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Abstract. We treat the quaternionic Fourier transform (QFT) applied to
quaternion fields and investigate QFT properties useful for applications. Dif-
ferent forms of the QFT lead us to different Plancherel theorems. We relate
the QFT computation for quaternion fields to the QFT of real signals. We
research the general linear (GL) transformation behavior of the QFT with
matrices, Clifford geometric algebra and with examples. We finally arrive at
wide-ranging non-commutative multivector FT generalizations of the QFT.
Examples given are new volume-time and spacetime algebra Fourier transfor-
mations.
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1. Introduction

This paper strives to deepen the understanding of the quaternionic Fourier trans-
form (QFT) applied to quaternion fields f : R2 → H, and not only to real signals
f : R2 → R. We research QFT properties useful for applications to partial differ-
ential equations, image processing and optimized numerical implementations. We
investigate how different forms of the QFT allow to establish scalar and quaternion
valued Plancherel theorems.

We show systematically how to reduce the computation for quaternion fields
to the case of real signal computations, and on the other hand how results for real
signals can be generalized to quaternion fields.
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The third major focus is on deriving the behavior of the QFT under GL(R2)
automorphisms. To do this we split the QFT appropriately, and work with invari-
ant techniques of Clifford geometric algebra [1] to establish and understand the
automorphism behavior. Details are brought to light by looking at the examples
of stretches (dilations), reflections and rotations.

Together with isomorphisms (to Clifford subalgebras) we finally arrive at
wide-ranging generalizations of the QFT. These new non-commutative multivector
Fourier transforms operate on functions from domain spaces Rm,n (with m,n ∈ N0)
to Clifford algebras Clm,n or subalgebras thereof. To demonstrate the method, we
work out generalizations to volume-time and to spacetime algebra Fourier trans-
formations, and provide some physical interpretation.

1.1. Basic facts about Quaternions

Gauss, Rodrigues and Hamilton [2] invented the four-dimensional quaternion al-
gebra H over R with three imaginary units i, j, k and multiplication laws:

ij = −ji = k, jk = −kj = i, ki = −ik = j, i2 = j2 = k2 = ijk = −1. (1)

Quaternions are isomorphic to the Clifford geometric algebra Cl0,2 of R0,2, and to
the even subalgebra Cl+3,0 of the Clifford geometric algebra Cl3,0 of R3:

H ∼= Cl0,2
∼= Cl+3,0. (2)

Cl+3,0 has, with an orthonormal basis {e1, e2, e3} of R3, the four dimensional basis

{1, e32 = e3e2, e13 = e1e3, e21 = e2e1}. (3)

Every quaternion

q = qr + qii + qjj + qkk ∈ H, qr, qi, qj , qk ∈ R (4)

has a quaternion conjugate (corresponding to reversion in Cl+3,0)

q̃ = qr − qii− qjj − qkk, (5)

This leads to a norm of q ∈ H defined as

|q| =
√

qq̃ =
√

q2
r + q2

i + q2
j + q2

k. (6)

1.2. Convenient rewriting of quaternions

In some applications it proves convenient to replace k with k = ij and write a
quaternion as

q = qr + iqi + qjj + iqkj, (7)

neatly keeping all i to the left and all j to the right of each term. A second
convenient form is the split

q = q+ + q−, q± =
1
2
(q ± iqj). (8)
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Explicitly in real components qr, qi, qj , qk ∈ R using (1) the split (8) produces:

q± = {qr ± qk + i(qi ∓ qj)}
1± k

2
=

1± k

2
{qr ± qk + j(qj ∓ qi)}. (9)

The real scalar part qr (grade zero selection [1] in Clifford geometric algebra)

〈q〉0 = qr

leads to a cyclic multiplication symmetry

〈qrs〉0 = 〈rsq〉0, ∀q, r, s ∈ H. (10)

1.3. Quaternion module

For quaternion-valued functions f, g : R2 → H we can define the quaternion-valued
inner product

(f, g) =
∫

R2
f(x) g̃(x) d2x , with d2x = dxdy, (11)

with symmetric real scalar part [12]

〈f, g〉 =
1
2
[(f, g) + (g, f)] =

∫
R2
〈f(x) g̃(x)〉0d2x . (12)

Both (11) and (12) lead to the L2(R2; H)-norm

‖f‖ =
√

(f, f) =
√
〈f, f〉 =

∫
R2
|f(x)|2 d2x . (13)

A quaternion module L2(R2; H) is then defined as

L2(R2; H) = {f |f : R2 → H, ‖f‖ < ∞}. (14)

2. The quaternion Fourier transform

Before defining the quaternion Fourier transform (QFT), we briefly outline its
relationship with Clifford Fourier transformations.

Brackx et al. [3] extended the Fourier transform to multivector valued function-
distributions in Cl0,n with compact support. A related applied approach for hy-
percomplex Clifford Fourier transformations1 in Cl0,n was followed by Bülow et.
al. [4].

By extending the classical trigonometric exponential function exp(j x ∗ ξ)
(where ∗ denotes the scalar product of x ∈ Rm with ξ ∈ Rm, j the imaginary
unit) in [5, 6], McIntosh et. al. generalized the classical Fourier transform. Applied
to a function of m real variables this generalized Fourier transform is holomorphic
in m complex variables and its inverse is monogenic in m+1 real variables, thereby
effectively extending the function of m real variables to a monogenic function of
m+1 real variables (with values in a complex Clifford algebra). This generalization
has significant applications to harmonic analysis, especially to singular integrals

1This is the kind of Clifford Fourier transform to which we will refer in section 3.
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on surfaces in Rm+1. Based on this approach Kou and Qian obtained a Clif-
ford Payley-Wigner theorem and derived Shannon interpolation of band-limitted
functions using the monogenic sinc function [7, and references therein]. The Clif-
ford Payley-Wigner theorem also allows to derive left-entire (left-monogenic in
the whole Rm+1) functions from square integrable functions on Rm with compact
support.

