p′k, r ′k,U

′
k) of S2. Here K ′ depends only on K and η.

Since S2 is a 2-regular 2-Loewner space, by Proposition 8.1 condition
(9.7) is true for the space S2 and the K ′-approximations A′

k with Q = 2,
the constant M = 4K ′ and a function Φ′ independent of k.

Now let k ≥ k0, and suppose that E, F ⊂ Z are continua such that
dist(V k

E, V k
E ) ≥ M. The underlying graphs of Ak and A′

k are the same.
Moreover, the combinatorics of the covers Uk and U′

k correspond under
the mapping f . This shows that for E ′ = f(E) and F ′ = f(F) we have
V k

E = V k
E′ , V k

F = V k
F ′ , and dist(V k

E, V k
F ) = dist(V k

E′, V k
F ′) ≥ M, where the

sets V k
E , et cetera, are interpreted with respect to the appropriate approxi-

mations. Hence we get

Φ′(∆(E ′, F ′)) ≤ modGk
2

(
V k

E′, V k
F ′

) = modGk
2

(
V k

E, V k
F

)
.



Quasisymmetric parametrizations of two-dimensional metric spheres 169

Condition (10.3) for an appropriate function Φ independent of k will follow
from this, if we can show that ∆(E, F) is large if and only if ∆(E ′, F ′) is
large, quantitatively. But this last statement follows from the quasisymmetry
of f and the discussion after Lemma 3.2. ��

As an immediate application of this theorem we get a proof of Theo-
rem 1.2.

Proof of Theorem 1.2. Suppose Z is Q-regular and Q-Loewner for
Q ≥ 2. Then Z is L LC and doubling. Corollary 6.9 shows that there
exist K ≥ 1 and a sequence of K -approximations Ak = (Gk, pk, rk,Uk)
whose graphs Gk = (V k,∼) are combinatorially equivalent to 1-skeletons
of triangulations Tk of Z and for which (10.2) is true. Now the Q-regularity
of Z, Proposition 8.1, and the Q-Loewner property of Z show that condition
(9.7) is true for the K -approximations Ak with M = 4K and a function Φ
independent of k. Theorem 10.1 implies that there exists a quasisymmetric
homeomorphism f : Z → S2. A result by Tyson [34] shows that if a Q-
regular Q-Loewner space is quasisymmetrically mapped onto a Q ′-regular
space, then Q′ ≥ Q. But S2 is 2-regular, and so we can apply this for
Q′ = 2 and get 2 ≥ Q. Since also Q ≥ Q ′ = 2 by assumption, we must
have Q = 2. The proof of Theorem 1.2 is complete. ��

It may be worthwhile to point out that in the previous proof an argument
can be given that avoids invoking Tyson’s theorem.

Suppose Z is Q-regular Q-Loewner space and f : Z → S2 a quasisym-
metric homeomorphism. Let Ak be a sequence of K -approximations of Z
with underlying graphs Gk = (V k,∼) such that limk→∞ mesh(Ak) = 0.
Let A′

k be the K ′-approximation of S2 obtained as the image of Ak under f .
Then limk→∞ mesh(A′

k) = 0. Let E, F ⊂ Z be two disjoint continua and
E ′ := f(E), F ′ := f(F). Then by Proposition 8.1 and by the remark
following the proof of Proposition 9.9 we have for sufficiently large k

Φ(∆(E, F)) ≤ ModQ(E, F) � modGk
Q

(
V k

E, V k
F

) = modGk
Q

(
V k

E′, V k
F ′

)

�
(

mesh(A′
k)

diam(E ′) ∧ diam(F ′)

)Q−2 1

(log ∆(E ′, F ′))Q−1
.

Here Φ is a positive function provided by the Q-Loewner property of Z.
Moreover, the multiplicative constants implicit in this inequality are in-
dependent of E, F and k. Note that the additional assumptions on the
combinatorial separation in Propositions 8.1 and 9.9 are true for our con-
tinua if k is sufficiently large. If Q > 2 then the last term in the inequality
tends to zero, since the mesh size tends to zero. But this is impossible, since
the first term is independent of k and positive. Hence Q = 2.

Theorem 10.4. Let Z be metric space homeomorphic toS2 which is linearly
locally connected and doubling. Suppose K ≥ 1 and Ak = (Gk, pk, rk,Uk)
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for k ∈ N are K-approximations of Z whose graphs Gk = (V k,∼) are
combinatorially equivalent to 1-skeletons of triangulations Tk of S2 and for
which

lim
k→∞

mesh(Ak) = 0. (10.5)

Suppose that there exist numbers k0 ∈ N, L > 0, and a function
Ψ : R+ → (0,∞] with limt→∞Ψ(t) = 0 satisfying the following prop-
erty:

If k ≥ k0 and E, F ⊂ Z are continua not contained in any L-star of Ak,
then

modGk
2

(
V k

E, V k
F

) ≤ Ψ(∆(E, F)). (10.6)

Then there exists an η-quasisymmetric homeomorphism g : Z → S2

with η depending only on the data.
Conversely, if Z is quasisymmetric to S2, then condition (10.6) for the

given sequence Ak is satisfied for some numbers k0 ∈ N, L > 0, and an
appropriate function Ψ.

