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We reformulate Special Relativity by a quaternionic algebra on reals. Usingreal
linear quaternions, we show that previous difficulties, concerning the appropriate
transformations on the 311 space–time, may be overcome. This implies that a
complexified quaternionic version of Special Relativity is a choice and not a ne-
cessity. ©1996 American Institute of Physics.@S0022-2488~96!01106-1#

I. INTRODUCTION

‘‘The most remarkable formula in mathematics is:

eiu5cosu1 i sin u. ~1!

This is our jewel. We may relate the geometry to the algebra by representing complex numbers in
a plane

x1 iy5reiu.

This is the unification of algebra and geometry.’’—Feynman.1

We know that a rotation ofa-angle around thez axis, can be represented byeia, in fact,

eia~x1 iy !5rei ~u1a!.

In 1843, Hamilton in the attempt to generalize the complex field in order to describe the rotation
in the three-dimensional space, discovered quaternions. Quaternions, as used in this paper, will
always mean ‘‘real quaternions’’

q5a1 ib1 jc1kd, a,b,c,dPR.

Today a rotation about an axis passing trough the origin and parallel to a given unitary vector
u[(ux ,uy ,uz) by an anglea can be obtained taking the transformation

e~ iux1 juy1kuz!a/2~ ix1 jy1kz!e2~ iux1 juy1kuz!a/2. ~2!

Therefore, if we wish to represent rotations in the three-dimensional space and complete ‘‘the
unification of algebra and geometry,’’ we need quaternions.

The quaternionic algebra has been expounded in a series of papers2 and books3 with particular
reference to quantum mechanics; the reader may refer to these for further details. For convenience
we repeat and develop the relevant points in the following section, where the terminology is also
defined.

Nothing that U~1,q! is algebraically isomorphic to SU~2,c!, the imaginary unitsi , j ,k can be
realized by means of the 232 Pauli matrices through

~ i , j ,k!↔~ is3 ,2 is2 ,2 is1!

a!Electronic mail address: deleos@le.infn.it
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~this particular representation of the imaginary unitsi , j ,k has been introduced in Ref. 4!. So a
quaternionq can be represented by a 232 complex matrix

q↔Q5S z1 2z2*

z2 z1*
D , ~3!

where

z15a1 ib, z25c2 idPC ~1,i !,

z1*5a2 ib, z2*5c1 id.

It follows that a quaternion with unitary norm is identified by a unitary 232 matrix with unit
determinant. This gives the correspondence between unitary quaternions U~1,q! and Su~2,c! @in a
recent paper5 the representation theory of the group U~1,q! has been discussed in detail#. Let us
consider the transformation law of a spinor~two-dimensional representations of the rotation
group!

c85Uc, ~4!

where

c5S z1z2D , UPSU~2,c!.

We can immediately verify that

c̃5S 2z2
z1

D
transforms as follows,

c̃85U* c̃, ~5!

so

S z1 2z2*

z2 z1*
D 8

5US z1 2z2*

z2 z1*
D

represents again the transformation law of a spinor.
Thanks to the identification~3! we can write the previous transformations by real quaternions

as follows

q85Uq,

with q5z11 jz2 andU quaternion with unitary norm@N~U!5U1U51#. Note that we do not
need right operators to indicate the transformation law of a spinor.

Now we can obtain the transformation law of a three-dimensional vectorr[(x,y,z) by prod-
uct of spinors; in fact, if we consider the purely imaginary quaternion

v5qiq15 ix1 jy1kz, ~ i , j ,k!1[2~ i , j ,k!,

or the corresponding traceless 232 complex matrix
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V5c ic15S ix 2y2 iz

y2 iz 2 ix D ,
a rotation in the three-dimensional space can be written as follows:6

v85UvU1 ~quaternions!,

V85UVU1 ~232 complex matrices!.