The real n-dimensional volume element in = e1e2 . . . en of Cln,0 over the field
of the reals R has been used in [8, 9, 10, 11] to construct and apply Clifford Fourier
transformations for n = 2, 3 (mod 4) with kernels exp(−inx ∗ u), x,u ∈ Rn. This
in has a clear geometric interpretation. Note that i2n = −1 for n = 2, 3 (mod 4).

Ell [13] defined the quaternion Fourier transform (QFT) for application to 2D
linear time-invariant systems of PDEs. Ell’s QFT belongs to the growing family of
Clifford Fourier transformations because of (2). But the left and right placement of
the exponential factors in definition 2.1 distinguishes it. Later the QFT was applied
extensively to 2D image processing, including color images [12, 13, 4]. This spurred
research into optimized numerical implementations [14, 15]. Ell [13] and others [12,
16] also investigated related commutative hypercomplex Fourier transforms like in
the commutative subalgebra of Cl4,0 with subalgebra basis {1, e12, e34, e1234},

e2
12 = e2

34 = −1, e2
1234 = +1 . (15)

Definition 2.1 (Quaternion Fourier transform (QFT)). The quaternion Fourier
transform2 f̂ : R2 → H of f ∈ L2(R2; H), x = xe1+ye2 ∈ R2, and u = ue1+ve2 ∈
R2 is defined3 as

f̂(u) =
∫

R2
e−ixuf(x) e−jyvd2x . (16)

The QFT can be inverted by

f(x) =
1

(2π)2

∫
R2

eixuf̂(u) ejyvd2u , (17)

with d2u = dudv.

2.1. Rewriting and splitting functions

Let f : R2 → H ( or f ∈ L2(R2; H) ). Using four R2 → R ( or L2(R2; R) ) real
component functions fr, fi, fj , and fk we can decompose and rewrite f with (7)
as

f = fr + fii + fjj + fkk = fr + ifi + fjj + ifkj. (18)
We can also split the functions f [similar to q± in (8)] into

f = f+ + f−, f+ =
1
2
(f + ifj), f− =

1
2
(f − ifj). (19)

2We also assume always that
∫

R2 |f(x)| d2x exists as well. But we do not explicitly write this

condition again in the rest of the paper.
3For real signals f ∈ L2(R2; R) the detailed relationship of the QFT of definition 2.1 with the
conventional scalar FT, i.e. with the even cos-part and the odd sin-part are given on pp. 191 and

192 of [4]. With the help of (31) this can easily be extended to the full QFT of quaternion-valued
f ∈ L2(R2; H).



Quaternion FT & Generalization 5

Table 1. Properties of the quaternion Fourier transform (QFT)
of quaternion functions (Quat. Funct.) f, g ∈ L2(R2; H), with
x,u ∈ R2, constants α, β ∈ {q| q = qr + qii, qr, qi ∈ R},
α ′, β′ ∈ {q| q = qr + qjj, qr, qj ∈ R}, a, b ∈ R \ {0}, x0 =
x0e1 + y0e2, u0 = u0e1 + v0e2 ∈ R2 and m,n ∈ N0.

Property Quat. Funct. QFT

Left linearity αf(x)+β g(x) αf̂(u)+ βĝ(u)
Right linearity f(x)α ′+ g(x)β′ f̂(u)α ′+ ĝ(u)β′

x-Shift f(x− x0) e−ix0uf̂(u) e−jy0v

Modulation eixu0f(x) ejyv0 f̂(u− u0)
Dilation4 f(a xe1 + b ye2) 1

|ab| f̂(u
ae1 + v

b e2)

Part. deriv. ∂m+n

∂xm∂yn f(x) (iu)mf̂(u)(jv)n

Powers5of x, y xmynf(x) im ∂m+n

∂um∂vn f̂(u) jn

Powers5of i, j imf(x) jn imf̂(u) jn

Plancherel5 〈f, g〉 = 1
(2π)2 〈f̂ , ĝ〉

Parseval6 ‖f‖ = 1
2π‖f̂‖

According to (9) the two components f± can also be rewritten as

f± = {fr ± fk + i(fi ∓ fj)}
1± k

2
=

1± k

2
{fr ± fk + j(fj ∓ fi)}. (20)

As an example let us consider the split of the product of exponential functions
under the QFT integral in (16). Using Euler’s formula and trigonometric addition
theorems the split leads to

K = e−ixue−jyv = K+ + K−,

K± = e−i(xu∓yv) 1± k

2
=

1± k

2
e−j(yv∓xu). (21)

2.2. Useful properties of the QFT

We first show a new Plancherel theorem with respect to the scalar product (12).

Theorem 2.2 (QFT Plancherel). The scalar product (12) of two quaternion module
functions f, g ∈ L2(R2; H) is given by the scalar product of the of the corresponding
QFTs f̂ and ĝ

〈f, g〉 =
1

(2π)2
〈f̂ , ĝ〉. (22)

4Bülow [12] omits the absolute value signs for the determinant of the transformation.
5Theorems 2.4, 2.5 and 2.2.
6Corollary 2.3.
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Proof. For f, g ∈ L2(R2; H) we calculate the scalar product (12)

〈f, g〉 =
∫

R2
〈f(x)g̃(x)〉0d2x

=
1

(2π)2

∫
R2
〈
∫

R2
eiuxf̂(u)ejvyd2u g̃(x)〉0d2x

=
1

(2π)2

∫
R2
〈f̂(u)

∫
R2

ejvy g̃(x)eiuxd2x〉0d2u

=
1

(2π)2

∫
R2
〈f̂(u)[

∫
R2

e−iuxg(x)e−jvyd2x]∼ 〉0d2u

=
1

(2π)2

∫
R2
〈f̂(u)˜̂g(u)〉0d2u =

1
(2π)2

〈f̂ , ĝ〉. (23)

In the second equality of (23) we replaced f with its inverse QFT expression (17).
In the third equality we exchanged the order of integration and we used the cyclic
symmetry (10). For the fourth equality we simply pulled the reversion outside the
square brackets [. . .] and obtained the QFT ĝ(u), which proves (22) according to
(12). �

For g = f the Plancherel theorem 2.2 has a QFT Parseval theorem (also
called Rayleigh’s theorem) as a direct corollary.

