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We reformulate Special Relativity by a quaternionic algebra on reals. Usiig
linear quaternionswe show that previous difficulties, concerning the appropriate
transformations on the 31 space—time, may be overcome. This implies that a
complexified quaternionic version of Special Relativity is a choice and not a ne-
cessity. ©1996 American Institute of Physids$S0022-24886)01106-1

I. INTRODUCTION
“The most remarkable formula in mathematics is:
e'’=cosH+i sin 6. )

This is our jewel. We may relate the geometry to the algebra by representing complex numbers in
a plane

x+iy=re'’.

This is the unification of algebra and geometrs=Feynman _
We know that a rotation ofi-angle around the axis, can be represented bY, in fact,

e*(x+iy)=re'?+o,

In 1843, Hamilton in the attempt to generalize the complex field in order to describe the rotation
in the three-dimensional space, discovered quaternions. Quaternions, as used in this paper, will
always mean “real quaternions”

g=a+ib+jc+kd, a,b,c,de.7.

Today a rotation about an axis passing trough the origin and parallel to a given unitary vector
u=(u,,uy,u,) by an anglex can be obtained taking the transformation

e(iux+juy+kuz)a/2(ix+jy+kz)ef(iux+juy+kuz)a/2. (2)

Therefore, if we wish to represent rotations in the three-dimensional space and contpiete “
unification of algebra and geomettywe need quaternions.

The quaternionic algebra has been expounded in a series of papdrsooks with particular
reference to quantum mechanics; the reader may refer to these for further details. For convenience
we repeat and develop the relevant points in the following section, where the terminology is also
defined.

Nothing that W1,g) is algebraically isomorphic to SQ,c), the imaginary unit$,j,k can be
realized by means of thex2 Pauli matrices through

(i,j,K)=(ios,—i0os,—i0y)
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2956 Stefano De Leo: Quaternions and special relativity

(this particular representation of the imaginary unifsk has been introduced in Ref).4So a
quaterniong can be represented by &2 complex matrix

)

where
z;=a+ib, z,=c—ide Z(1,)),
zi=a—ib, zZ =c+id.
It follows that a quaternion with unitary norm is identified by a unitary2matrix with unit
determinant. This gives the correspondence between unitary quaterriibgs &hd Si2,c) [in a

recent paperthe representation theory of the grouglld) has been discussed in defallet us
consider the transformation law of a spin@iwo-dimensional representations of the rotation

group
W=7, 4

where

¢=(§1), Vesu2e).
2

We can immediately verify that

transforms as follows,

W=7, ©)
so
z, —z5\' z, —75
* = ?/ *
z, 74 z, 74

represents again the transformation law of a spinor.
Thanks to the identificatiof8) we can write the previous transformations by real quaternions
as follows

q'= 7,
with q=2z,+jz, and 7Z quaternion with unitary norniN(7/)=7/"7/=1]. Note that we do not
need right operators to indicate the transformation law of a spinor.

Now we can obtain the transformation law of a three-dimensional veetfx,y,z) by prod-
uct of spinors; in fact, if we consider the purely imaginary quaternion

o=qiq*=ix+jy+kz, (i,j,k)'=-(,j,k),

or the corresponding tracelesx2 complex matrix
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iX —y—iz

Q=l’[/ilﬁz(y—iz —ix
a rotation in the three-dimensional space can be written as foflows:

o'=7%w?7/" (quaternions,

Q'=2Q7* (2X2 complex matrices
For infinitesimal transformationsz=1+Q- 6, we find
Q:r'=Qr+Q-0Q-r-Q-rQ- 4,

where

Q=(i.j.k), 6=(a,B,7).
If we rewrite the above mentioned transformation in the following form,

Q-r'=[1+6-(Q-1Q)]Q-r, (6)

barred operators”|q act on quaternionic objectk as in(|q)®=dq.
We identify
i—1li  j—-1]j k—1]k
2’ 2’ 2’

as the generators for rotations in the three-dimensional space. The jagtiarantees that our
generators satisfy the usual algebra:

[Am, Anl= emnpApy m,n,p=1,2,3.