The data in the first part of the theorem are K , L , Ψ, and the L LC and
doubling constants of Z.

Proof. The proof of this theorem is very similar to the proof of Theo-
rem 10.1. For the sufficiency part note again that the triangulation Tk can
be realized as a normalized circle packing on S2. The circle packings in-
duce canonical K ′-approximations A′

k = (Gk, p′k, r ′k,U
′
k) of S2, where K ′

depends only on K .
As in the proof of Theorem 10.1, for sufficiently large k we can find

vertices vk
1, v

k
2, v

k
3 ∈ V k satisfying the condition in Proposition 9.16 where

λ > 0 is a numerical constant. Since S2 is 2-regular and 2-Loewner, Propo-
sition 8.1 implies that condition (9.7) is true for the space S2 and the
K ′-approximations A′

k with M = 4K ′ and a function Φ independent of k.
It follows that the hypotheses of Proposition 9.16 are satisfied for X = S2

and the K ′-approximations A′
k and Y = Z and the K -approximations Ak.

(Note that the roles of Ak and A′
k in this proof and in Proposition 9.16

are reversed). Since mesh(Ak) → 0 it follows that there exists an η-
quasisymmetry g : Z → S2 where η depends only on the data. Again g
has to be a homeomorphism.

For the converse assume that there exists an η-quasisymmetry g : Z→ S2.
Again for sufficiently large k we obtain K ′-approximations A′

k of S2 with
K ′ = K ′(η, K ) as the quasisymmetric images under g of the K -approxi-
mations Ak. The sphere S2 is 2-regular, so by Proposition 9.9 we have
condition (9.5) for Q = 2, L := K ′ and an appropriate function Ψ′ inde-
pendent of k. Now suppose E, F are continua not contained in any L-star
with respect to Ak. We have A′

k-StL(v) = g(Ak-StL(v)). This implies that
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E ′ = g(E) and F ′ = g(F) are not contained in any L-star with respect to
A′

k. Hence

modGk
2

(
V k

E, V k
F

) = modGk
2

(
V k

E′, V k
F ′

) ≤ Ψ′(∆(E ′, F ′)).

Now ∆(E ′, F ′) is large if and only if ∆(E, F) is large, quantitatively.
Hence condition (10.6) follows with L = K ′, and an appropriate function
Ψ independent of k. ��
Proof of Theorem 1.1. As we remarked in the introduction, only the suf-
ficiency part of Theorem 1.1 demands a proof. Since linear local con-
tractibility implies linear local connectivity quantitatively for topological
2-spheres, we can assume that Z is L LC. We will show that there exists an
η-quasisymmetric homeomorphism g : Z → S2, where η depends only on
the data. Here we call the L LC constant, and the constant that enters the
condition for 2-regularity (where µ = H2) the data of Z.

Note that Z is doubling with a constant only depending on the data.
Corollary 6.9 shows that there exist K ≥ 1 depending on the data and
a sequence of K -approximations Ak = (Gk, pk, rk,Uk) whose graphs Gk =
(V k,∼) are combinatorially equivalent to 1-skeletons of triangulations Tk
of Z and for which condition (10.5) is true. Since Z is L LC and 2-regular,
Proposition 9.9 shows that the condition (10.6) is true for L = K and an
appropriate function Ψ depending on the data. Now Theorem 10.4 shows
that there exists a η-quasisymmetric homeomorphism g : Z → S2, where η
depends only on the data. ��

Theorem 1.1 is quantitative as the proof above shows. Namely, if Z is
a metric space homeomorphic to S2 that is Ahlfors 2-regular and L LC,
then there exists an η-quasisymmetric homeomorphism g : Z → S2, where
η depends only on the data, i.e., the constants in the Ahlfors 2-regularity
and the L LC conditions. Conversely, if Z is a metric space for which there
exists an η-quasisymmetric homeomorphism g : Z → S2, then Z is λ-L LC
with λ only depending on η.

11. Asymptotic conditions

Cannon’s paper [7] provides a framework that allows one to speak of modu-
lus for subsets of a topological space. A shingling S of a topological space Z
is a locally finite cover consisting of compact connected subsets of Z. When
Z is homeomorphic to S2 and R ⊂ Z is an annulus, Cannon defines invari-
ants M(S, R) and m(S, R) which are combinatorial analogs for the classical
moduli of annuli. He then studies a sequence of shinglings S j of Z with
mesh size tending to zero. His main theorem—the combinatorial Riemann
mapping theorem—is a necessary and sufficient condition for the existence
of a homeomorphism f : Z → S2 such that for every annulus R ⊂ Z, the
moduli M(S j, R) and m(S j, R) agree with the standard 2-modulus of f(R)
to within a fixed multiplicative factor, for sufficiently large j.
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The combinatorial Riemann mapping theorem is similar in spirit to
Theorems 10.1 and 10.4: all three results give necessary and sufficient
conditions for a “conformally flavored” structure on the 2-sphere to be
equivalent to the standard structure modulo a homeomorphism.

