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Quaternary synapses network for memristor-based spiking

convolutional neural networks
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Abstract This paper proposes a method that renders the weights of the

neural network with quaternary synapses map into the only four-level

memristance of memristive devices. We show this method is capable of

operating with a negligible loss in classification accuracy when the

memristors utilized can store at least four unique values. Compared with

other state-of-the-art methods, the method presented can achieve 98.65%

accuracy under the 0.60M parameters. Systematic error analysis shows

that the network can still reach over 95% accuracy under the condition of

95% yield of memristor crossbar array, 100µV op-amp offset voltage and

0.5% Single-Pole-Double-Throw switches noise.
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1. Introduction

With the development of artificial intelligence, neuromor-

phic computing has become a hot topic, and the next stage

of high performance computing will dramatically improve

the data processing and machine learning [1, 2, 3, 4].

In the recent years, the research of intelligent applica-

tions moves towards Internet of Things (IoT) edge com-

puting, more and more devices are beginning to be mini-

aturized and integrated [5, 6, 7]. Due to the area limitation

of hardware scale in mobile devices, the application re-

quirements for specific target recognition often fail to

achieve the desired results, which often consume excessive

system resources or a large amount of energy [8, 9, 10, 11].

It is significant advantages to offer an embedded neuro-

morphic processing systems, which has the ability to solve

complex problems while consuming very little power and

area.

Concerning the hardware implementation for specific

target recognition applications on portable mobile plat-

forms, we proposed a three-layer spiking convolutional

neural networks (CNNs) with parallel architecture

(SCNNs) [12]. Although, the convolutional neural net-

works are competent in tolerating the random effects, such

as the device variations or circuit noise [13], they may

significantly degrade the recognition accuracy rate [14, 15].

Despite the multilevel memristor devices that have ap-

peared [16, 17, 18, 19], a better preparation technique

has to be required since it still cannot be used for large-

scale applications. Alternatively, we propose a method

that renders the weights of the SCNNs with quaternary

synapses in the network map into the only four-level

memristance of memristive devices, as inspired by the

recent trend of network pruning and parameter compres-

sion in the deep learning community.

This work builds on our prior memristor-based

neuromorphic architecture [12], our previous implementa-

tion requires memristor device with multiple levels. In

this work our goal is to find four-level resistances values

within the memristor device resistance range, even when

the memristive device cannot support many states stably,

the network can still achieve a high accuracy rate as much

as possible.

The rest of this paper is organized as follows, Section 2

describes the basic structure of spiking convolutional neural

networks and the quaternary synapses network. Section 3

exhibits the simulation performance of our proposed meth-

od. The final Section 4 concludes the paper.

2. Memristor-based spiking convolutional neural net-

works with quaternary synapses

2.1 SCNNs architecture

The proposed architecture of SCNNs [12] is shown in

Fig. 1. The input image transmitted to the network is

represented in analogue method, whose information value

is carried by the pluses with different amplitude. Compared

with the other deep convolutional neural networks [20, 21,

22, 23], we only adopt one convolution layer and one

pooling layer, which is to facilitate the hardware imple-

mentation for achieving full parallelism with lower con-

Fig. 1. The SCNNs consists of three modules, behind the input layer is

convolution layer, followed by a Max Pooling layer and a fully connected

layer. We use the absolute activation function to connect the convolution

layer and the pooling layer, and we only use the bias at the last full

connection layer.
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sumption. At the end of the fully connected layer, the

number of neurons is the same as the number of categories,

and we choose the neuron with the largest value as its

classification output. In the actual hardware implementa-

tion, the largest value is the maximum pulse amplitude.