For infinitesimal transformations,U511Q•u, we find

Q•r 85Q•r1Q•u Q•r2Q•rQ•u,

where

Q[~ i , j ,k!, u[~a,b,g!.

If we rewrite the above mentioned transformation in the following form,

Q•r 85@11u•~Q21uQ!#Q•r , ~6!

barredoperatorsO uq act on quaternionic objectsF as in ~O uq!F5OFq.
We identify

i21u i
2

,
j21u j
2

,
k21uk
2

,

as the generators for rotations in the three-dimensional space. The factor1
2 guarantees that our

generators satisfy the usual algebra:

@Am , An#5emnpAp , m,n,p51,2,3.

Up until now, we have considered only particular operations on quaternions. A quaternionq
can also be multiplied by unitary quaternionsV from the right. A possible transformation which
preserves the norm is given by

q85UqV , ~U1U5V 1V 51!. ~7!

Since left and right multiplications commute, the group is locally isomorphic to SU~2!3SU~2!,
and so to O~4!, the four-dimensional Euclidean rotation group.

As far as here we can recognize only particular real linear quaternions, namely,

1, i , j , k, 1u i , 1u j , 1uk.

Real linear and complex linear quaternion operators were first systematically discussed in the
paper by Horwitz and Biedenharn.7

We have to hope of describing the Lorentz group if we use only previous objects. Analyzing
the most general transformation on quaternions~see Sec. IV!, we introduce new real linear quater-
nions which allow us to overcome the above difficulty and so obtain a quaternionic version of the
Lorentz group, without the use of complexified quaternions. This result appears, to the best of our
knowledge, for the first time in print.

First we briefly recall the standard way to rewrite special relativity by a quaternionic algebra
on complex~see Sec. III!.
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In Sec. V, we present a quaternionic version of the special group SL~2,c!, which is as well-
known collected to the Lorentz group. Our conclusions are drawn in the final section.

II. QUATERNIONIC ALGEBRAS

A quaternionic algebra over a fieldF is a set

H5$a1 ib1 jg1kdua,b,g,dPF %,

with multiplication operations defined by following rules for imaginary unitsi , j ,k:

i 25 j 25k2521, jk52k j5 i , ki52 ik5 j , i j52 j i5k.

In our paper we will work with quaternionic algebras defined on reals and complex, so in this
section we give a panoramic review of such algebras.

We start with a quaternionic algebra on reals

HR5$a1 ib1 jg1kdua,b,g,dPR%.

We introduce the quaternion conjugation denoted by1 and defined by

q15a2 ib2 jg2kd.

The previous definition implies

~cw!15w1c1,

for c, w quaternionic functions. A conjugation operation which does not reverse the order ofc, w
factors is given, for example, by

q̃5a2 ib1 jg2kd.

An important difference between quaternions and complexified quaternions, as remarked by Adler
in his recent book8 ~pag. 8!, is based on the concept ofdivision algebra, which is a finite-
dimensional algebra for whichaÞ0, bÞ0 impliesabÞ0, in others words, which has no nonzero
divisors of zero. A classical theorem9 states that the only division algebras over the reals are
algebras of dimension 1, 2, 4, and 8; the only associative algebras over the reals areR, C , and
HR ;10 the nonassociative division algebras include the octonionsO ~but there are others as well;
see Ref. 11!.

A simple example of anondivisionalgebra is provided by the algebra of complexified quater-
nions

HC5$a1 ib1 jg1kdua,b,g,dPC ~1,I !%,

@I , i #5@I , j #5@I , k#50.

In fact, since

~11 iI !~12 iI !50,

there are nonzero divisors of zero.
For complexified quaternions we have different opportunities to define conjugation opera-

tions; we shall use the following terminology:
~1! The complexconjugate ofqC is
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qC*5a*1 ib*1 jg*1kd* .

Under this operation

~I ,i , j ,k!→~2I ,i , j ,k!

and

~qCpC !*5qC* pC* .

