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QUATERNION KAHLERIAN MANIFOLDS AND FIBRED
RIEMANNIAN SPACES WITH SASAKIAN 3-STRUCTURE

By SHIGERU ISHIHARA

In a previous paper [6], we have studied fibred Riemannian spaces with Sasa-
kian 3-structure and showed that there appears a kind of structure in the base
space of a fibred Riemannian space with Sasakian 3-structure. In the present paper,
we shall show that this kind of structure is what is called a quaternion Kihlerian
structure (See [1], [2], [3], [5], [7] and [9]).

In §1, we recall definitions and some properties of a fibred Riemannian space
with Sasakian 3-structure for later use. In §2, we show that the base space of a
fibred Riemannian space with Sasakian 3-structure admits a quaternion Kihlerian
structure defined in [5]. The last section is devoted to state some properties of a
quaternion Kahlerian manifold. Quaternion Kihlerian manifolds will be studied a
little bit in detail in [5].

Manifolds, mappings and geometric objects we consider are assumed to be
differentiable and of class C=. The indices 4,1, 7, £ run over the range {1,2, ---, n},
the indices @, b, ¢, d, e over the range {1,2,---,#—3} and the indices a, 8, 7,0, ¢ over
the range {1,2,3}. The summation convention will be used with respect to these
three systems of indices.

§1. Fibred Riemannian spaces with Sasakian 3-structure.

In a Riemannian manifold (./\7[ ,§) of dimension » with metric tensor §, let there
be given a Killing vector & of unit length satisfying the condition

(L.1) ViVigh =0 — "4 i

& being components of & and §;; components of §, where &;=£&"G,, and 7, denote
the Riemannian connection of (1\7[, §). Then ¢ is called a Sasakian structure or a
normal contact metvic structure in (1\7[ ,0) (See [4] and [8]).

We now assume that (A7I, §) admits three Sasakian structures &, 7 and { which
are mutually orthogonal and satisfy the conditions

[ C1=2¢ [ ¢8]l=2y,  [§9]=2C
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Then the set {§,7, ¢ is called a Sasakian 3-structure or a normal contact metric
3-structure in (I\7I ,d). In such a case, M is necessarily of dimension z=4m+3 (m=0).
Moreover, the distribution D spanned by &, » and ¢ is integrable and every integral
manifold of D is totally geodesic and of constant curvature 1 (See [6]).

Next, we assume that in (M, §) with Sasakian 3-ststructure {¢, 7, £} the distribu-
tion D is regular. Then, denoting by M the set of all maximal integral submani-
folds of D and by z: M—M the natural projection, we see that M becomes a dif-
ferentiable manifold of dimension 4m(=#»n—3), if M is naturally topologized. That
is to say, M is the quotient space M/D and z: M—M is differentiable and of rank
4dm everywhere. In such a case, (1\71, §) is called a fibred Riemannian space with
Sasakian 3-structure {§,7,¢} and each of maximal integral manifold of D is called
a fibre. Then each fibre is coonected. In the sequel, let (M,d) be a fibred Rie-
mannian space with Sasakian 3-structure {¢,7,{} and assume that dim M=7 (ie.,
m=1).

We take coordinate neighborhoods {{J; z*} of M such that =(0)=U are _coordinate
neighborhoods of M with local coordinates (»*). Then the projection =: M—M may
be expressed, with respect to {[7; z"} and {U; v, by certain equations of the form

(1. 2) v*=v¥x’, -, z"),

v*(z!, -+, z™) denoting coordinates in U of the projection P=r(s) of a point ¢ with
coordinates z" in U, where v¥x', .-+, z™) are differentiable functions of variables z*
with Jacobian (6v*/dx") of the maximum rank 4m(=n—3). We take a fibre F such
that FNU+#¢. Then we may assume that FNU is connected. We can introduce
local coordinates (#%) in FNU in such a way that (v «%) is a system of local coor-
dinates in U, (v%) being coordinates of z(F) in U. Differentiating (1.2) with respect
to z*, we put E,*=0;v% where 0;=0d/0x*. We denote by E® local covector fields
with components £ in 0. On the other hand, C,=8/0»" form a natural frame
tangent to each fibre F in FNU. Denoting by C*, components of C, in {f, we put
C.*=§inG**C";, where §;; are components of § in U, g,s=§,:C7,C% and (§"%)=(g,s)""
We now denote by C® local covector fields with components C,° in . We next
define E*, by (E*,, C*)=(E.% C,“)~* and denote by E, local vector fields with com-
ponents E*, in {f. Then {E,, Cg} is a local frame in U and {E? C% the coframe
dual to {£,C,} in U. we now obtain

,fCﬁEa“;O, ICpEb=_PbﬂaCa)
1.3)