Any of these theorems can be used to give necessary and sufficient
conditions for a Gromov hyperbolic group to admit a discrete, cocompact,
and isometric action on hyperbolic spaceH3 . The paper [11] uses [7] and [30,
Corollary, p. 468] to give such conditions; the conditions in [11] are in
turn applied in [10]. Our Theorems 10.1 or 10.4 can be combined directly
with Sullivan’s theorem. The point here is that the action G � ∂∞G
of a non-elementary hyperbolic group on its boundary is by uniformly
quasi-Möbius homeomorphisms, and if one conjugates this action by a
quasisymmetric homeomorphism ∂∞G → S2, the resulting action G � S2

is also uniformly quasi-Möbius, in particular uniformly quasiconformal, so
that [30] may be applied.

On the other hand, there are significant differences between our ap-
proach and Cannon’s approach. Cannon’s hypotheses and conclusions do
not involve metric information, and only relate to the limiting behavior of
the combinatorial moduli. In contrast, Theorems 10.1 and 10.4 hypothesize
inequalities between relative distance (which is metric based) and combi-
natorial modulus which hold uniformly for every K -approximation in the
given sequence; and they assert that the metric space is quasisymmetric to
S2, which is a metric conclusion.

The interesting parts of Theorems 10.1 and 10.4 are the sufficient con-
ditions. An upper bound for a modulus is easier to establish than a lower
bound, because for a lower bound an inequality for the total mass of all
admissible test functions has to be shown whereas an upper bound already
follows from a mass bound for one test function. In this respect, Theo-
rem 10.4 seems to be more useful, because its hypotheses require upper
modulus bounds. In view of Cannon’s work it seems worthwhile to find
a sufficient condition in the spirit of Theorem 10.4 that works with an
asymptotic condition for the graph modulus as in (10.6). The following
theorem provides such a result where we further weaken the requirements
for which sets E and F an asymptotic modulus inequality has to hold.

Theorem 11.1. Let Z be a metric space homeomorphic to S2 which is
linearly locally connected and doubling. Suppose K ≥ 1, and Ak =
(Gk, pk, rk,Uk) for k ∈ N are K-approximations of Z whose graphs
Gk = (V k,∼) are combinatorially equivalent to 1-skeletons of triangu-
lations Tk of S2 and for which

lim
k→∞

mesh(Ak) = 0. (11.2)

Suppose there exist numbers C > 0 and λ > 1 with the following
property: If B = B(a, r) and λB = B(a, λr) are balls in Z, then we have

lim sup
k→∞

modGk
2

(
V k

B, V k
Z\λB

)
< C. (11.3)
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Then there exists an η-quasisymmetric homeomorphism g : Z → S2 with η
depending only on the data.

Conversely, if Z is quasisymmetric to S2, then there exist C > 0 and
λ > 1 such that condition (11.3) is satisfied for the given sequence Ak.

The data are K , C, λ, the L LC constant, and the doubling constant.
If B is a ball in Z and λ > 1, let A be the “annulus” A = λB \ B. The

2-modulus of A can be defined as the 2-modulus of the path family Γ joining
the disjoint sets B and Z \ λB. The appropriate combinatorial version of
this modulus with respect to the K -approximation Ak is modGk

2 (V k
B, V k

Z\λB)
which appears in (11.3). So this inequality essentially says that the combi-
natorial analog of the 2-modulus of A is asymptotically bounded above by
a fixed constant.

We now formulate a version of Theorem 11.1 which does depend on the
language of K -approximations.

Corollary 11.4. Let Z be a doubling, linearly locally connected metric
space homeomorphic to S2. Suppose rk > 0 for k ∈ N and limk→∞ rk = 0,
and for each k ∈ N, V̂k ⊂ Z is a maximal rk-separated set. We let Ĝk be
the incidence graph of the cover {B(v, rk)}v∈V̂k

, and for each subset A ⊂ Z

we set V̂ k
A := {v ∈ V̂k : A ∩ B(v, rk) �= ∅}. Then Z is quasisymmetric to

S2 if and only if there exist constants C > 0 and λ > 1 with the following
property: if B = B(a, r) and λB = B(a, λr) are balls in Z, then we have

lim sup
k→∞

modĜk
2

(
V̂ k

B, V̂ k
λB

)
< C.

Proof. We give a proof, omitting some technical details.
By applying Proposition 6.7 to the rk-separated subset V̂k ⊂ Z, one

obtains a K -approximation Ak = (Gk, pk, rk,Uk), where Gk = (Vk,∼)

and V̂k ⊂ Vk. It follows readily from properties (iii)–(iv) of Proposition 6.7
that there are constants C1, C2 > 0 independent of k such that for all k
the inclusion V̂k → Vk is C1-bilipschitz onto its image (with respect to the
combinatorial distances in the graphs Ĝk and Gk respectively), and every
v ∈ Vk is within combinatorial distance at most C2 from a vertex in V̂k.
Using this and the fact that the graphs Ĝk and Gk have uniformly bounded
valence, one easily checks that for all pairs of subsets E, F ⊂ Z, the

quantities lim supk→∞ modGk
2 (V k

E, V k
F) and lim supk→∞ modĜk

2 (V̂ k
E, V̂ k

F) are
quantitatively equivalent. Hence the corollary reduces to Theorem 11.1. ��

In order to prove Theorem 11.1 we have to revisit some of the material
in Sect. 9 and prove asymptotic versions. The next proposition should be
compared with Proposition 9.4.

