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QUATERNIONIC KÄHLER MANIFOLDS

WITH HERMITIAN AND NORDEN METRICS

MANCHO MANEV

Abstract. Almost hypercomplex manifolds with Hermitian and Norden met-
rics and more specially the corresponding quaternionic Kähler manifolds are
considered. Some necessary and sufficient conditions the investigated manifolds
be isotropic hyper-Kählerian and flat are found. It is proved that the quater-
nionic Kähler manifolds with the considered metric structure are Einstein for
dimension at least 8. The class of the non-hyper-Kähler quaternionic Kähler
manifold of the considered type is determined.
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Introduction

In this work∗ we continue the investigations on a manifold M with an almost
hypercomplex structure H . We equip this almost hypercomplex manifold (M,H)
with a metric structure G, generated by a pseudo-Riemannian metric g of neutral
signature ([4], [5]).

It is known, if g is a Hermitian metric on (M,H), the derived metric structure G
is the known hyper-Hermitian structure. It consists of the given Hermitian metric
g with respect to the three almost complex structures of H and the three Kähler
forms associated with g by H [1].

In our case the considered metric structureG has a different type of compatibility
with H . The structure G is generated by a neutral metric g such that the one (resp.,
the other two) of the almost complex structures of H acts as an isometry (resp., act
as anti-isometries) with respect to g in each tangent fibre. Let the almost complex
structures of H act as isometries or anti-isometries with respect to the metric. Then
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2 MANCHO MANEV

the existence of an anti-isometry generates exactly the existence of one more anti-
isometry and an isometry. Thus, G contains the metric g and three (0,2)-tensors
associated by H – a Kähler form and two metrics of the same type. The existence
of such bilinear forms on an almost hypercomplex manifold is proved in [4]. The
neutral metric g is Hermitian with respect to the one almost complex structure of
H and g is an anti-Hermitian (i. e. a Norden) metric regarding the other two almost
complex structures of H . For this reason we call the derived almost hypercomplex
manifold (M,H,G) an almost hypercomplex manifold with NH-metric structure or
an almost hypercomplex NH-manifold.

If the three almost complex structures of H are parallel with respect to the Levi-
Civita connection ∇ of g then such hypercomplex NH-manifolds of Kähler type we
call hyper-Kähler NH-manifolds, which are flat according to [5].

In the first section we recall some facts about the almost hypercomplex NH-
manifolds known from [1], [4], [5], [7].

In the second section we introduce the corresponding quaternionic Kähler mani-
fold of an almost hypercomplex manifold with NH-metric structure. We establish
that the quaternionic Kähler NH-manifolds are Einstein for dimension 4n ≥ 8.
For comparison, it is known that the quaternionic Kähler manifolds with hyper-
Hermitian metric structure are Einstein for all dimensions.

In the third section we consider the location of the quaternionic Kähler NH-
manifolds in the classification of the corresponding almost hypercomplex manifolds
with respect to the covariant derivatives of the almost complex structures. We get
only one class (except the general one) of the considered classification where these
manifolds are non-hyper-Kählerian and consequently non-flat always.

In the fourth section we characterize the obtained in the previous chapter non-
hyper-Kähler quaternionic Kähler NH-manifolds.

The basic problem of this work is the existence and the geometric characteristics
of the quaternionic Kähler NH-manifolds. The main results of this paper is that
every quaternionic Kähler NH-manifold is Einstein for dimension at least 8 and it
is not flat hyper-Kählerian only when belongs to the general class W1 ⊕W2 ⊕W3

or the class W1 ⊕W3, where the manifold is Ricci-symmetric.

