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Abstract: This paper presents the Quaternion-based Robust Adaptive Unscented Kalman Filter

(QRAUKF) for attitude estimation. The proposed methodology modifies and extends the standard

UKF equations to consistently accommodate the non-Euclidean algebra of unit quaternions and

to add robustness to fast and slow variations in the measurement uncertainty. To deal with slow

time-varying perturbations in the sensors, an adaptive strategy based on covariance matching that

tunes the measurement covariance matrix online is used. Additionally, an outlier detector algorithm

is adopted to identify abrupt changes in the UKF innovation, thus rejecting fast perturbations.

Adaptation and outlier detection make the proposed algorithm robust to fast and slow perturbations

such as external magnetic field interference and linear accelerations. Comparative experimental

results that use an industrial manipulator robot as ground truth suggest that our method overcomes

a trusted commercial solution and other widely used open source algorithms found in the literature.

Keywords: unit quaternion; unscented Kalman filter; MARG sensor; adaptive filtering

1. Introduction

With the rise of small flying vehicles, also known as drones, small and inexpensive attitude and

heading reference systems (AHRS) have populated the market. For such systems, it is common

to estimate the orientation by combining information from magnetic, rate and gravity (MARG)

sensors, also known as inertial measurement unit (IMU), usually composed of micromechanical

(MEMS) three-axis gyroscope and accelerometer and a three-axis magnetometer [1]. The standard

approach for attitude estimation is to compute the three components of inertial orientation

by integrating the gyroscope measurements, and use the gravity projection and heading angle

estimated by the accelerometers and magnetometers to correct the angles computed with the

gyro. Although theoretically simple, naive implementations of this approach may not be precise

because magnetometer measurements are easily influenced by ferrous material in the vicinity,

and accelerometers measure not only the gravitational direction but also its linear acceleration. In these

cases, it is difficult to dissociate magnetic field perturbation and linear acceleration from both the

magnetic field of the earth and gravity to compute the attitude accurately, which can lead to poor

estimates [2,3]. Since accurate attitude estimation is a crucial task for a variety of applications, such as

human motion tracking [4,5], augmented reality [6], satellite control [7] and navigation and control of

aerial [8], and sub-aquatic vehicles [9], the main objective of this paper is to present a solution that

deals with external in internal sensor disturbance and interference. This paper extends the results of

our conference paper [10]. We provide a more detailed mathematical description of our method and
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provide a whole new set of experiments. We also added several new figures that illustrate the ability

of our method to estimate attitude and also some characteristics of the sensors, such as bias.

It is usually very common and useful to represent attitude by a combination of three successive

rotations, such as Euler angles. Although intuitive, Euler angles exhibit singularity in their kinematic

description, a situation known as gimbal lock. Alternatively, unit quaternion and direct cosine

representations avoid such singularities. Between the two, unit quaternion is preferred due to its

minimal representation and computational efficiency [11]. However, the unit quaternion representation

does not pertain to the Euclidean space, meaning that weighted sum and subtraction operations,

common to most sensor fusion methodologies, may violate the unit norm constraint of the quaternion.

This paper proposes a solution to this problem in situations where the uncertainty of the measurements

may change over time.

There are many approaches to estimate attitude using the quaternion representation. Among the

stochastic approaches, techniques based on the Kalman filter (KF) and its variations for non-linear

systems are the most common [12,13]. To overcome the Euclidean systematization using the original

KF, an indirect form of the KF, called multiplicative extended Kalman filter (MEKF) [14], was proposed.

This approach is valid only for small estimation errors. For large errors, algorithms based on the

unscented Kalman filter (UKF) as the unscented quaternion estimator (USQUE) [15] may yield better

results. Since unit quaternions are constrained to the nonlinear Riemannian manifold, using its logarithm

and exponential maps, as in Refs. [11,16], can better handle its properties. A more general formulation

of UKF for unit quaternion can be found in Ref. [17]. However, these algorithms do not explore the

time-varying measurement uncertainty. If, for example, external disturbance affects the measurement

of the magnetic field, the filter estimate will be severely damaged.

The classical way of handling the temporal variation of uncertainty is through adaptive filters,

in which the statistical parameters that characterize the uncertainty are jointly estimated with the

system states. In this context, approaches based on the techniques referred to as covariance matching

(CM) [18], interacting multiple models (IMM) [19] and covariance scaling (CS) [20], were investigated.

Among these methods, the covariance matching approaches yield improved results in the estimation

of the covariance matrix for Gaussian distribution, if compared to the CS approach. CM also presents

a greater simplicity if compared to approaches based on multiple models. However, in the presence of

outliers, its performance can be damaged. In this context, median-based approaches can be combined

to mitigate the outlier influence [21,22]. It is important to point out that, like the KF, these adaptive

approaches also belong to Euclidean systematization, thus requiring modifications to be used with

unitary quaternions.

In Ref. [23], the authors present an adaptive UKF for attitude estimation. The adaptive part of

the algorithm is based on a covariance scaling approach, which adapts the covariance matrix if a fault

is detected by a chi-square test. The main shortcoming of this approach is that the chi-square test

may fail for slow varying faults, keeping the covariance matrix unchanged. In addition, the attitude

is parameterized by Euler angles, being vulnerable to gimbal-lock. Based on the algorithms shown

in Refs. [15,23], an adaptive UKF for attitude represented in quaternions is presented in Ref. [24].