Corollary 2.3 (QFT Parseval). The L2(R2; H)-norm of a quaternion module func-
tion f ∈ L2(R2; H) is given by the L2(R2; H)-norm of its QFT multiplied by 1/(2π)

‖f‖ =
1
2π
‖f̂‖. (24)

This leads to the following observations:

• The way we obtained the Parseval theorem of cor. 2.3 is much simpler than
the proofs in [12, 13].

• For two-dimensional linear time-invariant partial differential systems the Par-
seval theorem provides an appropriate method to measure controller perfor-
mance.

• In signal processing it states that the signal energy is preserved by the QFT.

For solving PDEs with quaternionic (or real) coefficient polynomials in x, y ∈
R2 we show the following two theorems. In this context we note again that every
quaternionic (or real) coefficient polynomial in the variables x, y ∈ R2 can be
brought into a form having factors of i ∈ H to the left side of each term and
factors of j ∈ H to the right side of each term (compare (18)).

Theorem 2.4 (Powers of x, y). The QFT of a quaternion module function xmynf(x)
∈ L2(R2; H), x = xe1 + ye2 ∈ R2, f ∈ L2(R2; H), m, n ∈ N0 is given by

x̂mynf(u) = im ∂m+n

∂um∂vn
f̂(u) jn. (25)
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Proof. The proof is done by induction. It is trivial for m = n = 0.
For m = 1, n = 0 we calculate the QFT of x̂f according to (16)

x̂f(u) =
∫

R2
e−ixuxf(x) e−jyvd2x

=
∫

R2
i

∂

∂u
e−ixuf(x) e−jyvd2x

= i
∂

∂u

∫
R2

e−ixuf(x) e−jyvd2x = i
∂

∂u
f̂(u). (26)

In second equality we used ∂
∂ue−ixu = −ixe−ixu and i(−i) = 1.

Completely analogous for m = 0, n = 1 we find

ŷf(u) =
∂

∂v

∫
R2

e−ixuf(x) e−jyvd2x j =
∂

∂v
f̂(u)j . (27)

Because of non-commutativity j appears to the right of f̂ . Induction over m,n ∈ N
completes the proof. �

Theorem 2.5 (Powers of i, j). The QFT of a quaternion module function imf(x)jn

∈ L2(R2; H), f ∈ L2(R2; H), m, n ∈ N0 is given by

îmfjn(u) = imf̂(u) jn. (28)

Proof. Similar to the left and right linearities of table 1 theorem 2.5 follows directly
from the definition 2.1 of the QFT, using the commutation relationships

exp(−ixu)im = im exp(−ixu) and exp(−jyv)jn = jn exp(−jyv). (29)

�

For every f ∈ L2(R2; H) we can always rewrite f = fr + fii + fjj + fkk as
in (18) to the form

f = fr + ifi + fjj + ifkj. (30)

Accordingly we now can make the following two important observations:

• Theorem 2.5 reduces the computation of the QFT of any f ∈ L2(R2; H) to
the computation of four QFTs of the real functions fr, fi, fj , fk ∈ L2(R2; R)
as in

f̂ = f̂r + if̂i + f̂jj + if̂kj. (31)

• On the other hand theorem 2.5 reveals that every theorem for the QFT of
real functions g ∈ L2(R2; R) immediately results via (31) in a corresponding
theorem for quaternion module functions f ∈ L2(R2; H). We simply need to
apply the theorem for the QFT of real functions to each of the four real com-
ponent functions fr, fi, fj , fk ∈ L2(R2; R). This fact is rather useful, because
often in image processing theorems are only established for real image signals
[12].
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2.3. Example: GL(R2) transformation properties of the QFT

To give an example for the second observation at the end of section 2.2 we use it
to generalize the general linear real non-singular transformation property of the
QFT of real 2D functions f ∈ L2(R2; R) of [12] to quaternion module functions
f ∈ L2(R2; H).
This property of real 2D signals states that for

x′ = Ax = (ax + by)e1 + (cx + dy)e2 (32)

with non-singular real transformation matrix

A =
(

a b
c d

)
(33)

the QFT of a real signal f : R2 → R is7

f̂(Ax)(u) =
|detB|

2

(
f̂(B+ u) + f̂(B− u) + i

{
f̂(B+ u)− f̂(B− u)

}
j
)

. (34)

In (34) the two linear real non-singular transformations B+ and B− have corre-
sponding matrices and the (same) determinant

B+ = A−1T
, B− =

1
det A

(
d c
b a

)
,

detB = det B+ = det B− = (det A)−1. (35)

We can now establish the generalization from f ∈ L2(R2; R) to f ∈ L2(R2; H)
functions.

Theorem 2.6. The QFT of a quaternion-module function f ∈ L2(R2; H) with a
GL(R2) transformation A of its vector arguments (32) is also given by (34).

Proof. We only sketch the proof, because writing out all expressions explicitly
would consume too much space:

• Applying (34) and (35) to each component of (31) and
• rearranging the sum (of 16 terms) yields the validity of (34) together with

(35) also for quaternion-valued f ∈ L2(R2; H).
• It is again crucial that in each term all factors i are always kept to the left

and all factors j are always kept to the right.

