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Abstract. Certain nonlinear binary single-error-correcting codes found by Julin, Best and others have simple 
descriptions as codes over the ring of integers modulo 4. 

1. Introduct ion  

It has recently been shown ([4], [8], [10]) that the nonlinear binary codes found by 
Nordstrom-Robinson, Kerdock, Preparata, Goethals, etc. have a simple description as linear 
codes over ;~4, the ring of integers modulo 4 (although this requires a slight modification 
of the Preparata and Goethals codes). The Nordstrom-Robinson and Preparata codes have 
minimal distance d = 6 and the Goethals codes have d = 8. In this note we consider codes 
with d = 4. 

The following are the best lower bounds presently known for A (n, 4), the maximal number 
of words in a binary code of length n with d = 4. This table is taken from [3] and [7], 
p. 248, which also gives upper bounds. 

n 6 7 8 9 10 
A(n, 4) > 4* 8* 16" 20*w 40*w 

type H H H J B 

n 13 14 15 16 17 
A(n, 4) _> 256* 512" 1024" 2048* 2720 

type H H H H R 

n 20 21 22 23 24 
A(n, 4) > 20480w 36864w 73728w 147456w 294912w 

type U U U U U 

11 12 
72w 144w 

J J 

18 19 
5248 10496 
HH HH 

Here * indicates that this is the exact value of A(n, 4), H denotes a Hamming or shortened 
Hamming code, and J, B, R, HH, Urefer respectively to Julin [11], Best [1], [2], Romanov 
[ 15], Hiimiiliiinen [9] and the (u, u + v) construction of Sloane and Whitehead ([ 16]; [ 13, 
Chap. 21). 
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In this paper we give simpler, quaternary constructions for codes corresponding to the 
entries marked w Since the number of words in these codes is not a power of 2, these 
are nonlinear quaternary codes. However, these nonlinear quaternary codes, especially those 
of lengths 5 and 6, have a rich and interesting structure. (The codes of Romanov and 
H~im~il~iinen do not have any apparent 7/4 structure.) 

As in [4], [8], [10] we construct binary codes from codes over 7/4 = {0, 1, 2, 3} by 
using the map 

~b :0  ~ 00, 1 ~ 0 1 , 2  ~ 11 ,3  ~ 10. 

More formally, we define maps or, /3, ~/: 7/4 ~ 7/2 by 

7/4 Ot /3 "y 

0 0 0 0 
1 1 0 1 
2 0 1 1 
3 1 1 0, 

extend them in the obvious way to maps from 7/] to 77~ 2", and define r �9 7/] ~ 7/~ n by 

r = ( /3 (u) ,  ~ / (u ) ) .  (1) 

The map ~b is an isometry from (71~, Lee distance) to (Z 2n, Hamming distance). See [10] 
for details. 

Notation. (n, M, d)q denotes a code of length n, containing M codewords at Lee distance 
at least d apart, over an alphabet of size q. Two codes are equivalent if one can be obtained 
from the other by a permutation of the n coordinates followed by a Lee-distance preserving 
permutation of the q symbols in each coordinate (possibly using a different permutation 
in each coordinate). The automorphism group of the code consists of the set of all such 
operations that fix the code as a whole. 

2. Best's Code of Length 10 

A (10, 40, 2) 2 code was found by Best [1], [2], and has been shown to be unique by Litsyn 
and Vardy [12]. In this section we give a simple quaternary construction for this code. 

The construction 

THEOREM 1. Let (~0 be the (5, 40, 4)4 code consisting of the vectors 

(c - d, b, c, d, b + c), b, c, d ~ {+1, - 1 } ,  (2) 
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and all of their cyclic shifts. Then the binary image of 630 under the map 4~ is equivalent 
to Best's (10, 40, 4)2 code described in [1]; [2]; [7], p. 140. 