1. Almost hypercomplex manifolds with NH-metric structure

Let (M,H) be an almost hypercomplex manifold, i. e. M is a 4n-dimensional
differentiable manifold and H = (J1, J2, J3) is a triple of almost complex structures
on M with the properties:

(1.1) Jα = Jβ ◦ Jγ = −Jγ ◦ Jβ , J2
α = −I

for all cyclic permutations (α, β, γ) of (1, 2, 3) and I denotes the identity [1].
Let g be a neutral metric on (M,H) with the properties

(1.2) g(x, y) = εαg(Jαx, Jαy),

where

εα =

{

1, α = 1;

−1, α = 2; 3.

Moreover, the associated (Kähler) 2-form g1 and the associated neutral metrics g2
and g3 are determined by

(1.3) gα(x, y) = g(Jαx, y) = −εαg(x, Jαy).
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A structure (H,G) = (J1, J2, J3, g, g1, g2, g3) is introduced and investigated in [4],
[5], [8], [6] and [7]. Now we call it an almost hypercomplex NH-metric structure on
M . Then, a manifold with such structure (M,H,G) we call an almost hypercomplex
manifold with NH-metric structure or an almost hypercomplex NH-manifold.

The structural tensors of a such manifold are the following three (0, 3)-tensors

(1.4) Fα(x, y, z) = g
(

(∇xJα) y, z
)

=
(

∇xgα
)

(y, z) ,

where ∇ is the Levi-Civita connection generated by g. The corresponding Lie 1-
forms θα are defined by

(1.5) θα(·) = gijFα(ei, ej , ·)

for an arbitrary basis {e1, e2, . . . , e4n} of TpM , p ∈ M .
In [5] we study the so-called hyper-Kähler manifolds with NH-metric structure

(or pseudo-hyper-Kähler manifolds), i. e. the almost hypercomplex NH-manifold in
the class K, where ∇Jα = 0 for all α = 1, 2, 3. A sufficient condition (M,H,G) be
in K is this manifold be of Kähler-type with respect to two of the three complex
structures of H [4].

As g is an indefinite metric, there exist isotropic vectors x onM , i. e. g(x, x) = 0,
x 6= 0. In [4] we define the invariant square norm

(1.6) ‖∇Jα‖
2
= gijgklg

(

(∇iJα) ek, (∇jJα) el
)

,

where {e1, e2, . . . , e4n} of TpM , p ∈ M . We say that an almost hypercomplex NH-

manifold is an isotropic hyper-Kähler NH-manifold if ‖∇Jα‖
2
= 0 for every Jα

of H . In [4] such a manifold is called an isotropic hyper-Kähler manifold. Clearly,
if (M,H,G) is a hyper-Kähler NH-manifold, then it is an isotropic hyper-Kähler
NH-manifold. The inverse statement does not hold.

Let us consider the Nijenhuis tensors Nα for Jα given by Nα(x, y) = [Jαx, Jαy]−
Jα [Jαx, y] − Jα [x, Jαy] − [x, y] for x, y ∈ TpM . It is well known that the almost
hypercomplex structure H = (Jα) is a hypercomplex structure if Nα vanishes for
each α = 1, 2, 3. Moreover, it is known that one almost hypercomplex structure H

is hypercomplex if and only if two of the structures Jα (α = 1, 2, 3) are integrable.
This means that two of the tensors Nα vanish [1].

Let us note that according to (1.2) the manifold (M,J1, g) is almost Hermitian
and the manifolds (M,Jα, g), α = 2, 3, are almost complex manifolds with NH-
metric structure (or B-metric) [2]. The basic classes of the mentioned two types
of manifolds are given in [3] and [2], respectively, and they are determined for
dimension 4n as follows:

W1(J1) : F1(x, y, z) = −F1(y, x, z);

W2(J1) : S
x,y,z

{

F1(x, y, z)
}

= 0;

W3(J1) : F1(x, y, z) = F1(J1x, J1y, z), θ1 = 0;

W4(J1) : F1(x, y, z) =
1

4n− 2
{g(x, y)θ1(z)− g(x, z)θ1(y)