�

We remark that resorting to matrices and matrix manipulations is geometri-
cally not very intuitive, so in section 4 an alternative more geometric approach is
taken to derive the transformation properties of general f ∈ L2(R2; H). This geo-
metric approach has far reaching consequences for the generalization of the QFT,
exploited in later sections.

7Bülow [12] omits the absolute value signs for the determinant of the transformation.
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But before geometrically reanalyzing QFT transformation properties we look
at the following variant of the QFT with some desirable properties not valid for
the QFT of definition 2.1.

3. The right side quaternion Fourier transform (QFTr)

We observe that it is not possible to establish a general Plancherel theorem for
the QFT of the inner product (f, g) of (11), because the product (11) lacks the
cyclic symmetry (10) applied in the proof of theorem 2.2. To obtain a Plancherel
theorem it is therefore either necessary to modify the symmetry properties of the
inner product as in (12) or to modify the QFT itself. In this section we explore
the second possibility.

Definition 3.1 (Right side QFT (QFTr)). The right side quaternion Fourier trans-

form
.

f : R2 → H of f ∈ L2(R2; H), x = xe1 + ye2 ∈ R2, and u = ue1 + ve2 ∈ R2

is defined as
.

f(u) =
∫

R2
f(x) e−ixue−jyvd2x with d2x = dxdy. (36)

The QFTr is known as Clifford Fourier transform [3, 4], because of the isomor-
phism H ∼= Cl0,2. Further freedoms in alternative definitions would be to exchange
the order of the exponentials in (36) or to wholly shift both exponential factors to
the left side instead. The former would simply exchange the roles of i and j, but
the latter would not serve our purpose as will soon become clear. The QFTr can
be inverted [3, 4] using

f(x) =
1

(2π)2

∫
R2

.

f(u) ejyveixud2u, (37)

with d2u = dudv. Attention needs to be paid to the reversed order of the expo-
nential factors in (37) compared to (36).

3.1. Properties of the QFTr

For general f, g ∈ L2(R2; H) left linearity and dilation properties of table 1 hold.
The left linearity coefficients can now be fully quaternionic constants α′, β′ ∈ H.

But x-shift, partial derivative, and powers of xmyn properties need to be
modified as in table 2. Regarding (1) it is clear that if = fi holds iff f = fr +

8The positions of the real scalars α, β before or after the functions f, g do not matter.
9Only for quaternion module functions f ∈ L2(R2; H) with if = fi, i.e. f = fr +ifi with fr, fi ∈

L2(R2; R) do we get F.{f(x− x0)}(u) = e−ix0u
.
f(u) e−jy0v .

10Only for if = fi do we get F.{ ∂m+n

∂xm∂yn f}(u) = (iu)m
.
f(u)(jv)n.

11Only for if = fi do we get F.{xmynf}(u) = im ∂m+n

∂um∂vn

.
f(u) jn.

12Here the powers of i, j law is a direct consequence of the left linearity.
13Compare theorem 3.2.
14A direct consequence of symmetrizing theorem 3.2.
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Table 2. Properties of the right sided quaternion Fourier trans-
form (QFTr) of quaternion functions (Quat. Funct.) f, g ∈
L2(R2; H), with x,u ∈ R2, constants α, β ∈ R, α ′, β′ ∈ H,
a, b ∈ R \ {0}, x0 = x0e1 + y0e2,u0 = u0e1 + v0e2 ∈ R2 and
m,n ∈ N.

Property Quat. Funct. QFTr

Linearity8 αf(x)+β g(x) α
.

f(u)+ β
.
g(u)

Left linearity α ′f(x)+ β′g(x) α ′
.

f(u)+ β′
.
g(u)

x-Shift9 f(x− x0) F.{fe−ix0u}(u) e−jy0v

Dilation f(a xe1 + b ye2) 1
|ab|

.

f(u
ae1 + v

b e2)

Part. deriv.10 ∂m+n

∂xm∂yn f(x)i−m um
.

f(u)(jv)n

Powers11of x, y xmynf(x)i−m ∂m+n

∂um∂vn

.

f(u) jn

Powers12of i, j imjnf(x) imjn
.

f(u)

Plancherel13 (f, g) = 1
(2π)2 (

.

f,
.
g)

Plancherel14 〈f, g〉 = 1
(2π)2 〈

.

f,
.
g〉

Parseval ‖f‖ = 1
2π‖

.

f‖

fi i, fr, fi ∈ R, which is slightly more general than the restriction of [12] to f =
fr ∈ R. A modulation property analogous to the one in table 1 does not hold. It
is obstructed by the non-commutativity of the exponential factors

exp(jyv0) exp(ixu) 6= exp(ixu) exp(jyv0). (38)

For a powers of i, j property to hold for the QFTr, we need to shift the factors jn

also to the left of the quaternion function f(x).
For fully general quaternion-valued f, g ∈ L2(R2; H) we can establish for

the QFTr the following quaternion-valued Plancherel theorem based on the inner
product (11).