Proo f  The map from (v 1 . . . .  , Vl0) to 

(0-1(v9, v4), 0-1(VT, v2), ~-1(v5, vl0), 4~-1(v3, v8), 4~-1(vl, v6)) 

takes Best's code to ours. [] 

We call 630 the pentacode. It consists of all cyclic shifts and negations of the four vectors 

01112, 03110, 21310, 21132. (3) 

If we denote the ith cyclic shift of (2) by Vbcai (0 <_ i <__ 4), then 630 is almost a 
"systematic" code: that is, the values of b, c, d, i can be read off vbc~i. 

The automorphism group. The automorphism group of 630 is generated by 

P-1 : (a, b, c, 

Pc : (a, b, c, 

a : ( a , b , c ,  

7 -2  : (a, b, c, 

d, e) ~ ( - a ,  - b ,  - c ,  - d ,  - e ) ,  

d, e) ~ ( - a ,  2 - b, c, 2 - d, - e ) ,  

d, e)  ~ (b, c, d, e, a) ,  

d , e )  ~ (2 + e ,  2 + d ,  2 + c ,  2 + b ,  2 + a ) .  

The elements P - l ,  Pc, Pd = (Pc) e, Re = (Pd) e, Pa = (De) e, Ob = (,Oa) e generate an elemen- 
tary abelian group of type 25 (note that PaPbPcOdPe = 1); o and T 2 generate a dihedral group 
Dl0 of order 10; and the full group G = Aut(630) is a semidirect product 25 : Da0 of order 
320. This is also the full automorphism group of the binary code, as found by Best. Best's 
description of the group in [2] is more complicated, however. (In his second generator, 
/3, the bar over the 9 should be omitted.) 

The elements Pb, Pc, Pd permute the words shown in (3), and so the group is transitive 
on codewords. This establishes that 63o (and hence also its binary image) is distance in- 
variant. The weight enumerator of the binary code is 

X 1~ + 22X6y 4 + 12X4Y 6 + 5X2y 8. (4) 

Distances of vectors from the code, and the four pentacodes. We next classify the quater- 
nary vectors of length 5 under the action of G. It is simpler to consider first the smaller 
group H = 24 : Dlo, of order 160, obtained by omitting the generator P-i. It turns out 
that H actually preserves four copies of the pentacode. We denote these by 630, 631,632, 
633 and display them in Table 1. 

The twelve orbits of H on 7745 are described in Table 2. Four orbits are the pentacodes 
630, . . . ,  633. The orbit that contains any other vector is determined by the parities of its 
five digits. In Table 2 the pentacodes are indicated by their leading words and the other 
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Table 1. The ith pentacode (~i consists of all 
cyclic shifts of the eight words shown. 

01112 01030 21110 03010 
21132 01012 01130 03032 
21310 03210 01312 01230 
01330 03232 21332 01212 
03110 23030 23112 21010 
23130 23012 03132 21032 
23312 21210 03310 23230 
03332 21232 23330 23212 

Table 2. Orbits of H on vectors of 7/45. 

Action 
D N Vectors of ~- Vectors N D 

0 40 01112 ~ 01030 40 1 
2 40 21110 ~ 03010 40 1 
2 160 eedee ~ ddedd 160 1 
2 160 deded ~ deeed 160 1 
2 80 eddde ~ edede 80 3 
2 32 ddddd ~ eeeee 32 3 

orbits by the parities (using d = odd, e = even) of their vectors, up to cyclic shifts. The 

columns headed D give the distance of the H-orbit  from 630, and N is the size of  the or- 
bit. The arrows indicate the action of  the map r defined by 

- r ' ( a , b , c , d , e )  ,--, (1 + d ,  1 + a ,  1 + c ,  1 + e ,  1 + b ) .  

(Note that ~- is not in G.) The map/9_ 1 fixes ten of the twelve orbits, but interchanges the 
pentacodes 631 and 633 (represented by the vectors 01030 and 03010 in the table). Modulo 
H, r and p_l  generate a dihedral  group of  order 8 that permutes the four pentacodes. 