Proposition 11.5. Let Z be a locally compact metric space which is λ-
L LC, λ ≥ 1. Suppose K ≥ 1, and Ak = (Gk, pk, rk,Uk) for k ∈ N
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are K-approximations of Z with graphs Gk = (V k,∼). Assume that
mesh(Ak) → 0 as k →∞.

Let Q ≥ 1, and suppose that there exists a function Ψ : R+ → (0,∞]
with limt→∞Ψ(t) = 0 such that

lim sup
k→∞

modGk
Q

(
V k

E, V k
F

) ≤ Ψ(∆(E, F)), (11.6)

whenever E, F ⊂ Z are disjoint continua.
Then there exists a function φ : R+0 → [0,∞] with limt→0 φ(t) =

φ(0) = 0 depending only on K, Q, Ψ and the data of Z with the following
property:

Suppose (z1, z2, z3, z4) is a four-tuple of points in Z with {z1, z3} ∩
{z2, z4} = ∅, and assume that for k ∈ N and i ∈ {1, 2, 3, 4} we have
vertices vk

i ∈ V k such that pk(v
k
i )→ zi for k →∞, i ∈ {1, 2, 3, 4}. Then

lim sup
k→∞

[
vk

1, v
k
2, v

k
3, v

k
4

]Gk

Q
≤ φ([z1, z2, z3, z4]).

We want to allow the possibility z1 = z3 or z2 = z4 here. In this case we
set [z1, z2, z3, z4] = 0, which is a consistent extension of the definition of
the cross-ratio. Note that [vk

1, v
k
2, v

k
3, v

k
4]Gk

Q is a cross-ratio with respect to Gk.

The proposition says that if [z1, z2, z3, z4] is small, then [vk
1, v

k
2, v

k
3, v

k
4]Gk

Q is
asymptotically small, quantitatively.

Proof. If [z1, z2, z3, z4] is small, then by Lemma 2.10 there exist continua
E ′ and F ′ with z1, z3 ∈ E, z2, z4 ∈ F and ∆(E ′, F ′) large, quantitatively.
If z1 = z3 or z2 = z4 then ∆(E ′, F ′) can be made arbitrarily large. Since
Z is locally compact and L LC and hence locally connected, we can find
compact connected neighborhoods E and F of E ′ and F ′, respectively, such
that ∆(E, F) is large, quantitatively. Since mesh(Ak) → 0 we will have
pk(v

k
1) ∈ Uvk

1
∩E and pk(v

k
3) ∈ Uvk

3
∩E for large k. In particular, vk

1, v
k
3 ∈ V k

E .

Similarly, vk
2, v

k
4 ∈ V k

F for large k. The rest of the proof now proceeds as
the proof of Proposition 9.4. For large k we can find chains Ak ⊂ NK (V k

E )

connecting vk
1, v

k
3 and chains Bk ⊂ NK (V k

F ) connecting vk
2, v

k
4. Then by

Lemma 7.5 we have[
vk

1, v
k
2, v

k
3, v

k
4

]Gk

Q
≤ modGk

Q (Ak, Bk) ≤ C(K )modGk
Q

(
V k

E, V k
F

)
.

So our assumptions imply

lim sup
k→∞

[
vk

1, v
k
2, v

k
2, v

k
3

]Gk

Q
≤ C(K )Ψ(∆(E, F)).

Since ∆(E, F) is large and Ψ(t) → 0 as t → ∞ we get the desired
quantitative conclusion. ��

The following proposition corresponds to one of the parts of Proposi-
tion 9.16. We have replaced condition (9.5) by the asymptotic condition
(11.6).
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Proposition 11.7. Let Q, K, K ′ ≥ 1, and let (X, dY ) and (Y, dY ) be com-
pact metric spaces. Assume that Ak = (Gk, pk, rk,Uk) and A′

k = (Gk, p′k,
r ′k,U

′
k) for k ∈ N are K-approximations of X and K ′-approximations of Y ,

respectively, whose underlying graphs Gk = (V k,∼) are the same.
Suppose X is connected, and there exist M > 0 and some function Φ

such that X and Ak for k ∈ N satisfy condition (9.7). Suppose Y is L LC
and doubling, and Y and A′

k satisfy condition (11.6) for some function Ψ.
Suppose that there are vertices vk

1, v
k
2, v

k
3 ∈ V k for k ∈ N such that for

some constant λ > 0 we have

dX
(

pk
(
vk

i

)
, pk

(
vk

j

)) ≥ λdiam(X) and dY
(

p′k
(
vk

i

)
, p′k

(
vk

j

)) ≥ λdiam(Y )

for k ∈ N, i, j ∈ {1, 2, 3}, i �= j.
If limk→∞ mesh(A′

k) = 0, then there exists an η-quasisymmetric map
f : X → Y, where η depends only on the data.

The data here consist of K , K ′, Q, M, λ, the functions Φ and Ψ, and the
L LC and the doubling constants of Y .

In the proof we will show that mesh(Ak) → 0. Since condition (9.5)
is stronger than condition (11.6), this justifies the remark after Proposi-
tion 9.16. Namely, that that under the assumptions of this proposition we
have that mesh(A′

k)→ 0 implies mesh(Ak)→ 0.