In Ref. [25], a inflated covariance method based on multiplicative EKF (MEKF) is proposed to

compensate the undesired effects of magnetic distortion and body acceleration. In Ref. [26], the Hidden

Markov Model (HMM) is combined with MEKF to estimate the observation covariance matrix,

thus compensating the undesired effects of magnetic distortion and linear acceleration. In spite

of demonstrated good performance with numerically simulated cases [25] and actual data [26],

these algorithms suffer the same limitation of MEKF, which is restricted to small estimate errors.

In contrast to KF-based approaches, which adopt a probabilistic determination of the modeled

state, complementary filters (CF) are based on frequency analysis, being simplistic and usually

computationally more efficient. In Ref. [27], the authors proposed an explicit complementary filter

(ECF) for orientation estimation. Such a filter uses a proportional-integral (PI) controller to estimate

the bias of the gyro. In Ref. [28], the authors present a computationally efficient gradient descent
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algorithm given measurements from a MARG sensor. The proposed algorithm has low computational

cost and is able to reduce the effect of the magnetic disturbance. The problem of this algorithm is

that the orientation estimated using accelerometers suffers the influence of magnetic disturbances

due to the coupling in the gradient descent algorithm used. In Ref. [29], quaternion measurement

is computed as the composition of two algebraic quaternions, mitigating the influence of magnetic

distortion. Adaptive gains are used to reduce the estimation error during high dynamic motion.

Instead of using adaptive factors, in Ref. [30], an air data sensor (ADS) is used to compensate for the

linear acceleration disturbance in the MARG sensor. Although interesting, this solution requires a

minimum system velocity, making its application limited.

In this scenario, we propose an adaptive algorithm based on UKF for attitude estimation using

quaternion representation. In contrast to EKF, UKF-based approaches can better handle the high order

nonlinear terms that can appear when the attitude error is large. The unit norm constraint of the

quaternion is ensured by the use of a rotation vector parameterization. Differently from quaternion error

approximation used on USQUE, this parameterization better handles the unit quaternion properties,

such as the Riemannian metric [31]. The main difference between our work and classical approaches,

such as MEKF and USQUE, is that it handles online the time-varying measurement uncertainty.

For this, the covariance matching approach is used to update the observation covariance matrix online.

Although CM can usually estimate well the measurement covariance matrix, the presence of outliers

can damage the estimation. To minimize the effect of measurement outliers, we propose to combine

the adaptive filter with a Hampel identifier, which compares the median deviation and the median

absolute deviation (MAD) to identify an outlier. Our approach only uses the MARG sensor as an

information source, and does not need extra information, such as ADS. Thus, the main contribution of

this paper is the Quaternion-based Robust Adaptive Unscented Kalman Filter (QRAUKF) algorithm for

attitude estimation. This algorithm is robust to fast and slow perturbations on both accelerometers and

magnetometers and, to the best of authors’ knowledge, is the first one with such characteristics that

precisely and consistently represent the attitude using quaternions. The proposed algorithm is tested

with real experimental data collected from a MARG sensor. The performance of the proposed algorithm

is confronted against the non-adaptive UKF, the open source algorithm based on complementary

filter proposed in Ref. [32] and the commercial algorithm embedded in the MARG device used in

our experiments, which was executed using a manipulator robot for validation purposes. A Matlab

implementation of the algorithm is freely provided by the authors.

The rest of this paper is organized as follows. A problem formulation is presented in the next

section. The theoretical basis for our contribution is in Sections 3 and 4. The proposed algorithm is

presented in Section 5 and is experimentally evaluated in Section 6. Finally, conclusions are presented

in Section 7.

2. Problem Statement

This paper addresses the problem of attitude estimation of a rigid body moving in a three

dimensional space. This problem basically consists in determining the three degrees-of-freedom

orientation information of the body, independently of its current velocity and/or acceleration.

Among the common representations for attitude, we chose to use unit quaternions, since it

is a free-of-singularities and compact representation. To estimate the attitude, we assume that

rigid body is attached to inertial and magnetic sensors, namely 3-axis accelerometer measuring

acceleration in the three main body axis, ax,m, ay,m, and az,m; 3-axis magnetometer measuring the

magnetic fields bx,m, by,m, and bz,m; and 3-axis gyroscope measuring the angular velocities ωx,m,

ωy,m, and ωz,m. The accelerometers measure the gravity acceleration, which is indeed the part

used for attitude estimation, along with all other accelerations to which the body is subjected,

which act as perturbations for the movement. On the other hand, magnetometers measure the

magnetic field of the earth, useful in the estimation process, and other unknown fields around

the body. Measured accelerations and magnetic fields are contaminated with zero mean random
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noise. Angular velocity information, besides random noise, is also subjected to a time varying

bias. Thus, our problem is to estimate the unit quaternion e = [e1, e2, e3, e4], given the vector of

measurements [ax,m, ay,m, az,m, bx,m, by,m, bz,m, ωx,m, ωy,m, ωz,m], which is corrupted with noise and

external disturbances, as mentioned before.

We solve the previous problem using a modified version of the Uncented Kalman Filter (UKF).

A block diagram of our solution is shown in Figure 1. All blocks of this figure will be discussed in

the following sections. We start by addressing attitude representation using unit quaternions and by

presenting a new Unscented Transform (UT) for quaternions in the next section.