We see from the table that there are 40 vectors in the code 630, 400 vectors at distance 
1 from it, 472 vectors at distance 2 from it, and 112 vectors at distance 3. The covering 

radius of 630 (and of its binary image the (10, 40, 4)2 code) is therefore 3. 
The orbits of  the group G itself on 7/45 are as follows. Since G = (H, p_ 1/, we see from 

Table 2 that 631 and 633 (which are interchanged by 0-1)  fuse into a single orbit  under 
G. The other H-orbits,  being fixed by p_ 1, are also G-orbits. 

A decoding  a lgo r i t hm.  The covering radius of  the (10, 40, 4)2 code is 3. The following 
is a complete decoding algorithm for this code. We describe it in the 7 4 domain as a 
decoding algorithm for the pentacode 630 that corrects any error pattern of  Lee weight 1, 
and detects all error  patterns of Lee weight 2 and some of Lee weight 3. 
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We denote the received vector by 

V = (V0, V1, V2, V3, V4) E 7/5, 

let w = (w 0 . . . . .  w4) = a (v) ,  and let W = 5 - w t ( w ) .  

1. If  W = 0 or 4, or W = 2 and w i : wi+ 2 : 0 (subscripts mod 5), decide that an error 
pattern of Lee weight 2 occurred. 

2. Suppose W = 1, say w i  = 0. If  v i = vi+2 + Vi - z ,  decide that a single error of vi+ 1 + 

vi-1 - v i -2  occurred at position i + 1. Otherwise, a single error of  - V i + l  + vi-a - 

vi+2 occurred at position i - 1. 
3. Suppose W = 2 and wi  = wi+l = 0. I f  vi+ 1 = v i -2  - vi-1 a n d  vi = vi+2 + v i -2 ,  decide 

that no errors occurred; otherwise decide that an error pattern of weight 2 occurred. 
4. Suppose W = 3 and w i  = wi+l = 1. If  v i -2  = vi + v i+b decide that a single error 

of vi-1 - vi+l + vi+2 occurred at position i + 2. Otherwise a single error of vi_ 1 + 

v i - vi+ 2 occurred at position i - 1. 
5. Suppose W -- 3 and w i = wi+ 2 : 1. I f  - v i _  1 Jr" vi+ 1 - vi+ 2 : - v i _  2 -[- v i -[- vi+ 1 : f. 

(say), decide that a single error of e occurred at position i + 1. Otherwise decide that 
an error pattern of Lee weight 3 occurred. 

6. If  W = 5, decide that an error pattern of Lee weight 3 occurred. 

We omit the straightforward verification that the algorithm is correct. 

A code of length 9. The vectors { (a ,  b, c, d )  : (a ,  b, c, d ,  e )  ~ 6] 0, e = 0 or 1} form 
a (4, 20, 3)4 code o v e r  7'/4 whose binary image is an (8, 20, 3)2 code. By adding an overall 
parity check we obtain a (9, 20, 4) 2 code, with the same parameters as Julin's code [11]. 

The 10-dimensional packing. The densest sphere-packing presently known in ten dimen- 
sions, Ploc ,  is obtained by applying Construction A to the (10, 40, 4)2 binary code (see 
[7, Table 1.2 and Chap. 5]). This packing may be obtained directly from the pentacode 
by the following simple construction. 

Let L denote the (two-dimensional) square lattice 12. We associate the four cosets of 2L 
in L with the elements of  ~'4 by 

(0 ,0 )  + 2L ~ O, (0, 1) + 2L ~ 1, (1, 1) + 2L ~ 2, ( 1 ,0 )  + 2L ~ 3. 

Note that the minimal norm (i.e., squared length) in a coset of L / 2 L  agrees with the Lee 
weight of the associated element of 7/4. In this way we obtain a map 

7r : L ~ L / 2 L  ~ 7/4 

as shown in Figure 1. We extend this in the obvious way to a map from L n to ;E~. 
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Figure 1. Square lattice L labeled by elements of :~4. 

THEOREM 2. If C is an (n, M, d)4 code over 7/4, define 

A(C) : =  {x = (xl, . . . ,  x,)  ~ L" : ~r(x) e C}. 