Le,C=0, Lo C' =Py E?,
L% denoting the Lie derivation with respect to a vector field X in M, where P
are local functions given in U by

(1. 4) Pbﬂa= (aba,q)a"+(abbp)b“+(6bcﬁ)c“,

0y being defined by 6,=FE%0; in M, and £=a°C., p=b"C., {=c¢"C., @g=03.02", b= Js.0",
Cs={p.c” In U (See [6]).
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A tensor field, say T of type (1, 2), in M is represented in U as
T'=ToE°‘QE'QEs+ T "E*QE ®Co+ -+
+ 15" C QCFQE A+ T',"C' RQCPRC oy

where To,%, Tw", -+, 1,6 and T,," are local functions in U. In the right hand side,
the first term Tab“E”®E”®E determines a global tensor field in M, which is called
the horizontal part of T and denoted by T2 When T'= T” T is said to be horizon-
tal. For a function f in M its horizontal part fH is defined by fH f

A tensor field 7 in M is said to be projectable if it satisfies (LT H)E=0, for
any vertical vector field X, ie., for any vector field X tangent to the fibre at each
point. Then a tensor field T in M is prOJectable if £:1=0, ,L’,{T 0 and ,L‘{f 0.
A function f in M is projectable if _3f=0 for any vertical vector field X. Thus
a function f in M is projectable if and only if it is constant along each fibre. A
tensor field, say 7' of type (1,2), in M is projectable if and only if the local func-
tions 7T, are all contant along FNU,F being an arbitrary fibre, where 7%
=TW*E‘QEQE, in . When f is a projectable function in M, there is in M a
function f such that f=fozx. The function f is called the proiection of 7 and de-
noted by f=pf. In the sequel, we identify any projectable function f, local or
g}obal, in M with its projection pf. When a tensor field, say T of type (1,2), in
M is projectable, there is in M a tensor field T of the same type as that of T with
components 7% which are identified with their projection, where TH =TW*E‘QE?®
QRFE, in 0. We call the tensor field T the projection of T and denoted it by T=p7“
(See [6]). Given in M a projectable function 7, local or global, the local functions
of = Eibaif inl is projectable and its pro;ectlon is 9 f=af/ov® in U, where f=pf.
In the sequel, we put 9,=FE?%(d/dz?) in U and 0p=0/ov® in U.

Since &, » and ¢ are Killing vectors in (M ), we have _L:§=0, _[,d=0and .£:§=0.
Thus § is projectable. We denote by ¢ the projection pg of §. Thus we obtain a
Riemannian manifold (M, ¢), which is called the vase space. If we put §¥=g,E°Q
E®, then g, are projectable functions in f. Thus ¢ has components g in {U;v%.

Let T be a projectable tensor field in M. Then FT is projectable, 7 being the
the Riemannian connection of (1(71, d), and its projection is given by

(1.5) pPTH=rT,

where T=p7‘ and 7 denotes the Riemannian connection of the base space (M, g)
(See [6]).
We now denote by a, 3 and y the 1-forms associated vzith &,7 and { respec-
tively, for example a(X)=¢(X,£) for any vector field X in M. If we put
p=0e, ¢=Py, 0=V,
O=Va, l’f=7ﬁ, @=7r,

then @,% and @ are skew-symmetric tensor fields, i.e., 2-forms in M. Moreover,
we have
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$6=0,  ¢p=0,  0L=0,
On=—¢l=§,  L=—06=y,  Pé=—¢n=(,
from which,
(1.6) $=9" +1Q@1—BRL, p=¢7 +a@L —1R%, =07+ fRE — a1
We also have

(@Typ=—I7, ($TP=—I", (" =—I",
1.7
OHYH = — GHOH = gH | GHOH = —HHH = H | GHGH = — gHHH = GH

where [ is the identity tensor field of type (1,1) in M (See [6]). We have obtained
in [6]

(Lep™H=0,  (Lyp"H==20",  (Lep")"=2¢",
(1.8) (LegME=20", (LM =0, (LepMH"=—2¢",
(L= =297,  (L7)F=2¢", (L) =0.
If we put in 0
1.9 =" EOXQE,, ¢¥ =P E QF4, 0% =0,E*QE,,
where ¢»% ¢»* and 6,* are local functions in U, then we have
(1.10) O =y FPQE, UH =y LXQE®, OF =0, E*QE,

where ¢ba= —@ap =¢bcgca7 Dva= —Par= becgca’ Ova=—0a0="05°9ca-
We have already proved in [6] the formulas

VB = { Ca p|EFE"at heo B Clo— hosC #E",
1.11)

ViCry=—hE,’E" o+ Py E£Ch o + { _ra 5 } c,Ct,
and

PiEe=—1{ © | ESEr+ i BYCE+CPED),
(1.12)