Theorem 3.2 (QFTr Plancherel). The (quaternion-valued) inner product (11) of
two quaternion module functions f, g ∈ L2(R2; H) is given by the inner product of

the corresponding QFTrs
.

f and
.
g

(f, g) =
1

(2π)2
(

.

f,
.
g). (39)
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Proof. For f, g ∈ L2(R2; H) we calculate the inner product (11)

(f, g) =
∫

R2
f(x)g̃(x)d2x

=
1

(2π)2

∫
R2

∫
R2

.

f(u)ejvyeiuxd2u g̃(x)d2x

=
1

(2π)2

∫
R2

.

f(u)
∫

R2
ejvyeiuxg̃(x)d2xd2u

=
1

(2π)2

∫
R2

.

f(u)[
∫

R2
g(x)e−iuxe−jvyd2x]∼ d2u

=
1

(2π)2

∫
R2

.

f(u)
.̃
g(u)d2u =

1
(2π)2

(
.

f,
.
g). (40)

In the second equality of (40) we replaced f with its inverse QFTr expression (37).
In the third equality we exchanged the order of integration. For the fourth equality
we simply pulled the reversion outside the square brackets [. . .] and obtained the
QFTr

.
g(u), which proves (39) according to (11). �

For g = f theorem 3.2 has a corresponding QFTr Parseval theorem as a
direct corollary.

Corollary 3.3 (QFTr Parseval). The L2(R2; H)-norm of a quaternion module func-

tion f ∈ L2(R2; H) is given by the L2(R2; H)-norm of its QFTr
.

f multiplied by
1/(2π)

‖f‖ =
1
2π
‖

.

f‖ =
1
2π
‖f̂‖. (41)

Proof. The first identity follows from setting g = f in theorem 3.2 (QFTr Plancherel).
The second identity follows from comparing with corollary 2.3 (QFT Parseval). �

To facilitate the use of the QFTr and comparison with the QFT (table 1) we
list the main QFTr properties in table 2.

4. Understanding the GL(R2) transformation properties of the
QFT

We begin with noting that the matrix transformation law (34), derived by Bülow
[12] for real signals f ∈ L2(R2; R), and generalized in theorem 2.6 of section 2.3 to
quaternion-valued signals15 f ∈ L2(R2; H), with four terms on the right side, allows
no straightforward geometric interpretation. Yet a clear geometric interpretation is
not only needed in many applications, such an interpretation is also very instructive
in order to successfully generalize the QFT to higher dimensions.

15Remember that Bülow [12] proved his transformation law only for real signals. But in theorem

2.6 of section 2.3, we used (31) and theorem 2.5 to generalize from real signals f ∈ L2(R2, R) to
quaternion valued signals f ∈ L2(R2, H).
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Toward this aim we observe, that the split (21) of the exponentials K under
the QFT integral results in two (single exponential) complex kernels K± with
complex units i (or j) apart from the right (or left) factor (1± k)/2.

This and the known elegant monomial transformation properties of com-
plex Fourier transforms (also preserved in the Clifford FT of [9]) motivates us
to geometrically re-analyze the GL(R2) transformation properties of the QFT of
f ∈ L2(R2; H) in terms of its two components f± as given in (19).

Theorem 4.1 (QFT of f±). The QFT of the f± split parts of a quaternion module
function f ∈ L2(R2, H) have the complex forms

f̂± =
∫

R2
f±e−j(yv∓xu)d2x =

∫
R2

e−i(xu∓yv)f±d2x . (42)

Proof.

f̂± =
∫

R2
e−ixu{fr ± fk + i(fi ∓ fj)}

1± k

2
e−jyvd2x

=
∫

R2
{fr ± fk + i(fi ∓ fj)} e−ixu 1± k

2
e−jyvd2x

=
∫

R2
{fr ± fk + i(fi ∓ fj)}

1± k

2
e−j(yv∓xu)︸ ︷︷ ︸
=K±

d2x

(20)
=

∫
R2

f±e−j(yv∓xu)d2x =
∫

R2
e−i(xu∓yv)f±d2x , (43)

where for the third equality we did a number of quaternion algebra manipulations,
involving Euler’s formula and trigonometric addition theorems. The last equality of
(43) follows analogously by replacing f± with the third expression in (20), etc. �

We learn from the third line of (43) that the behavior of the two parts (21)
under automorphisms A ∈ GL(R2) also determines the automorphism properties
of the QFTs f̂±, where due to theorem 2.5 the QFT operation and the split
operation (19) commute.

4.1. Geometric interpretation and coordinate independent formulation of GL(R2)
transformations of the QFT

We begin with noting that according to the polar decomposition theorem [17] every
automorphism A ∈ GL(R2) has a unique decomposition A = T R = RS, where R
is a rotation and T and S are symmetric with positive and negative eigenvalues.

Positive eigenvalues correspond to stretches by the eigenvalue in the direc-
tion of the eigenvector. Negative eigenvalues correspond to reflections at the line
(hyperplane) normal to the eigenvector, composed with stretches by the absolute
value of the eigenvalue in the direction of the eigenvector.

Stretches (positive eigenvalues) D ∈ GL(R2) were already fully treated in
[12] (compare also table 1).



Quaternion FT & Generalization 13

Rotations correspond to two reflections [18, 19] at lines subtending half the
angle of the resulting rotation Rab = UaUb. The elementary transformations that
compose all automorphisms A ∈ GL(R2) are therefore stretches and reflections.

In geometric algebra reflections Un at a hyperplane (line in 2D) through the
origin can be characterized by normal vectors n

Unx = −n−1xn. (44)

The length of n does not matter. Un preserves (reverses) the component parallel
(perpendicular) to the hyperplane of reflection.

With the vectors x = xe1 + ye2 , u = ue1 + ve2 we now rewrite coordinate
free16 the angles in the exponentials of f̂± as

−xu + yv = x · (Ue1u), xu + yv = x · u. (45)

Hence we get for the QFTs of f±

f̂+ =
∫

R2
f+e−j x·(Ue1u)d2x, f̂− =

∫
R2

f−e−j x·ud2x. (46)

The QFT of f− is analogous to a complex 2D Fourier transform, only in general
f− and the exponential factor do not commute. The QFT of f+ is similar except
for the reflection Ue1 .