The 2n-dimensional packing corresponding to A(C) has minimal norm # = min{d, 4} 
and center density 

We omit the proof. This is similar to the construction of sphere packings from nonbinary 
codes given in [7, Chap. 7] and [5]. We mention in passing that L can be identified with 
the Gaussian integers :Y[i], and then A(C) is a subset of Z[i] n. If C is a linear code over 
7/4 then A(C) is a lattice over the Gaussian integers, i.e., a 7/[i]-module. 

Taking C to be the pentacode (g 0, we obtain Best's packing P10c of center density ~ = 
5/128. This packing looks most symmetrical when viewed from the origin (which is not 
a point of P10c). The full subgroup of the real 10-dimensional orthogonal group that fixes 
the origin and takes Ptoc to itself is generated by all 21~ sign-changes, and by the 2 s x 
10 symmetries of the code. This is a group P of structure 21~ - (25 : D10 ) and order 327680. 
(The stabilizer of a point of P10~ has size only one-fortieth of this.) This can be proved 
by using parity considerations to show that the only translations that preserve the packing 
are those by vectors with even integer coordinates--these translations extend P to give 
the full space group of P10c. 
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3. Best's Codes of Length 11 and 12 

In 1965 Julin ([11]; [13, Chap 2]) constructed several (12, 144, 4)2 codes from the Steiner 
system S(5, 6, 12), which we will describe in more detail in Section 4. The situation here 
is less satisfactory than at length 10, for a number of reasons: it is not known whether 
144 words is optimal, several different 144-word codes are known, and none of them are 
distance invariant. In fact, in 1978 Best [1] found further examples of (12, 144, 4)2 codes. 
However, Best conjectured that A(12, 4) = 144, and the present authors concur. 

In this section we give a quaternary construction for the most interesting of Best's (12, 
144, 4)2 codes. Unlike Julin's code, this contains a (10, 40, 4) 2 code as a subcode. It does 
not contain a Steiner system S(5, 6, 12). This code is described in the report [1], but not 
in the published version [2]. 

We first give a concise definition of this code via its group, and then list the codewords 
in full. 

The maps P-l ,  ,Oa . . . . .  Pe were defined in Section 2 to act on vectors 7/54. We extend 
them to act on (a, b, c, d, e, f )  ~ 7/6 by fixing f 

The automorphism group of the code is the group K of order 128 generated by 

P - a  = P - 1  Pa,  /gb, Pc, /0d, D - e  = /9-1 De, 

together with the operations that take (a, b, c, d, e, f )  ~ 7/6 to 

(2 + a ,  2 + b ,  2 + c ,  2 + d ,  2 + e ,  2 + f ) ,  

( - e ,  - d ,  - c ,  - b ,  - a ,  2 - f ) ,  

( d +  1, e + 1, f +  1, a -  l, b -  l, c -  1). 

(The maps P-l ,  p~ and Pe are not in this group.) 

qNEOm~M 3. Let C be the (6, 144, 4)4 code consisting of the vectors 

010301, 011100, 100110, 300101, 333000 

and their images under K. These have respectively 

16, 16, 64, 32, 16 

images. Then the binary image of C under the map q~ is equivalent to Best's (12, 144, 
4)2 code described in [1]. 

We omit the proof. 
We can give a compact listing of the codewords of C as follows. Let (B~ denote the (5, 

32, 4)4 code displayed in Table 3. (Speaking informally, this is a twisted version of the 
pentacode with eight words left off.) The words in any column of Table 3 all have the same 
parity. 
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Table 3. The (5, 32, 4)4 code (B~ used to build the 
(6, 144, 4)4 code e. 

