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Abstract

Inspired by quaternion algebra and the idea of fractional-order transformation, we

propose a new set of quaternion fractional-order generalized Laguerre orthogonal

moments (QFr-GLMs) based on fractional-order generalized Laguerre polynomials.

Firstly, the proposed QFr-GLMs are directly constructed in Cartesian coordinate

space, avoiding the need for conversion between Cartesian and polar coordinates;

therefore, they are better image descriptors than circularly orthogonal moments

constructed in polar coordinates. Moreover, unlike the latest Zernike moments based

on quaternion and fractional-order transformations, which extract only the global

features from color images, our proposed QFr-GLMs can extract both the global and

local color features. This paper also derives a new set of invariant color-image

descriptors by QFr-GLMs, enabling geometric-invariant pattern recognition in color

images. Finally, the performances of our proposed QFr-GLMs and moment invariants

were evaluated in simulation experiments of correlated color images. Both

theoretical analysis and experimental results demonstrate the value of the proposed

QFr-GLMs and their geometric invariants in the representation and recognition of

color images.

Keywords: Quaternion algebra, Fractional-order moments, Feature extraction, Pattern

recognition, Image reconstruction

1 Introduction

In the last decade, image moments and geometric invariance of moments have

emerged as effective methods of feature extraction from images [1, 2]. Both methods

have made great progress in image-related fields. However, most of the existing algo-

rithms extract the image moments only from grayscale images. Color images contain

abundant multi-color information that is missing in grayscale images. Therefore, in re-

cent years, research efforts have gradually shifted to the construction of color-image

moments [3, 4]. Color-image processing is traditionally performed by one of the three

main methods: (1) select a single channel or component from the color space of a

color image, such a channel from a red–green–blue (RGB) image, as a grayscale image

and calculate its corresponding image moments; (2) directly gray a color image, and
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then calculate its image moments; and (3) calculate the image moments of each mono-

chromatic channel (R, G and B) in a RGB image, and average them to obtain the final

result. Although all the three methods are relatively simple to implement, they discard

some of the useful image information and cannot determine the relationship among

the different color channels of a RGB image. This common defect reduces the accuracy

of color-image representation in image processing or recognition. Owing to loss of cor-

relations among the different color channels and part of the color-image information,

the advantages of color images over grayscale images are not fully exploited in practical

application [5].

Recently, quaternion algebra-based color image representation has provided a new re-

search direction in color model spaces [6, 7] such as RGB, luma–chroma (YUV), and

hue–saturation–lightness (HSV) [8]. Quaternion algebra has made several achieve-

ments in color-image processing [9, 10]. The quaternion method represents an image

as a three-dimensional vector describing the components of the color image, which ef-

fectively uses the color information of different channels of the color image. Elouariachi

et al. [11] derived a new set of quaternion Krawtchouk moments (QKMs) and explicit

quaternion Krawtchouk moment invariants (EQKMIs), which can be applied to finger-

spelling sign language recognition. Wang et al. [12, 13] constructed a class of quater-

nion color orthogonal moments based on quaternion theory. In ref [12], they proposed

quaternion polar harmonic Fourier moments (QPHFMs) in polar coordinate space and

applied them to color-image analysis. They also proposed a zero-watermarking method

based on quaternion exponent Fourier moments (QEFMs) [13], which is applied to

copyright protection of digital images. Xia et al. [14] combined Wang et al.’s method

with chaos theory and proposed an accurate quaternion polar harmonic transform for

a medical image zero-watermarking algorithm. Guo et al. [15] introduced a new set of

quaternion moment descriptors for color image, and they are constructed in the qua-

ternion framework and are an extension of complex moment invariants for grayscale

images. The above results on quaternion color-image moments provide theoretical sup-

port for exploring new-generation color-image moments. However, image-moment

construction based on quaternion theory is complex and increases the time of the

color-image calculation. Moreover, the performance of the existing quaternion image

moments in color-image analysis is not significantly improved from multi-channel

color-image processing [10, 16]. Most importantly, the quaternion color-image mo-

ments constructed by the existing methods are similar to grayscale-image moments

[17] and extract only the global features; therefore, they are powerless for local-image

reconstruction and region-of-interest (ROI) detection. In conclusion, the new gener-

ation of quaternion color-image moment algorithms requires further research. The new

fractional-order orthogonal moments effectively improve the performance of orthog-

onal moments in image analysis and can also improve the quaternion color-image

moments. The basis function of fractional-order orthogonal moments comprises a set

of fractional-order (or real-order) orthogonal polynomials rather than traditional

integer-order polynomials.

Fractional-order image moments have been realized only in the past 3 years, and

their research is incomplete. Accordingly, their applications are limited to image recon-

struction and recognition. In addition, the technique of the existing fractional-order or-

thogonal moments is only an effective supplement and an extension of integer-order
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grayscale image moments. Few academic achievements and investigations of fractional-

order orthogonal moments have been reported in image analysis. Inspired by

fractional-order Fourier transforms, Zhang et al. [18] introduced fractional-order or-

thogonal polynomials in 2016 and constructed fractional-order orthogonal Fourier–

Mellin moments for character recognition in binary images. Xiao et al. [19] constructed

fractional-order orthogonal moments in Cartesian and polar coordinate spaces. They

showed how general fractional-order orthogonal moments can be constructed from

integer-order orthogonal moments in different coordinate systems. Benouini et al. [20]

recently introduced a new set of fractional-order Chebyshev moments and moment in-

variant methods and applied them to image analysis and pattern recognition. Although

the existing fractional-order image moments provide better image descriptions than

traditional integer-order image moments, their application to computer vision and pat-

tern recognition remains in the exploratory stage. An improved fractional-order poly-

nomial that constructs a superior fractional-order image moment is an expected

hotspot of future research. Combining fractional-order image moments with quater-

nion theory, Chen et al. [21] newly developed quaternion fractional-order Zernike mo-

ments (QFr-ZMs), which are mainly used in robust copy–move forgery detection in

color images. Prof. K. M. hosny et al. [22–24] have made outstanding achievements in

the study of fractional-order orthogonal moments in recent years. In refs [22, 23], using

Legendre and shifted Gegenbauer polynomials, respectively, fractional-order Legendre-

Fourier moments and shifted Gegenbauer moments are constructed, which are applied

in the field of image analysis and pattern recognition. Moreover, a novel set of

fractional-order orthogonal polar harmonic transforms for gray-scale and color image

analysis are introduced in ref [24], and their performances are verified by correspond-

ing experiments. The fractional-order generalized Laguerre orthogonal moments and

modified generalized Laguerre orthogonal moments proposed by H. karmouni,

Mohamed sayyouri, and O. El Ogri [25–27] are mainly constructed in Cartesian coord-

inate system, and they completed the fast and accurate calculation algorithm of the re-

lated image moments, and also those moments are applied to the reconstruction or

invariant recognition of 2D and 3D images.

This paper combines the quaternion method with fractional-order Laguerre orthog-

onal moments [28, 29] and hence develops new class of quaternion fractional-order

generalized Laguerre moments (QFr-GLMs) for color-image reconstruction and

geometric-invariant recognition. Compared with circularly orthogonal moments con-

structed in polar coordinates, the proposed QFr-GLMs not only have better image de-

scription performance, but also have global and local description capability. However,

the orthogonal moments in polar coordinates directly have rotation invariance, while

the invariance of image moments in Cartesian coordinates needs secondary construc-

tion. Therefore, trying to study the image moments in polar coordinates is the goal and

task of our next stage. The main contributions of this paper are summarized below.

1. In this paper, a new set of quaternion fractional-order generalized Laguerre mo-

ments is proposed (QFr-GLMs) based on generalized Laguerre polynomials, which

combines quaternion theory with fractional-order transformation. In contrast to

recent work, most of those fractional-order orthogonal moments are devoted to

grayscale images; however, in our article, the grayscale images are extended to
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color images by quaternion algebraic formula. In addition, compared with circu-

larly orthogonal moments constructed in polar coordinates, the proposed QFr-

GLMs not only have better image description performance, but also have global

and local description capability.