Up until now, we have considered only particular operations on quaternions. A quatgrnion
can also be multiplied by unitary quaternioisfrom the right. A possible transformation which
preserves the norm is given by

q' =7, (W=7 r=1). (7)

Since left and right multiplications commute, the group is locally isomorphic t@BtEU(2),
and so to @), the four-dimensional Euclidean rotation group.
As far as here we can recognize only particular real linear quaternions, namely,

1, i, j, k 1

i, 1

i, 1k

Real linear and complex linear quaternion operators were first systematically discussed in the
paper by Horwitz and Biedenhafn.

We have to hope of describing the Lorentz group if we use only previous objects. Analyzing
the most general transformation on quaternigee Sec. |V, we introduce new real linear quater-
nions which allow us to overcome the above difficulty and so obtain a quaternionic version of the
Lorentz group, without the use of complexified quaternions. This result appears, to the best of our
knowledge, for the first time in print.

First we briefly recall the standard way to rewrite special relativity by a quaternionic algebra
on complex(see Sec. Il
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2958 Stefano De Leo: Quaternions and special relativity

In Sec. V, we present a quaternionic version of the special groyf,&§Lwhich is as well-
known collected to the Lorentz group. Our conclusions are drawn in the final section.

Il. QUATERNIONIC ALGEBRAS
A quaternionic algebra over a field is a set
T={a+ip+jy+ké|a,B,y,de.7},
with multiplication operations defined by following rules for imaginary umjisk:
i2=j?2=k?=—-1, jk=—-kj=i, ki=—ik=j, ij=—ji=k.

In our paper we will work with quaternionic algebras defined on reals and complex, so in this
section we give a panoramic review of such algebras.
We start with a quaternionic algebra on reals

Tg={a+iB+jy+kdla,B,y,6e.7}.
We introduce the quaternion conjugation denoted tgnd defined by
q =a—ip—jy—ké.
The previous definition implies
(Ye) =0 4",

for ¢, ¢ quaternionic functions. A conjugation operation which does not reverse the orgetpof
factors is given, for example, by

G=a—ip+jy—ko.

An important difference between quaternions and complexified quaternions, as remarked by Adler
in his recent book (pag. 8, is based on the concept division algebra which is a finite-
dimensional algebra for which#0, b#0 impliesab+#0, in others words, which has no nonzero
divisors of zero. A classical theorénstates that the only division algebras over the reals are
algebras of dimension 1, 2, 4, and 8; the only associative algebras over the reats @reand

7 ;¥ the nonassociative division algebras include the octonioiiisut there are others as well;

see Ref. 11
A simple example of amondivisionalgebra is provided by the algebra of complexified quater-
nions
Hy={a+iB+jy+kda,B,v,6e 2(1,9)},
[7,1]1=17, j1=[7, k]=0.
In fact, since

(1+1.7)(1—-i.7)=0,

there are nonzero divisors of zero.

For complexified quaternions we have different opportunities to define conjugation opera-
tions; we shall use the following terminology:

(1) The complexconjugate ofg, is
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ay=a*+ip*+jy* +ké*.
Under this operation
(7,1,j,K)—=(=7,,j,k)
and
(P * =a%ps .
(2) The quaternionconjugate ofg, is
qy=a—ip—jy—ké.
Here
(7,1,j,K)—(7,—i,—j,— k)
and
(9,P»)*=p} 0}

(3) In the absence of standard terminology, we call that formed by combining these operations
the full conjugate:

q,=a*—iB*—jy* —ks*.
Under this operation
(7,1,j,k)——(7,i,j,k)
and

(AP " =pray .
Note that for real quaternions we have

+

q'=q".
. COMPLEXIFIED QUATERNIONS AND SPECIAL RELATIVITY

We begin this section by recalling a sentence of Anderson and‘3Jesftiut the quaternionic
reformulation of special relativity:

“There has been a long tradition of using quaternions for Special Relativity... The use of
quaternions in special relativity, however, is not entirely straightforward. Since the field of quater-
nions is a four-dimensional Euclidean space, complex components for the quaternions are re-
quired for the 3+1 spacetime of special relativity.”

In the following section, we will demonstrate that a reformulation of special relativity by a
quaternionic algebra on reals is possible.