UT x̂k

Pxx
k

MARG sensor

Gyros

Accelerometer

Magnetometer yk = em

Rk

Forecast

Robust Noise
Estimation

Data-
assimilation

QRAUKF

um,k−1 =[ωx,m,ωy,m, ωz,m]

bx,m, by,m, bz,m

bx,m, by,m, bz,m

Pxx
0 x̂0

Figure 1. The architecture of the quaternion-based robust adaptive Kalman filter. In the left, the MARG

sensor provides the measurement information. The filtering algorithm uses the gyros measurement

ωm ∈ R
3 in the forecast step. The UT block is used to propagate the accelerometer am ∈ R

3 and

magnetometer bm ∈ R
3 measurements through a nonlinear function, computing a unit quaternion,

used as a pseudo-measurement in the robust noise estimation and data-assimilation steps.

3. Unit Quaternion Operations

Unit quaternions form a four-dimensional algebra over the real numbers and can be used to

parametrize the rotation group SO(3). The set of unit quaternions, denoted by H1, form a group under

multiplication operation but not under addition operation [17]. This group is topologically a 3-sphere,

denoted by S3, embedded in the R
4.

The unit quaternion can be represented as e = (v, n) ∈ H1, in which ‖e‖ = 1. Here v ∈ R is the

real part and n ∈ R
3 is the imaginary part. Given a rotation θ and the unit vector w, the corresponding

unit quaternion is e =
(

cos
(

θ
2

)

, sin
(

θ
2

)

w
)

. The inversion unit quaternion operation is equal to

its conjugate, given by e−1 = e∗ = (v, −n). The product ⊗ between quaternions is defined as

ea ⊗ eb ,
(

vavb − nT
a nb, vanb + vbna + na × nb

)

, in which × denotes the cross product [33]. A vector

v ∈ R
3 can be rotated by a unit quaternion e, which is given by (0, u) = e (0, v) e∗, where u ∈ R

3 is

the rotated vector [11].

3.1. Euclidean Tangent Space and Rotation Vector Parametrization

The group S3 is a Riemannian manifold, whose elements can be represented in a

three-dimensional Euclidean tangent space TeS3. Many operations are defined in the Euclidean tangent

space, such as the empirical mean and covariance. Furthermore, there are direct and inverse mappings

between the manifold and its tangent space, S3 ←→ TeS3, with exponential and logarithm functions,

respectively.
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Let e = (v, n) be a unit quaternion and r = θw be a rotation vector representing a rotation θ about

the unit axis w. The unit quaternion to rotation vector mapping, called logarithm mapping, is given

by [17]:

r =











2 arccos (v) n
‖n‖ , if ‖n‖ 6= 0 and v ≥ 0 ,

−2 arccos (−v) n
‖n‖ , if ‖n‖ 6= 0 and v < 0 ,

[0]3×1 , if ‖n‖ = 0 ,

(1)

where the quaternion antipodal ambiguity e = −e is treated by checking the signal of v.

The inverse mapping, called exponential mapping, is [17]:

e =

{
(

cos
( ‖r‖

2

)

, sin
( ‖r‖

2

)

r
‖r‖
)

, if ‖r‖ 6= 0 ,

(1, [0]3×1) , if ‖r‖ = 0 .
(2)

For brevity, logarithm (1) and exponential (2) mappings are written as e = R2Q(r) and

r = Q2R(e), respectively.

3.2. Sum, Subtraction, and Weighted Mean Operations

We define now the operations of sum, subtraction, and weighted mean for unit quaternion states.

The difference between ea and eb ∈ H1 is defined as

ea ⊖ eb , Q2R (ea ⊗ e∗b) . (3)

Similarly, for the Euclidean vectors ξa and ξb ∈ R
n, this operation is giving by ξa − ξb.

The sum of a unit quaternion ea ∈ H1 and a rotation vector r ∈ R
3, is defined as

ea ⊕ r , R2Q (r)⊗ ea . (4)

In Euclidean space, this operation is ξa + ξb.

Lastly, the weighted mean operation for a set of unit quaternions E = {ei}, i , 1 . . . nw, is

defined as

ê , WM (E, W) , (5)

where W = {wi} is a set of corresponding weights. The quaternion mean ê ∈ H1 can be computed in a

closed form by [34]

M ,
nw

∑
i=1

wieie
T
i , (6)

where M ∈ R
4×4, and the quaternion mean is the eigenvector of M corresponding to the maximum

eigenvalue. Iterative algorithms can also be used, as the gradient descent algorithm presented in

Refs. [10,11].

3.3. Quaternion Unscented Transform

The unscented transform (UT) is the main core of UKF. The UT approximates the mean ŷ ∈ R
m

and its covariance Pyy ∈ R
m×m of a random variable y obtained from the nonlinear transformation

y = h(x1, x2, c), where x1 ∈ R
n1 and x2 ∈ R

n2 are random variables with mean x̂1 e x̂2 and covariance

matrices Px1x1 ∈ R
(n1−1)×(n1−1) and Px2x2 ∈ R

n2×n2 , respectively, and c a known deterministic variable.