We are now in a position to apply any automorphism A ∈ GL(R2) to the
spatial argument of the f± components of any f ∈ L2(R2, H). We begin with

̂f−(Ax)(u) =
∫

R2
f−(Ax)e−j x·ud2x

z=Ax=
∫

R2
f−(z)e−j(A−1z)·u |detA−1|d2z

= |detA−1|
∫

R2
f−(z)e−j z·(A−1u) d2z

= |detA−1| f̂−(A−1u), (47)

where A−1 indicates the adjoint automorphism of A−1. The absolute value of the
determinant detA−1 needs to be used, because of the interchange of integration

16The fact that the reflection Ue1 with the special hyperplane normal to vector e1 is needed

stems from the arbitrary initial association of the e1-coordinate product xu with i and of the
e2-coordinate product yv with j.
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boundaries for a negative determinant. We continue with

̂f+(Ax)(u) =
∫

R2
f+(Ax)e−j x·(Ue1u)d2x

z=Ax=
∫

R2
f+(z)e−j(A−1z)·(Ue1u) |detA−1|d2z

= |detA−1|
∫

R2
f+(z)e−j z·(A−1Ue1u) d2z

= |detA−1|
∫

R2
f+(z)e−j z·(Ue1Ue1A−1Ue1u) d2z

= |detA−1| f̂+(Ue1A−1 Ue1u), (48)

which is very similar to the previous calculation for f̂−. The only difference is
that in line 4 we insert 1 = Ue1Ue1 before A−1, and that the argument of the
transformed f̂+ now has the reflected version Ue1A−1 Ue1 of the adjoint inverse
transformation A−1. Recombining f̂+ and f̂− we get from (47) and (48)

Theorem 4.2 (GL(R2) transformation properties of the QFT). The QFT of a
quaternion module function f ∈ L2(R2; H) with a GL(R2) transformation A of its
vector argument is given by

f̂(Ax)(u) = |detA−1| { f̂−(A−1u) + f̂+(Ue1A−1 Ue1u) } . (49)

Theorem 4.2 corresponds exactly to equation (34) with (35), if the matrix
expression (33) is used for the automorphismA and if the f± split formulas (19) are
used. The four terms of (34) together with all the matrices involved therefore get
in theorem 4.2 a clear geometric interpretation. In order to be even more explicit
we specify below the full geometric algebra expressions for stretches, reflections
and rotations.

4.2. Explicit examples: stretches, reflections & rotations

To deepen our geometrical understanding we now look at stretches, reflections
(and rotations) which compose every general automorphism A ∈ GL(R2).

Stretches expressed by Asx = axe1+bye2, with a, b ∈ R\{0}, result because
of Ue1As Ue1 = As in

̂f(Asx)(u) = |detA−1
s | f̂(A−1

s u) =
1
|ab|

f̂(
u

a
e1 +

v

b
e2). (50)

Reflections in hyperplanes normal to a expressed by Uax = −a−1xa , with
|detUa| = 1 , Ua = Ua , Ue1Ua Ue1 = Ua′ , and a′ = Ue1a result in

f̂(Uax)(u) = f̂−(Uau) + f̂+(Ua′u). (51)

Finally rotations (equivalent to two reflections at lines subtending half the
rotation angle) expressed by Rabx = UbUax , with |detRab| = 1 , R−1

ab = Rba ,
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and Ua′Ub′ = Ue1R−1
abUe1 , result in

̂f(Rabx)(u) = f̂(UbUax)(u) = f̂−(UaUbu) + f̂+(Ua′Ub′u)

= f̂−(R−1
abu) + f̂+(Ue1R−1

ab Ue1u) (52)

In two dimensions17 the formula for rotations of the spatial argument of a quater-
nion module function f subject to the QFT can be further simplified to

̂f(Rabx)(u) in 2D= f̂−(R−1
abu) + f̂+(Rabu) , (53)

because in two dimensions we have Ue1R−1
ab Ue1 = Rab .

Theorems 4.1 and 4.2 together with their clear geometric interpretation with
the help of geometric algebra pave the way for wide-ranging generalizations of the
QFT of definition 2.1. In this paper we cannot fully treat all possible generaliza-
tions. But in order to demonstrate the method, we show in the following section
how to generalize the QFT to a new general non-commutative Fourier transforma-
tion of functions from spacetime R3,1 to the spacetime algebra [20] of R3,1, i.e. to
the Clifford geometric algebra Cl3,1 . An intermediate step will be the generaliza-
tion to a new Fourier transform of functions from spacetime R3,1 to a volume-time
subalgebra of the spacetime algebra.

5. Generalization of the QFT to a new spacetime algebra Fourier
transform

We begin by recalling quaternion algebra to Clifford subalgebra isomorphisms such
as H ∼= Cl(0, 2) ∼= Cl+(3, 0) . Such isomorphisms together with the generalized
GL(Rn,m) transformation laws for {f̂±(Ax)}(u) allow us now to generalize the
QFT to higher dimensions.

This indeed opens up a vast new field of related multivector Fourier trans-
forms, which are in general non-commutative.