In the present section, we use complexified quaternions to reformulate special rel&bivity
further details the reader may consult the papers of Edmbr@sugh’* Abonyi '® Girsey!® and
the book of Syng¥).

A space—time point can be represented by complexified quaternions as follows:

Z=gct+ix+jy+kz (8)
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2960 Stefano De Leo: Quaternions and special relativity

The Lorentz invariant in this formalism is given by
2* 2=(ct)’—x?—y?— 72 9)
If we consider the standard Lorentz transformatiboostct— x)
ct'=y(ct—pBx), x'=vy(x—pBct), y'=y, z'=z
and note that the first two equations may be rewritten as
ct’=ct cosh#—x sinh 4,
x"=x coshé—ct sinh 6,

where cost¥=+ and sinhf=gy.
We can represent an infinitesimal transformation by

i+1]i
Z'=7(ct=x0)+i(x—cto)+jy+kz=2+7 |

0.7".

We thus recognize, in the previous transformation, the generator

i+1]i
2

G

It is now very simple to complete the translation. The set of generators of the Lorentz group is
provided with

i+1]i
boost (ct,x) 7T

j+1j
boost (ct,y) JT,
k+1|k
2 1

boost (ct,z) 7
rotation aroundx ——
rotation aroundy Uil

rotation aroundz ———.

Therefore a general finite Lorentz transformation is given by
e”UaptiBptkyp) Flar tibi kv ( Fot+ix + jy + kz)e et iBotkyp) ~iar=iBr—kyr
The previous results can be elegantly summarized by the relation

2'=AN2ZAY, A*A=1, (10
J. Math. Phys., Vol. 37, No. 6, June 1996
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where A is obviously a complexified quaternion. In this or a similar way many authors have
reformulated special relativity with complex quaternions.

We remark that the complex component for the quaternions represent a choice and not a
necessity.

IV. A NEW POSSIBILITY

We think that quaternions are the natural candidates to describe special relativity. It is simple
to understand why: quaternions are characterized by four real numibbeseas complexified
guaternions by eightthus we can collect these four real quantities with a paitpqy,z) in the
space—time. In quaternionic notation we have

Z=ct+ix+jy+kz (11

In the first section we have introduced particulaal linear quaternionsnamely,

1, Q 1[Q,
where
Q=(i,j k).
In order to write the most general real linear quaternions we must consider the following quanti-
ties:
Qli, Qlj, Qlk.
In fact, the most general transformation on quaternions is represented by
g+pli+r|j+slk, (12
with
q,p,r,se. 7z 4.

New objects like
Klj, lk, ilk, o k[P, jliy il

will be essential to reformulate special relativity with real quaternions. They represent the wedges
which permit us to overcome the difficulties which in the past did not allanea) quaternionic
version of special relativity.
Returning to Lorentz transformations, let us start with the following infinitesimal transforma-

tion (boostct—Xx):

: : L K=k

2" =ct—x0+i(x—cth) +jy+kz=2"+ — 0.7
We can immediately note that the generator which substitutes

i1
2
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klji—ilk
—

So we have the possibility of listing the generators of the Lorentz group without the need to work
with complexified quaternions:

klj—jlk

boost (ct,x) —
i|k—K]|i
2 L

boost (ct,y)

jli=ilj

boost (ct,z)
rotation aroundx —x—,
rotation aroundy ]—,

rotation aroundz ———.

In Appendix A we explicitly prove that the action of previous generators leaves
Re.Z2?=(ct)?—x?—y?— 272 (13

invariant.

In Appendix B we will give an alternate but equivalent presentation of special relativity by a
quaternionic algebra on reals. There we introduce a real linear quateynidbich substitutes the
metric tensomg*”.

V. A QUATERNIONIC VERSION OF THE COMPLEX GROUP SL(2)

In analogy to the connection between the rotation grodp) @ the special unitary group
SU(2), there is a natural correspondetfdeetween the Lorentz group(81) and the special linear
group Sl(2). In fact, SL(2) is the universal covering group of(81) in the same way that SQ)
is of O(3).