In addition, the random variable x1 is composed by a unit quaternion part x1,H and a unconstrained

Euclidean part x1,E; thus x1 ,
[

xT
1,H xT

1,E

]T
.
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Now, we define the augmented state vector x̆ ∈ R
n̆ as

x̆ ,
[

xT
1 xT

2

]T
, (7)

where n̆ = n1 + n2, as well as the augmented covariance matrix Px̆x̆ ∈ R
(n̆−1)×(n̆−1)

Px̆x̆ =

[

Px1x1 [0](n1−1)×n2

[0]n2×(n1−1) Px2x2

]

. (8)

The UT is based on a set of deterministically chosen samples known as sigma points (SP).

The sigma points Xj ∈ R
n̆−1 and the associated weights wj, j = 1, . . . , 2(n̆− 1) can be chosen as

X = ˆ̆x [1]1×2(n̆−1) ⊕
√

n̆− 1

[

(

Px̆x̆
)

1
2 −

(

Px̆x̆
)

1
2

]

, (9)

wj =
1

2(n̆− 1)
, (10)

where Xj is the jth column of matrix X ∈ R
(n̆−1)×2(n̆−1), (·) 1

2 is the Cholesky square root operation,

and [1]1×2(n̆−1) ∈ R
1×2(n̆−1) is a row vector with elements equal to one. Notice that the columns of

the covariance matrix Px̆x̆ can be seen as a perturbation variable, where the unit quaternion part is

parameterized as a rotation vector, which means that the covariance matrix is defined in the tangent

space, hence the n̆− 1 dimension. The SP (9) can be partitioned as

[

X x1

X x2

]

, X , (11)

where X x1 ∈ R
(n1−1)×2(n̆−1) and X x2 ∈ R

n2×2(n̆−1).

Then each sigma point Xj is propagated through h:

Yj = h
(

X x1
j ,X x2

j , c
)

, (12)

where Yj =
[

YT
j,H YT

j,E

]T
∈ R

ny is the jth column of the matrix Y ∈ R
ny×2(n̆−1).

From (12), we obtain ŷ, Pyy and Px1y as

ŷ = WM (Y , w) , (13)

Pyy =
2(n̆−1)

∑
j=1

wj

(

Yj ⊖ ŷ
) (

Yj ⊖ ŷ
)T

, (14)

Px1y =
2(n̆−1)

∑
j=1

wj

(

X x1
j ⊖ x̂1

)

(

Yj ⊖ ŷ
)T

. (15)

At this point it is important to mention that Equations (9) and (13)–(15) differ from the one in

the standard UT transform because they consider the quaternion operations previously defined in

this section.

From now on, for notation simplicity, we define the quaternion unscented transformation as the

function UT(·) comprising the set of Equations (9)–(15) as:

{ŷ, Pyy, Pxy} = UT
(

ˆ̆x, Px̆x̆, c, h
)

. (16)

where ˆ̆x and Px̆x̆ are given by Equations (7) and (8), respectively.
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4. Mathematic Modeling

This section describes the discrete time dynamic model used by the filtering algorithm presented

in this paper.

4.1. Kinematic Model of Attitude

Assuming that angular rates ωk ∈ R
3, measured by a 3-axis gyros from the input vector uk of the

dynamic system, the discrete-time attitude model is given by [15]

vec (ek) = Ak−1vec (ek−1) , (17)

where vec (·) : H1 → R
4 is an operator that takes the four coefficients of the unit quaternion and stacks

them in a 4-vector, k denotes the discrete time, and

Ak−1 , c

(

T

2
||ω||

)

I4×4 +
T

2
s

(

T

2
||ω||

)

Ω(ω) ,

Ω(ω) ,











0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0











.

We assume that uk = ωk ∈ R
3 is corrupted with random noise and bias terms, modeled as

um,k = uk + βk + qu,k, in which “m” denotes a measured variable, um,k = [ωxm ωym ωzm ]
T ∈ R

3

are angular rates measured by a 3-axis gyros, βk = [βωx βωy βωz ]
T ∈ R

3 are bias terms, and qu,k ∼
N ([0]3×1, Qu) ∈ R

3 is the input random noise. To directly use the measured inputs in (17), bias terms

and random noise are estimated and subtracted from the measurement. Then,

uk = um,k − βk − qu,k . (18)

A more general model for gyrometers is um,k = (I3×3 + S) uk + βk + qu,k, where S ∈ R
3×3 denotes

the matrix of scale factors and misalignment. This model is more appropriate for in-lab calibration [2].

Thus, in this paper, we assume that scale factors and misalignment have already been determined and

compensated, and only the biases are estimated [35].

Due to bias, which may vary in time, the attitude estimated based on gyros measurements may

suffer a temporal drift. To minimize this problem, bias terms βk are modeled as a random walk process,

βk = βk−1 + qβ,k−1, (19)

where qβ ∼ N
(

[0]3×1, Qβ

)

∈ R
3 and are jointly estimated with the other system states, yielding a

joint state vector xk ,
[

vec (ek) βT
k

]T ∈ R
7 .

Equations (17) and (19) compose the process model, which can be compactly presented as

xk = f (xk−1, qk−1, uk−1, k− 1) , (20)

where f denotes a nonlinear function of previous state xk−1, with input uk−1, and process noise

qk−1 ,
[

qT
u,k−1 qT

β,k−1

]T
.

