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QUATERNION KAHLERIAN MANIFOLDS AND FIBRED
RIEMANNIAN SPACES WITH SASAKIAN 3-STRUCTURE

BY SHIGERU ISHIHARA

In a previous paper [6], we have studied fibred Riemannian spaces with Sasa-
kian 3-structure and showed that there appears a kind of structure in the base
space of a fibred Riemannian space with Sasakian 3-structure. In the present paper,
we shall show that this kind of structure is what is called a quaternion Kahlerian
structure (See [1], [2], [3], [5], [7] and [9]).

In § 1, we recall definitions and some properties of a fibred Riemannian space
with Sasakian 3-structure for later use. In §2, we show that the base space of a
fibred Riemannian space with Sasakian 3-structure admits a quaternion Kahlerian
structure defined in [5]. The last section is devoted to state some properties of a
quaternion Kahlerian manifold. Quaternion Kahlerian manifolds will be studied a
little bit in detail in [5].

Manifolds, mappings and geometric objeccs we consider are assumed to be
differentiable and of class C°°. The indices h,ι,j,k run over the range {1,2, ••-,«},
the indices a,b,c,d,e over the range {1, 2, •••, n — 3} and the indices a,β,γ,δ,ε over
the range {1,2, 3}. The summation convention will be used with respect to these
three systems of indices.

§ 1. Fibred Riemannian spaces with Sasakian 3-structure.

In a Riemannian manifold (M, g) of dimension n with metric tensor g, let there
be given a Killing vector ξ of unit length satisfying the condition

(1.1) F/i£Λ=W}-£Λff;i,

ξh being components of ξ and gμ components of g, where ξi=ξhgκ% and V3 denote
the Riemannian connection of (M, g). Then ξ is called a Sasakian structure or a
normal contact metric structure in (M, g) (See [4] and [8]).

We now assume that (M, g) admits three Sasakian structures ς, η and ζ which
are mutually orthogonal and satisfy the conditions
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Then the set {ζ, η, ζ} is called a Sasakian 3-structure or a normal contact metric
^-structure in (M, g). In such a case, M is necessarily of dimension ^ = 4 m + 3 (m^O).
Moreover, the distribution D spanned by ξ, 97 and ζ is integrable and every integral
manifold of D is totally geodesic and of constant curvature 1 (See [6]).

Next, we assume that in (M, g) with Sasakian 3-ststructure {ξ, η, ζ} the distribu-
tion D is regular. Then, denoting by M the set of all maximal integral submani-
folds of D and by π\ M-+M the natural projection, we see that M becomes a dif-
ferentiable manifold of dimension km{ = n—3), if M is naturally topologized. That
is to say, M is the quotient space MjD and π\ M-+M is differentiate and of rank
4m everywhere. In such a case, (M, g) is called a fibred Riemannian space with
Sasakian ^-structure {ζ, η, ζ} and each of maximal integral manifold of D is called
a fibre. Then each fibre is coonected. In the sequel, let (M, g) be a fibred Rie-
mannian space with Sasakian 3-structure {ζ,η, ζ} and assume that d i m M ^ 7 (i.e.,
m^l).

We take coordinate neighborhoods {0; xh} of M such that π(U)= U are coordinate
neighborhoods of M with local coordinates (vα). Then the projection π: M-+M may
be expressed, with respect to {ϋ\xh} and {U\vα}y by certain equations of the form

(1.2) vα=ϋα(x1,—,xn),

vα(x1

f " yXn) denoting coordinates in U of the projection P=π(σ) of a point σ with
coordinates xh in 0, where vα{xι, --,xn) are differentiate functions of variables xh

with Jacobian (dvαldxh) of the maximum rank A.m{=n—3). We take a fibre F such
that FΠϋΦφ. Then we may assume that FπU is connected. We can introduce
local coordinates (uα) in FΠU in such a way that (vα,uα) is a system of local coor-
dinates in 0, (vα) being coordinates of π(F) in U. Differentiating (1.2) with respect
to #*, we put Eι

α=dίv
α, where di=dldx\ We denote by Eα local covector fields

with components Eι

α in 0. On the other hand, Cα=dlduα form a natural frame
tangent to each fibre F in FdO. Denoting by Ch

α components of Cα in 0, we put
Cz

α=gihgαβCh

β, where gjt are components of g in 0, grβ = SjiCJ

rC
i

β and (gri3) = (gr^)~1.
We now denote by Cα local covector fields with components Cτ

α in 0. We next
define Eh

α by (Efι

α,C
h

α) = (Eι

α,Cι

α)-1 and denote by £ α local vector fields with com-
ponents Eh

α in 0. Then {£&, Q} is a local frame in 0 and {£α, Cα} the coframe
dual to {Eb, Cβ} in 0. we now obtain