−g(x, J1y)θ1(J1z) + g(x, J1z)θ1(J1y)}

(1.7)
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and for α = 2 or 3

W1(Jα) : Fα(x, y, z) =
1

4n

{

g(x, y)θα(z) + g(x, z)θα(y)

+g(x, Jαy)θα(Jαz) + g(x, Jαz)θα(Jαy)
}

;

W2(Jα) : S
x,y,z

{

Fα(x, y, Jαz)
}

= 0, θα = 0;

W3(Jα) : S
x,y,z

{

Fα(x, y, z)
}

= 0,

(1.8)

where S is the cyclic sum by three arguments x, y, z.
The special class W0(Jα) : Fα = 0 (α = 1, 2, 3) of the Kähler-type manifolds

belongs to any other class within the corresponding classification.
Let the curvature tensor R of the Levi-Civita connection ∇, generated by g, be

defined, as usually, by R(x, y)z = [∇x,∇y] z − ∇[x,y]z. The corresponding (0, 4)-
tensor is determined by R(x, y, z, w) = g (R(x, y)z, w). Obviously,R is a Kähler-type
tensor on an arbitrary hyper-Kähler NH-manifold, i. e.

(1.9) R(x, y, z, w) = εαR(x, y, Jαz, Jαw) = εαR(Jαx, Jαy, z, w).

A basic property of the hyper-Kähler NH-manifolds is given in [5] by the following

Theorem 1.1 ([5]). Each hyper-Kähler NH-manifold is a flat pseudo-Riemannian
manifold of signature (2n, 2n). �

In [7] it is proved the following more general property.

Theorem 1.2 ([7]). Every Kähler-type tensor on an almost hypercomplex NH-ma-
nifold is zero. �

2. Quaternionic Kähler manifolds with NH-metric structure

Let us consider again only an almost hypercomplex manifold (M,H). The endo-
morphism Q = λ1J1 + λ2J2 + λ3J3, λi ∈ R, is called a quaternionic structure on
(M,H) with an admissible basis H . A quaternionic structure with the condition
∇Q = 0 is called a quaternionic Kähler structure on (M,H). An almost hypercom-
plex manifold with quaternionic Kähler structure is determined by

(2.1) (∇xJα) y = ωγ(x)Jβy − ωβ(x)Jγy

for all cyclic permutations (α, β, γ) of (1, 2, 3), where ωα are local 1-forms associated
to H = (Jα), α = 1, 2, 3. [1]

Next, we equip the quaternionic Kähler manifold with an NH-metric structure
G = (g, g1, g2, g3), determined by (1.2) and (1.3), and obtain a quaternionic Kähler
manifold with NH-metric structure or a quaternionic Kähler NH-manifold.

Having in mind (2.1) and (1.6), for a quaternionic Kähler NH-manifold we obtain
the following form of the square norm of ∇Jα:

(2.2) ‖∇Jα‖
2
= 4n {εβωγ(Ωγ) + εγωβ(Ωβ)} ,

where Ω1, Ω2, Ω3 are the corresponding vectors of ω1, ω2, ω3 regarding g, respec-
tively. Therefore we have immediately the following

Proposition 2.1. A quaternionic Kähler NH-manifold is an isotropic hyper-Kähler
NH-manifold iff the corresponding vectors of the 1-forms ω1, ω2 and ω3 with respect
to g are isotropic vectors regarding g. �
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Having in mind (2.1), we obtain the following property for all cyclic permutations
(α, β, γ) of (1, 2, 3):

(2.3) R(x, y)Jαz = JαR(x, y)z − ηβ(x, y)Jγz + ηγ(x, y)Jβz

where

(2.4) ηβ(x, y) = dωβ(x, y) + ωγ(x)ωα(y)− ωα(x)ωγ(y)

are 2-forms associated to the local 1-forms ω1, ω2, ω3 and therefore

(2.5) R(x, y, z, w)− εαR(x, y, Jαz, Jαw) = ηβ(x, y)gβ(z, w) + ηγ(x, y)gγ(z, w).