4.2. Observation Model

The observation model relates the components of state vector xk with the output measurement

vector yk ∈ H1, defined as yk , em. Measurements are corrupted by random errors and modeled as
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em = ek ⊕ rk, where rk ∼ N ([0]3×1, Rk) ∈ R
3 is the measurement noise parameterized as a rotation

vector. Therefore, the observation model may be written as

yk = h (xk, rk, k) . (21)

In this paper, the measured acceleration am,k =
[

ax ay az

]T ∈ R
3 and magnetic field bm,k =

[

bx by bz
]T ∈ R

3 are used to compute the unit quaternion em ∈ H1. Assuming normalized

measurements such that ‖am,k‖ = 1 and ‖bm,k‖ = 1, the unit quaternion representing the body

attitude can be computed as [13,29]:

e∗m(am, bm) = eacc ⊗ emag , (22)

where e∗m(am, bm) is the conjugate of em(am, bm) and

eacc =



















(

λ1,
[

− ay

2λ1

ax
2λ1

0
]T
)

, az ≥ 0

(

− ay

2λ2
,
[

λ2 0 ax
2λ2

]T
)

, az < 0,

(23)

emag =



















(

λ3√
2Γ

,
[

0 0 λ3√
2Γ

]T
)

, lx ≥ 0

(

ly√
2λ4

,
[

0 0 λ4√
2Γ

]T
)

, lx < 0,

(24)

where λ1 =
√

(az + 1)/2, λ2 =
√

(1− az)/2, Γ = l2
x + l2

y, λ3 =
√

Γ + lx
√

Γ, λ4 =
√

Γ− lx
√

Γ and

lm,k =
[

lx ly lz
]T

such that(0, lm,k) = e∗acc (0, bm,k) eacc.

Because these equations are nonlinear, the unscented transform, given in Equation (16), is used

to propagate the measured acceleration error ra,k ∼ N ([0]3×1, Ra) ∈ R
3 and magnetic field error

rb,k ∼ N ([0]3×1, Rb) ∈ R
3 through Equations (22)–(24). Then,

(yk, Rk,−) = UT

(

[

aT
m bT

m

]T
, diag(Ra, Rb), 0, hab

)

, (25)

where diag(A, B) forms a block diagonal matrix with matrices A and B, and hab(am, bm) ∈ H1 is given

by Equation (22).

5. State Estimators

We assume that our dynamic system is modeled by the nonlinear Equations (20) and (21) in

which, ∀k ≥ 1, the known data are the measured output yk and input uk−1. It is also assumed that

process noise qk−1 ∈ R
nq and measurement noise rk ∈ R

nr are mutually independent with covariance

matrices Qk−1 ∈ R
nq×nq and Rk ∈ R

nr×nr , respectively. The state estimation problem aims at providing

approximations for the mean x̂k = E[xk] and covariance Pxx
k = E[(xk ⊖ x̂k) (xk ⊖ x̂k)

T ] that characterize

the a posteriori probability density function (PDF) ρ(xk|y1:k).

Due to the nonlinear characteristics of the model, our proposition is to use as the basis to our

approach the unscented Kalman filter (UKF) [36]. In the standard form of the UKF, two problems

arise when it is used to estimate attitude: (i) the UKF pertains to Euclidean systematization, therefore

containing sum and weighting operations, which are not defined for unit quaternions; (ii) the output

measured noise rk can have time-varying statistical properties, which can, in the worst case, lead to

diverging estimates. Regarding (i), most of the issues are solved if the modified unscented transform

presented in Section 3.3 is applied in the place of the standard one, as shown in Section 5.1. The solution
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of (ii) is our core contribution. We consider two events that may change the statistical properties of

measured noise: a dynamic event, such as linear accelerations that mask the gravity vector projection

measured by accelerometers; and a external influence, such as a ferromagnetic element that disturbs

the Earth’s magnetic field measured by the magnetometers. The rejection of these perturbations is

addressed in Sections 5.2 and 5.3.

5.1. Quaternion-Based UKF

The UKF algorithm presented in this section is based on the ones shown in Refs. [11,17], which are

slightly modified to encompass direct unit quaternion measurements and multiplicative noise in the

process. Henceforth, the notation x̂k|k−1 indicates an estimate of xk at time k based on information

available up to and including time k − 1. Likewise, x̂k indicates an estimate of xk at time k based

on information available up to and including time k. Let the process noise be partitioned as qk−1 ,
[

qT
1,k−1 qT

2,k−1

]T
∈ R

nq with covariance matrix Qk−1 , diag (Q1,k−1, Q2,k−1) ∈ R
nq×nq , where

q1,k−1 ∈ R
nq−nx+1 is the noise nonlinearly related to the state vector and q2,k−1 ∈ R

nx−1 is the linear

partition of noise. To improve the numerical stability of the filter, additive noise is considered for all

states [37].

Given these definitions, the modified quaternion-based unscented Kalman filter (QUKF) forecast

step is given by

(

x̂k|k−1, P̃xx
k|k−1, ∅

)

= UT
(

ˆ̆xk−1, Px̆x̆
k−1, uk−1, f

)

, (26)

Pxx
k|k−1 = P̃xx

k|k−1 + Q2,k−1, (27)
(

ŷk|k−1, P̃
yy

k|k−1
, P

xy

k|k−1

)

= UT
(

x̂k|k−1, Pxx
k|k−1, 0, h

)

, (28)

P
yy

k|k−1
= P̃

yy

k|k−1
+ Rk, (29)

νk = yk ⊖ ŷk|k−1, (30)

where νk is the innovation. The augmented state vector x̆k−1 ∈ R
n̆ and the corresponding covariance

matrix Px̆x̆
k−1 ∈ R

n̆×n̆ are respectively given by

x̆k−1 ,
[

xT
k−1 qT

1,k−1

]T
,

Px̆x̆
k−1 ,

[

Pxx
k−1 [0](nx−1)×(nq−nx+1)

[0](nq−nx+1)×(nx−1) Q1,k−1

]

,

with n̆ = nq + 1.