2.2 Hardware implementation

As mentioned above, the SCNNs is a simplied CNNs

architecture. After the network training is finished, the

weight matrix also has some negative weights. Therefore,

the converted mapping method is needed to be applied. We

assume that W represents a 2 � 2 weights matrix, and it

includes positive and negative values. Then, the W is

converted to the 2 � 4 matrix so that the memristor cross-

bar can easily calculate the weighted-sum with the ampli-

fiers. Each original value is extended in two parts, Wþ and

W�. If one element is a positive value, then the value is

defined in Wþ, and the value of W� is zero. In contrast, the

negative element value is defined in W� and the Wþ is

zero. Similarly, if the arrangement of the memristor in the

array corresponds to the converted matrix, the Roff takes

the place of the zero element. Fig. 2 is a simple demo about

performing a convolution computation in a memristor

crossbar. A two-dimensional input image is converted into

a one-dimensional electrical signal as an input, and the

weighted-sum computation is completed by the memristive

crossbar array.

The Abs and pooling circuits are shown in Fig. 3. The

Abs activation function module follows the convolution

layer. The Abs mainly consists of two op-amps and two

diodes. The Vin terminal receives the spike signals from the

convolution layer. The Vout terminal generates an activation

spike and sends it to the pooling layer. The pooling module

requires three op-amps and three Single-Pole-Double-

Throw switches (SPDT). The V i
in receives the spike signal

that has been activated, and the maximum voltage will be

sent to the fully connected layer by Vout.

2.3 Quaternary synapses network

Considering the realistic characteristic of the TaOx mem-

ristor device model [24], the trained matrix weights should

be converted to conductivity values that fall within the

bounded range of a memristor crossbar.

SC
i ¼ SF

i ¼
Smax � Smin

Wmax

� jWij þ Smin ð1Þ

Equation (1) shows how the synaptic weights are con-

verted to conductivity values, and the conversion procedure

is implemented on the software platform. SC
i and SF

i

represent the conductance values at the convolutional and

fully connected layers, respectively. The Smax and Smin
indicate the maximum and minimum conductances, respec-

tively. The W is the original SCNNs weights set, and the

Wmax represents the maximum absolute value of the

weights set, and the Si is the conductance of the memristive

array.

Our goal is to find four-level resistances values within

the memristor device resistance range that we called the

Quaternary Synapses Network (QSN). Even when the

memristive device cannot support many states stably, the

network can still achieve a high accuracy rate as much as

possible.

Fig. 2. The example illustrates the process of convolution by using the

memristor crossbar. The 2 � 2 size of image is selected as a demo. The

input is represented by the voltage pulse with amplitude information, and

the weights are stored in the memristor crossbar.

Fig. 3. Modules of convolutional layer, fully connected layer, Abs

activation function and max pooling.
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Algorithm 1 Quaternary Synapses Network Algorithm

Require: Mapped weights set S

Ensure: Four conductivity values C1; C2; C3; C4

Initialize γ and intervals B

C4  O, Costmin  1

For convenience, � ðSmax � SminÞ=2
B

for i ¼ 1 : 1 : 2B do

for j ¼ i þ 1 : 1 : 2B do

for k ¼ j þ 1 : 1 : 2B do

put the i; j; k in the set D

Wm ¼ Smin þ � � Dm, which Dm 2 D

sum O

generate the F by W and C4

for m ¼ 1 : 1 : lengthðSÞ do

Distmin ¼ minfjSm � F�jg, which F� 2 F

sum ¼ sum þ Distmin � �

end for

if sum < Costmin then

Costmin ¼ sum

fC1; C2; C3g ¼ D

end if

end for

end for

end for

Ci ¼ Smin þ � � Ci, which Ci 2 C and i ≠ 4

return C1; C2; C3; C4

The weights of the SCNNs are distributed in the con-

volution layer and the fully connected layer. First, we need

to map the weights of the convolutional layer and the fully

connected layer to the conductance values by using Eq. (1).