According to the antisymmetry of R by the third and the forth entries, we establish
that η2 = η3 = 0, i. e.

Lemma 2.2. The local 1-forms ω1, ω2 and ω3, determining a quaternionic Kähler
NH-manifold, satisfy the following identities

(2.6)
dω2(x, y) = −ω3(x)ω1(y) + ω1(x)ω3(y),

dω3(x, y) = −ω1(x)ω2(y) + ω2(x)ω1(y).

�

Then, according to (2.6), equations (2.5) take the form

R(x, y, J1z, J1w) = R(x, y, z, w),(2.7)

R(x, y, J2z, J2w) = R(x, y, J3z, J3w) = −R(x, y, z, w) + η1(x, y)g1(z, w).(2.8)

Having in mind (2.7), (2.8) and (1.9), we have immediately

Lemma 2.3. The curvature tensor R of a quaternionic Kähler NH-manifold is of
Kähler-type iff η1 = 0, i. e. the following condition is valid

(2.9) dω1(x, y) = −ω2(x)ω3(y) + ω3(x)ω2(y).

�

According to Lemma 2.3 and Theorem 1.1, we have

Proposition 2.4. The necessary and sufficient condition an arbitrary quaternionic
Kähler NH-manifold be flat is condition (2.9). �

Lemma 2.5. The Ricci tensor and the 2-form η1, defined by (2.4), have the fol-
lowing relation on any quaternionic Kähler NH-manifold:

(2.10) ρ(x, y) = nη1(J1x, y).

Proof. From (2.8) for z → ei, w → J1ej by contraction with gij we have

(2.11)
−gijR(x, y, J2ei, J3ej) = gijR(x, y, J3ei, J2ej)

= −gijR(x, y, ei, J1ej) + 4nη1(x, y).

Having in mind the antisymmetry on the second pair arguments of R and J1 = J2J3,
we get

−gijR(x, y, J2ei, J3ej) = gijR(x, y, J3ei, J2ej) = gijR(x, y, ei, J1ej).

and therefore from (2.11) we have

(2.12) gijR(x, y, ei, J1ej) = 2nη1(x, y).
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After that, from (2.12), applying the properties of the curvature tensor R, (1.2)
for α = 1 and (2.7), we obtain consequently

2nη1(x, y) = gijR(x, y, ei, J1ej) = gij{−R(x, ei, J1ej, y)−R(x, J1ej , y, ei)}

= gijR(x, ei, y, J1ej) + gijR(x, ej , y, J1ei) = 2gijR(x, ei, y, J1ej)

= −2gijR(ei, x, y, J1ej) = 2gijR(ei, x, J1y, ej) = 2ρ(x, J1y),

i. e.

(2.13) η1(x, y) =
1

n
ρ(x, J1y).

Because of the symmetry of ρ and the antisymmetry of η1 we have the property

(2.14) η1(x, J1y) = −η1(J1x, y)

and therefore

(2.15) ρ(J1x, J1y) = ρ(x, y).

Hence, from (2.13), (2.14) and (2.15), we obtain (2.10). �

Proposition 2.6. A quaternionic Kähler NH-manifold is Ricci-flat iff it is flat.

Proof. Using Lemma 2.5, property (2.8) takes the form

(2.16)
R(x, y, J2z, J2w) = R(x, y, J3z, J3w)

= −R(x, y, z, w)− 1
n
ρ(J1x, y)g(J1z, w).

Then, according to (2.16), (1.9) and Theorem 1.2, we obtain the equivalence in the
statement. �

Theorem 2.7. Quaternionic Kähler manifolds with NH-metric structure are Ein-
stein for dimension 4n ≥ 8.