2. Since the construction of the proposed QFr-GLMs involves the selection of mul-

tiple parameters, this paper proposes a method for the optimal parameter selection.

In addition, based on the QFr-GLMs, for geometric-invariant pattern recognition

in color images, a new set of invariant color-image descriptors is derived, named

QFr-GLM invariants (QFr-GLMIs).

3. The performances of our proposed QFr-GLMs and QFr-GLMIs were evaluated in

the MATLAB simulation experiments of correlated color images.

1.1 Preliminaries

In this section, we first introduce the basic concepts of quaternion theory and

fractional-order image moments. The quaternion is a generalized form of complex

numbers, a systematic mathematical theory and method proposed by the British math-

ematician Hamilton in 1843 [30], also fractional-order orthogonal moments are defined

in Cartesian and polar coordinate spaces, and we present the transformation relation-

ship between fractional-order orthogonal polynomials in Cartesian coordinate space

and those in polar coordinate space. Then, we introduce the related contents of gener-

alized Laguerre polynomials.

1.2 Representation quaternion algebra and fractional-order image moments

The quaternion is a four-dimensional complex number, also known as a hypercomplex.

It is composed of one real component and three imaginary part components and is for-

mally defined in [5]:

q ¼ aþ biþ cjþ dk; ð1Þ

where a, b, c and d are real numbers, and i, j, k are unit imaginary numbers satisfying

the following properties:

i2 ¼ j2 ¼ k2 ¼ −1; jk ¼ −kj ¼ i; ki ¼ −ik ¼ j; ij ¼ −ji ¼ k: ð2Þ

To obtain the fractional-order image moments (Fr-IMs), we introduce the parameter

and slightly modify the basis of traditional geometric moments [19] as follows:

M λð Þ
nm ¼

Z þ∞

−∞

Z þ∞

−∞

f x; yð Þxλnyλmdxdy; ð3Þ

where ∈ R+. As evidenced in Eq. (3), the order of the fractional-order geometric

moments is (n + m); that is, the integer-order is extended to real-order (or

fractional-order).

In Cartesian and polar coordinate spaces, the fractional-order orthogonal moments

are respectively defined as follows:

FrM
λx;λyð Þ

nm ¼
Z þ∞

−∞

Z þ∞

−∞

f x; yð ÞPn λx; xð ÞPm λy; y
� �

dxdy; ð4Þ
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FrP λð Þ
nm ¼

Z þ∞

−∞

Z þ∞

−∞

f r; θð ÞPn λ; rð Þ exp −jmθð Þrdrdθ; ð5Þ

where Pnðλ; xÞ ¼
ffiffiffi

λ
p

xðλ−1Þ=2PnðxλÞ ¼
ffiffiffi

λ
p
P

n

i¼0

cn;ix
λiþððλ−1Þ=2Þ are the fractional-order or-

thogonal polynomials, and Pnðλ; rÞ ¼
ffiffiffi

λ
p

rðλ−2Þ=2PnðrλÞ ¼
ffiffiffi

λ
p
P

n

i¼0

cn;ir
λiþððλ−2Þ=2Þ are the

radial orthogonal polynomials. The traditional integer-order orthogonal polynomials

Pn(x) are expressed as PnðxÞ ¼
P

n

i¼0

cn;ix
i , where cn, i are the binomial coefficients of the

orthogonal polynomials [31, 32].

Similarly to traditional integer-order image moments [33–36], a two-dimensional

image f(x, y) or f(r, θ) can be reconstructed from fractional-order orthogonal moments

of finite order, which can be written as:

f x; yð Þ ¼
X

nmax

n¼0

X

mmax

m¼0

FrM
λx;λyð Þ

nm Pn λx; xð ÞPm λy; y
� �

; ð6Þ

f r; θð Þ ¼
X

nmax

n¼0

X

mmax

m¼0

FrP λð Þ
nmPn λ; rð Þ exp jmθð Þ: ð7Þ

We now determine the interchangeable relationship between the fractional-order or-

thogonal polynomials in Cartesian coordinate space and those in polar coordinate

space. First, if Qn(x) is an integer-order orthogonal polynomial in Cartesian coordinates,

the fractional-order orthogonal polynomial is expressed as QðtÞ
n ðxÞ ¼

ffiffi

t
p

x
t−1
2 QnðxtÞ (The

detailed implementation of the conversion from integer-order to fractional-order is

given in ref [19].), and the corresponding fractional-order radial orthogonal polyno-

mials in polar coordinates is expressed as QðtÞ
n ðrÞ ¼

ffiffi

t
p

r
t−2
2 QnðrtÞ, t ∈ R+. Second, if Qn(r)

is an integer-order orthogonal polynomial in polar coordinate space, the fractional-

order radial orthogonal polynomial is given by QðtÞ
n ðrÞ ¼

ffiffi

t
p

rt−1QnðrtÞ (The detailed

process is shown in ref [18].). The corresponding fractional-order orthogonal polyno-

mial in Cartesian coordinates is then given by QðtÞ
n ðxÞ ¼

ffiffi

t
p

xt−
1
2QnðxtÞ, t ∈ R+.

The specific conversion process between the fractional-order orthogonal polynomials

in Cartesian coordinate space and those in polar coordinate space is as follows:

(1) Suppose QðtÞ
n ðxÞ ¼

ffiffi

t
p

x
t−1
2 QnðxtÞ is a polynomial that is fractional-order orthonor-

mal between the interval [0,1] in Cartesian coordinates, we have:

Z 1

0

Q tð Þ
n xð ÞQ tð Þ

m xð Þdx ¼ δnm; ð8Þ

and carrying out the weighted transformation on Eq. (8), then we have:

Z 1

0

Q tð Þ
n xð ÞQ tð Þ

m xð Þdx ¼
Z 1

0

1
ffiffiffi

x
p Q tð Þ

n xð Þ 1
ffiffiffi

x
p Q tð Þ

m xð Þxdx ¼ δnm; ð9Þ

letting r replace x, and QðtÞ
n ðrÞ ¼ 1

ffiffi

x
p QnðxtÞ ¼

ffiffi

t
p

r
t−2
2 QnðrtÞ, we obtain:
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Z 1

0

Q tð Þ
n rð ÞQ tð Þ

m rð Þrdr ¼ δnm: ð10Þ

The Eq. (10) shows that polynomial QðtÞ
n ðrÞ is orthogonal in polar coordinate space.

(2) Suppose QðtÞ
n ðrÞ ¼

ffiffi

t
p

rt−1QnðrtÞ is a polynomial that is fractional-order orthonor-

mal between the interval [0,1] in polar coordinates, we have:

Z 1

0

Q tð Þ
n rð ÞQ tð Þ

m rð Þrdr ¼ δnm; ð11Þ

then, the Eq. (11) is transformed, we obtain:

Z 1

0

Q tð Þ
n rð ÞQ tð Þ

m rð Þrdr ¼
Z 1

0

Q tð Þ
n rð Þ

ffiffi

r
p

Q tð Þ
m rð Þ

ffiffi

r
p

dr ¼ δnm; ð12Þ

similarly, letting x replace r, and QðtÞ
n ðxÞ ¼ ffiffi

r
p

QnðrtÞ ¼
ffiffi

t
p

xt−
1
2QnðxtÞ, we obtain:

Z 1

0

Q tð Þ
n xð ÞQ tð Þ

m xð Þdx ¼ δnm: ð13Þ

Equation (13) shows that polynomial QðtÞ
n ðxÞ is orthogonal in Cartesian coordinate

space.

1.3 Generalized Laguerre polynomials

The generalized Laguerre polynomials (GLPs), also known as associated Laguerre poly-

nomials [37], are expressed as LðαÞn ðxÞ. When α > − 1, GLPs satisfy the following orthog-

onal relationship in the range [0, +∞):

Z þ∞

0

exp −xð ÞxαL αð Þ
n xð ÞL αð Þ

m xð Þdx ¼ Γ nþ αþ 1ð Þ
n!

δnm: ð14Þ

For convenience, we let ω(α)(x) = exp(−x)xα be a weighted function, and
Γðnþαþ1Þ

n!