Next, we need to determine the four conductivity values C1,

C2, C3, and C4 (for the resistance of the memristors R1, R2,

R3, and R4, respectively). To make it easy to represent

negative weights in the memristive array, we fix a con-

ductance of C4 ¼ 0 (Roff ). Since two memristors combined

in the array can correspond to 13 weights, we use F to

represent the set of weights consisting of the four-level

memristor state (i.e., F ¼ fC1; C2; C3; C4; C2 � C1; C3 �

C2; . . .g). We define the conversion error loss function φ

to determine C1, C2, and C3.

Qij ¼
jSi � Fjj jSi � Fjj ¼ minfjSi � Fjjg

0 other

�

ð2Þ

� ¼
1=NC Si in SC

1=NF Si in SF

(

ð3Þ

’ ¼
X

jSj

i¼1

X

jFj

j¼1

Qij � � ð4Þ

The definition φ is described as Eq. (4), where S is a set

of mapped weights. Since there are different numbers of

weights in the convolutional layer and fully connected

layer, the weights of the convolutional layer and the fully

connected layer are weighted with γ when the conversion

error is calculated. The value of γ depends on the number of

weights in the convolution or fully connected layer, which

means that � ¼ 1=NC or � ¼ 1=NF , where NC and NF are the

numbers of weights of the convolutional or fully connected

layer, respectively. When the conversion error loss function

φ reaches the minimum, C1, C2, C3, and C4 are the con-

ductance values that we required (algorithm 1 describes the

process). Fig. 5(a) shows the distribution of device con-

ductance values in the QSN memristive array, and devices

in the array will only use one of the four states of mem-

ristors.

S 0i ¼
X

jFj

j¼1

Qij; i ¼ 1; 2; . . . ; jSj ð5Þ

Equation (5) shows that we will choose a value that is

closest to the original value as the new weight of the

network, and S 0i is the new conductance in the crossbar.

Fig. 5(b) shows the distribution of the weights by using

the four-state synapses network, and it can be seen that

the high-resistance state accounts for the majority of

memristors in the crossbar. In the actual implementation

of the algorithm, we divide the abscissa into 2B (e.g.,

B ¼ 8; 9; 10 . . .) intervals to facilitate the statistics. That

is, during the search process, we search the four states in

the 2B quantized values. Fig. 4 shows the distribution of

the synaptic weights by a combination of the four-state

resistances.

3. Simulation performance

3.1 Experimental settings

All experiments are conducted using an Intel Core i5

(2.5GHz), 8GB DDR3 and an Intel HD Graphics 400

graphics card. To reflect the practical application of

algorithm performance better, we do not use any data

augmentation technologies [25, 26, 27]. This work is

(a) (b)

Fig. 5. (a) Quaternary Synapses Network in SCNNs. The device in the

array will only use one of the four states of memristors. (b) Distribution of

synapses conductance mapped to four values.

Fig. 4. Mapping the new conductance values by combining four states.
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implemented with the Theano python open-source library,

and we also use LTspice for some circuit simulations. In the

experiments, we chose the MNIST dataset for verification,

we normalize the gray value of the image as the input

voltage, that is, the input voltage range is 0–1V. In this

paper, we refer the data from a fabricated TaOx memristor

device [24]. These devices can be repeatedly programmed

to different target resistance states from 2K to 3MΩ and

show the needed linearity at sufficiently low voltages

⩽0:3V.

3.2 Experiments on datasets

The MNIST dataset [20] consists of 60,000 training exam-

ples and 10,000 test examples of handwritten digits. Each

input image is a 28 � 28 grey scale image with a corre-

sponding label l 2 ½0; 9�, indicates different digits. The size

and simplicity of the MNIST dataset make it convenient

and quick to test models on.

Fig. 6 illustrates the relationship between the number

of intervals and the recognition accuracy rate. We can find

that the QSN achieves 98.4% recognition accuracy rate at

least. The overall recognition rate is the highest when the

interval number of 8 is set in the algorithm (B ¼ 3), the

average accuracy can reach 98.85% which is only 0.15%

decay compared with the highest accuracy.