Proof. By virtue of (2.7), (2.16) and (2.15) we obtain the following properties

R(J1x, J1y, J1z, J1w) = R(x, y, z, w),(2.17)

R(J2x, J2y, J2z, J2w) = R(J3x, J3y, J3z, J3w)

= R(x, y, z, w)− 1
n
g(x, J1y)ρ(J1z, w) +

1
n
ρ(J2x, J3y)g(J1z, w).

(2.18)

Hence, for the Ricci tensor we have (2.15) and

(2.19) (n2 − 1)ρ(J2y, J2z) = (n2 − 1)ρ(J3y, J3z) = −(n2 − 1)ρ(y, z).

Then for n > 1 the Ricci tensor is hybrid with respect to J2 and J3, i. e.

ρ(J2y, J2z) = ρ(J3y, J3z) = −ρ(y, z).

The conditions (2.7), (2.8) and (2.10) imply for n > 1 the following

A(x, z) = −
2

n
ρ(x, x)g(z, z) = −

2

n
g(x, x)ρ(z, z),

where
A(x, z) = R(x, J1x, z, J1z)−R(x, J1x, J2z, J3z)

−R(J2x, J3x, z, J1z) +R(J2x, J3x, J2z, J3z)

Then for arbitrary non-isotropic vectors we have ρ = λg, λ ∈ R. �
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By Theorem 2.7, identity (2.16) implies the following corollary for n ≥ 2:

R(x, y, J2z, J2w) = R(x, y, J3z, J3w)

= −R(x, y, z, w)−
τ

4n2
g(J1x, y)g(J1z, w).

(2.20)

Therefore from (2.20), using (1.9) and Theorem 1.2, we obtain the following

Proposition 2.8. A quaternionic Kähler NH-manifold of dimension 4n ≥ 8 is
scalar flat iff it is flat. �

Proposition 2.9. A quaternionic Kähler NH-manifold of dimension 4n ≥ 8 is
determined by the local 1-forms satisfying the conditions (2.6) and

dω1(x, y) = −ω2(x)ω3(y) + ω3(x)ω2(y)−
τ

4n2
g(J1x, y).

�

3. Quaternionic Kähler NH-manifolds in a classification of almost

hypercomplex NH-manifolds

Firstly, let us consider the case when H is (integrable) hypercomplex structure,
i. e. when Nα vanishes for each α = 1, 2, 3.

The Nijenhuis tensor and its associated tensor for each Jα are determined as
follows:

(3.1)
Nα(x, y) = (∇xJα)Jαy − (∇yJα)Jαx+ (∇JαxJα) y − (∇JαyJα)x,

N∗

α(x, y) = (∇xJα)Jαy + (∇yJα)Jαx+ (∇JαxJα) y + (∇JαyJα)x.

Therefore, according to (2.1), for the quaternionic Kähler manifolds we have

(3.2)

Nα(x, y) = − [ωγ(x) + ωβ(Jαx)] Jγy − [ωβ(x) − ωγ(Jαx)] Jβy

+ [ωγ(y) + ωβ(Jαy)]Jγx+ [ωβ(y)− ωγ(Jαy)] Jβx,

N∗

α(x, y) = − [ωγ(x) + ωβ(Jαx)] Jγy − [ωβ(x) − ωγ(Jαx)] Jβy

− [ωγ(y) + ωβ(Jαy)]Jγx− [ωβ(y)− ωγ(Jαy)] Jβx.

The last equations imply immediately the next two lemmas.

Lemma 3.1. The tensors Nα and N∗

α vanish iff ωγ = −ωβ ◦Jα for any fixed cyclic
permutation (α, β, γ) of (1, 2, 3). �

Lemma 3.2. The tensors Nα and N∗

α (α = 1, 2, 3) vanish iff

(3.3) ωα = ωβ ◦ Jγ = −ωγ ◦ Jβ

for cyclic permutations (α, β, γ) of (1, 2, 3). �

Now, according to (2.1) and (1.3), the structural tensors and their corresponding
Lie 1-forms of the derived quaternionic Kähler NH-manifold, defined by (1.4) and
(1.5), have the form

Fα(x, y, z) = ωγ(x)g(Jβy, z)− ωβ(x)g(Jγy, z),(3.4)

θα(z) = −εβωγ(Jβz) + εγωβ(Jγz).(3.5)
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Proposition 3.3. If a quaternionic Kähler NH-manifold (M,H,G) is integrable,
then it is a hyper-Kähler NH-manifold, i. e.