¼ γ
ðαÞ
n be the weighted normalization coefficient. Here, Γ(•) is the gamma function, and

n, m = 0, 1, 2, 3… Equation (14) is then modified as follows:

Z þ∞

0

ω αð Þ xð ÞL αð Þ
n xð ÞL αð Þ

m xð Þdx ¼ γ αð Þ
n δnm; ð15Þ

where δnm is the Kronecker delta function. LðαÞn ðxÞ is then expressed as:

L αð Þ
n xð Þ ¼ αþ 1ð Þn

n! 1
F
1
−n; αþ 1; xð Þ; ð16Þ

where (α)k = α(a + 1)(a + 2)…(a + k − 1), (α)0 = 1 is the Pochhammer expression, and

1F1(−n, α + 1; x) is a hypergeometric function given by

1
F
1
a; b; zð Þ ¼ 1þ a

b
z þ a aþ 1ð Þ

b bþ 1ð Þ
z2

2!
þ… ¼

X

∞

k¼0

að Þk
bð Þk

zk

k!
: ð17Þ

Using Eq. (17), LðαÞn ðxÞ in Eq. (16) is redefined as
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L αð Þ
n xð Þ ¼

X

n

k¼0

−1ð Þk nþ αð Þ!
n−kð Þ! k þ αð Þ!k!

xk : ð18Þ

To facilitate the calculation, we compute LðαÞn ðxÞ by the following recursive algorithm:

nL αð Þ
n xð Þ ¼ 2 n−1ð Þ þ αþ 1−x½ �L αð Þ

n−1 xð Þ− n−1þ αð ÞL αð Þ
n−2 xð Þ; ð19Þ

with L
ðαÞ
0 ðxÞ ¼ 1 and L

ðαÞ
1 ðxÞ ¼ 1þ α−x. For details, see [29] and [30].

2 Methods

This section introduces our proposed QFr-GLM scheme, derived from quaternion alge-

bra theory, fractional-order orthogonal moments, and GLPs. After developing the basic

framework of QFr-GLMs, we analyze the relationship between the quaternion-based

method and the single-channel-based approach. As shown in Fig. 1, the components of

an image frgb(x, y) in RGB color space, fr(x, y), fg(x, y), and fb(x, y), correspond to the

three imaginary components of a pure quaternion. Therefore, an image frgb(x, y) in RGB

color space can be expressed by the following quaternion:

f rgb x; yð Þ ¼ f r x; yð Þiþ f g x; yð Þ jþ f b x; yð Þk: ð20Þ

The remainder of this section is organized as follows. Subsection 3.1 defines and con-

structs our fractional-order GLPs (Fr-GLPs) and normalized Fr-GLPs (NFr-GLPs), and

Subsection 3.2 defines the proposed QFr-GLMs, and relates them to the fractional-

order generalized Laguerre moments (Fr-GLMs) of single channels in a traditional RGB

color image, and the basic framework is shown in Fig. 1. The QFr-GLMs invariants

(QFr-GLMIs) are constructed in subsection 3.3.

Fig. 1 Block diagram of QFr-GLM and single-channel Fr-GLM calculations
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2.1 Calculation of Fr-GLPs and NFr-GLPs

Fr-GLPs [37] can be expressed as:

L α;λð Þ
n xð Þ ¼ L αð Þ

n xλ
� �

; ð21Þ

where, λ > 0, x ∈ [0, +∞], similarly to Eq. (15). The Fr-GLPs satisfy the following or-

thogonality relation in the interval [0, +∞]:

Z þ∞

0

ω α;λð Þ xð ÞL α;λð Þ
n xð ÞL α;λð Þ

m xð Þdx ¼ γ α;λð Þ
n δnm; ð22Þ

where ω(α, λ)(x) = λx(α + 1)λ − 1 exp(−xλ),γ
ðα;λÞ
n ¼ Γðnþαþ1Þ

n!
. The Fr-GLPs can be rewritten

as the following binomial expansion [19, 37]:

L α;λð Þ
n xð Þ ¼

X

n

i¼0

ψnix
λi; ð23Þ

where ψni ¼ ð−1Þi Γðnþαþ1Þ
Γðiþαþ1Þðn−iÞ!i!, similar to Eq. (19), the Fr-GLPs can be implemented

by the following recursive algorithm:

nL α;λð Þ
n xð Þ ¼ 2 n−1ð Þ þ αþ 1−xλ

� �

L
α;λð Þ
n−1 xð Þ− n−1þ αð ÞL α;λð Þ

n−2 xð Þ; ð24Þ

where L
ðα;λÞ
0 ðxÞ ¼ 1,L

ðα;λÞ
1 ðxÞ ¼ 1þ α−xλ.

In order to enhance the stability of polynomials, normalized polynomials are gener-

ally used instead of conventional polynomials. Therefore, normalized fractional-order

GLPs (NFr-GLPs) are defined as:

L
α;λð Þ
n xð Þ ¼ L α;λð Þ

n xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω α;λð Þ xð Þ
γ

α;λð Þ
n

s

: ð25Þ

Theorem 1. The NFr-GLPsL
ðα;λÞ
n ðxÞ are orthogonal on the interval [0, +∞]:

Z þ∞

0

L
α;λð Þ
n xð ÞL α;λð Þ

m xð Þdx ¼ δnm: ð26Þ

Proof of Theorem 1. Given the NFr-GLPsLðα;λÞn ðxÞ and substituting L
ðα;λÞ
n ðxÞ ¼ Lðα;λÞn ð

xÞ
ffiffiffiffiffiffiffiffiffiffiffiffi

ωðα;λÞðxÞ
γ
ðα;λÞ
n

r

into Eq. (26), one obtains

Z þ∞

0

L α;λð Þ
n xð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω α;λð Þ xð Þ
γ

α;λð Þ
n

s

L α;λð Þ
m xð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω α;λð Þ xð Þ
γ

α;λð Þ
m

s

dx

¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ
α;λð Þ
n γ

α;λð Þ
m

q

Z þ∞

0

ω α;λð Þ xð ÞL α;λð Þ
n xð ÞL α;λð Þ

m xð Þdx:
ð27Þ

Using Eq. (22), we further obtain:

Z þ∞

0

L
α;λð Þ
n xð ÞL α;λð Þ

m xð Þdx ¼ γ
α;λð Þ
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ
α;λð Þ
n γ

α;λð Þ
m

q δnm; ð28Þ
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when n =m, γ
ðα;λÞ
n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ
ðα;λÞ
n γ

ðα;λÞ
m

p ¼ 1, n ≠m, δnm = 0. Thus,
Rþ∞

0 L
ðα;λÞ
n ðxÞLðα;λÞm ðxÞdx ¼ δnm, which

completes the proof of Theorem 1. To reduce the computational complexity and en-

sure numerical stability, the NFr-GLPs are recursively calculated as follows:

L
α;λð Þ
n xð Þ ¼ A0 þ A1x

λ
� �

L
α;λð Þ
n−1 xð Þ þ A2L

α;λð Þ
n−2 xð Þ; ð29Þ

where L
ðα;λÞ
0 ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

ωðα;λÞðxÞ
Γðαþ1Þ

q

, L
ðα;λÞ
1 ðxÞ ¼ ð1þ α−xλÞ

ffiffiffiffiffiffiffiffiffiffiffiffi

ωðα;λÞðxÞ
Γðαþ2Þ

q

, A0 ¼ 2nþα−1
ffiffiffiffiffiffiffiffiffiffiffi

nðnþαÞ
p , A1 ¼ −1

ffiffiffiffiffiffiffiffiffiffiffi

nðnþαÞ
p

, and A2 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðnþα−1Þðn−1Þ
nðnþαÞ

q

. The detailed proof of the recursive operation is given in Ap-

pendix A.

