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The connectedness percolation threshold (�c) and critical coordination number (Zc) of systems of

penetrable spherocylinders characterized by a length polydispersity are studied by way of Monte Carlo

simulations for several aspect ratio distributions. We find that (i) �c is a nearly universal function of the

weight-averaged aspect ratio, with an approximate inverse dependence that extends to aspect ratios that

are well below the slender rod limit and (ii) that percolation of impenetrable spherocylinders displays a

similar quasiuniversal behavior. For systems with a sufficiently high degree of polydispersity, we find that

Zc can become smaller than unity, in analogy with observations reported for generalized and complex

networks.

DOI: 10.1103/PhysRevLett.110.015701 PACS numbers: 64.60.ah, 61.46.Fg, 82.70.Dd

Idealized elongated objects such as perfectly rigid cyl-
inders, spherocylinders, and prolate spheroids are proto-
typical models for a wide array of technologically relevant
systems that include liquid crystals, nanocomposites based
on filamentous fillers, as well as fiber-reinforced materials.
Percolation phenomena involving dramatic increases in,
e.g., structural rigidity and electrical and thermal conduc-
tivities of composites with increasing filler loading are
currently of particular interest [1]. These increases are
caused by the formation of an infinite cluster of in some
sense connected particles at the critical loading, i.e., the
percolation threshold.

It has been established by analytical [1–3] and numerical
[4–11] studies that for dispersions of sufficiently elongated
objects of identical size and shape, i.e, ‘‘monodisperse’’
objects, the geometric percolation threshold expressed in
terms of the critical volume fraction of particles is in-
versely proportional to the aspect ratio of the filler parti-
cles. This property is exploited in the fabrication of
conducting polymeric composites with very low conduct-
ing filler contents. Depending on the production processes
of the composites, however, the filler particles almost
invariably exhibit a pronounced polydispersity in both
size and shape [12,13]. Although it represents a possible
factor behind the huge quantitative discrepancies between
theory and experiments [14,15], such polydispersity has
received relatively little attention in terms of theoretical
modeling until fairly recently [1,16,17]. Achievement of a
theoretical understanding of how the continuum percola-
tion of fibrous fillers is affected by polydispersity is

thus key to the controlled design of a large class of com-
posite materials for practical particle size and shape
distributions.
Recent analytical results obtained from integral equa-

tion methods [16] and heuristic mapping onto a general-
ized Bethe lattice [17] predict that in the slender rod limit,
where the particles have asymptotically large values of
the aspect ratio, the volume fraction at the percolation
threshold is inversely proportional to the weighted aver-
age Lw ¼ hL2i=hLi of the rod lengths, where the brackets
imply number averages over the distribution of rod
lengths L. This Letter presents Monte Carlo (MC) results
for the percolation threshold of isotropically oriented
spherocylindrical particles with length polydispersity and
having aspect ratios ranging from �1 to several hundreds.
We show that the percolation threshold of polydisperse
interpenetrable spherocylinders is a nearly universal func-
tion of Lw over the entire range of aspect ratios consid-
ered. In addition, the percolation threshold closely follows
the predicted 1=Lw behavior even for particles with aspect
ratios that are considerably smaller than the slender rod
limit, thus generalizing the current theory.
For systems of impenetrable spherocylinders with fixed
ffiffiffiffiffiffiffiffiffihL2ip

=D, where D is the diameter of the hard core, we
show that the percolation threshold is nearly independent
of the length distribution. Finally, we find that the critical
coordination number per particle at the percolation thresh-
old (denoted Zc) can be smaller than unity for polydisperse
systems. Although similar observations have been reported
for a number of complex networks and in systems of
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hyperspheres in high-dimensional spaces [18], this finding
is novel in the context of the continuum percolation of
three-dimensional objects.