(M,H,G) ∈ (W3 ⊕W4) (J1) ∩ (W1 ⊕W2) (J2) ∩ (W1 ⊕W2) (J3)

⇒ (M,H,G) ∈ K.

Proof. Let (M,H,G) be an integrable hypercomplex NH-manifold, i. e. (M,H,G)
belongs to the class W3⊕W4 with respect to J1 in (1.7) and (M,H,G) is an element
of W1 ⊕W2 regarding J2 and J3, according to (1.8).

Therefore N1 = N2 = N3 = 0 hold and then, according to Lemma 3.2, conditions
(3.3) are valid. Hence, according to εα + εβ + εγ = −1 and εαεβεγ = 1, relation
(3.5) takes the form

θα = −(1 + εα)ωα,

which imply
θ1 = −2ω1, θ2 = θ3 = 0.

On the other hand, Nα = N∗

α = 0 and (3.1) imply (∇xJα) y = (∇JαxJα)Jαy and
finally the fact that the manifold is hyper-Kählerian with an NH-metric structure.

�

Proposition 3.4. If an almost hypercomplex NH-manifold (M,H,G), determined
by the properties θ2 = θ3 = 0, is quaternionic Kählerian, then it is a hyper-Kähler
NH-manifold, i. e.

(M,H,G) ∈ (W2 ⊕W3) (J2) ∩ (W2 ⊕W3) (J3) ⇒ (M,H,G) ∈ K.

Proof. Since θ2 = θ3 = 0, we have N2 = N3 = 0, because of (3.5) and (3.2).
Consequently, N1 vanishes, too. Then, according to Proposition 3.3 and conditions
(1.8), the considered manifold belongs to the class K. �

Let us remark, using (1.8), that an almost complex manifold with Norden metric
belongs to W1 ⊕W3 regarding Jα iff the following property holds for α = 2 or 3,
respectively

(3.6) S
x,y,z

Fα(x, y, z) =
1

2n
S

x,y,z
{g(x, y)θα(z) + g(Jαx, y)θα(Jαz)} .

Proposition 3.5. Let (M,H,G) be an almost hypercomplex NH-manifold belong-
ing to the class W1 ⊕ W3 with respect to J2 and J3. If (M,H,G) is quaternionic
Kählerian, then it is a Kähler manifold with respect to J1, i. e.

(M,H,G) ∈ (W1 ⊕W3) (J2) ∩ (W1 ⊕W3) (J3) ⇒ (M,H,G) ∈ W0(J1).

Moreover, we have

(3.7)

(∇xJ1) y = 0,

(∇xJ2) y = ω1(x)J3y, ω1(x) = −θ2(J3x),

(∇xJ3) y = −ω1(x)J2y, ω1(x) = θ3(J2x).

Proof. From (3.6) for α = 2 and 3 we obtain

θ2 = ω1 ◦ J3, θ3 = −ω1 ◦ J2.

Then, according to (3.5), we get

(3.8) ω2 = ω3 = 0

and therefore we obtain (3.7). �
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From Proposition 3.4 and Proposition 3.5 we have directly

Corollary 3.6. Let (M,H,G) be an almost hypercomplex NH-manifold, belonging
to the class W3 with respect to J2 and J3. If (M,H,G) is quaternionic Kählerian,
then it is a hyper-Kähler NH-manifold, i. e.

(M,H,G) ∈ W3(J2) ∩W3(J3) ⇒ (M,H,G) ∈ K.