Figure 2 shows the distribution curves of the NFr-GLPs under different parameter

settings. Note that the parameter α mainly affects the amplitudes of the NFr-GLPs of

different orders and the distributions of the zero values along the x-axis. Thus, if an

image is sampled with NFr-GLPs, the local-feature regions (ROI) are easily extracted

from the images. In addition, the parameter λ can extend the integer-order polynomials

to real-order polynomials (λ > 0, λ ∈ R+). Therefore, traditional GLPs are a special case

of Fr-GLPs with λ = 1, that is, Lðα;1Þn ðxÞ ¼ LðαÞn ðxÞ. Note also that changing λ changes the

width of the zero-value distributions of the Fr-GLPs along the x-axis (Fig. 2c–e), thus

affecting the image-sampling result.

Fig. 2 Distribution curves of the NFr-GLPs under different parameter settings
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2.2 Definition and calculation of QFr-GLMs

Pan et al. [30] proposed the generalized Laguerre moments (GLMs) for grayscale im-

ages in Cartesian coordinates. Recalling the introduction, the corresponding Fr-GLMs

can be defined as:

FrS α;λð Þ
nm ¼ w

X

N−1

i¼0

X

N−1

j¼0

f gray i; jð ÞL αx;λxð Þ
n xið ÞL αy;λyð Þ

m y j

� �

; ð30Þ

where fgray(i, j) represents a grayscale digital image. For convenience, we map the ori-

ginal two-dimensionaldigital-image matrix to a square area of [0, L] × [0, L]. Here, L > 0,

w ¼ ðL
.

N
Þ
2

,xi ¼ iL
N
; y j ¼ jL

N
; i; j ¼ 0; 1; 2;…;N−1.

Using Eq. (30) with the help of Eq. (20), the right-sideQFr-GLMs of an original RGB

color image in Cartesian coordinates are defined as:

QFrS α;λð Þ
nm ¼ w

X

N−1

p¼0

X

N−1

q¼0

L
αx;λxð Þ
n xp

� �

L
αy;λyð Þ

m yq

� �

f rgb p; qð Þμ

¼ 1
ffiffiffi

3
p w

X

N−1

p¼0

X

N−1

q¼0

L
αx;λxð Þ
n xp

� �

L
αy;λyð Þ

m yq

� �

if r þ jf g þ kf b

� �

iþ jþ kð Þ

¼ −

1
ffiffiffi

3
p w

X

N−1

p¼0

X

N−1

q¼0

L
αx;λxð Þ
n xp

� �

L
αy;λyð Þ

m yq

� �

f r þ f g þ f b

� �

" #

þ 1
ffiffiffi

3
p k w

X

N−1

p¼0

X

N−1

q¼0

L
αx;λxð Þ
n xp

� �

L
αy;λyð Þ

m yq

� �

f r− f g

� �

" #

;

þ 1
ffiffiffi

3
p j w

X

N−1

p¼0

X

N−1

q¼0

L
αx;λxð Þ
n xp

� �

L
αy;λyð Þ

m yq

� �

f b− f rð Þ
" #

þ 1
ffiffiffi

3
p i w

X

N−1

p¼0

X

N−1

q¼0

L
αx;λxð Þ
n xp

� �

L
αy;λyð Þ

m yq

� �

f g− f b

� �

" #

ð31Þ

where μ ¼ ðiþ jþ kÞ=
ffiffiffi

3
p

is the unit pure imaginary quaternion. The QFr-GLMs

expressed in quaternion and the Fr-GLMs of single channels in traditional RGB color

images are related as follows:

QFrS α;λð Þ
nm ¼ Aþ iBþ jC þ kD; ; ð32Þ

where A ¼ −
1
ffiffi

3
p ½FrSðα;λÞnm ð f rÞ þ FrSðα;λÞnm ð f gÞ þ FrSðα;λÞnm ð f bÞ�,

B ¼ 1
ffiffi

3
p ½FrSðα;λÞnm ð f gÞ−FrSðα;λÞnm ð f bÞ�, C ¼ 1

ffiffi

3
p ½FrSðα;λÞnm ð f bÞ−FrSðα;λÞnm ð f rÞ�,

D ¼ 1
ffiffi

3
p ½FrSðα;λÞnm ð f rÞ−FrSðα;λÞnm ð f gÞ�.

Accordingly, an original color image frgb(p, q) can be reconstructed by finite-

orderQFr-GLMs. The reconstructed image is represented as:
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f
rgb

p; qð Þ ¼ w
X

N−1

p¼0

X

N−1

q¼0

QFrS α;λð Þ
nm L

αx;λxð Þ
n xp

� �

L
αy;λyð Þ

m yq

� �

μ

¼ 1
ffiffiffi

3
p w

X

N−1

p¼0

X

N−1

q¼0

Aþ iBþ jC þ kDð ÞL αx;λxð Þ
n xp

� �

L
αy;λyð Þ

m yq

� �

iþ jþ kð Þ

¼ −

1
ffiffiffi

3
p w

X

N−1

p¼0

X

N−1

q¼0

L
αx;λxð Þ
n xp

� �

L
αy;λyð Þ

m yq

� �

Bþ C þ Dð Þ
" #

þ 1
ffiffiffi

3
p k w

X

N−1

p¼0

X

N−1

q¼0

L
αx;λxð Þ
n xp

� �

L
αy;λyð Þ

m yq

� �

Aþ B−Cð Þ
" #

;

þ 1
ffiffiffi

3
p j w

X

N−1

p¼0

X

N−1

q¼0

L
αx;λxð Þ
n xp

� �

L
αy;λyð Þ

m yq

� �

A−Bþ Dð Þ
" #

þ 1
ffiffiffi

3
p i w

X

N−1

p¼0

X

N−1

q¼0

L
αx;λxð Þ
n xp

� �

L
αy;λyð Þ

m yq

� �

Aþ C−Dð Þ
" #

ð33Þ

2.3 Design of QFr-GLMIs

The authors of [38] proposed a geometric invariance analysis method based on

Krawtchouk moments. We considered that the Krawtchouk moments can be calculated

as a linear combination of their corresponding geometric moments. Therefore, the

geometric-invariant transformations (rotation, scaling, and translation) of the Krawtch-

ouk moments can also be expressed as the linear combination of their corresponding

geometric-invariant moments. Inspired by the Krawtchouk moment invariants, this

subsection proposes a new set of QFr-GLMIs. After analyzing the relationship between

the quaternion fractional-order geometric moment invariants (QFr-GMIs) and the pro-

posed QFr-GLMIs, we provide a realization scheme of the QFr-GLMIs; specifically, we

construct the QFr-GLMIs as a linear combination of QFr-GLMs. Finally, we obtain the

invariant transformations (rotation, scaling, and translation) of the proposed QFr-

GLMIs.

2.3.1 Translation invariance of QFr-GMIs

Extending the traditional integer-order geometric moments to real-order (fractional-

order) moments, the quaternion fractional-order geometric moments (QFr-GMs) of an

N × N digital color image can be expressed as follows:

m rgb;λ1;λ2ð Þ
pq ¼

X

N−1

i¼0

X

N−1

j¼0

x
λ1p
i y

λ2q
j f rgb xi; y j

� �

: ð34Þ

Similarly to the traditional centralized geometric moments of integer-order, the cen-

tralized moments of QFr-GMs, can be defined as:

u rgb;λ1;λ2ð Þ
pq ¼

X

N−1

i¼0

X

N−1

j¼0

xi−xcð Þλ1p yi−ycð Þλ2q f rgb xi; y j

� �

; ð35Þ

where the centroid of a digital color image (xc, yc) is defined as:
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xc ¼ m
r;λ1;λ2ð Þ
10 þm

g;λ1;λ2ð Þ
10 þm

b;λ1;λ2ð Þ
10

� �

=m
rgb;λ1;λ2ð Þ
00

yc ¼ m
r;λ1;λ2ð Þ
01 þm

g;λ1;λ2ð Þ
01 þm

b;λ1;λ2ð Þ
01

� �

=m
rgb;λ1;λ2ð Þ
00 :

m
rgb;λ1;λ2ð Þ
00 ¼ m

r;λ1;λ2ð Þ
00 þm

g;λ1;λ2ð Þ
00 þm

b;λ1;λ2ð Þ
00

ð36Þ

Above, we mentioned that a quaternion color image can be expressed as a linear

combination of the single channels of an original color image. Let λ1 and λ2 be 1, and

let m
ðr;λ1;λ2Þ
00 and m

ðr;λ1;λ2Þ
01 (orm

ðr;λ1;λ2Þ
10 ) represent the zeroth-order and first-order mo-

ments of the R component of the original color image, respectively. Similarly, let

m
ðg;λ1;λ2Þ
00 and m

ðg;λ1;λ2Þ
01 (orm

ðg;λ1;λ2Þ
10 ) represent the zeroth-order and first-order moments

of the G component of the image, respectively, and let m
ðb;λ1;λ2Þ
00 and m

ðb;λ1;λ2Þ
01 (or

m
ðb;λ1;λ2Þ
10 ) represent the zeroth-order and first-order moment of the B component of

the image, respectively. In this case, Eq. (35) satisfies the translation invariance of the

original color image. Figure 3 shows an illustration for the processing of translation in-

variance, and here, the red “+” mark represents the centroid of the image in Fig. 3, T1

indicates that the original image is translated 60 pixels down and right, T2 means that