The state estimate and error covariance matrix are updated using information from yk in the

data-assimilation step, given by:

Kk = P
xy

k|k−1

(

P
yy

k|k−1

)−1
, (31)

x̂k = x̂k|k−1 ⊕ Kνk, (32)

Pxx
k = Pxx

k|k−1 − KkP
yy

k|k−1
KT

k . (33)

5.2. Adaptive Covariance Matrix

The uncertainty of measurements in the UKF is represented by covariance matrix Rk, which is

usually constant. However, the measurement uncertainties can be time-varying. We then propose

the use of innovation νk to adjust the measurement covariance matrix online through the covariance

matching (CM) approach [18].

Based on the assumption that the observation covariance matrix Rk is constant during a sliding

sampling window with finite length N, the basic idea of CM is to make the innovation νk consistent
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with its covariance E[νkνT
k ] , P

yy

k|k−1
. Notice that the innovation pertains to the three-dimensional

Euclidean tangent space. Thus, the covariance of νk is estimated as based on the last N innovation

samples as

E[νkνT
k ] ≈

1

N

k

∑
j=k−N+1

νjν
T
j . (34)

Notice that, the UKF (see Equation (29)) approximates the covariance by E[νkνT
k ] , P̃

yy

k|k−1
+ Rk,

where P̃
yy

k|k−1
, ∑

2(n−1)
j=1 wjỹj,k|k−1ỹT

j,k|k−1
. Then, Rk can be estimated by

R̂k =
1

N

k

∑
j=k−N+1

νjν
T
j − P̃

yy

k|k−1
. (35)

To avoid negative values due the subtraction operation in Equation (35), negative values in R̂k are

replaced by their correspondent value in the nominal covariance matrix R0.

5.3. Outlier Rejection

Outliers are spurious data that contaminate the statistical distribution. The contaminated

measurements deviate significantly from the normal observations, which directly reflects in the

innovation value νk, and, consequently, in the covariance estimated by CM.

The Hampel identifier [38] is an outlier identification method that is reported as extremely

effective in practice [39]. Based on this approach, our contribution is to compute a gain λ ∈ R
nr×nr to

be used as a multiplier that reduces the outlier influence in the estimation of the covariance matrix and

also on the Kalman gain. This gain is a diagonal matrix, wherein each the diagonal is defined as

λj,ii , min

(

1,
nσsi

|νj,i −med{νj,i}|

)

, (36)

where si = 1.4826 med{|νj,i −med{νj,i}|} is the median absolute deviation (MAD), nσ is the number

of standard deviations (confidence region) by which the innovation sample must differ from the local

median, med is the median operator, {·} is a moving window with size N, j , k−N + 1 . . . k is an index

for each element of the moving window, and i is the index of each element of the innovation vector.

5.4. Quaternion-Based Robust Adaptive Unscented Kalman Filter

By combining Equations (35) and (36) with the QUKF Equations (26)–(33), we then obtain a three

step algorithm that we call quaternion-based robust adaptive unscented Kalman filter (QRAUKF).

The first step is the forecast step, which is given by Equations (26)–(28) and (30). The second step is the

robust noise estimation given by Equation (36), the estimate covariance

R̂k = max

(

1

N

k

∑
j=k−N+1

λjνj

(

λjνj

)T − P̃
yy

k|k−1
, R0

)

(37)

and (29). The third and last step is the data-assimilation step, which is given by Equations (31)

and (33), and

x̂k = x̂k|k−1 ⊕ Kλkνk . (38)
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6. Experimental Results and Discussion

In this section we compare the performance of the proposed QRAUKF algorithm to the QUKF,

the complementary filter (CF) proposed in Ref. [32], and the commercial algorithm embedded in

the MicroStrain 3DM-GX1r IMU. We implemented QRAUKF using Matlab (Our code is available at

https://bitbucket.org/coroufmg/raukf_cm).

Actual data was collected at 40 Hz from the IMU, which was mounted on the end effector of

a Comau Smart Sixr manipulator, used to perform controlled movements and to provide accurate

orientation information. Figure 2 illustrates our setup.

Figure 2. Experimental setup using the MicroStrain 3DM-GX1r IMU and the Comau Smart Sixr robot.

To set QUKF and QRAUKF, we have assumed that the covariance matrix Q1,k−1 ∈ R
3×3 is

diagonal with elements related to the angular rates measured by the gyros. This matrix was estimated

as σω = [0.4584 0.3724 0.4927]T deg/s. The additive noise of process was represented by the diagonal

matrix Q2,k−1 ∈ R
6×6. This matrix is related to the attitude, parametrized as a rotation vector, and the

bias terms of the gyros. The standard deviations were empirically set as σv =
[

57.3× 10−20
]

3×1
deg

and σβ =
[

57.3× 10−9
]

3×1
deg/s, for attitude and bias terms, respectively. The measured acceleration

and magnetic field are propagated through the nonlinear function represented by Equations (22)–(24).