Proof. 1. In this proof we will call distortion functions those functions
φ : R+0 → [0,∞] for which φ(t) → φ(0) = 0 as t → 0. We will first
establish the existence of a distortion function φ1 depending on the data
with the following property. If z1, z3 ∈ X, w1, w3 ∈ Y , uk

1, uk
3 ∈ V k for

k ∈ N, and pk(uk
i )→ zi and p′k(u

k
i )→ wi as k →∞ for i ∈ {1, 3}, then

dX(z1, z3)

diam(X)
≤ φ1

(
dY (w1, w3)

diam(Y )

)
. (11.8)

To prove this we may assume dY (w1, w3) < (λ/3)diam(Y ). Hence
if wk

i := p′k(u
k
i ) for i ∈ {1, 3} we have dY (wk

1, w
k
3) < (λ/3)diam(Y )

for large k. For such k there will be at least two among the vertices
vk

1, v
k
2, v

k
3, call them uk

2 and uk
4, such that we have dist({wk

1, w
k
3}, {wk

2, w
k
4}) ≥

(λ/3)diam(Y ), where we set wk
i = p′k(u

k
i ) also for i ∈ {2, 4}. Then for large

k we obtain [
wk

1, w
k
2, w

k
3, w

k
4

] ≤ C(λ)
dY

(
wk

1, w
k
3

)
diam(Y )

.

We may assume that we have limits wk
2 → w2 and wk

4 → w4 for k →∞.
Then {w1, w3} ∩ {w2, w4} = ∅, and so Proposition 11.5 and the previous
inequality show that there exist distortion functions φ2 and φ3 depending
on the data such that

lim sup
k→∞

[
uk

1, uk
2, uk

3, uk
4

]Gk

Q
≤ φ2([w1, w2, w3, w4]) ≤ φ3

(
dY (w1, w3)

diam(Y )

)
.
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Since mesh(A′
k) → 0 as k →∞ and among the points w1, w2, w3, w4

only w1 and w3 can be identical, the combinatorial separation of any two
of the vertices uk

1, uk
2, uk

3, uk
4 becomes arbitrarily large as k → ∞ with the

possible exception of uk
1 and uk

3. We make the momentary extra assumption
that the combinatorial separation of uk

1 and uk
3 is at least K for large k. Let

zk
i = pk(uk

i ). Note that dX(zk
2, zk

4) ≥ (λ/2)diam(X) for large k by choice of
uk

2 and uk
4. Then from Proposition 9.6 we infer that for sufficiently large k

dX
(
zk

1, zk
3

)
diam(X)

≤ C(λ)
[
zk

1, zk
2, zk

3, zk
4

] ≤ φ4

([
uk

1, uk
2, uk

3, uk
4

]Gk

Q

)
,

where φ4 is a distortion function depending on the data. Letting k tend to
infinity, the claim (11.8) follows under the additional assumption on the
combinatorial separation of uk

1 and uk
3.

2. In order to establish the general case of (11.8), we first show that
mesh(Ak) → 0 as k → ∞. Arguing by contradiction and passing to
a subsequence if necessary, we may assume there there exists δ > 0 and
ak

1 ∈ V k with rk(ak
1) ≥ δ > 0 for k ∈ N. Since the mesh size of A′

k tends
to 0, the cardinality of Gk tends to infinity. Moreover, Gk is connected
and its valence is uniformly bounded. Thus, for sufficiently large k we can
find a vertex ak

3 ∈ V k with K ≤ kGk(a
k
1, ak

3) ≤ 2K . Then Uak
1
∩ Uak

3
= ∅

and it follows dX(pk(ak
1), pk(ak

3)) ≥ rk(ak
1) ≥ δ. Letting xk

i := pk(ak
i ) and

yk
i := p′k(a

k
i ) and passing to subsequences, we may assume that xk

i → xi

and yk
i → yi for k →∞, i ∈ {1, 3}. Then dX(x1, x3) ≥ δ > 0. On the other

hand, y1 = y3, since the combinatorial distance of ak
1 and ak

3 is uniformly
bounded by choice of ak

3, and the mesh size of A′
k tends to zero. But the

combinatorial distance of ak
1 and ak

3 was at least K for large k, so we can
apply (11.8) and get a contradiction.
3. Once we know that the mesh size of Ak tends to zero, we can verify
(11.8) without the additional assumption on the combinatorial separation of
uk

1 and uk
3. For if z1 = z3, then there is nothing to prove. If z1 �= z3, then

the combinatorial distance of uk
1 and uk

3 becomes arbitrarily large, since
mesh(Ak) → 0 as k →∞.
4. Let A be a countable dense subset of X. For z ∈ A and k ∈ N we
can find uk(z) ∈ V k with z ∈ Uuk(z). Since mesh(Ak) → 0, we have
pk(uk(z))→ z as k →∞, z ∈ A. Define fk(z) := p′k(uk(z)). By passing to
successive subsequences and taking a final “diagonal subsequence” we may
assume that the countably many sequences ( fk(z))k∈N, z ∈ A, converge,
fk(z) → f(z) say, as k → ∞. From (11.8) and this definition of f , we
get (11.8) for arbitrary z1, z3 ∈ A and w1 = f(z1) and w3 = f(z3). In
particular, f : A → Y is injective.
5. We claim that the map f is η̃-quasi-Möbius with η̃ only depending on
the data. To see this note that as a dense subset of connected metric space,
the set A is weakly λ′-uniformly perfect with a fixed constant, λ′ = 3 say.
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Since Y is doubling, the subset f(A) is also doubling, quantitatively. Hence
by Lemma 3.3, in order to establish that f is uniformly quasi-Möbius it
is enough to show that if (x1, x2, x3, x4) is a four-tuple of distinct points
in A, and [ f(x1), f(x2), f(x3), f(x4)] is small, then [x1, x2, x3, x4] is small,
quantitatively. By definition of f , we can find uk