Fig. 3 The processing of translation invariance
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it is translated 60 pixels up and left, and T3 shows that it is translated 60 pixels up and

right, and the final proceed image is the centralized image in Cartesian coordinates.

2.3.2 Rotation, scaling, and translation invariance of QFr-GMIs

Referring to Eq. (17) in [38], the rotation, scaling, and translation invariants of QFr-

GMIs can be expressed as follows:

v rgb;λ1;λ2ð Þ
pq ¼ τ−γ

X

N−1

i¼0

X

N−1

j¼0

xi−xcð Þ cosθ þ yi−ycð Þ sinθ½ �λ1p

� y j−yc

� �

cosθ− xi−xcð Þ sinθ
h iλ2q

f rgb x; yð Þ;
ð37Þ

where τ ¼ m
ðrgb;λ1;λ2Þ
00 , γ ¼ λ1pþλ2qþ2

2
, θ ¼ 1

2
arctanð 2u

ðrgb;λ1 ;λ2Þ
11

u
ðrgb;λ1 ;λ2Þ
20

−u
ðrgb;λ1 ;λ2Þ
02

Þ, and −45∘ ≤ θ ≤ 45∘.

The calculation steps of the rotational, scaling, and translation invariants of QFr-

GMIs are detailed in [38].

2.3.3 Rotation, scaling, and translation invariance of the proposed QFr-GLMIs

Substituting Eq. (25) into Eq. (31), we first obtain the following result:

QFrS α;λð Þ
nm ¼ w

X

N−1

i¼0

X

N−1

j¼0

L αx;λxð Þ
n xið ÞL αy;λyð Þ

m y j

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω αx;λxð Þ xið Þ
γ

αx;λxð Þ
n

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω αy;λyð Þ y j

� �

γ
αy;λyð Þ

m

v

u

u

u

t f rgb i; jð Þu:

ð38Þ

Let f
rgbði; jÞ be the following weighted color-image representation:

f
rgb

i; jð Þ ¼ w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω αx;λxð Þ xið Þ
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω αy;λyð Þ y j

� �

r

f rgb i; jð Þu: ð39Þ

Eq. (38) can then be rewritten as follows:

QFrS α;λð Þ
nm ¼ σnσm

X

N−1

i¼0

X

N−1

j¼0

L αx;λxð Þ
n xið ÞL αy;λyð Þ

m y j

� �

f
rgb

i; jð Þ; ð40Þ

where σn ¼ 1
ffiffiffiffiffiffiffiffiffiffi

γ
ðαx ;λxÞ
n

p and σm ¼ 1
ffiffiffiffiffiffiffiffiffiffi

γ
ðαx ;λxÞ
m

p . Given Lðα;λÞn ðxÞ ¼
P

n

i¼0

ψnix
λi (see Eq. (23)) and

using Eq. (34), the above formula becomes

QFrS α;λð Þ
nm ¼ σnσm

X

N−1

i¼0

X

N−1

j¼0

ψnpψmqm
rgb;λ1;λ2ð Þ
pq : ð41Þ

Eq. (41) is derived in Appendix B.

The invariant transformations (rotation, scaling, and translation) of the QFr-GLMIs

are obtained by substituting m
ðrgb;λ1;λ2Þ
pq in Eq. (41) with v

ðrgb;λ1;λ2Þ
pq in Eq. (37):

QFrS α;λð Þ
nm ¼ σnσm

X

N−1

i¼0

X

N−1

j¼0

ψnpψmqv
rgb;λ1;λ2ð Þ
pq : ð42Þ
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3 Results and discussion

In this section, the experimental results and analysis are used to validate the theoretical

framework developed in the previous sections. The performances of the proposed QFr-

GLMs and QFr-GLMIs in image processing were evaluated in five sets of typical exper-

iments. In the first group of experiments, the global reconstruction performance of the

color images was evaluated under noise-free, noisy, and smoothing-filter conditions.

The second group of experiments evaluated the proposed QFr-GLMs on local-image

reconstruction, ROI-feature extraction, and the influence of different parameter condi-

tions on image reconstruction. To improve the reconstruction and classification per-

formance of the proposed QFr-GLMs on color images, the parameters were optimized

through image reconstruction in the third group of experiments. The fourth group of

experiments tested the image classification of the proposed QFr-GLMIs under geomet-

ric transformation, noisy, and smoothing-filter conditions. These experiments were

mainly performed on different color-image datasets that are openly accessible on the

Internet. In the last group, the computational time consumption of the proposed QFr-

GLMs was compared with those of the latest QFr-ZMs and other orthogonal moments.

All experimental simulations were completed on a PC terminal with the following

hardware configuration: Intel (R) core (IM) i5, 2.5 GHz CPU, 8 GB memory, Windows

7 operating system. The simulation software was MATLAB 2013a.

3.1 Experiments on global reconstruction of color images

This subsection evaluates the global feature-extraction performance of the proposed

QFr-GLMs on color images. The evaluation was divided into two steps: image-

reconstruction evaluation of the QFr-GLMs and other approaches on original color im-

ages (i.e., noise-free and unfiltered images), and image-reconstruction evaluation of

color images superposed with salt and pepper noise or pre-processed by a conventional

smoothing filter. The QFr-GLMs and other image moments are then applied to image

feature extraction and are finally subjected to color-image reconstruction experiments.

The test image in this experiment was the colored “cat” image selected from the well-

known Columbia Object Image Library (COIL-100). The test image was sized 128 ×

128. The color-image reconstruction performance was evaluated by the mean square

error (MSE) and peak signal-to-noise ratio (PSNR), which are respectively calculated as

follows:

MSErgb ¼ 1

3

X

x;y

MSE rð Þ þMSE gð Þ þMSE bð Þ
� �

; ð43Þ

PSNR rgbð Þ ¼ 10 lg 2552=MSE rgbð Þ
� �

: ð44Þ

Here, MSE(r), MSE(g), and MSE(b) denote the MSE values of the grayscale image corre-

sponding to the independent red, green, and blue components of the color image, re-

spectively, which are defined as

MSE grayð Þ ¼ 1

N2

X

x;y

f x; yð Þ− f x; yð Þ
� �2

: ð45Þ

In Eq. (45), f(x, y) and f ðx; yÞ represent the original two-dimensionalN × N grayscale

image and its reconstructed image, respectively.
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To assess the global reconstruction performance of the proposed QFr-GLMs, experi-

ments were performed under three parameter settings: (I)αx = αy = 1, λx = λy = 1.1, (II)

αx = αy = 1, λx = λy = 1.2, and (III) αx = αy = 1, λx = λy = 1.3. The performances of the pro-

posed QFr-GLMs have been compared with those of QFr-ZMs and other state-of-the-

art color image moments. The comparative results are shown in Tables 1 and 2, and

Fig. 4. The reconstruction performance of the low-order QFr-GLMs (n, m < 12) was

poorer under parameter setting (III) than under parameters settings (I) and (II) (Fig. 4).