~2! Thequaternionconjugate ofqC is

qC
! 5a2 ib2 jg2kd.

Here

~I ,i , j ,k!→~I ,2 i ,2 j ,2k!

and

~qCpC !!5pC
! qC

! .

~3! In the absence of standard terminology, we call that formed by combining these operations
the full conjugate:

qC
15a*2 ib*2 jg*2kd* .

Under this operation

~I ,i , j ,k!→2~I ,i , j ,k!

and

~qCpC !15pC
1qC

1 .

Note that for real quaternions we have

q![q1.

III. COMPLEXIFIED QUATERNIONS AND SPECIAL RELATIVITY

We begin this section by recalling a sentence of Anderson and Joshi12 about the quaternionic
reformulation of special relativity:

‘‘There has been a long tradition of using quaternions for Special Relativity... The use of
quaternions in special relativity, however, is not entirely straightforward. Since the field of quater-
nions is a four-dimensional Euclidean space, complex components for the quaternions are re-
quired for the 311 space–time of special relativity.’’

In the following section, we will demonstrate that a reformulation of special relativity by a
quaternionic algebra on reals is possible.

In the present section, we use complexified quaternions to reformulate special relativity~for
further details the reader may consult the papers of Edmonds,13 Gough,14 Abonyi,15 Gürsey,16 and
the book of Synge17!.

A space–time point can be represented by complexified quaternions as follows:

X5I ct1 ix1 jy1kz. ~8!
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The Lorentz invariant in this formalism is given by

X *X5~ct!22x22y22z2. ~9!

If we consider the standard Lorentz transformation~boostct2x!

ct85g~ct2bx!, x85g~x2bct!, y85y, z85z

and note that the first two equations may be rewritten as

ct85ct coshu2x sinh u,

x85x coshu2ct sinh u,

where coshu5g and sinhu5bg.
We can represent an infinitesimal transformation by

X 85I ~ct2xu!1 i ~x2ctu!1 jy1kz5X1I
i11u i
2

uX .

We thus recognize, in the previous transformation, the generator

I
i11u i
2

.

It is now very simple to complete the translation. The set of generators of the Lorentz group is
provided with

boost ~ct,x! I
i11u i
2

,

boost ~ct,y! I
j11u j
2

,

boost ~ct,z! I
k11uk
2

,

rotation aroundx
i21u i
2

,

rotation aroundy
j21u j
2

,

rotation aroundz
k21uk
2

.

Therefore a general finite Lorentz transformation is given by

eI ~ iab1 jbb1kgb!1 iar1 jbr1kgr~I ct1 ix1 jy1kz!eI ~ iab1 jbb1kgb!2 iar2 jbr2kgr.

The previous results can be elegantly summarized by the relation

X 85LXL1, L!L51, ~10!
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whereL is obviously a complexified quaternion. In this or a similar way many authors have
reformulated special relativity with complex quaternions.

We remark that the complex component for the quaternions represent a choice and not a
necessity.

IV. A NEW POSSIBILITY

We think that quaternions are the natural candidates to describe special relativity. It is simple
to understand why: quaternions are characterized by four real numbers~whereas complexified
quaternions by eight!, thus we can collect these four real quantities with a point (ct,x,y,z) in the
space–time. In quaternionic notation we have

X5ct1 ix1 jy1kz. ~11!

In the first section we have introduced particularreal linear quaternions, namely,

1, Q, 1uQ,

where

Q[~ i , j ,k!.

In order to write the most general real linear quaternions we must consider the following quanti-
ties:

Qu i , Qu j , Quk.

In fact, the most general transformation on quaternions is represented by

q1pu i1r u j1suk, ~12!

with

q,p,r ,sPHR.

New objects like

ku j , j uk, i uk, ku i , j u i , i u j

will be essential to reformulate special relativity with real quaternions. They represent the wedges
which permit us to overcome the difficulties which in the past did not allow a~real! quaternionic
version of special relativity.