We generate isotropically oriented distributions of pene-
trable rods by randomly placing N penetrable spherocylin-
ders with a distribution of lengths L and identical diameter
� within a cubic box with periodic boundary conditions
and side length L. As a measure of the concentration of
the spherocylinders, we shall use the dimensionless density
� ¼ �hvi, where hvi ¼ ð�=6Þ�3 þ ð�=4Þ�2hLi is the
number-averaged volume of the spherocylinders, hLi ¼R
dLLfðLÞ is the mean (number-averaged) rod length for

a given distribution fðLÞ of lengths, and � ¼ N=L3 is the
number density of the particles [19].

We consider two spherocylinders connected if they
overlap geometrically. The percolation threshold is identi-
fied by ascertaining the minimal diameter �c (for fixed
value of �) for which a cluster of connected particles
spans the entire cubic box. This definition is equivalent
to the usual procedure of finding a critical density �c of
spherocylinders with fixed diameter and has the additional
advantages of (i) being computationally more convenient
and (ii) allowing a more direct relation to the conductivity
� of rods through the critical distance approximation � /
expð�2�c=�Þ, where � is the tunneling decay length [11].

In the following, we shall use the critical distance �c0,
defined as �c0 ¼ 2=��hLi2, as our unit of length for
polydisperse systems of penetrable spherocylinders. This
quantity corresponds to the critical distance obtained from
the second virial approximation formula �c ¼ ð1=2Þ�c0=L
for the critical concentration of a system of monodisperse
spherocylinders with identical lengths L � �c0 chosen to
coincide with hLi.

To find �c, we employ the clustering method described
in Ref. [20], which allows computation of the spanning
probability as a function of the spherocylinder diameter
� for fixed density � (Supplemental Material [21]).
Figure 1(a) shows the results obtained for polydisperse
systems with a bimodal length distribution fðLÞ¼
p�ðL�L1Þþð1�pÞ�ðL�L2Þ with L2¼20 and L1>L2,
where 0 � p � 1 is the number fraction of long rods. In
the figure, we display the ratio R (symbols) of the critical
distances for the polydisperse rod system to those for
monodisperse systems of spherocylinders with lengths
equal to hLi ¼ R

dLLfðLÞ, which for the particular distri-

bution considered corresponds to hLi ¼ pL1 þ ð1� pÞL2.
The ratio R of the critical distances is systematically
reduced by polydispersity and displays a minimum that
becomes deeper and moves towards smaller values of p as
L1=L2 is increased, implying that a small fraction of longer
rods can substantially lower the percolation threshold.

This trend is in full agreement with the theory of
Ref. [16] based on the second virial approximation to the
connectedness Ornstein-Zernike equation, which predicts
for hLi=�c � 1

�c ¼ 1

2

�c

Lw

; (1)

where Lw ¼ hL2i=hLi is the weight-averaged rod lengths.
From this equation and by using �c ’ �ð�=4Þ�2

chLi for
hLi=�c � 1, the critical distance is predicted to follow
�c ¼ 2=��hL2i. The reduction factor R0 ¼ �c=�c0 pre-
dicted by the theory is thus

R0 ¼ hLi2
hL2i ¼

ðpL1=L2 þ 1� pÞ2
pðL1=L2Þ2 þ 1� p

; (2)

where the second equality applies for the bimodal length
distribution. As shown in Fig. 1(a) the MC findings for R
are in semiquantitative agreement with Eq. (2) (solid lines),
although R is consistently slightly smaller than R0. This
discrepancy could arise from the circumstance that the
values of L1 and L2 used in the simulations may be
insufficiently large to achieve the slender rod limit, which
is a prerequisite for the validity of Eq. (2). We examine this
issue in Fig. 1(b), which shows R=R0 as a function of L2