<£θβEα—0, JlcβEb — — PbβαCα,

(1.3)

XoeCe=09 XcβC
α = Pbβ

αEb,

X'Z denoting the Lie derivation with respect to a vector field X in M, where Pbβ"
are local functions given in 0 by

(1.4) Pbβ

α = (dbαβ)αα + (5&^)^α + (dbcβ)cα,

db being defined by db = Ei

bdi in M, and ξ=ααCαfη = bαCα,ζ = cαC«, αβ = gβαα
α,bβ =

cβ = gβαc
α in J7 (See [6]).
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A tensor field, say T of type (1,2), in M is represented in 0 as

f=Tcb

aEc(g)Eh(g)Ea+Tcb

aEc(g)Eb(g)Ca+ •••

+τrβ

aσ®σ®ca,

where Tcb

a, Tcb

a, •••, Trβ

a and Trβ

a are local functions in 0. In the right hand side,
the first term Tcb

aEc®Eb®Ea determines a global tensor field in M, which is called
the horizontal part of T and denoted by fH. When f=fH,f is said to be horizon-
tal. For a function / in M, its horizontal part fH is defined by fH—f*

A tensor field f in M is said to be project able if it satisfies {£χfH)H=0, for
any vertical vector field Xf i.e., for any vector field X tangent to the fibre at each
point. Then a tensor field f in M is projectable if X;f = 0, Xvf=0 and Xς^=0.
A function / in M is projectable if Xχf=0 for any vertical vector field X. Thus
a function / in M is projectable if and only if it is constant along each fibre. A
tensor field, say T of type (1, 2), in M is projectable if and only if the local func-
tions Tcb

a are all contant along FΠU,F being an arbitrary fibre, where fH

= Tcb

aEc®Eb(g)Ea in 0. When / is a projectable function in M, there is in M a
function / such that f=f°π. The function / is called the projection of / and de-
noted by fj=Pf- In the sequel, we identify any projectable function / , local or
global, in M with its projection pf. When a tensor field, say f of type (1,2), in
M is projectable, there is in M a tensor field T of the same type as that of f with
components Tcb

a, which are identified with their projection, where fH=Tcb

aEc(g)Eb

0Ea in 0. We call the tensor field T the projection of T and denoted it by T=pf
(See [6]). Given in M a projectable function / , local or global, the local functions
dbf = Ei

bdif in 0 is projectable and its projection is dbf=df/dvb in U, where f=Pf.
In the sequel, we put db=Ei

b(d/dxi) in 0 and db=d/dvb in U.

Since ζ, η and ζ are Killing vectors in (M, g), we have J7^=0, Xvg=0 and J7ζ<7 = 0.
Thus g is projectable. We denote by g the projection pg of g. Thus we obtain a
Riemannian manifold (M,g), which is called the base space. If we put gH=gcbE

c®
Eb, then gcδ are projectable functions in 0. Thus g has components grcδ in {U\va}.

Let ^ be a projectable tensor field in M. Then FT is projectable, V being the
the Riemannian connection of (M, g), and its projection is given by

(1.5) p(FT) = FT,

where T=pT and V denotes the Riemannian connection of the base space (M,g)
(See [6]).

We now denote by a, β and γ the 1-forms associated with ξ, η and ζ respec-
tively, for example a(X) = g(X, ξ) for any vector field X in M. If we put

φ = pξ9 ψ = Fv, β=Fζ,

φ = Fa, Ψ = Fβ, θ = Fγ,

then Φ, Ψ and Θ are skew-symmetric tensor fields, i.e., 2-forms in M. Moreover,
we have
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from which,

(1.6) 4

We also have

0
(1.7)

= - ψHβH
 =
 φH

9
 φHQH

 =
 _ ̂ ^ 7 /

 =
 ψH

f
 ψHφH

 =
 _ ̂ H^,^

 =
 QH

f

where / is the identity tensor field of type (1,1) in M (See [6]). We have obtained
in [6]

(1.8)

If we put in 0

(1.9) φH = φb

aEb<g)Ea, ψH =

where φb

a, ψb

a and θb

a are local functions in 0, then we have

(1.10) ΦH=φbaE
b®Ea

} ΨH = φbaE
b®Ea'y ΘH=ΘbaE

b<g)Ea

t

w h e r e φba— —φab=φbcgca, ψba= —ψab = ψbcQcaf θba= —Θab = θbgca

We have already proved in [6] the formulas

(1.11)

and

(1.12)

where we have put in 0

E}Έ
h

a

*,= -hc%E}

cE»a+Pcβ°E/C\+

a
c b

r β c/c\

c/c/,



QUATERNION KλHLERIAN MANIFOLDS AND FIBRED RIEMANNIAN SPACES 325

a
c b

a

r β

2

1_
2

dβ being defined by dβ=Ci

β(dldxί)=dlduβ in 0, and

(1.13) hcb

a = -(aaφcb + baψcb+caθcb).