Returning to Lorentz transformations, let us start with the following infinitesimal transforma-
tion ~boostct2x!:

X 85ct2xu1 i ~x2ctu!1 jy1kz5X1
ku j2 j uk

2
uX .

We can immediately note that the generator which substitutes

I
i11u i
2

is
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ku j2 j uk
2

.

So we have the possibility of listing the generators of the Lorentz group without the need to work
with complexified quaternions:

boost ~ct,x!
ku j2 j uk

2
,

boost ~ct,y!
i uk2ku i

2
,

boost ~ct,z!
j u i2 i u j

2
,

rotation aroundx
i21u i
2

,

rotation aroundy
j21u j
2

,

rotation aroundz
k21uk
2

.

In Appendix A we explicitly prove that the action of previous generators leaves

ReX 25~ct!22x22y22z2 ~13!

invariant.
In Appendix B we will give an alternate but equivalent presentation of special relativity by a

quaternionic algebra on reals. There we introduce a real linear quaterniong which substitutes the
metric tensorgmn.

V. A QUATERNIONIC VERSION OF THE COMPLEX GROUP SL(2)

In analogy to the connection between the rotation group O~3! to the special unitary group
SU~2!, there is a natural correspondence18 between the Lorentz group O~3,1! and the special linear
group SL~2!. In fact, SL~2! is the universal covering group of O~3,1! in the same way that SU~2!
is of O~3!.

The aim of this Section is to give, by extending the consideration with which we collect the
special unitary group SU~2! with unitary real quaternions~as shown in Sec. I!, a quaternionic
version of the special linear group SL~2!. Once more the aim will be achieved with help of real
linear quaternions.

A Lorentz spinor is a complex object which transforms under Lorentz transformations as

c85Ac,

whereA is a SL~2! matrix. When we restrict ourselves to the three-dimensional space and to
rotations, this definition gives the usual Pauli spinors

c85Uc,
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whereU is a SU~2! matrix.
Now we shall derive the generators of rotations and Lorentz boosts in the spinor representa-

tion by using real linear quaternions.
The action of generators of the special group SL~2!,

S i 0

0 2 i D , S 0 21

1 0 D , S 0 2 i

2 i 0 D , S 21 0

0 1D , S 0 2 i

i 0 D , S 0 1

1 0D ,
on the spinor

c5S j
h D

can be represented by the action of real linear quaternions

i , j , k, i u i , j u i , ku i

on the quaternion

q5j1 jh.

In Sec. I we have obtained a three-dimensional vector (x,y,z) by product of Pauli spinorsqP :

qP iqP
15 ix1 jy1kz ~qP8 5UqP , U1U51!.

Consequently, we have written its transformation law as follows:

~qP iqP
1!85UqP iqP

1
U1.

Now we start with a Lorentz spinorqL

qL8 5AqL ,

and construct a four-vector (ct,x,y,z) by-product of such spinors:

qL~11 i !qL
15ct1 ix1 jy1kz.

The transformation law is then given by

„qL~11 i !qL
1
…85~AqL!~11 i !~AqL!1.

If we consider infinitesimal transformations

A511
Q

2
•~u1zu i !,

with u[~a,b,g! andz[(ã,b̃,g̃),
we have

T 85T 1
a

2
@ i , T #1

b

2
@ j , T #1

g

2
@k, T #1

ã

2
$ i ,T̃ %1

b̃

2
$ j ,T̃ %1

g̃

2
$k,T̄ %,

where
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T 5qL~11 i !qL
1

and

T̃ 5qLi ~11 i !qL
15T 22qLqL

1 .

In order to simplify next considerations we pose

T 5 ix1 jy1kz1ct5T i1T j1T k1T 1 ,

T̃ 5 ix1 jy1kz2ct5T i1T j1T k2T 1 ,

so the standard Lorentz transformations are given by

T 1→T 11ã iT i1b̃ jT j1g̃kT k , T i→T i2ã iT 11b jT k2gkT j ,

T j→T j2b̃ jT 12a iT k1gkT i , T k→T k2g̃kT 11a iT j2b jT i .