(up to L2 ¼ 150 in units of �c0) for L1=L2 ¼ 3 and
selected values of p. For L2 � 20, our MC results are
less than 10% smaller than R=R0 ¼ 1. Furthermore, for
L2 � 50, R=R0 appears to increase monotonically (albeit
somewhat slowly), which may indicate that the slender
rod length limit R=R0 ¼ 1 could ultimately be reached (for
any p) only for very long rod lengths.
The MC results shown in Fig. 1 and the relatively small

deviations from Eq. (2) suggest that, for rods with identical
radii, Lw is the key quantity that controls the percolation
threshold for mixtures of penetrable spherocylinders. This
is demonstrated in Fig. 2 where �c is shown as a function
of Lw=�c for various bidisperse (open symbols) and mono-
disperse (þ signs) systems of spherocylinders (in the
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FIG. 1 (color online). (a) Critical distance ratio R between
polydisperse and monodisperse spherocylinders as a function
of the fractional occupancy p of the longer rods with shorter rod
length fixed at L2 ¼ 20 in units of �c0 ¼ 2=��hL2i (see text).
The solid lines represent Eq. (2). (b) The critical distance ratio R
in units of R0 calculated from Eq. (2) for L1=L2 ¼ 3 as a
function of the length L2 of the shorter rods and for selected
values of p.
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latter case Lw is identical to the unique particle length).
Results for systems of spherocylinders for which the
lengths follow Weibull and uniform distributions are
shown in Fig. 2 by filled circles and squares, respectively
(see the Supplemental Material [21] and Ref. [22]).
Surprisingly, all of our data collapse onto a single curve
over the entire range of Lw=�c > 1, implying that �c is a
quasiuniversal function of Lw=�c independent of the par-
ticular distribution considered.

This finding is rather unexpected because the observed
quasiuniversality extends well below the slender rod
limit of Eq. (1) (solid line), which is approached by the
MC data to within less than 10% only for Lw=�c * 200.
Furthermore, even though Eq. (1) might be expected to
apply only asymptotically for Lw=�c � 1, we observe that
the data for Lw=�c * 10 are well fitted by aðLw=�cÞ��

with a ¼ 0:165� 0:009 and � ’ 1:080� 0:002. The in-
verse scaling of �c with Lw thus applies approximatively
even for spherocylinders with very modest aspect ratios.

We have also examined the effects of length polydisper-
sity on the percolation of impenetrable spherocylinders
with identical hard-core diameters D. Two impenetrable
spherocylinders (D � 0) are considered connected if their
surfaces approach closer than �. The percolation threshold
for a given density � of the particles is identified, as
before, by the critical distance �c. In the slender rod

limit, the percolation threshold of impenetrable rods is
predicted to follow �c ¼ D2=ð2�cLwÞ [16,17], where
�c ’ �ð�=4ÞD2hLi is the critical volume fraction for the
hard-core particles. By noting that Eq. (1) is the percolation
threshold for penetrable rods and since �c ’ �ð�=4Þ�2

chLi,
we see that for sufficiently elongated rods the percolation
relation

��3
c ¼ ð2=�Þ�2

c=hL2i (3)

is predicted to be satisfied by both hard and penetrable
rods, independent of their length distribution.
We have generated by MC simulations equilibrium dis-

persions of impenetrable spherocylinders with different
length (L) distributions. The inset of Fig. 2 shows ��3

c as

a function of
ffiffiffiffiffiffiffiffiffihL2ip

=�c for monodisperse systems with
L=D ¼ 10 and 20 (filled symbols) and for two bidisperse

cases with L1, L2, and p chosen as to give
ffiffiffiffiffiffiffiffiffihL2ip

=D ¼ 10
and 20 (open symbols) (see Supplemental Material [21]).
Although for computational reasons the rod lengths con-
sidered by us are not large enough for our results to fulfill