�

Having in mind Propositions 3.3–3.5, Corollary 3.6 and Theorem 1.1, we give
the following

Conclusion 3.7. Let a quaternionic Kähler NH-manifold (M,H,G) be in some of
the classes W1 ⊕W2 (and in particular W0, W1 and W2), W2 ⊕W3 and W3 with
respect to both of the structures J2 and J3. Then (M,H,G) is a flat hyper-Kähler
NH-manifold. The unique class in (1.8) with some condition for ∇J2 and ∇J3,
where (M,H,G) is not flat hyper-Kählerian, is W1 ⊕W3 and their manifolds are
determined by (3.7). �

4. Non-hyper-Kähler quaternionic Kähler NH-manifolds

In this section we will characterize the manifold satisfying the conditions of Pro-
position 3.5. It is a non-hyper-Kähler quaternionic Kähler NH-manifold.

We apply (3.8) to (2.2) and obtain the square norms of the non-zero quantities
∇J2 and ∇J3 in the considered case as follows:

‖∇J2‖
2 = ‖∇J3‖

2 = −4nω1(Ω1),

where Ω1 is the corresponding vector to ω1 with respect to g.

Corollary 4.1. Let (M,H,G) be a quaternionic Kähler NH-manifold, determined
by a local 1-form ω1 in (3.7). It is an isotropic hyper-Kähler NH-manifold iff the
corresponding vector Ω1 to ω1 with respect to g is an isotropic vector regarding g.�

Using (3.8) and Proposition 2.9, for the considered manifolds here we have

Proposition 4.2. Let ω1 be the local 1-form of a quaternionic Kähler NH-manifold
of dimension 4n ≥ 8, determined by (3.7). Then ω1 satisfies the condition

(4.1) dω1(x, y) = −
τ

4n2
g1(x, y).

�

According to (3.7) we have F1(x, y, z) =
(

∇xgα
)

(y, z) = 0 and then we obtain

d g1(x, y, z) = Sx,y,z

{

F1(x, y, z)
}

= 0. Hence and (4.1) we establish that τ = const,
i. e. (M,H,G) determined by (3.7) has a constant scalar curvature. Then, having
in mind Theorem 2.7, we get the following

Proposition 4.3. Quaternionic Kähler NH-manifolds determined by (3.7) for di-
mension 4n ≥ 8 are Ricci-symmetric, i. e. ∇ρ = 0. �

As in Proposition 2.4 for an arbitrary quaternionic Kähler NH-manifold, in the
following proposition we give a necessary and sufficient condition the considered
manifold in this section be flat.

Proposition 4.4. Let (M,H,G) be a quaternionic Kähler NH-manifold, deter-
mined by a non-zero local 1-form ω1 in (3.7). Then (M,H,G) is flat non-hyper-
Kählerian iff ω1 is closed.
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Proof. Since M is a Kähler manifold with respect to J1, then R is Kählerian with
respect to J1.

Having in mind (3.8) and (2.4), we have that η1 = dω1 in the considered case.
Then identity (2.8) takes the following form

R(x, y, J2z, J2w) = R(x, y, J3z, J3w)

= −R(x, y, z, w) + dω1(x, y)g(J1z, w).

It is clear that R is a Kähler-type tensor with respect to H = (Jα) iff ω1 is closed.
Hence, according to Theorem 1.2, we obtain the statement. �

Corollary 4.5. Let (M,H,G) be a quaternionic Kähler NH-manifold, determined
by a non-zero local 1-form ω1 in (3.7). Then (M,H,G) is flat non-hyper-Kählerian
iff the following identity is valid

dθα(x, y) + dθα(J1x, J1y)− dθα(J2x, J2y)− dθα(J3x, J3y) = 0

for α = 2 or α = 3.

Proof. It follows directly from Proposition 4.4 and the relations ω1 = −θ2 ◦ J3 =
θ3 ◦ J2 in (3.7). �
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