In this way we obtain a quaternionic version of the special group SL~2! and demonstrate~in
contrast with the opinion of Penrose!6 that, if real linear quaternions appear, a ‘‘trick’’ similar to
that one of rotations works to relate the full four-vector (ct,x,y,z) with real quaternions.

VI. CONCLUSIONS

The study of special relativity with a quaternionic algebra on reals has yielded a result of
interest. While we cannot demonstrate in this paper that one number system~quaternions! is
preferable to another~complexified quaternions!, we have pointed out the advantages of using real
linear quaternions which naturally appear when we work with a noncommutative number system,
such as the quaternionic field. As seen in this paper these objects are very useful if we wish to
rewrite special relativity by a quaternionic algebra on reals. The complexified quaternionic refor-
mulation of special relativity is thus a choice and not a necessity. This affirmation is in contrast
with the standard folklore~see, for example, Ref. 12!.

Our principal aim in this work is to underline the potentialities of real linear quaternions. We
wish to remember that many difficulties have been overcome thanks to these objects~which in our
colorful language we have named generalized objects!.4

To remark on their potentialities let us list the situations which have requested their use.
~i! The need of such objects naturally appears, for example, in the construction of quaternion

group theory and tensor product group representations.5 Also starting with only standard quater-
nions i , j ,k in order to represent the generators of the group U~1,q!, we find generalized quater-
nions when we analyze quaternionic tensor products.

Spin
1

2
generators:

i

2
,

j

2
,

k

2
.

Spin 1%0 generators:S i11u i
2

0

0
i21u i
2

D , S j 1u i

1u i j D , S k 21

1 k D .
~ii ! If we desire to extend the isomorphism of SU~2,c! with U~1,q! to the group U~2,c!, we

must introduce the additional real linear quaternion ‘‘1ui .’’ In this way there exists at least one
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version of quaternionic quantum mechanics in which a ‘‘partial’’ set of translations may be
defined;4 in fact, thanks to real linear operators, a translation between 2n32n complex andn3n
quaternionic matrices is possible.

~iii ! In the work of Ref. 19 a quaternion version of the Dirac equation was derived in the form

gm]mc i5mc,

where thegm are two-by-two quaternionic matrices satisfying the Dirac condition

$gm ,gn%52gmn .

In Rotelli’s formalism the momentum operator must be defined as

pm5]mu i ,

which is also a generalized object.
~iv! In this paper, contrary to the common opinion, we have given a real quaternionic formu-

lation of special relativity. In order to obtain that, we have introduced the following real linear
quaternions:

Qu i , Qu j , Quk, Q[~ i , j ,k!.

A quaternionic version of the special group SL~2! has also been given.
We finally note that the process of generalization can be extended also to complexified

quaternions. In a recent paper20 we gave an elegant one-component formulation of the Dirac
equation and, thanks to our generalization, we overcame previous difficulties concerning the
doubling of solutions12–14 in the complexified quaternionic Dirac equation.

In seeking a better understanding of the success of mathematical abstraction in physics and in
particular of the wide applicability of quaternionic numbers in theories of physical phenomena, we
found that generalized quaternions shouldnot be undervalued. We think that there are good
reasons to hope that these generalized structures provide new possibilities concerning physical
applications of quaternions.

‘‘The most powerful method of advance that can be suggested at present is to employ all the
resources of pure mathematics in attempts to perfect and generalize the mathematical formalism
that forms the existing basis of theoretical physics, and after each success in this direction, to try
to interpret the new mathematical features in terms of physical entities...’’—Dirac.21

APPENDIX A: QUATERNIONIC LORENTZ INVARIANT

In this Appendix we prove that the Lorentz invariant8 is

ReX 825ReX 2, ~A1!

where

X5ct1 ix1 jy1kz.