i ∈ V k such xi ∈ Uuk
i

and

p′k(u
k
i ) → yi := f(xi) for k → ∞, i ∈ {1, . . . , 4}. Then Proposition 11.5

shows that if [y1, y2, y3, y4] is small, then lim supk→∞[uk
1, uk

2, uk
3, uk

4]Gk
Q is

also small, quantitatively. Since the points yi are distinct, the combinatorial
separation of the vertices uk

i is arbitrarily large for k → ∞. This implies
by Proposition 9.6 that [pk(uk

1), pk(uk
2), pk(uk

3), pk(uk
4)] for large k is small,

quantitatively. Passing to the limit we conclude that

[x1, x2, x3, x4] = lim
k→∞

[
pk

(
uk

1

)
, pk

(
uk

2

)
, pk

(
uk

3

)
, pk

(
uk

4

)]

is small, quantitatively.

6. There are points z1, z2, z3 in A whose mutual distance is at least
diam(X)/4. The estimate (11.8) and the definition of f show that the mutual
distance of the points f(z1), f(z2), f(z3) is bounded below by cdiam(Y ),
where c > 0 is a constant depending on the data. Hence f : A → Y is
η-quasisymmetric with η depending on the data. Since A is dense and Y is
compact, there is a unique extension of f to an η-quasisymmetric map on
X (cf. (5) in Sect. 3). Calling this map also f , we get the desired quasisym-
metry. ��

Proof of Theorem 11.1. To prove sufficiency, we want to apply Proposi-
tion 11.7 for Q = 2, X = S2 and Y = Z. As in the proof of Theorem 10.1
one can realize the triangulations Tk as normalized circle packings. The cir-
cle packings induce canonical K ′-approximations A′

k = (Gk, p′k, r ′k,U
′
k)

of S2, where K ′ depends only on K . Again as in the proof of Theorem 10.1
we can use suitable normalizations so that for sufficiently large k we can
find vertices vk

1, v
k
2, v

k
3 ∈ V k satisfying the condition in Proposition 11.7

where λ > 0 is a numerical constant. Since S2 is 2-regular and 2-Loewner,
Proposition 8.1 implies that condition (9.7) is true for the space X = S2 and
the K ′-approximations A′

k with M = 4K ′ and a function Φ independent
of k.

Since mesh(Ak) → 0 the only thing that remains to be verified is that
with Y = Z, the K -approximations Ak satisfy the asymptotic condition
(11.6) for some function Ψ depending on the data.

To see that this is true, let E and F be arbitrary disjoint continua. We
have to show that the combinatorial modulus modGk

2 (V k
E, V k

E ) for large k is
small if the relative distance of E and F is large, quantitatively.

We may assume diam(E) ≤ diam(F). Pick a ∈ E, let r = 2diam(E) and
Bi := B(a, λ2i−2r) for i ∈ N. Then E ⊂ B1 and Bi ⊂ λBi ⊂ λ2 Bi = Bi+1
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for i ∈ N. Let N be the largest integer such that rλ2N−1 < dist(E, F). Note
that N is large if and only if ∆(E, F) is large, quantitatively. Then

E ⊂ B1 ⊂ λB1 ⊂ λ2 B1 = B2 ⊂ λB2 ⊂ . . . ⊂ BN ⊂ λBN ⊂ Z \ F.

Since mesh(Ak) → 0, there exists k1 ∈ N such that if k ≥ k1 and
v ∈ V k

λBi
for some i ∈ {1, . . . , N − 1}, then v /∈ V k

Z\Bi+1
. For suppose

v ∈ V k
λBi
∩ V k

Z\Bi+1
. Then Uv ∩ λBi �= ∅ and Uv ∩ (Z \ Bi+1) �= ∅. Hence

2Krv ≥ diam(Uv) ≥ λ2i(1 − 1/λ)r ≥ (1 − 1/λ)r. This is impossible if
mesh(Ak) is small enough.

By our hypothesis we can find k2 ∈ N such that for k ≥ k2 and
i ∈ {1, . . . , N} we have modGk

2 (V k
Bi

, V k
Z\λBi

) < C. Consider a fixed K -
approximation Ak for k ≥ k3 := k1 ∨ k2. To simplify notation we drop the
sub- or superscript k.

By our assumption on k, there exists a weight wi : V → [0,∞) which
is admissible for the pair (VBi , VZ\λBi) and satisfies∑

v∈V

wi(v)
2 < C.