The aim of this Section is to give, by extending the consideration with which we collect the
special unitary group S@) with unitary real quaterniongas shown in Sec.)| a quaternionic
version of the special linear group &). Once more the aim will be achieved with help of real
linear quaternions.

A Lorentz spinor is a complex object which transforms under Lorentz transformations as

W =2,
where. 7 is a SL2) matrix. When we restrict ourselves to the three-dimensional space and to
rotations, this definition gives the usual Pauli spinors

W' =7,

J. Math. Phys., Vol. 37, No. 6, June 1996
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where?/ is a SU2) matrix.

Now we shall derive the generators of rotations and Lorentz boosts in the spinor representa-
tion by using real linear quaternions.

The action of generators of the special grougd 3L

RN R NP N A

on the spinor

on the quaternion
q=¢&+jm.
In Sec. | we have obtained a three-dimensional veoctor,¢) by product of Pauli spinorg.,:
a,iqL=ix+jy+kz (q,=724q,, w7 7=1).
Consequently, we have written its transformation law as follows:
(9 i03) = 2q,iq 2.
Now we start with a Lorentz spinay,
a'y=A2qy,
and construct a four-vectoc{,x,y,z) by-product of such spinors:
qu(1+i)gi=ct+ix+jy+kz
The transformation law is then given by
@A1+1)a5) =(2a:)(1+i1)(2h:)".

If we consider infinitesimal transformations
A=1+ % -(0+ i),

with 6=(a,B,) and{=(a,3,7),
we have

Fmr 2 A B A L A S 77}~+E{j A+ L 7
T =T+ 5 1, A1+ S 1, T+ 5 [k 71+ 5 (6 A+ 5 0.7+ 5 kT

where
J. Math. Phys., Vol. 37, No. 6, June 1996
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T=q,(1+i)q?
and
T=q,i(1+i)qL=7—2q.4%.

In order to simplify next considerations we pose

=

T=ixtjytkztct=7+7+ 7 +.77,

T=ix+jyt+kz—ct=7+7+ 771,
so the standard Lorentz transformations are given by
T—= T+ AT+ BIT+ KT, Ti—=Ti— a7+ BT — vk 775,
Ti—=T = BiT1— al T+ yKTi, T — T~ VKT 1+ ai 7= BiT5 .

In this way we obtain a quaternionic version of the special grouf2Sand demonstratén
contrast with the opinion of PenroSehat, if real linear quaternions appear, a “trick” similar to
that one of rotations works to relate the full four-vectot,k,y,z) with real quaternions.

VI. CONCLUSIONS

The study of special relativity with a quaternionic algebra on reals has yielded a result of
interest. While we cannot demonstrate in this paper that one number sygtetternions is
preferable to anothécomplexified quaternionswe have pointed out the advantages of using real
linear quaternions which naturally appear when we work with a noncommutative number system,
such as the quaternionic field. As seen in this paper these objects are very useful if we wish to
rewrite special relativity by a quaternionic algebra on reals. The complexified quaternionic refor-
mulation of special relativity is thus a choice and not a necessity. This affirmation is in contrast
with the standard folklorésee, for example, Ref. 12

Our principal aim in this work is to underline the potentialities of real linear quaternions. We
wish to remember that many difficulties have been overcome thanks to these @bjgctsin our
colorful language we have named generalized objécts

To remark on their potentialities let us list the situations which have requested their use.

(i) The need of such objects naturally appears, for example, in the construction of quaternion
group theory and tensor product group representafigXiso starting with only standard quater-
nionsi,j,k in order to represent the generators of the groyp,d), we find generalized quater-
nions when we analyze quaternionic tensor products.

Spi 1 i k
pin 5 generators: 31 3 o
i+1]i
_ 2 i 1] k -1
Spin 180 generatorq: . i—1li | i ) 1 K/

2

(i) If we desire to extend the isomorphism of @¢) with U(1,q) to the group W2,c), we
must introduce the additional real linear quaterniori:"Lin this way there exists at least one
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version of quaternionic quantum mechanics in which a “partial” set of translations may be
defined? in fact, thanks to real linear operators, a translation between2h complex anchx n
guaternionic matrices is possible.