On the other hand, we have from (1.1)

(1.14) Fφ=a®I-g®ξ.

If we substitute (1.6) into (1.14) and use (1.9), (1.11) and (1.12), then we find

d c φ b

a

c e

(1.15)

Similarly, we obtain

dcψb

drφb

a+hb

e

rφe

a-he

a

rφb

e=O.

a
c e

e
c b

(1.16)

d,ψb

a+hb%φe

a - he%φb

e=0, drθb

a+hb%θβ

a - he

a

rθb

e=0.

If we now take account of (1.6), we find

φ=φb

aEb(g)Ea -h φβ

aO(g)Ca, φ=φb

aEb®Ea+ψβaO®Ca,

(1.17)

θ=θb

aEh®Ea+0βaσ®Ca,

where we have put φβ

a = Cβba — bβc
a, ψβ

a=aβc
a — Cβaa, θβa = bβa

a—aβb
a.

§2. A structure induced in the base space.

Consider a point P of the base space M and a point σ of M such that τr(<τ)=P.
We denote by φσ, φσ and 0, respectively the values of φ, φ and 0 at o . Then we
can define tensors Fσ, Ga and Ra of type (1,1) at PeM respectively by

(2.1) F.A=dπ(φ.AL), G,A=dπ(ψ,AL), HaA=dπ(ΘσA
L)

for any vector A tagent to M at P, <fe being the differential of ττ:M->M, where
AL denotes the horizontal lift of A at σt i.e., the unique horizontal vector tagent
to M at a such that dπ(AL) = A. We now denote by V? the linear closure of the set
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( u F.)u( u ά)u( u H.)
σζπ-ί(P) σζπ-l(p) σ€τr-l(P)

of tensors of type (1,1) at P€M and put V=UF£MVP, which is a linear subbundle
of the tensor bundle of type (1,1) over M. Any element L of F, if L€ Vp, satis-
fies gF(LA,B)+gr(LB, A)=0 for any vectors A and B tangent to M at P, where gP

is the value of g at P, because Φ, Ψ and Θ appearing in § 1 are skew-symmetric.
Take a coordinate neighborhood {U, va} of M and consider a local cross-section

τ of M over U, that is, a mapping τ\ U->M such that π°τ is the identity mapping
of £Λ If we put

(2.2) FP=F r Cp>, G P =G r ( P ) , Hp=Rr<?>9 Pet/,

then the correspondences P->Fp,P-»Gp and P-κfiΓP (Pet/) define respectively local
tensor fields F, G and H of type (1,1) U. If we take account of (1, 7), we obtain

F2=-I, G 2 = - 7 , 7 P = - 7 ,

(2.3)

HG=-GH=F, FH=-HF=G, GF=-FG=H

in £/, where / denotes the identity tensor field of type (1,1) in M. Since Φ, Ψ and
Θ appearing in § 1 are skew-symmetric, F, G and H are almost Hermitian structures
in U with respect to g. Summing up, we see that there is a triple {F, G, H) of
local almost Hermitian structures in (U, g) which satisfies (2. 3) if there is given
a local cross-section τ of M over U. Moreover, if we take account of (2.4), which
will be given later, we see that {F, G, H) is in U a local base of the bundle F.

We take another local cross-section τ' of M in IT. Then we can construct a
triple {F',G',H'} of local almost Hermitian structures in (£/', g) in the same way
as above, i.e., F'P=Fτ,^,GΊ>=GT,cF),H'F=Rτ,^,Έ>€U. Thus, if UnU'Φψ, taking
account of (1.8), we find in UΠ U'

(2.4)

with functions srβ in UΠ Uf, where the matrix S'u,u> = (srβ) at each point of UΠ U'
belongs to the proper orthogonal groups SO(3) of dimension 3, because both of
{F, G, H) and {F'9 G', Hf) satisfy (2.3).