Define w(v) := supi∈{1,...,N} wi(v) for v ∈ V . Then

∑
v∈V

w(v)2 ≤
N∑

i=1

∑
v∈V

wi(v)
2 ≤ NC. (11.9)

Now let v1 ∼ · · · ∼ vl be a chain connecting VE and VF . For i ∈ {1, . . . , N}
let mi be the largest index with vmi ∈ VBi . Since v1 ∈ VE ⊂ VBi the number
mi is well defined. Moreover, mi ≤ mi+1. Let m′

i be the smallest index≥ mi
with vm′i ∈ VZ\λBi . Note that m′

i is well defined since vl ∈ VF ⊂ VZ\λBi .
Then vmi ∼ · · · ∼ vm′i is a chain connecting VBi and VZ\λBi and we obtain
from the admissibility of wi

m′i∑
ν=mi

wi(vν) ≥ 1.

We claim that the index sets {mi, . . . , m′
i} for i ∈ {1, . . . , N} are pairwise

disjoint. To see this let i ∈ {1, . . . , N − 1} and j := m ′
i . Assume mi < m′

i .
Then v j−1 /∈ VZ\λBi by definition of m′

i . This means Uv j−1 ⊂ λBi. Then
∅ �= Uv j−1∩Uv j ⊂ λBi∩Uv j , and so v j ∈ VλBi . This is also true if m ′

i = mi .
By our assumption on k and the choice of k1, we have v j /∈ VZ\Bi+1 which
implies j < l and Uv j ⊂ Bi+1. Therefore, we have that ∅ �= Uv j ∩Uv j+1 ⊂
Bi+1 ∩Uv j+1. Thus v j+1 ∈ VBi+1 and we conclude mi+1 ≥ j + 1 > m′

i . The
claim follows from this and we get

l∑
ν=1

w(vν) ≥
N∑

i=1

m′i∑
ν=mi

wi(vν) ≥ N.
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We conclude that w/N is admissible for the pair (VE, VF ), and so by (11.9)
we have

mod2(VE, VF ) ≤ C/N.

Returning to the usual notation, this means that modGk
2 (V k

E, V k
F ) is small for

k ≥ k3, if ∆(E, F) is large, quantitatively.
Proposition 11.7 now shows that there exists an η̃-quasisymmetric map

f : S2 → Z, where η̃ depends only on the data. This map has to be a home-
omorphism. Its inverse map will be an η-quasisymmetric homeomorphism
g : Z → S2, where η depends only on the data.

Conversely, suppose that Z is quasisymmetric to S2. Assume that Z is λ0-
L LC, where λ0 > 1. By Theorem 10.4 condition (10.6) will be satisfied for
L > 0, k0 ∈ N, and a suitable function Ψ. We can find t0 > 0 and C > 0 such
that Ψ(t) < C for t ≥ t0. Let λ := (2t0+ 1)λ2

0 > 1. Suppose B = B(a, r) is
a ball in Z. From λ0-L LC1 it follows that there exists a continuum E with
B ⊂ E ⊂ B̄(a, λ0r). Moreover, assume that Z \ λB �= ∅. Then λ0-L LC2
implies that there exists a continuum F with Z \λB ⊂ F ⊂ Z \B(a, λr/λ0).
We have ∆(E, F) ≥ (λ− λ2

0)/(2λ2
0) = t0. Since mesh(Ak) → 0, we have

that E and F are not contained in any L-star of Ak for sufficiently large k.
It follows that for large k we have

modGk
2

(
V k

B, V k
Z\λB

) ≤ modGk
2

(
V k

E, V k
F

)
< C.

If Z \ λB = ∅, then modGk
2 (V k

B, V k
Z\λB) = 0 by definition of the modulus.

In any case we see that condition (11.3) is satisfied. ��

12. Concluding remarks

(1) Theorems similar to Theorem 1.1 are true for more general surfaces. In
the case when Z is homeomorphic to R2 the following statement holds:

Let Z be an Ahlfors 2-regular complete metric space homeomorphic
to R2. Then Z is quasisymmetric to R2 (equipped with the standard Eu-
clidean metric) if and only if Z is linearly locally connected.

(2) Theorem 1.1 can be used to give a canonical model for 2-regular 2-
spheres that are linearly locally contractible. To make this precise we remind
the reader of the concept of a deformation of a metric space (Z, d) by a metric
doubling measure. Suppose µ is a Borel measure on Z. The measure is called
doubling if there exists a constant C ≥ 1 such that

µ(B(a, 2r)) ≤ Cµ(B(a, r)),

whenever a ∈ Z and r > 0. If x, y ∈ Z let Bxy := B(x, d(x, y)) ∪
B(y, d(x, y)). Suppose Q ≥ 1 is fixed. Then we introduce a function
δµ(x, y) := µ(Bx,y)

1/Q . The measure µ is called a metric doubling measure



180 M. Bonk, B. Kleiner

(with exponent Q) if δµ is a metric up to a bounded multiplicative constant,
i.e., there exists a metric δ on Z and a constant C ≥ 1 such that

(1/C)δ(x, y) ≤ δµ(x, y) ≤ Cδ(x, y) for x, y ∈ Z.