Under an infinitesimal transformation, we have

X 85S 11u
ku j2 j uk

2
1a

i21u i
2

1••• DX ,

so, neglecting second-order terms,
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X 825X 21
u

2
$X ,kX j2 jX k%1

a

2
$X ,iX2X i %1••• .

Equation~14! is then satisfied since

$X ,iX2X i %5~ i21u i !X 2,

$X ,kX j2 jX k%5~1u j2 j !X kX1~k21uk!X jX

are purely imaginary quaternions.
Obviously we can derive the generators of the Lorentz group by starting from the infinitesimal

transformation

X 85X1AX

and imposing that they satisfy the relation

Re$X ,AX %50

~ReX 825ReX 2⇒Re$X ,AX %50!. ~A2!

With straightforward mathematical calculus we can find the generators requested. In order to
simplify the following considerations let us pose

X5a1 ib1 jc1kd, A5q01q1u i1q2u j1q3uk

whereqm5am1 ibm1 jgm1kdm ~m50,1,2,3! are real quaternions.
The only quantities which we must calculate are

Re$X ,X %, Re$X ,iX i %, Re$X ,iX %, Re$X ,kX j %;

in fact, the other quantities can be obtained from previous ones, by simple manipulations:

Re$X ,X %52~1a22b22c22d2!, Re$X ,iX i %52~2a21b22c22d2!,

Re$X , jX j %52~2a22b21c22d2!, Re$X ,kX k%52~2a22b22c21d2!,

Re$X ,iX %5Re$X ,X i %524ab, Re$X ,kX j %5Re$X , jX k%54cd,

Re$X , jX %5Re$X ,X j %524ac, Re$X , jX i %5Re$X ,iX j %54bc,

Re$X ,kX %5Re$X ,X k%524ad, Re$X ,iX k%5Re$X ,kX i %54bd.

The previous relations imply the following conditions on the real parameters of the generatorA:

a050, b150,

g250, d350,

b052a15a, g052a25b,

d052a35g, d252g35u,

g152b25w, b352d15h.
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We can immediately recognize the Lorentz generators given in Sec. IV.

APPENDIX B: QUATERNIONIC METRIC TENSOR

We introduce the usual four-vectorxm by the following quaternion,

X5x01 ix11 jx21kx3,

and define a scalar product of two vectorsX , Y by

~X ,gY !R5Re~X 1gY !5xmgmny
n, ~B1!

whereg is the generalized quaternion

2 1
2~11 i u i1 j u j1kuk!.

We can define a real norm~or metric!

~X ,gX !R5Re~X 1gX !5xmgmnx
n.

The vectors which transform under a Lorentz transformationL will be denoted by

X 85LX ,

with L real linear operators@see Eq.~12!#. From the postulated invariance of the norm we can
deduce the generators of Lorentz group.

If we consider infinitesimal transformations

L511A,

we have

Re~X 81gX 8!5Re„X 1gX1X 1~A1g1gA!X …5Re~X 1gX !,

and therefore

A1g1gA50. ~B2!

Using real scalar products, given an operator

A5q1pu i1r u j1suk, q,p,r ,sPHR,

we can write its Hermitian conjugate as follows:

A15q12p1u i2r1u j2s1uk.

Then Eq.~17! can be rewritten as

gA1h.c.50.

If we pose

gA5B5q̃1 p̃u i1 r̃ u j1 s̃ uk,

we obtain the following conditions on the operatorB:

Re q̃5Vec p̃5Vec r̃5Vec s̃50.
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Noting thatA5gB we can quickly write the generators of Lorentz group. We give explicitly an
example

A15g~1u i !52 1
2~2 i11u i1 j uk2ku j !,

A25gi52 1
2~ i21u i1 j uk2ku j !,

A5A12A25
i21u i
2

, Ã5A11A25
ku j2 j uk

2
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