Eq. (3), we see nevertheless that for a given
ffiffiffiffiffiffiffiffiffihL2ip

=D, ��3
c

is essentially independent of the particular rod length
distribution. Furthermore, the calculated ��3

c values for

increasing
ffiffiffiffiffiffiffiffiffihL2ip

=D tend to follow the same functional
behavior of the interpenetrable spherocylinders (x signs
in the inset of Fig. 2) [23]. This latter feature suggests

that for sufficiently large
ffiffiffiffiffiffiffiffiffihL2ip

=D there exists a universal

relation of the form ��3
c ¼ Fð ffiffiffiffiffiffiffiffiffihL2ip

=�cÞ, which is

expected to reduce to Eq. (3) for
ffiffiffiffiffiffiffiffiffihL2ip

=�c � 1 and that
applies to both penetrable and interpenetrable spherocy-

linders over a wide range of
ffiffiffiffiffiffiffiffiffihL2ip

=�c values.
Although currently there is no theoretical explanation

for the quasiuniversal dependence reported in Fig. 2, a
partial understanding may be achieved by following the
method developed in Ref. [16]. In this formalism, applied
here for simplicity to penetrable rods, the overall cluster

size S satisfies S ¼ hTðLÞiL where TðLÞ � �hĈþðL; L0; �cÞ
TðL0ÞiL0 ¼ 1 and ĈþðL; L0; �cÞ is the orientation-averaged
connectedness direct correlation function at zero wave

vector. Within the plausible ansatz ĈþðL; L0; �cÞ ¼
LL0c11 þ ðLþ L0Þ�2

cc10 þ �3
cc00 [24], where the coeffi-

cients fcijg are assumed to depend only upon the packing

fraction, it is found that for systems with different length
distributions but equal values of Lw=�c, S diverges at
percolation thresholds that differ by ��2

s�c=Lw for
Lw=�c � 1 and �ðLw=�cÞ�2

s=ð1þ �2
sÞ for Lw=�c � 1,

where �2
s ¼ hL2i=hLi2 � 1 is the scaled variance. Since

the scaled variances for all length distributions considered
in this work were always smaller than �50% (see
Supplemental Material [21]), for Lw=�c * 10 the expected
deviation from universal behavior is thus only
��2

s�c=Lw & 5%, which is consistent with the results of
Fig. 2. Although we expect that systems with values of �2

s
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FIG. 2 (color online). Critical reduced density �c as a function
of Lw=�c for monodisperse (plus symbols), bidisperse (open
symbols), Weibull (filled circles), and uniform (filled squares)
distributions of spherocylinder lengths (see the Supplemental
Material [21] and Ref. [22]). The solid line represents Eq. (1).

Inset: ��3
c as a function of

ffiffiffiffiffiffiffiffiffihL2ip
=�c calculated for monodis-

perse and bidisperse impenetrable spherocylinders with hard-
core diameter D. The x symbols are the results for both the
monodisperse and polydisperse penetrable rods of the main
panel.
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much larger than those considered by us would imply a
stronger deviation from universality, �2

s & 0:5 is never-
theless representative of the scaled variances observed in
several real polydisperse systems of rodlike particles
[12,13].

The quasiuniversal dependence of the percolation
threshold upon Lw implies a general nonuniversality of the
critical coordination number Zc, where Zc denotes the
average number of contacts per rod at the percolation
threshold. This is best viewed for the case of randomly
placed and oriented overlapping objects for which Zc ¼
�chvexi=hvi, where hvexi is the excluded volume averaged
over the orientations and the rod lengths. Given that �c

depends on Lw=�c, while

hvexi
hvi ¼ 8þ 3

ðhLi=�cÞ2
1þ ð3=2ÞhLi=�c

(4)

depends on the rod lengths through hLi=�c, we see that
mixtures of rods with equal �c values (i.e., equal Lw) may
have rather different Zc values if the distribution fðLÞ of
the rod lengths is such that hLi � Lw.