Suppose µ is a metric doubling measure. As long as an ambiguity caused by
a multiplicative constant is harmless, the distance function δµ is as good as
a metric and we can talk about the metric space (Z, δµ) and quasisymmetric
maps of this space etc. It is easy to see that the “metric space” (Z, δµ) is
Ahlfors Q-regular and quasisymmetric to (Z, d) by the identity map.

If Z = Sn and Q = n ≥ 2, then every metric doubling measure µ is
absolutely continuous with respect to spherical measure σn, i.e., there exists
a measurable weight w : Sn → [0,∞] such that dµ = w dσn . The weight
is an A∞-weight. Weights that arise from metric doubling measures in this
way are called strong A∞-weights.

Theorem 1.1 now implies the following statement:
A metric 2-sphere (Z, d) is Ahlfors 2-regular and linearly locally con-

tractible if and only if (Z, d) is bilipschitz to a space (S2, δµ), where µ is
a metric doubling measure on S2 with exponent Q = 2.

Indeed, if (Z, d) is Ahlfors 2-regular and linearly locally contractible,
then there exists a quasisymmetric homeomorphism f : S2 → Z by Theo-
rem 1.1. Define the measure µ on S2 as the pull-back of H2 by f . So
µ(E) = H2( f(E)) for a Borel set E ⊂ S2. Using the fact that f is qua-
sisymmetric and that Z is 2-regular, it easy to see that µ is doubling. More-
over, we have δµ(x, y)  d( f(x), f(y)) for x, y ∈ S2. This shows that µ is
a metric doubling measure, and that f : (S2, δµ)→ (Z, d) is bilipschitz.

Conversely, if µ is a metric doubling measure on S2 with exponent
Q = 2, then (S2, δµ) is 2-regular. Hence (Z, d) is also 2-regular, because
this property is preserved under bilipschitz maps. Since (Z, d) is bilipschitz
to (S2, δµ) and the latter space is quasisymmetric to S2 by the identity map,
the spaces (Z, d) and S2 are quasisymmetric. Linear local contractibility
is invariant under quasisymmetries, and since S2 has this property, so does
(Z, d).

(3) A necessary condition for a metric 2-sphere Z to be bilipschitz to S2

is that Z is 2-regular and linearly locally contractible. By the result in
(2) a space satisfying these necessary conditions is bilipschitz to a space
(S2, δµ), where µ is a metric doubling measure on S2 with exponent 2. So
the problem of characterizing S2 up to bilipschitz equivalence is reduced to
the question which of the spaces (S2, δµ) are bilipschitz to S2.

This question is related to the Jacobian problem for quasiconformal
mappings on S2 as follows. If f : S2 → S2 is a quasiconformal map,
we denote by J f its Jacobian (determinant). The Jacobian problem for
quasiconformal maps asks for a characterization of the weights w : S2 →
[0,∞] for which there exists a quasiconformal map f : S2 → S2 such that

(1/C)J f (x) ≤ w(x) ≤ CJ f (x) for σ2-a.e. x ∈ S2,
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where C is a constant independent of x. A necessary and sufficient condition
for a weight w to be comparable to a Jacobian of a quasiconformal map is
that w is a strong A∞-weight, i.e., the measure µ defined by dµ = w dσ2
is a metric doubling measure, and that (S2, δµ) is bilipschitzly equivalent to
S2 (cf. [25]).

From this we see that the Jacobian problem for quasiconformal mappings
on S2 is equivalent with the problem of characterizing S2 up to bilipschitz
equivalence.

(4) The usefulness of Theorem 11.1 depends on whether one can verify its
hypotheses in concrete situations. There are some interesting fractal spaces
of Hausdorff dimension greater than 2 where this can be done. For example,
consider the space Z ⊂ R3 obtained as follows. The space Z will be the
limit of a sequence of two-dimensional cell complexes Zn . Each Zn consists
of a union of congruent oriented squares. The orientation of each square is
visualized by specifying which of the two directions perpendicular to the
square is considered as normal. The sets Zn are inductively constructed as
follows. The cell complex Z0 is the boundary of the unit cube I 3 ⊂ R3,
where the 2-cells are the six squares forming the faces of Z0. We orient
the squares of Z0 by assigning to them the normal pointing outward I 3.
Now Zn+1 is obtained from Zn by modifying each of the oriented squares S
forming Zn as follows. Subdivide S into 25 congruent subsquares with the
induced orientation. (Actually any fixed number (2k+1)2 with k ≥ 2 could
be taken here. In the case k = 1 there are some problems with overlaps
in the inductive construction.) On the “central” subsquare S′ of S place an
appropriately sized cube C in the normal direction so that one of the faces
of C agrees with S′. The face squares of C are oriented so that their normals
point outward C. The desired modification of S is now obtained by replacing
the “central” subsquare S′ of S by the oriented faces of C different from S′
and keeping all other oriented subsquares. In this way each square of Zn
leads to 24 + 5 = 29 squares of Zn+1. The limit set Z is equipped with
the ambient metric of R3. It can be shown that Z is homeomorphic to S2

and Q-regular for some Q > 2. Using the symmetry properties of Z and
Theorem 11.1, one can show: Z is quasisymmetric to S2. An independent
proof of this fact based on the dynamics of rational functions is due to
D. Meyer [21].

We hope to explore applications of Theorem 11.1 more systematically
in the future.
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