P;C.* = — hoy*EfEp — P EfCif — { T“ ;

C,/C#,

where we have put in
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a
{C b } =% 9%%(0cgpe+ 0vgce — 0eGed),

1 as
{Taﬁ, =E q (6,g§‘+3pg,e'—aegrﬁ);

0, being defined by 0,=C%(d/ox*)=0/ouf in U, and
(1.13) hey = —(@"Gep+ 0" Pep + " Ocp).
On the other hand, we have from (1.1)
(1.14) Vp=a@I—dRE.
If we substitute (1.6) into (1.14) and use (1.9), (1.11) and (1.12), then we find

D+ {c"e]qsf - {Ceb]w:o,

(1.15)
ar¢ba + hber¢ea - hb’arqsbe =0.

Similarly, we obtain

a a e_ e a_ a a e_ e _
ac(f’l.‘w + ¢ e}¢b [C b}(/’e —0, acab +{L‘ e} 01} {C b]ﬁe“—O,

(1.16)
0,6+ ho® ype™ — e, pp* =0, 3,05 + 15°,0,% — he®,0,° =0.

If we now take account of (1.6), we find

=" E*REs+ ¢"C*RCo, =P " EXQE 0+ " CPRC,,
(1.17)

0=0"E*QEq+0,"C*QC.,
where we have put ¢, =cb"—bsc®, ¢p"=asc*—cpa®, 0" =bza"—azb".

§2. A structure induced in the base space.

Consider a point P of the base space M and a point ¢ of M such that n(o)=P.
We denote by ¢, ¢, and 0, respectively the values of ¢,¢ and ¢ at 0. Then we
can define tensors F,, G, and H, of type (1,1) at PeM respectively by

2.1 F,A=dn(¢,A"), G,A=dx(¢.AL), H,A=d=(0,A")

for any vector A tagent to M at P, dr being the differential of = M—M, where
AL denotes the horizontal lift of A at g, i.e., the unique horizontal vector tagent
to M at ¢ such that dr(A%)=A. We now denote by V5 the linear closure of the set
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(U Fyu(u Gyu(u H)
o€x—1(P) s€x—1(P) o€x—1(P)
of tensors of type (1,1) at Pe M and put V= Upex Ve, which is a linear subbundle
of the tensor bundle of type (1,1) over M. Any element L of V, if Le V5, satis-
fies ge(LA, B)+gp(LB, A)=0 for any vectors A and B tangent to M at P, where gp
is the value of ¢ at P, because @, ¥ and O appearing in §1 are skew-symmetric.
Tg.ke a coordinate neighborhood {U, %} of M and consider a local cross-section
7z of M over U, that is, a mapping . U—~M such that zer is the identity mapping
of U. If we put

(2' 2) FP':Ff(P)’ GPzGr(P)s HP:'Hr(P)) PG Uy

then the correspondences P—Fp, P>Gp and P—>Hp (PcU) define respectively local
tensor fields F, G and H of type (1,1) U. If we take account of (1,7), we obtain

Fi=—I, G=-1  H*=-I
2.3)
HG=-GH=F, FH=-HF=G, GF=-FG=H

in U, where I denotes the identity tensor field of type (1,1) in M. Since @, ¥ and
O appearing in § 1 are skew-symmetric, F, G and H are almost Hermitian structures
in U with respect to g. Summing up, we see that there is a triple {F, G, H} of
local almost Hermitian structures in (U, g) which satisfies (2.3) if there is given
a local cross-section = of M over U. Moreover, if we take account of (2.4), which
will be given later, we see that {F, G, H} is in U a local base of the bundle V.

We take another local cross-section ¢’ of M in U”. Then we can construct a
triple {F’, G’, H"} of local almost Hermitian structures in (U’,g) in the same way
as above, ie., F'e=F.w), G'»=Geuey, Hp=H..ty,PeU. Thus, if Un U +¢, taking
account of (1.8), we find in UNU’

F'=5,1F+51:G+51:H,
2.4 G’ =521 F+ 522G + 523,
H'=531F+53,G+S3s H

with functions s,; in UN U, where the matrix S’v,z,=(s,s) at each point of UN U’
belongs to the proper orthogonal groups SO(3) of dimension 3, because both of
(F,G,H) and {F’,G’, H'} satisfy (2.3).