Under parameter setting (III), the low-order QFr-GLMs were also outperformed by

other color image moments (QGLMs, QFr-ZMs, and QZMs). Note that QGLMs are a

special case of QFr-GLMs with αx = αy = 1, λx = λy = 1. However, when the order of each

color-image moment was sufficiently high (n, m > 20), the QFr-GLMs achieved the best

image-reconstruction performance under parameter setting (III). The image recon-

struction results of the QFr-GLMs clearly differed between the low- and high-order

moments. In the low-order moments, the zero-value distributions of the QFr-GLMs

polynomials were concentrated at the image origin under the parameter settings αx =

αy = 1, λx = λy = 1.3, so the sampling neglected the edges and details of the image.

Table 1 Reconstruction performance comparison of different color-image in lower-order moments
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Conversely, in the high-order moments, the zero-value distributions of the polynomials

approximated a uniform distribution, so the image reconstruction was optimal. To in-

tuitively show the visual effect of image reconstruction, Tables 1 and 2 presents the

visualization results of the reconstruction experiments with different color-image mo-

ments the lower- and higher-order moments, respectively. It can be seen from Tables 1

and 2 that the proposed image moments in this paper are all optimal in terms of

lower-order moments or higher-order moments, the proposed QFr-GLMs provided a

better visual effect of the image reconstruction than the other color image moments.

Especially in the higher-order, when n, m = 50, the image reconstruction of the QFr-

ZMs has failed, while when the order of the moments is equal to 100, the PSNR value

of the proposed QFr-GLMs can still maintain above 29 dB, and the visualization effect

is nice as usual.

To further verify the robustness of the proposed QFr-GLMs in noise resistance and

non-conventional signal processing, the features of color images infected with salt and

pepper noise or subjected to smooth filtering were extracted by the proposed QFr-

GLMs and other color-image moments. New color images were reconstructed using

Table 2 Reconstruction performance comparison of different color-image in higher-order

moments
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the extracted features, and the performances of the image reconstructions were evalu-

ated by the PSNR. Figure 5 shows the color images subjected to salt and pepper noise

(noise density = 2%) and smooth filtering (with a 5 × 5 filter window), Fig. 6 and Tables

3 and 4 compare the color images reconstructed from the different image moments.

Regardless of the parameter settings, increasing the order of the image moment (espe-

cially the high-order moments) reduced the sensitivity of the proposed QFr-GLMs to

salt and pepper noise and smoothing. Comparing the PSNR values of the different

image moments, we find that the 28-orderQFr-GLMs outperformed the QFr-ZMs by 8

dB. In addition, as we all know, the image moments are usually more sensitive to noise

Fig. 4 PSNR versus moment-order curves of different color-image moments

Fig. 5 The original and processed color images: a the original color image, b the image infected with 2%

salt and pepper noise, and c the color image after smoothing through a filter with a 5 × 5 window
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(a)

(b)

Fig. 6 PSNR versus moment-order curves of different color-image moments after various typesof signal

processing: a salt and pepper noise and b smoothing filter
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in higher-order moments. However, compared with other latest image moments, i.e.,

QFr-RHFMs, QFr-PCTs, and QFr-PSTs (for the sake of fair comparison, all the differ-

ent types of image moments are constructed without accurate and fast algorithm), the

proposed image moments can still maintain good image reconstruction visualization ef-

fect when the order of moments is 100, and its PSNR value is more than 25 dB under

the condition of noise density of 2% or smooth filtering (filtering window is 5×5). In

summary, the proposed QFr-GLMs can properly describe color images under noise-

free, noisy, and smoothed conditions and also exhibit high global feature extraction

performance. Consequently, the proposed QFr-GLMs show promising applicability to

color image analysis.

3.2 Experiments on local reconstruction of color images

In recent years, local-feature-extraction or ROI detection have presented new chal-

lenges for the existing orthogonal moments. The existing image moments, especially

most of the orthogonal moments, extract only the global features, and cannot describe

Table 3 Reconstruction performance comparison of different color-image in higher-order

moments (under salt and pepper noise condition, noisy density = 2%)
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the local features. The detection of arbitrary ROIs in images is especially challenging.

Among the existing orthogonal moments, only a few discrete orthogonal moments

based on Cartesian coordinate space, such as the Krawtchouk [39] and Hahn [40] mo-

ments, can perceive the local features in an image. Thus far, the application of such

discrete orthogonal moments has been limited to local-feature detection in binary im-

ages. Xiao et al. [19] proposed fractional-order shifting Legendre orthogonal moments,

which extract the local features of a grayscale image by changing the parameter values

of the fractional order. However, the local image is not well reconstructed (see Fig. 5 in

[19]); especially, the details of the ROI are insufficiently protected in the local-image re-

construction. In addition, local-feature-extraction from color images has been little re-

ported in the literature on image moments. In this subsection, we meet the challenge

of applying the proposed QFr-GLMs to local-feature extraction from color images. The

test images were three typical “block” color images selected from the COIL-100 data-

base. The local features in the color images at different positions of the three “block”

color images were reconstructed using the features extracted by the QFr-GLMs with

different parameters. The experimental results are summarized in Table 5. This table

shows that under different parameter settings, the proposed QFr-GLMs provided good

Table 4 Reconstruction performance comparison of different color-image in higher-order

moments (under smooth filtering condition, filtering window is 5 × 5)
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Table 5 Local-image reconstruction performances of the QFr-GLMs on “block” color images
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image reconstructions in different regions of the original color image (the target areas

of ROI extraction from the original color images are enclosed in the red-edged boxes).

Under the parameter setting αx = 20, αy = 1, λx = 1.4, λy = 1.5, the QFr-GLMs extracted

the upper part of the original color image. Meanwhile, the QFr-GLMs with αx = 1, αy =

100, λx = 1.28, λy = 1.38 extracted the bottom part of the original color image, those

with αx = 25, αy = 1, λx = 1.7, λy = 0.8 obtained the left part of the original color image,

and those with αx = 85, αy = 1, λx = 1.4, λy = 1.5 extracted the right-upper part of the

original color image. We conclude that the translation parameters of the proposed

QFr-GLMs determine the position information of the local features in the original

color images, whereas the fractional-order parameters mainly affect the quality of the

local-image feature extraction and the details of the reconstructed color image. Specif-

ically, the proposed QFr-GLMs with smaller and larger values of the translation param-

eter α along the x- and y-axes, respectively, mainly extracted the bottom part of the

color image; conversely, the proposed QFr-GLMs with smaller and larger α values

along the x- and y-axes, respectively, extracted the upper part of the color image. If the

parameter values of different fractional orders along the x- and y-axes are combined,

the QFr-GLMs obtain the local information at different positions in the original color

image. As shown in the local-image-reconstruction results (Table 5), the proposed

QFr-GLMs well described the local features at different positions of the block color im-

ages, implying their effectiveness as a local-feature-extraction descriptor.

To further verify their local-feature extraction capability, the proposed QFr-GLMs were

tested on a medical image (a computed tomography (CT) image of the human ankle, CT

image seems to be a grayscale image; however, it is composed of R, G, and B three compo-

nents—thus, in this experiment, it is regarded as a color image). In this experiment, the

QFr-GLMs were required to detect the ROI (the lesion area) in the human-ankle CT image.

As shown in Fig. 7, the proposed QFr-GLMs properly detected the lesion in the CT image.

3.3 Optimal parameter selection

As presented in Subsection 4.2, the proposed QFr-GLMs with determined translation

parameters αrequire the proper selection of the fractional-order parameter λ, because

this parameter mainly affects the quality of the local-image feature extraction and the

detailed descriptions of the reconstructed image. Therefore, optimizing the parameter λ

Fig. 7 CT image of the ankle: a original image, b lesion area (enclosed in the red-edged rectangle), and c

local extraction image
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is the key requirement of image reconstruction and classification by the proposed QFr-

GLMs. The optimal λ will guarantee the quality of the image reconstruction and the ac-

curacy of image classification.