The performance achieved in this work was compared

with other state-of-the-art designs (ensure accuracy ⩾95%).

As listed in Table I, it can be seen that our proposed

method offered comparable performances.

3.3 Systematic error analysis

As we mentioned in the previous section, there are some

op-amps in the activation function and pooling module.

The amplifier at each module may also impact recognition

accuracy. To consider this effect, we assume that each op-

amp in the circuit’s voltage input offset error, associated

gain error and voltage noise. The op-amps error model is

constructed as follows:

Vout ¼ Vin � Egain þ Eoffset þ Enoise ð6Þ

where Egain, Eoffset , and Enoise denote the op-amps voltage

gain error, the offset voltage, and the voltage noise,

respectively.

As Fig. 7 shows, the op-amps errors are mainly gen-

erated at the exit of the convolution module, the activation

function output and the pooling output. And the impact

of the SPDT noise in the pooling module also needs to be

considered.

By combining the offset voltage and gain error of the

op-amp, Fig. 8(a) demonstrates that the recognition accu-

racy hardly decreases when the offset voltage is lower than

400 µV. It can be seen that QSN decays by about 0.1%

compared to full precision SCNNs at 300 µV op-amps

offset, QSN can still achieve 97.8% recognition accuracy

Fig. 6. Recognition accuracy with using the Quaternary Synapses

Network.

Table I. Performance comparison with other publications

Method Parameters Memristor Amount Accuracy

BinaryConnect [28] 17.32K 1.07M 96.52%

BinaryNet [29] 13.12K 0.80M 98.16%

Gated-XNOR [30] 11.89K 0.73M 98.38%

This work 9.73K 0.60M 98.65%

Fig. 7. Schematic diagram of the error location generated by op-amps

and SPDTs

(a)

(b)

Fig. 8. The effect of (a) op-amps and (b) SPDTs noise on the

recognition accuracy.

Fig. 9. Circuit used to program the 1T1R memristor crossbar to target

memristance.
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with a gain error of 20%. Fig. 8(b) shows the impact of the

SPDT noise on the recognition accuracy rate. As we can

see, the SPDT noise has little effect on the recognition

accuracy of the system.

Besides, the process of memristor programming should

also be considered. In the simulation process, we use

device resistance at different levels and randomly generate

1%–20% errors in memristor programming [31]. These

errors include the error tolerance of the memristor and

the errors generated by the write circuit (the write circuit

is shown in Fig. 9 [32]).

Fig. 10 demonstrates the comprehensive error analysis

of QSN performance. Fig. 10(a) illustrates the relationship

between the recognition accuracy and programmed error.

When the op-amp offset voltage is 100 µV, 95% yield and

0.5% SPDT noise, the QSN can still reach over 95%

accuracy. It can be seen that the yield have the greatest

impacts on the accuracy from Fig. 10(b). The QSN accu-

racy has a significant downward trend as the yield

decreases. If the device yield is controlled above 90%,

the accuracy can be kept at 97.8%. The op-amps gain error

and SPDT noise have little effect on the recognition rate.

The curves in Fig. 10(c) and (d) fluctuate around the mean

value and there is no clear downward trend.

It can be seen that the QSN has strong robustness and

is not sensitive to noise.

4. Conclusion

In this paper, a quaternary synapses network is proposed

for low-comsumption neuromorphic memristor architec-

ture, which maps into the only four-level memristance

of memristive devices, as inspired by the recent trend of

network pruning and parameter compression in the deep

learning community. From the experiments above, it can be

seen that the QSN provides 98.4% minimum accuracy at

the interval numbers of 16, and the average accuracy can

reach 98.85% which is only 0.15% decay compared with

the highest accuracy. By combining the offset voltage and

gain error of the op-amp, yield and programmed error of

memristor crossbar array, QSN can still achieve over 95%

recognition accuracy. For future work, we consider to

further QSN on other neuromorphic architecture.
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