01110 00313 10011 11221 
21112 02311 12213 11023 
01132 20331 12031 13201 
21130 22333 10233 13003 
03112 30211 31001 
23110 32013 31203 
03130 32231 33021 
23132 30033 33223 

33300 
11302 
13320 
31322 

Then the (6, 144, 4) 4 code C consists of all the words 

(ai, bi, ci, di, el, i), i = 0, 1, 2, 3, 

where (a0 . . . . .  e0) E (gd, (al . . . . .  el) E (gl, (a2, . . . ,  e2) E (g~ = (2, 2, 2, 2, 2) + 
(B~, and (a3 . . . . .  e3) E (g3 = (2, 2, 2, 2, 2) + (B1. 

Furthermore, the vectors {(a, b, c, d, e) : (a, b, c, d, e, f )  E C, f = 0 or 1} form a 
(5, 72, 3)4 code over 7/4 whose binary image is a (10, 72, 3)2 code. By adding an overall 
parity check we obtain an (11, 72, 4)4 code. Similarly the vectors {(a, b, c, d, e) : (a, 
b, c, d, e, 1) E C } form the (5, 40, 4)4 pentacode (g 1. 

4. Julin's Codes of Length 12 

The (12, 144, 4)2 codes constructed by Julin ([11]; [13, Chap 2]) in 1965 are formed by 
taking as words the 132 blocks of the Steiner system S(5, 6, 12) and adjoining six words 
of weight 2 and six of weight 10. There are however several inequivalent ways to choose 
the words of weights 2 and 10 to adjoin to the Steiner system [7, Chap. 5]. 

In this section we give a quaternary construction for the Steiner system S(5, 6, 12) and 
for a canonical version of Julin's code. 

THEOREM 4. Let 5 be the (6, 144, 4)4 code over 7/4 consisting of all cyclic shifts and nega- 
tions of the vectors 

001122, 002211, 010212, 020121, 012021, 

011332, 012313, 013123, 013231, 021133, 

311111, 200000, 022222. (5) 

Then the binary image of 3 under ~ forms a (12, 144, 4)2 code. If the last two vectors 
are omitted from (5), the binary images form the blocks of a Steiner system S(5, 6, 12). 

Proof Let (v~, v0, vl, v4, 1)2, V3) E 7)'6 denote an arbitrary vector in 3. Then it is straight- 
forward to verify that the permutations of the group PGLs(5) acting on {e~, 0, 1, 2, 3, 4} 
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preserve this code. We can now refer to [6] (see the M12 entry) for the verification that 
the images of the first eleven vectors in (5) form a Steiner system S(5, 6, 12). In fact this 
form of the Steiner system was discovered many years ago by S.P. Norton [14] when he 
constructed the Mathieu group M12--which is the full automorphism group of S(5, 6, 12) 
--from the group PGL2(5 ). This construction of M12 is also briefly mentioned in [7, Chap. 
11, Sect. 17]. 

That the binary image of 5 has minimal distance 4 follows because (i) two blocks of 
the Steiner system cannot (by definition) meet in five places, and so they must be at Hamming 
distance at least 4, and (ii) the words of weights 2 and 10 obtained from the last two vec- 
tors in (5) clearly are at distance at least 4 from each other and from the rest of the code. [] 

Remarks. 

1. It is not difficult to show (we omit the details) that the full group of the binary code 
~b (3) is 22 • PGL2(5), of order 480. We have already seen how PGL2(5 ) acts, and the 
two symmetries of order 2 are negation of the Z 4 words and complementation of the 
binary words. 

2. 3 may be more concisely defined as the set of images of the vectors (v~, v0, vl, v4, 
v2, v3) ~ {001122, 021133, 311111, 200000, 022222 } under negation and the action 
of PGL2(5 ). 

We now discuss the sense in which 3 is unique. As already mentioned, there are many 
inequivalent (12, 144, 4)2 codes. To limit the possibilities, we first restrict consideration 
to codes which contain the 132 blocks of the Steiner system S(5, 6, 12) as a subcode. 
This forces the remaining twelve words to consist of six mutually disjoint words of weight 
2 and six words of weight 10 whose complements are mutually disjoint. Any such code 
therefore defines two partitions of the twelve coordinates into six pairs. A third such parti- 
tion is needed to specify how the coordinates are to be combined in pairs to produce a 
quaternary code. 