Using a local cross-section τ\ ί/->M, we construct in {U, va) a local base {F, G, H)
of F in the same as above. If we assume that τ(U)aU and that xh are local coor-
dinates in ΐ), then we may assume that the local cross-section τ is expressed as

xh=τ

h(va) with differentiate functions τh(va), where (τh(va)) denote coordinates of
the point r(P) and (va) those of P€ U. Thus we have

(2.5)
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along τ{U), because π°τ is the identity mapping of U.
Next, taking account of (1.17) and (2.1), we have from (2.2)

(2.6) Fb%υ)=φΛτh{v)\

where Fb

a(v) denote components of F defined by (2.2) at a point P<= U having coor-
dinates (va). Differentiating (2.6) with respect to vc and using (2. 5), we find

dcFb

a = (βhφb

a){dcτ
h) = ((deφb

a)Eh

e + (drφb«)Ch

r)(dcτ
h)

from which, using (1.13), (1.15) and (2. 6),

a
c e

=rcGb

a-qcHb

a,

where we have put qc——bγChdcτ
h and rc——cγChdcτ

h. Thus we find

FxF=r(X)G-q(X)H

for any vector field X in U, where q and r are certain local 1-forms defind in U.
Similarly, using (1.15) and (1.16), we obtain in U

FXF= r(X)G-q(X)H,

(2.7) FxG=-r(X)F +P(X)H,

FxH=q{X)F -p{X)H

for any vector field X in M, where p, q and r are local 1-forms defined in U.

§ 3. Quaternion Kahlerian maniforlds.

We are now going to define a structure which we call a quaternion Kahlerian
structure. Let (M, gr) be a Riemannian manifold. Assume that there is over M a
vector bundle V consisting of tensors of type (1,1) such that any element L of F,
if L belongs to the fibre Vp of V at PeM, satisfies gp(LA,B)+gp(LB, A)=0 for any
vectors A and B tangent to M at P, where gp denotes the value of g at P. More-
over, we suppose that the bundle V satisfies the following condition:

(a) In any coordinate neighborhood U and M, there is a local base {F, G, H}
of V such that F, G and H satisfy the condition (2.3).

Such a local base {F.G^H} of V is called canonical local base of V in U.
Then the set {g, V) is called an almost quaternion metric structure. In such a
case, M is necessarily of dimension n=im(m^l) (See [5]).

In a Riemannian manifold (M, g) with almost quaternion metric structure
{g> V}, we take intersecting coordinate neighborhoods U and Uf. Let {F, G, H) and
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{F',G',H'} be canonical local bases of V in U and in U', respectively. Then
{F, G, H) and {F't G', Hf) satisfy in UΓ\ Ur the condition (2.4) with SUt U' = (srβ)eSO(3),
because F', Gf and H' are linear combinations of F, G and H. And both of {Ff G,
H) and {Ff,G',Hf} satisfy (2.3). Thus, taking account of the arguments developed
in § 2, we have

PROPOSITION 1. The base space (M, g) of a fibred Riemannian space with
Sasakian 3-structure admits an almost quaternion metric structure {g, V).

When the Riemannian connection V of a Riemannian manifold (M, g) with al-
most quaternion metric structure {g, V) satisfies (2.7) for any local base {F, G, H)
of V and for any vector field X in M, {#, F} is called a quaternion Kahlerian
structure and a set (M, g, V) of such a manifold M and such an almost quaternion
metric structure {g, V] a quaternion Kahlerian manifold (See [5]). Thus we have

PROPOSITION 2. The base space (M, ςr) 0/ # /z^r^J Riemannian space with
Sasakian 3-structure admits a quaternion Kahlerian structure {g, V), that is, (M, g,
V) is a quaternion Kahlerian manifold.

We now give a tipical example of quaternion Kahlerian manifolds. Let 5 4 w + 3

be a unit sphere of curvature 1 and of dimension 4m+3(m^l) and π:S4mtB->HP(m)
the natural projection of S 4 m + 3 onto a quaternion projective space HP(m). As is
well known, S4TO+3 admito a Sasakian 3-structure {ξ,η,ζ\ and any fibre π~\P\
P€jffiP(w), is a maximal integral manifold of the distribution D spanned by £, J?
and ζ. Thus, HP{m) is the base space of a fibred Riemannian space with Sasakian
3-structure. Therefore HP(m) admits the induced quaternion Kahlerian structure
{g, V}* We have already seen in [5] that the curvature tensor K of HP{m) has
local components of the form

Kdcb

a=δ%gcb-δ?gdb+Fd

aFcb-Fc

aFdb-2FdcFb

a

(3.1)

+G d

a G c b - Gc

aGdb - 2GdcGb

a+Hd

aHcb - Hc

aHdb - 2HdcHb

a,

gCb>Fb

a,Gba and Hb

a being respectively components of gfF>G and H, where Fcb

—F<?geb, Gcb=Gc

egeb, and Hcb=Hc

egeb. The F, G and Hare locally defined, but the right-
hand side of (3.1) is globally defined (See [5]). T h e linear holonomy group of
HP(m) coincides with SP(m) SP(l) itself (See [1], [2], [3] and [5]).
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