Figure 3 shows the critical average number of connec-
tions per rod calculated from Zc ¼ �chvexi=hvi for the
same mixtures of penetrable spherocylinders considered
in Fig. 2. We have verified that the configurational average
of the connection per rods at �c coincides with the
excluded volume formula, as expected. We see that in
general, Zc is sensitive to the extent of polydispersity,
although in the limit Lw=�c ! 0 it can be expected that
Zc should coincide with the result for identical overlapping
spheres, namely, Zc ’ 2:74 [25]. In particular, Zc is always
larger than unity and approaches Zc ! 1 asymptotically in
the slender rod limit for monodisperse systems. In contrast,
for distributions with sufficiently large values of the vari-
ance and of Lw=�c, polydisperse systems of rods may

display fewer than one connection per particle at the
threshold, i.e., Zc < 1.
This latter feature is somewhat novel since the contin-

uum percolation of objects randomly dispersed in a three-
dimensional space is usually characterized by the condition
Zc � 1 [18]. Indeed, to the best of our knowledge, perco-
lation occurring with Zc < 1 has been reported only for
penetrable identical hyperspheres in spaces of dimension-
ality exceeding 12 [18] and in random or complex net-
works that are not embedded in a physical space. For
example, given an uncorrelated network with nodes having
a distribution of coordination numbers z, upon random
removal of nodes the network becomes disconnected at a
critical node occupation probability pc ¼ hzi=ðhz2i � hziÞ
[26,27], which results from the irrelevance of closed loops
[28]. The critical coordination number Zc ¼ pchzi is thus

Zc ¼ hzi2
hz2i � hzi ; (5)

which can be smaller than unity when the node degree
distribution is such that hz2i=hzi � hzi> 1.
The results of Fig. 3 that show that polydisperse rod

mixtures may display Zc < 1 suggest that these systems
may relate to such classes of generalized graphs that can
exhibit the same feature [29]. Indeed, as shown in
Ref. [17], Eq. (5) is also the critical coordination number
of a generalized Bethe lattice that by construction lacks
closed loops. Hence, by applying the mapping hzi !
2hLi=�c, hz2i ! 4hL2i=�2

c formulated for polydisperse
slender rods in Ref. [17], we find

Zc ! hLi2
hL2i ¼

hLi
Lw

� 1; (6)

which is qualitatively consistent with the behavior of Zc

seen in Fig. 3. A physical explanation for the observation
that Zc < 1 for sufficiently polydisperse rod systems is
provided by the fact that the percolating cluster is predomi-
nantly comprised of the longer rods in the system, and the
shorter rods have a greater likelihood of being isolated
[17]. An interesting corollary arising from this interpreta-
tion is that, as in generalized random networks where
targeted removal of highly connected nodes enhances the
percolation threshold [26,27], preferential removal of the
longer rods from the system may lead to similar enhance-
ment of the critical concentration.
In conclusion, we have studied by MC simulations

the effects of length polydispersity on the percolation
threshold of penetrable spherocylinders. We find a quasiu-
niversal dependence of the percolation threshold on Lw

that extends well below the slender rod limit considered
in Refs. [16,17]. For systems of impenetrable sphero-
cylinders, we find that universality is fulfilled for a given
ffiffiffiffiffiffiffiffiffihL2ip

=D, whereD is the hard-core diameter. The predicted
quasiuniversality could be tested by experiments in
systems of conducting fibrous fillers by altering the
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FIG. 3 (color online). Critical coordination number Zc as a
function of Lw=�c for polydisperse and monodisperse sphero-
cylinders. The symbols have the same meaning as in the main
panel of Fig. 2.
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distribution of the rod lengths, e.g., by sonication, and
measuring the resulting change in the percolation thresh-
old. Furthermore, we have demonstrated that the average
number of connections per rod at the percolation threshold
can be smaller than unity for random distributions of rods
that are sufficiently slender and polydisperse. This finding
reveals an intriguing analogy with the case of random
percolation in complex networks.

B. N. acknowledges support by the Swiss National
Science Foundation (Grant No. 200020-135491).
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