It is reasonable to require that the first two partitions should agree, so that the words 
of weight 10 are the complements of those of weight 2. In an attempt to make the quater- 
nary code have as many of the symmetries of the binary code as possible, we also insist 
that the third partition must coincide with the first two. So we shall define a quaternary 
Julin code to be a (6, 144, 4)4 code whose binary image contains a Steiner system S(5, 
6, 12) and is such that the three partitions of the twelve coordinates into six pairs defined 
by the words of weight 2, the words of weight 10, and the 7] 4 structure all coincide. 

THEOREM 5. There are precisely five inequivalent quaternary Julin codes. Just one, 5, is 
closed under negation. 

Proof The full automorphism group of the Steiner system is the Mathieu group M12. 
Modulo the action of this group one can show that there are exactly five ways to partition 
the coordinates into six pairs. Let the coordinates be labeled 

co 0 1 4 2 3 co' 0 '  1' 4 '  2 '  3', 
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as in the above description of 5. Then the five partitions are shown in Table 4, together 
with the subgroup of M12 that fixes each partition. By using the six words of weight 2 
defined by one of these partitions, together with their complements, we obtain the five 
codes, which we call the 

(a) involutary, 
(b) duadic, 
(c) icosahedral, 
(d) synthematic, 
(e) congruential 

types. 
Negation of the quaternary code corresponds to the permutation of type 26 defined by 

the partition of the twelve coordinates. This permutation is in Mm (and so preserves the 
words of weight 6) only for the involutary type. �9 

Table 4. Classification of partitions of twelve coordinates into six pairs under the action of the Mathieu group MI2. 

(a) 

Partition 

0 1 4 2 3 

~ '  0' 1' 4' 2' 3' 

I ImImI  

Stabilizer in M12 

2 x PSL2(5),  order 240 

(b) IImI  2 x Ds,  order 16 

(c) II!:  ieosahedral, order 60 

(d) 2 • $4, order 48 

(e) 42. D12, order 192 
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12-dimensional packings. The code 4} (5) is not distance invariant, and in fact four dif- 
ferent distance distributions occur. In particular, the number of  words at distance 4 from 
a given word is 35, 45, 47 or 49. This is also true for the duadic and synthematic types. 
But for the icosahedral and congruential types some codewords have 51 neighbors at distance 
4, the maximal possible number [3]. The congruential type has the greatest number of  
words with this property. 

Now 12 of  the 144 codewords in the congruential code 5 '  have 51 neighbors at Lee 
distance 4. Consequently the twelve-dimensional packing A(5 ') has the property that one- 
twelfth of  its spheres have kissing number 2 • 12 + 16 x 51 = 840 (cf. Eq. (4) o f  [7, 
p. 138]). This is the highest kissing number known in twelve dimensions (Best [1], [2]; 
[7, Table 1.2]). 

5. The (u, u + v) Construction and Codes of Length 20 to 24 

The (u, u + v) construction ([16], [13, Chap 2]) is the following. Let Ci(i = 1, 2) be 
an (n, Mi, di) 2 code. Then C3 = {(u, u + v) : u { C1, v ~ C2} is a (2n, M1 M2, min{2dl, 
dz}) 2 code. Any code constructed in this way automatically has the structure of  a quater- 
nary code. 

T/~Eom~ 6. C 3 is the image under {b of the quaternary code consisting of  all vectors 2u 
+ v, u E C t, v { C2 (regarding •2 = {0, 1} as a subset of 7/4). 

Proof. For u, v E 2~, we have the identity 

~b(2u + v) = (u, u + v). 
[] 

In particular, taking C1 to be an (n, 2 n-l, 2)2 code and Cz to be an (n, M, d = 3 or 4)2 
code, where 10 _< n < 12, we obtain quaternary versions of  the codes of  lengths 20 through 
24 mentioned in Section 1. 

Of  course the construction can be iterated to produce codes of lengths 32 to 48, and 
so on ([2], [13], [16]). 
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