5.1. QFT generalization to volume-time functions

One of these quaternion algebra to Clifford sub-algebra isomorphisms that is of
particular relevance in physics exists with a subalgebra of the spacetime algebra
Cl3,1. We express this isomorphism by introducing an orthonormal (grade 1) vector
basis for R3,1

{e0, e1, e2, e3}, −e2
0 = e2

1 = e2
2 = e2

3 = 1. (54)
Using this vector basis of R3,1, the spatial unit volume trivector i3 and total four-
dimensional (hyper volume) pseudoscalar i4 can be expressed by

i3 = e1e2e3, i23 = −1, i4 = e0e1e2e3, i24 = −1. (55)

We emphasize the fact that the vector e0, the 3D volume trivector i3, and the
4D pseudoscalar i4, all square to minus one. Examining the geometric algebra

17In section 5 we generalize theorem 4.2 to higher dimensions, but for rotations the expression

for f̂+ on the right hand side of (53) will in general not be valid for higher dimensions.
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multiplication laws of e0, i3, and i4, shows indeed that the arising subalgebra Vt

of the spacetime algebra is isomorphic (see sections 4.1 and 4.2 of [21]) to the
quaternion algebra H

Vt
∼= H , (56)

where we use Vt to denote the volume-time subalgebra of Cl3,1 with subalgebra
basis

{1, e0, i3, i4}. (57)
Note especially that

i3 = e0(−i4) = e0 i−1
4 = e∗0, (58)

which shows that i3 is dual to e0 in Cl3,1.
Based on the isomorphism (56) we now define a Fourier transform for volume-

time module functions f ∈ L2(R3,1;Vt).

Definition 5.1 (Volume-time Fourier transform (VtFT)). The volume-time Fourier

transform
◦
f : R3,1 → Vt of volume-time module functions f ∈ L2(R3,1;Vt), with

spacetime vectors x = te0 + ~x ∈ R3,1, ~x = xe1 + ye2 + ze3 ∈ R3, and spacetime
frequency vectors u = se0 + ~u ∈ R3,1, ~u = ue1 + ve2 + we3 ∈ R3 is defined as

◦
f(u) =

∫
R3,1

e−e0 tsf(x) e−i3~x·~ud4x , (59)

with the differential spacetime integration volume d4x = dtdxdydz .

The VtFT can be inverted in close analogy to (17) by using

f(x) =
1

(2π)4

∫
R3,1

ee0 ts
◦
f(u) ei3~x·~ud4u , (60)

with d4u = dsdudvdw .
The f± split (19) combined with the isomorphism (56) now yields for volume-

time module functions f ∈ L2(R3,1;Vt)

f = f+ + f−, f+ =
1
2
(f + e0fi3), f− =

1
2
(f − e0fi3). (61)

Rewriting the split (61) with the duality relation (58) to

f± =
1
2
(f ± e0fe∗0) (62)

shows that it naturally only depends on the physical spacetime split, i.e. on the
choice of the time direction e0. Applying our new VtFT of definition 5.1 to the
split functions f± of (62) results in a VtFT formula which corresponds to theorem
4.1

◦
f± =

∫
R3,1

f± e−i3( ~x·~u∓ ts )d4x =
∫

R3,1
e−e0( ts∓~x·~u )f± d4x . (63)

Note especially that the
◦
f+ part in (63) has the kernel with the flat Minkowski

metric ts− ~x · ~u in the exponent. (Compare section 5.3 for further interpretation.)
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Definition 5.1 preserves the form of the GL transformation properties of sec-
tion 4. We get the GL(R3,1) transformation properties of (59) simply by inserting
in theorem 4.2 transformations A ∈ GL(R3,1) and replacing Ue1 by Ue0 .

Theorem 5.2 (GL(R3,1) transformation properties of the VtFT). The VtFT of a
Vt module function f ∈ L2(R2;Vt) with a GL(R3,1) transformation A of its vector
argument is given by

{f(Ax)}◦(u) = |detA−1| {
◦
f−(A−1u) +

◦
f+(Ue0A−1 Ue0u) } . (64)

In physical applications proper Lorentz transformations with |detA| = 1 are
most relevant, so the |detA−1| factor in (64) can then naturally be omitted.

For all kinds of applications it is of interest to know whether we can push the
QFT generalization established by the VtFT for volume-time module functions
f ∈ L2(R3,1;Vt) even further, i.e. if even more general spacetime algebra functions
can be treated meaningfully with the VtFT. That this is indeed the case will be
shown in the next subsection.

5.2. Generalization to full spacetime algebra functions

We now explain how we can drop in the VtFT definition 5.1 the restriction to
volume-time functions f ∈ L2(R3,1;Vt). The key to this is found in the commuta-
tivity of the unit volume trivector i3 of the right side exponential factor in (59)
with all spatial vectors {e1, e2, e3}

i3 ek = ek i3 , 1 ≤ k ≤ 3. (65)

This directly leads us to the right linearity of the VtFT

{fα}◦ (u) =
∫

R3,1
e−e0 tsf(x) α e−i3~x·~ud4x

=
∫

R3,1
e−e0 tsf(x) e−i3~x·~ud4x α =

◦
f(u) α, ∀ const. α ∈ Cl3,0, (66)

where Cl3,0 is the eight-dimensional Clifford geometric algebra of R3,0, i.e. the 3D
space subalgebra of Cl3,1 spanned by

{1, e1, e2, e3, e2e3, e3e1, e1e2, i3}. (67)

Naturally this right linearity also holds for the inverse transformation

f(x) α =
1

(2π)4

∫
R3,1

ee0 ts
◦
f(u)α ei3~x·~ud4u ∀ const. α ∈ Cl3,0. (68)

Now all 16 basis multivectors of Cl3,1 can be obtained by successive geometric
multiplications of 1 and e0 (or alternatively of i3 and i4, etc.) with the three
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spatial vectors {e1, e2, e3} from the right18

{1, e1, e2, e3, e2e3, e3e1, e1e2, i3,

e0, e0e1, e0e2, e0e3, e0e2e3, e0e3e1, e0e1e2, e0i3}. (69)

We now have laid all the groundwork for the full spacetime algebra general-
ization of the VtFT of definition 5.1:

Definition 5.3 (Spacetime Fourier transform (SFT)). The SFT
�
f : R3,1 → Cl3,1

of a (16 dimensional) spacetime algebra Cl3,1 module function f ∈ L2(R3,1;Cl3,1)
with spacetime vectors x = te0 + ~x ∈ R3,1, ~x = xe1 + ye2 + ze3 ∈ R3, and
spacetime frequency vectors u = se0 + ~u ∈ R3,1, ~u = ue1 + ve2 + we3 ∈ R3 is
defined by

�
f(u) =

∫
R3,1

e−e0 tsf(x) e−i3~x·~ud4x , (70)

with d4x = dtdxdydz .