Standard deviations of accelerometer and magnetometer are σa = [0.0361 0.0455 0.0330]Tm/s2

and σm = [0.0011 0.00098 0.00098]T Gauss [G], respectively. The nominal covariance matrix of

measurements Rk is computed by the UT. The sliding window size of RAUKF was empirically set to be

N = 20 samples, which represents a period of 0.5 s during which the noise covariance is assumed to be

constant, and the confidence region nσ = 3 standard deviations. CF has two parameters, the gain that

quantifies the gyro measurement noise, set as β = 0.007, and the gain that quantifies the bias terms,

set as ζ = 0.01. These values follows the authors recommendations [32]. The standard deviations σω,

σa, and σm were estimated from experimental data. For this, we have used a window of approximately

20 s. During this calibration process, the MARG sensor was kept stationary (steady-state behavior).

The tuning parameters were estimated before performing the main state estimation experiments,

during which they remain unaltered. Observe that the measurement covariance matrix Rk is updated

online, in contrast with the process covariance matrices Q1,k−1 and Q2,k−1, that also remain unaltered.

Although we used a simplistic parameter estimation approach, the parameterization seems to be

appropriate, even for different experiments.

Five disturbance scenarios were evaluated: (i) abrupt and (ii) slow varying magnetic disturbances;

(iii) linear accelerations; (iv) individual axis rotation about the origin; and (v) simultaneous axes

rotations about the origin. The last two experiments, scenarios (iv)–(v), suffer linear accelerations

due to the lever arm between the end effector of robot and IMU (Videos showing the experiments are

found at: https://goo.gl/mtFSqG).

6.1. Magnetic Field Distortion

Heading estimation is performed by monitoring the Earth’s magnetic field with the magnetometer.

Due to the proximity of ferrous or magnetic materials, the magnetic field can be locally distorted,

which causes inaccurate estimates of heading angle. In our first experiment, the magnetic brakes

https://bitbucket.org/coroufmg/raukf_cm
https://goo.gl/mtFSqG
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of the robot manipulator are turned on and off a few times, thus causing an abrupt variation in the

magnetic field that is perceived by the magnetometers. Due to the shaking caused by the release of

the brakes, some spikes of acceleration also appear. Figure 3 shows the acceleration and magnetic

field measurements, and the attitude estimation error for each axis. The disturbance periods are

highlighted. Observe that the QUKF is more sensitive to outliers in the acceleration and magnetic

field measurements, converging quickly to wrong estimates induced by inaccurate measurements.

This behavior is expected, once QUKF does not have any treatment for abnormal measurements.

In contrast, QRAUKF, CF, and 3DM-GX1 algorithms reject the outliers. Table 1 shows the Root Mean

Square Error (RMSE) for this experiment in the column called “Abrupt magnetic”. Observe that

QRAUKF performs better than other algorithms, with the smaller RMSE. In contrast, QUKF yields the

largest RMSE indices.

In a second experiment, the magnetic field was artificially and slowly disturbed with a magnetic

material. Figure 4 shows the acceleration and magnetic field measurements, and the attitude error

for each axis. This kind of perturbation is usually difficult to detect and can damage the estimation.

Notice that QRAUKF is less sensitive to the slow varying abnormal measurement. CF yields the worst

results as shown by RMSE in Table 1, in the column called “Slow magnetic 1”. Figure 5 shows the

bias estimation in y and z-directions. Observe that the abnormal behavior of the magnetic field affects

the bias estimates of angular rate in all directions for QUKF and CF, which in turns does not happen

with QRAUKF.

Perturbation periods am bm QUKF QRAUKF CF
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Figure 3. Results for abrupt magnetic disturbances experiment, scenario (i). In the left column, linear

acceleration am and magnetic field bm measurements, in the right column, the attitude error.
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Table 1. Root Mean Square Error (RMSE) in degrees for disturbance scenarios (i) and (ii). The lowest

RMSE results are highlighted in bold.

Abrupt Magnetic Slow Magnetic 1 Slow Magnetic 2

Algorithm φ̃ θ̃ ψ̃ φ̃ θ̃ ψ̃ φ̃ θ̃ ψ̃
QRAUKF 0.05 0.04 0.07 0.07 0.09 1.84 0.40 0.19 3.11

QUKF 0.05 0.05 0.20 0.98 0.51 13.0 1.66 0.27 12.52
CF 0.07 0.06 0.14 9.22 11.00 28.90 3.20 0.86 8.97

3DM-GX1 0.16 0.18 0.09 0.12 0.09 11.28 0.35 0.27 9.8

Perturbation periods am,y bm,y QUKF QRAUKF CF
3DM-GX1
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Figure 4. Results for slow magnetic disturbances experiment (second experiment), scenario (ii).

In the left column, linear acceleration am and magnetic field bm measurements, in the right column,

the attitude error.

In a third experiment, the magnetic field was also artificially and slowly disturbed with magnetic

material. Although similar to the previous experiment, in this one the magnetic field is continually

disturbed during 30 s. Figure 6 shows the measurements and attitude estimation error for each axis.