To study the influence of the parameters λx and λy on the performance of the proposed

QFr-GLMs, we selected 30 color images (e.g., “cat,” “piggybank,” “tomato,” and “block,”)

from the COIL-100 database. Referring to the different image reconstructions, an approach

for selecting the parameter optimization method is proposed in this subsection. To eluci-

date how image size affects the parameters λx and λy, each of the selected images was scaled

to different sizes: 256 × 256, 128 × 128, 64 × 64, and 32 × 32. The results are shown in Fig. 8.

To determine the optimal parameters λx and λy in combination, this subsection com-

putes the performance of the proposed QFr-GLMs by the average statistical normalized

image reconstruction error (ASNIRE), which is defined as follows:

ASNRIE λx; λy
� �

¼ 1

L

X

L

k¼1

SNIRE f c; f c
� �

: ð46Þ

Fig. 8 Some classic color sample images selected from the COIL-100 database and scaled to different sizes

(left to right: 256 × 256, 128 × 128, 64 × 64, and 32 × 32)
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Here, the number of testing images L was 30, fc is an original color image, and f c is

the reconstruction of that color image. The SNIRE is the statistical normalized image

reconstruction error function proposed in [19], defined as

SNRIE f c; f c
� �

¼

X

N

x¼1

X

N

y¼1

j f c x; yð Þ− f c x; yð Þ j

X

N

x¼1

X

N

y¼1

f 2c x; yð Þ
: ð47Þ

In this experiment, the orders of the QFr-GLMs were set to 10 ≤ n, m ≤ 20. Because

λx, λy ≥ 0, we limited their values to the interval (0, 2] and calculated the combined re-

sults of their optimal values. Figure 8 shows the reference selection range of the opti-

mal parameter values λx and λy obtained by this method. The ASNIRE values of the

four color images were minimized around λx, λy = 1 (the blue regions in Fig. 9). There-

fore, when selecting the optimal parameter combination for the proposed QFr-GLMs,

we suggest seeking within the range [1.0, 1.5], and it is suggested that the optimal

Fig. 9 Search values of different parameter combinations of λx and λy within a limited region: a256 × 256, b

128 × 128, c 64 × 64, and d 32 × 32
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parameters should be selected between 1 and 1.5, which can also be obtained from the

distribution curves of the NFr-GLPs under different parameter settings. It can be seen

from the subgraphs f, g, and h of Fig. 2 that when the λ is 1.2 or 1.3, respectively, the

distribution of the polynomials is close to uniform distribution. According to the zero-

point theory, the closer the polynomial distribution is to the uniform distribution, the

better the effect of using the polynomial to sample the image; at this time, the image

moments constructed by the polynomials have the best overall description capability

for an image.

3.4 Geometric-invariant recognition in color images

This subsection tests and analyzes the recognition of geometric-invariant transforma-

tions (rotation, scaling, and translation) by the proposed QFr-GLMs, and their robust-

ness to noise and smoothing filter operations. This experiment was performed on two

sets of public color-image databases: (128 × 128)-sized color images selected from

COIL-100 (Fig. 10) and (128 × 128)-sized butterfly color images selected from [5] (Fig.

11). To verify that the proposed QFr-GLMs recognize geometric invariants, the QFr-

GLMs were employed with three parameter settings: (I)λx = λy = 1.1, (II)λx = λy = 1.2,

and (III)λx = λy = 1.3. In all three cases, αx = αy = 1. The images sets were categorized by

Fig. 10 Some typical color images in the Coil-100 dataset of Columbia University
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a KNN classifier. The amplitudes of the color-image moments were arranged into a fea-

ture vector for classification as follows:

V nm ¼ v00; v01; v02…f g; nþm≤K ;K∈Zþ: ð48Þ

The classification effects of the different image moments were determined by a meas-

ure called the correct classification percent (CCPs), expressed as

CCPs ¼ N c

N t

� 100; ð49Þ

where Nc and Nt represent the number of correctly classified objects and the total

number of all testing objects, respectively.

3.4.1 Experiment 1

The color image dataset for this experiment was extracted from COIL-100. First,

100 color images from the COIL-100 dataset were rotated by 0° and 180°, obtain-

ing 200 images (100 × 2) as the training set. Each image in the training set was

then translated by (Δx, Δy) ∈ [−45, 45]. The set of rotation vectors was defined as

ϕi = 5 ∗ i, where i ∈ [0, 35] is an integer, and a scale factor α was defined for the

scaling operation. Rotating 200 images byϕi, and scaling by α = 0.5 + (2.5 ∗ ϕi)/

360 ∈ [0.5, 3], we obtained 7200 (36 × 200) color images for testing. Finally, salt

and pepper noise (with noise density ranging from 0 to 25% in 5% increments)

was added to each image in the existing test set, forming a new noisy test set. In

this experiment, the vectors Vnm of the different image moments were obtained

Fig. 11 Some sample images in the Butterfly color image database
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(a)

(b)

Fig. 12 Classification results of the COIL-100 color image dataset: a low-order moment (k = 12) and b high-

order moment (k = 28)
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at k = 12 (low-order moment) and k = 28 (high-order moment). Figure 12 com-

pares the correct classification rates (CCPs) of the proposed QFr-GLMs and other

orthogonal moments (QZMs, QFr-ZMs, and QGLMs). As seen in the figure, the

proposed QFr-GLMs outperformed the other moments in both cases (k = 12 and

k = 28).

3.4.2 Experiment 2

The dataset for this experiment was extracted from the Butterfly color image database.

As described in Experiment 1, the 20 color images in the extracted dataset were rotated

by 0°, 90°, and 270°, obtaining 200 images (20 × 3) as the training set. Next, following

the steps described in Experiment 1, we obtained 2160 (36 × 60) color images as the

test set. Finally, each image in the test set was passed through a smoothing filter with

different window sizes (3, 5, 7, and 9), obtaining 2160 new color images as the filtered

test set. Again, the vectors Vnm of different image moments were obtained at k = 12

(low-order moment) and k = 28 (high-order moment). Figure 13 shows the classifica-

tion experiment results after smoothing. The proposed QFr-GLMs were strongly robust

to rotation, scaling, and translation transformations and achieved higher classification

accuracy than the QZMs, QFr-ZMs, and QGLMs.

3.4.3 Experiment 3

In order to further prove the performance of the proposed image moments in geomet-

ric invariant recognition and classification, we compare the proposed geometric mo-

ment invariants (QFr-GLMs, αx = αy = 1, λx = λy = 1.3) with the latest image moments

(i.e., QFr-RHFMs, QFr-PCTs, and QFr-PSTs). The experimental study on the geomet-

ric invariant image recognition accuracy of the proposed QFr-GLMs under both noisy

and smoothing filter conditions is presented in this subsection. Based on the training

set and test set generated in Experiment 1, salt and pepper noise and smoothing filter

destroys each image of the test set, and SNR varies from 25 dB to 0 dB with the reduc-

tion 5dB. At each SNR value, we obtain a new processed test set, and k-nearest neigh-

bor (KNN) classifier is adopted to implement classification. As in every testing set, the

correct classification percentages (CCPs) are gained from the proposed QFr-GLMs,

QFr-RHFMs, QFr-PCTs, and QFr-PSTs, and the experimental results are shown in

Table 6. From the classification results in Table 6, it can be seen that the CCPs of the

proposed QFr-GLMs is the highest in both lower- and higher-order moments com-

pared with other latest image moments.

3.5 Computational times

This experiment determined the computational times of the proposed QFr-GLMs (for

notational simplicity, we express the QFr-GLMs with the three groups of parameter

settings as QFr-GLMs (I), QFr-GLMs (II), and QFr-GLMs (III)). The results are com-

pared with those of the latest QFr-ZMs and other quaternion orthogonal moments

(such as QZMs, QFr-RHFMs, QFr-PCTs, and QFr-PSTs). The simulations were con-

ducted on a Microsoft Window 7 operating system with a 2.5-GHz Intel Core and 8

GB memory, and the program was encoded in Matlab2013a. The images were 25 color

images of size 128 × 128 pixels, extracted from the Columbia University Image Library.