Because of (66) definition 5.3 is fully compatible with definition 5.1, since
(70) is nothing but a (right) linear combination of (59). To show this, we can
use Cl3,1

∼= Vt ⊗ Cl+3,0 or we can e.g. rewrite a general spacetime algebra module
function f ∈ L2(R3,1;Cl3,1) as a (right) linear combination of four volume-time
subalgebra module L2(R3,1;Vt) functions

f = fs + f1e1 + f2e2 + f3e3 + f23e2e3 + f31e3e1 + f12e1e2 + f123i3 + f0e0+
+f01e0e1 + f02e0e2 + f03e0e3 + f023e0e2e3 + f031e0e3e1 + f012e0e1e2 + f4i4

= fs + f0e0 + f123i3 + f4i4 + {f1 + f01e0 + f23i3 + f023i4} e1+

+{f2 + f02e0 + f31i3 + f031i4} e2 + {f3 + f03e0 + f12i3 + f012i4} e3. (71)

The four L2(R3,1;Vt) functions of (71) are {fs + f0e0 + f123i3 + f4i4, f1 + f01e0 +
f23i3 + f023i4, f2 + f02e0 + f31i3 + f031i4, f3 + f03e0 + f12i3 + f012i4}, where all
16 coefficient functions {fs, f0, f1, · · · , f4} belong to L2(R3,1, R).

Because of (68) the general SFT of Clifford module L2(R3,1;Cl3,1) functions
of definition 5.3 is also invertible

f(x) =
1

(2π)4

∫
R3,1

ee0 ts
�
f(u) ei3~x·~ud 4u . (72)

5.3. SFT of f± split parts and physical interpretation

Further application of analogous (right) linearity arguments also yield that the split
(61) and (62) can also be applied to general multivector Clifford module functions
f ∈ L2(R3,1;Cl3,1). In (61) and (62) we can thus simply replace the L2(R3,1;Vt)
functions by L2(R3,1;Cl3,1) functions19. This carries on to the general SFTs of
the split functions f±, which are formally identical to (63) if we again replace the
L2(R3,1;Vt) functions by L2(R3,1;Cl3,1) functions.

18Cl3,1 is also isomorphic to the tensor product Vt ⊗Cl+3,0, with Vt defined as in section 5.1 and

Cl+3,0 defined as in section 1.1. (See [21], sections 4.1 and 4.2.)
19Again the f± split (62) solely depends on the choice of time direction e0.
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We can therefore rewrite the SFT (70) for f ∈ L2(R3,1;Cl3,1) as
�
f =

�
f+ +

�
f− =

∫
R3,1

f+ e−i3( ~x·~u− ts )d4x +
∫

R3,1
f− e−i3( ~x·~u+ ts )d4x

=
∫

R3,1
e−e0( ts−~x·~u )f+ d4x +

∫
R3,1

e−e0( ts+~x·~u )f− d4x . (73)

Complex spacetime Fourier transformations, with exp{−i(~x·~u−ts)} (where i ∈ C)
as the related complex kernel, are e.g. used for electromagnetic fields in spatially
dispersive media [22] or in electromagnetic wavelet theory [23].

In physics f+ can be interpreted as (time dependent) multivector amplitude
of a rightward (forward) moving wave packet, and f− as that of a leftward (back-
ward) moving wave packet. But we emphasize that both the non-commutative
multivector structure and the geometric interpretation (e.g. of i3 as oriented 3D
spatial volume trivector) go beyond conventional treatment.

We get the consequent generalization of theorem 4.2, i.e. the GL(R3,1) trans-
formation properties of the SFT in the form of

Theorem 5.4 (GL(R3,1) transformation properties of the SFT). The SFT of a
Cl3,1 module function f ∈ L2(R2;Cl3,1) with a GL(R3,1) transformation A of its
vector argument is given by

{f(Ax)}�(u) = |detA−1| {
�
f−(A−1u) +

�
f+(Ue0A−1 Ue0u) } . (74)

This concludes our brief example of a higher dimensional multivector general-
ization of the QFT for L2(R2; H) functions to a SFT for L2(R3,1;Cl3,1) functions.
We again emphasize that mathematically many other generalizations are in fact
possible and we expect a number of them to be of great utility in applications.

6. Conclusions

We employed a convenient rewriting of quaternions only in terms of i and j,
keeping one to the left and the other to the right; and a quaternion split, which
in spacetime applications is closely related the choice of the time direction. This
allowed us to investigate a range of properties of the QFT, last but not least the
behavior of the QFT under general linear automorphisms.

General coordinate free formulation in combination with quaternion to Clif-
ford subalgebra isomorphisms opens the door to a wide range of QFT general-
izations. These non-commutative multivector Fourier transforms act on functions
from Rm,n, m, n ∈ N0 to Clifford geometric algebras Clm,n (or appropriate subal-
gebras). We demonstrated this by establishing two multivector Fourier transforms:
the volume-time and the spacetime Fourier transforms. They await application,
e.g. in the fields of dynamic fluid and gas flows, seismic analysis, to electromagnetic
phenomena, in short wherever spatial data are recorded with time. We expect other
generalizations of the QFT obtained by the same methods to be of great potential
use as well.
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[19] E. Cartan, La géométrie des groupes simples, Ann. Mat. Pura Appl. (4) (1927), 209–
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