In addition to magnetic disturbance, during the experiment we accidentally touched the manipulator

with the magnet and observed that the accelerometers and gyros also measure abrupt changes just

before 10 s and 20 s. Figure 7 shows angular rate measurements for this experiment. All algorithms,

except QUKF, are robust to outliers in acceleration and magnetic field measurements, however, as can

be seen by the error results, all algorithms have large peak errors φ̃ and θ̃. These large errors are

caused by the outliers in the angular rate measurements, that are not handled by the algorithms.
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In spite of these outliers, notice that QRAUKF shows the best result, as can be seen in Table 1,

column “Slow magnetic 2”.

Perturbation periods QUKF QRAUKF CF 3DM-GX1 Ref. Bias
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Figure 5. Bias estimate of angular rate ωy and ωz, respectively, measured by the gyros for second

experiment, scenario (ii).
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Figure 6. Results for slow magnetic disturbances experiment (third experiment), scenario (ii).

In the left column, linear acceleration am and magnetic field bm measurements, in the right column,

the attitude error.
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Figure 7. Angular rate ωy and ωz, respectively, measured by the gyros for the third experiment,

scenario (ii).

6.2. Linear Acceleration Disturbance

Roll φ and pitch θ angles are computed by the projection of the gravity vector, which is measured

by the accelerometer. However, the accelerometer measures the linear body acceleration together with

the gravity vector, which masks the gravity vector observation. Thus, the linear acceleration disturbs

the observation of φ, θ, and consequently the heading angle ψ.

To test the behavior of the algorithms against the perturbation of linear velocities, the manipulator

executed independent translational movements in each axis. Figure 8a shows the accelerometer

measurements. We observed that even when the movements are being executed separately in each

axis, linear accelerations appear in all axes. This is probably due to a small angle in the link joining the

IMU and the robot end effector. Figure 8b–d shows the attitude error. Table 2 shows the values of RMS

for this and other experiments. Notice that the QUKF provides the worst results. In contrast, QRAUKF

yields the best RMSE indexes and the smallest peak-error for heading angle. We also observe that

after 30 s, the attitude error for QRAUKF grows due to the longer time exposed to linear acceleration

perturbation. In fact, the QRAUKF estimates tend to converge to the value induced by the perturbed

measurement after a period of time.

Table 2. Root Mean Square Error (RMSE) in degrees for disturbance scenarios (iii), (iv), and (v).

The lowest RMSE results are highlighted in bold.

Linear Acceleration Individual Rotations Simultaneous Rotations

Algorithm φ̃ θ̃ ψ̃ φ̃ θ̃ ψ̃ φ̃ θ̃ ψ̃
QRAUKF 0.28 0.87 0.16 1.08 1.31 0.91 2.88 1.94 1.37

QUKF 4.0 3.78 2.36 1.97 1.73 2.23 2.76 2.08 4.20
CF 1.87 1.60 0.53 1.17 1.61 1.17 2.97 2.54 2.03

3DM-GX1 0.37 0.99 0.39 1.08 1.34 1.37 2.88 2.17 2.06

6.3. Rotations about the Origin

In our last two experiments, presented in Figures 9 and 10, rotations about the origin in each

axis separately and simultaneously were performed. In these cases, estimates are influenced by

linear accelerations that appear due to a lever arm between the IMU and the robot end effector.

Figures 9a and 10a show the actual movement performed by the manipulator. Again, the proposed

algorithm yields the best results, as shown by Table 2. Notice by Figure 9 that QRAUKF and

3DM-GX1 algorithm have similar errors, however, QRUKF converges faster to measurement after the

perturbation finishes. The poor performance of KF and CF is due to bias estimates that are influenced

by linear acceleration.
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Perturbation periods am,x am,y am,z QUKF
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Figure 8. Results for linear acceleration disturbance experiment, scenario (iii). (a) shows the measured

linear accelerations am; (b–d) show the estimation error for φ, θ and ψ angles, respectively.
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Figure 9. Results for individual axis rotation about the origin, scenario (iv). (a) shows actual orientation

for individual axis movements; (b–d) show the estimation error for φ, θ and ψ angles, respectively.
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Figure 10. Results for simultaneous axes rotation about the origin, scenario (v). (a) shows actual

orientation for simultaneous axes movements; (b–d) show the estimation error for φ, θ and ψ

angles, respectively.

7. Conclusions

In this paper, a quaternion-based robust adaptive unscented Kalman filter for orientation

estimation was presented. The algorithm ensures the unit norm of quaternion in all algorithm steps

without forcing a normalization. The logarithmic map of unit quaternions is used to parametrize

the error quaternion. This parameterization allows us to perform operations in Euclidean space

and then use existing approaches to adapt the measurement covariance matrix and detect outliers.

Due to the nonlinear nature of this transformation, unscented transform is used to compute the

measured quaternion.

The proposed algorithm was compared to a nonadaptive version of UKF, a complementary filter,

and commercial algorithm embedded in the IMU. Some experiments were performed to verify the

performance of the algorithms in situations where distorted magnetic field and linear accelerations exist.

The proposed algorithm shows the best RMSE results in all situations tested, and the smallest peak-error

for linear acceleration disturbance. In addition, the proposed algorithm accurately estimates the gyros

bias terms. Although in this paper we only show attitude estimation, the proposed methodology can

be used along the standard UKF equations to estimate the full state vector of vehicles. The same ideas

for disturbance rejection can also be extended for other vehicle states, once the sum and subtraction

operations defined in Section 3.2 are the usual operations for Euclidean states.
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