He et al. EURASIP Journal on Image and Video Processing         (2021) 2021:17 Page 28 of 35



(a)

(b)

Fig. 13 Classification results of the Buttery color image dataset: a low-order moment (k = 12) and b high-

order moment (k = 28)
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Figure 14 summarizes the average elapsed CPU times of the 25 color images as the

(n +m)th order of each image moment increased from 5 to 25 in 5-unit increments.

The computational time of all orthogonal moments increased with order. However,

as the polynomial of the moment in our approach is calculated by a recursive algo-

rithm, the proposed QFr-GLM color image moments in all parameter settings were

computed faster than the QZMs and QFr-ZMs, and the computational time

approached that of QGLM, QFr-RHFMs, and QFr-PSTs. By the way, the basis func-

tions of QFr-RHFMs, QFr-PCTs, and QFr-PSTs are based on trigonometric functions;

therefore, compared with generalized Laguerre polynomials and Zernike polynomials,

Table 6 Geometric invariant classification comparative study of the QFr-RHFMs, QFr-GLMs, QFr-

PSTs, and QFr-PCTs

CCPs (%) KNN

k=12 k=28

SNR
(dB)

QFr-RHFM
s[3]

QFr-
GLMs

QFr-PST
s[24]

QFr-PCT
s[24]

QFr-RHFM
s[3]

QFr-
GLMs

QFr-PST
s[24]

QFr-PCT
s[24]

∞ 97.8 100 96.3 97.2 100 100 100 100

25 94.2 100 92.2 93.6 96.3 100 98.7 97.1

20 89.8 96.4 82.4 83.9 90.3 99.6 92.3 91.8

15 85.4 89.8 80.3 81.1 89.5 96.3 90.3 88.8

10 68.9 79.2 60.2 64.3 77.6 85.9 84.1 82.7

5 50.2 67.7 51.1 55.8 59.8 69.3 62.4 61.9

0 25.6 31.2 23.6 24.1 35.8 40.9 30.3 29.8

Fig. 14 Average elapsed CPU times of six kinds of orthogonal image moments
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they do not involve accumulative summation and factorial operations, so the polyno-

mial calculation process is relatively fast. However, because the QZMs, QFr-ZMs, QFr-

RHFMs, and QFr-PSTs are computed in polar coordinates, the color images must be

converted from Cartesian coordinates to polar coordinates, whereas the proposed

image moments are directly constructed in the Cartesian coordinate system, which fur-

ther reduces the computational time.

4 Conclusions

This paper proposed a new set of quaternion fractional-order generalized Laguerre mo-

ments (QFr-GLMs) based on GLPs and quaternion algebra. As color-image feature de-

scriptors, the proposed QFr-GLMs can be used for color-image reconstruction and

feature extraction, and the image moments are available for global and local color

image representations in the field of image analysis. More importantly, based on the

local image representation characteristics of the proposed QFr-GLMs, the application

of the proposed moments in the field of digital watermarking [41–43] can effectively

solve the problem of resisting large-scale cropping and smearing attacks, which is also

one of our future work directions. After establishing the relationship between QFr-

GLMs and Fr-GLMs, it was found that QFr-GLMs can be represented as linear combi-

nations of Fr-GLMs. We also presented a new set of rotation, scaling, and translation

invariants for object recognition applications. In comparison experiments with other

state-of-the-art moments, i.e., the performance tests included global and local-feature

extraction from color images, and geometric-invariant classification of color images.

The proposed QFr-GLMs demonstrated higher color-image reconstruction capability

and invariant recognition accuracy under noise-free, noisy, and smooth filtering condi-

tions. Thus, the proposed QFr-GLMs are potentially useful for color-image description

and digital watermarking [44–47]. However, the only deficiency is that the perfect geo-

metric invariance [48, 49] cannot be achieved directly for invariant image recognition

since the derivation of these QFr-GLMs invariants are not based on generalized

Laguerre polynomials themselves. In the future, the focus of our work is to construct a

new set of generalized Laguerre moment invariants, namely, deriving an explicit gener-

alized Laguerre moment invariants approach, which can be directly applied to the field

of image recognition. In addition, combining with the existing color image representa-

tion methods based on quaternion algebra [50, 51] and finding a better performance

fractional-order radial orthogonal polynomials to construct quaternion fractional-order

image moments are our other goals.

5 Appendix A

5.1 Proof of the recursive operation Eq. (29):

From Eq. (24), when n ≥ 2, we have:

L
α;λð Þ
n xð Þ ¼ 2n−1þ α−xλ

� �

n
L

α;λð Þ
n−1 xð Þ− n−1þ αð Þ

n
L

α;λð Þ
n−2 xð Þ:

Substituting Eq. (28) in Eq. (27), we obtain:
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L
α;λð Þ
n xð Þ ¼ 2n−1þ α−xλ

� �

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω α;λð Þ xð Þ
γ

α;λð Þ
n

s

L
α;λð Þ
n−1 xð Þ− n−1þ αð Þ

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω α;λð Þ xð Þ
γ

α;λð Þ
n

s

L
α;λð Þ
n−2 xð Þ:

Substituting γ
ðα;λÞ
n ¼ Γðnþαþ1Þ

n!
¼ ðnþαÞΓðnþαÞ

nðn−1Þ! ¼ ðnþαÞ
n

γ
ðα;λÞ
n−1 into the above formula, we

have

L
α;λð Þ
n xð Þ ¼ 2n−1þ α−xλ

� �

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω α;λð Þ xð Þ
nþ αð Þ
n

γ
α;λð Þ
n−1

v

u

u

u

t

L
α;λð Þ
n−1 xð Þ− n−1þ αð Þ

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω α;λð Þ xð Þ
nþ αð Þ
n

nþ α−1ð Þ
n−1

γ
α;λð Þ
n−1

v

u

u

u

t

L
α;λð Þ
n−2 xð Þ

¼ 2n−1þ α−xλ
� �

n

ffiffiffiffiffiffiffiffiffiffiffiffi

n

nþ α

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω α;λð Þ xð Þ
γ

α;λð Þ
n−1

s

L
α;λð Þ
n−1 xð Þ− n−1þ αð Þ

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n n−1ð Þ
nþ αð Þ nþ α−1ð Þ

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω α;λð Þ xð Þ
γ

α;λð Þ
n−1

s

L
α;λð Þ
n−2 xð Þ

¼ 2n−1þ α−xλ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n nþ αð Þ
p L

α;λð Þ
n−1 xð Þ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n−1ð Þ nþ α−1ð Þ
nþ αð Þn

s

L
α;λð Þ
n−2 xð Þ

¼ 2n−1þ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n nþ αð Þ
p L

α;λð Þ
n−1 xð Þ þ −

xλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n nþ αð Þ
p

 !

L
α;λð Þ
n−1 xð Þ þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n−1ð Þ nþ α−1ð Þ
n nþ αð Þ

s
 !

L
α;λð Þ
n−2 xð Þ

Letting A0 ¼ 2n−1þα
ffiffiffiffiffiffiffiffiffiffiffi

nðnþαÞ
p , A1 ¼ −1

ffiffiffiffiffiffiffiffiffiffiffi

nðnþαÞ
p , A2 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðnþα−1Þðn−1Þ
nðnþαÞ

q

, we complete the proof.

6 Appendix B

6.1 Derivation of Eq. (41)

Substituting Eqs. (23) and (34) into Eq. (40), we have:

QFrS α;λð Þ
nm ¼ σnσm

X

N−1

i¼0

X

N−1

j¼0

X

n

p¼0

ψnpxi
λxp
X

m

q¼0

ψmqy j
λyq

 !

f
rgb

i; jð Þ

¼ σnσm
X

N−1

i¼0

X

N−1

j¼0

X

n

p¼0

X

m

q¼0

ψnpψmqxi
λxpy j

λyq f
rgb

i; jð Þ

¼ σnσm
X

n

p¼0

X

m

q¼0

ψnpψmq

X

N−1

i¼0

X

N−1

j¼0

xi
λxpy j

λyq f
rgb

i; jð Þ
" #

¼ σnσm
P

n

p¼0

P

m

q¼0

ψnpψmqm
ðrgb;λ1;λ2Þ
pq , which completes the derivation.
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