Using a local cross-section z: U—»M, we construct in {U, »%} a local base {F, G, H}
of V in the same as above. If we assume that «(U)clJ and that z* are local coor-
dinates in U, then we may assume that the local cross-section r is expressed as
z*=7"(v*) with differentiable functions *(»%), where (z*(»*)) denote coordinates of
the point 7(P) and (v*) those of PeU. Thus we have

(2.5) (O™ En®*=08
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along t(U), because w7 is the identity mapping of U.
Next, taking account of (1.17) and (2.1), we have from (2.2)

(2.6) Fy(0)=¢p(z"()),

where F3%(v) denote components of F defined by (2.2) at a point Pe U having coor-
dinates (v*). Differentiating (2.6) with respect to »° and using (2.5), we find

3Py =(0ns™)(@ct") = ((0uhs™) En + (0,4")Ch)(@et")
=0cp® + (0:7")Cr7 0, 6%

from which, using (1.13), (1.15) and (2. 6),

e

c b}Fea

VCF,,0=acF,,“+{ a }Ff—‘
Cc é

=7.Gs* —qc "
where we have put ¢.=—b,Ch/o.c* and 7.=—c,Ci’d.c*. Thus we find
VxF=r(X)G—q(X)H

for any vector field X in U, where ¢ and 7 are certain local 1-forms defind in U.
Similarly, using (1.15) and (1.16), we obtain in U

VxF= n(X)G —q(X)H,
(2.7) VxG=—7X)F +p(X)H,
VxH=q(X)F —p(X)H

for any vector field X in M, where p, ¢ and r are local 1-forms defined in U.

§ 3. Quaternion Kihlerian maniforlds.

We are now going to define a structure which we call a quaternion K#hlerian
structure. Let (M, g) be a Riemannian manifold. Assume that there is over M a
vector bundle V" consisting of tensors of type (1,1) such that any element L of V,
if L belongs to the fibre Ve of V at PeM, satisfies ge(LA, B)+gpe(LB, A)=0 for any
vectors A and B tangent to M at P, where gp denotes the value of ¢ at P. More-
over, we suppose that the bundle V satisfies the following condition:

(a) In any coordinate neighborhood U and M, there is a local base {F, G, H}
of V such that F,G and H satisfy the condition (2. 3).

Such a local base {F,G,H} of V is called canonical local base of V in U.
Then the set {g, V'} is called an almost quaternion metric structure. In such a
case, M is necessarily of dimension n=4m(m=1) (See [5]).

In a Riemannian manifold (M, g) with almost quaternion metric structure
{9, V'}, we take intersecting coordinate neighborhoods U and U’. Let {F, G, H} and
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{F’,G’,H’} be canonical local bases of V' in U and in U’, respectively. Then
{F,G,H}and {F’,G’, H'} satisfy in UN U’ the condition (2.4) with Sy, U’ =(s,5)€SO(3),
because F’/,G’ and H’ are linear combinations of F,G and H. And both of {F,G,
H} and {F’,G’, H'} satisfy (2.3). Thus, taking account of the arguments developed
in §2, we have

ProrosiTiON 1. The base space (M,g) of a fibred Riemannian space with
Sasakian 3-structure admits an almost quaternion wmetric structure {g, V}.

When the Riemannian connection F of a Riemannian manifold (M, ¢) with al-
most quaternion metric structure {g, V'} satisfies (2.7) for any local base {F, G, H}
of V and for any vector field X in M, {g, V} is called a quaternion Kdihlerian
structure and a set (M, g, V') of such a manifold M and such an almost quaternion
metric structure {g, V'} a quaternion Kdhlerian manifold (See [5]). Thus we have

ProprosiTION 2. The base space (M,qg) of a fibved Riemannian space with
Sasakian 3-structurve admits a quaternion Kdahlerian structurve {g, V'}, that is, (M, g,
V) is a quaternion Kdhlerian manifold.

We now give a tipical example of quaternion Kihlerian manifolds. Let S¢m+3
be a unit sphere of curvature 1 and of dimension 4m+3(m=1) and =: S*™**—HP(m)
the natural projection of S*™*2 onto a quaternion projective space HP(m). As is
well known, S*™+® admito a Sasakian 3-structure {£,»,{} and any fibre z~'(P),
PeHP(m), is a maximal integral manifold of the distribution D spanned by ¢,y
and ¢. Thus, HP(m) is the base space of a fibred Riemannian space with Sasakian
3-structure. Therefore HP(m) admits the induced quaternion Kihlerian structure
{g, V}. We have already seen in [5] that the curvature tensor K of HP(m) has
local components of the form

Kicr* =039 —08gas+ Fa®Foo— F®Fay—2F g F®
3.1
+Ga®Gos—G*Gas — 2GacGo® + Ha* Hop — H* Hap — 2Ha  Hy®,

dev, F2, Go* and H,* being respectively components of ¢, F,G and H, where Fg
=F.%0., Gos=G g, and Hyy=H,%g.s. The F, G and H are locally defined, but the right-
hand side of (3.1) is globally defined (See [5]). The linear holonomy group of
HP(m) coincides with Sp(m)-Sp(1) itself (See [1], [2], [3] and [5]).
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