(iii) In the work of Ref. 19 a quaternion version of the Dirac equation was derived in the form

YOt i =my,

where they, are two-by-two quaternionic matrices satisfying the Dirac condition

{yy l’YV}:Zg}LV'
In Rotelli’s formalism the momentum operator must be defined as
p"‘= (9/4“,

which is also a generalized object.

(iv) In this paper, contrary to the common opinion, we have given a real quaternionic formu-
lation of special relativity. In order to obtain that, we have introduced the following real linear
quaternions:

Qli. Qli, Qlk, Q=(i.j.k).

A gquaternionic version of the special group (8Lhas also been given.

We finally note that the process of generalization can be extended also to complexified
quaternions. In a recent papeme gave an elegant one-component formulation of the Dirac
equation and, thanks to our generalization, we overcame previous difficulties concerning the
doubling of solution¥~*in the complexified quaternionic Dirac equation.

In seeking a better understanding of the success of mathematical abstraction in physics and in
particular of the wide applicability of quaternionic numbers in theories of physical phenomena, we
found that generalized quaternions shoulot be undervalued. We think that there are good
reasons to hope that these generalized structures provide new possibilities concerning physical
applications of quaternions.

“The most powerful method of advance that can be suggested at present is to employ all the
resources of pure mathematics in attempts to perfect and generalize the mathematical formalism
that forms the existing basis of theoretical physics, and after each success in this direction, to try
to interpret the new mathematical features in terms of physical entitiesDitac?!

APPENDIX A: QUATERNIONIC LORENTZ INVARIANT
In this Appendix we prove that the Lorentz invariig
Re.Z2"?=Re.Z?, (A1)
where
Z=ct+ix+jy+kz
Under an infinitesimal transformation, we have

Kli—jlk i—1]i
li—il N |+”_

2'=11+6 5 o >

S0, neglecting second-order terms,

J. Math. Phys., Vol. 37, No. 6, June 1996
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272=224 g (2 k2] -] 2K+ % (20— 21+
Equation(14) is then satisfied since
{22 —2i}y=(i—1]i).2?,
{2 k2j—].2K=(1]j—])2k2+(k=1|k).2].2
are purely imaginary quaternions.

Obviously we can derive the generators of the Lorentz group by starting from the infinitesimal
transformation

and imposing that they satisfy the relation
Re(.%,.2.%}=0
(Re.2"?=Re . 2?=Re[.2, #.21=0). (A2)

With straightforward mathematical calculus we can find the generators requested. In order to
simplify the following considerations let us pose

Z=a+ib+jc+kd, _Z=qe+qqli+g,lj+aslk

whereq,=amtiBmt i ¥mt+kdy, (M=0,1,2,3 are real quaternions.
The only guantities which we must calculate are

Re(.Z,.2}, Re.2,i.21}, Re.2%i.2}, Re.2.kZj};
in fact, the other quantities can be obtained from previous ones, by simple manipulations:
Re[.2,. 2 =2(+a%?—b?—c?—d?), RE.Z.,i.2i}=2(—a’+b?-c?—d?),
Re[.Z2,j.2]}=2(—a?—b?+c?—d?), Re.2,k2k}=2(—a’—b%—c?+d?),
Re(.7,i.21=Rel.%,.21}=—4ab, Re.%2.k2j}=Re.2,j.2k}=4cd,
Re.%2.].21=Re.2,.2]}=—4ac, R€.2,].21}=R€.%,i.%]}=4bc,
Re(.Z k#}=Re.%,.2k}=—4ad, Re.%,i.2k}=Rel.2 k#1}=4bd.
The previous relations imply the following conditions on the real parameters of the genefator
=0, B;=0,
¥2=0, 63=0,
Bo=—a1=a, vyo=—a=p,
So=—azg=y, 0=—7vy3=0,

Y1=—B2=¢, Bz=—061=7.
J. Math. Phys., Vol. 37, No. 6, June 1996
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We can immediately recognize the Lorentz generators given in Sec. IV.

APPENDIX B: QUATERNIONIC METRIC TENSOR

We introduce the usual four-vectat by the following quaternion,
2=x04ix T+ jx2+ kx3,
and define a scalar product of two vectots %/ by
(2.99) »=Re 279 )=x"g,.y", (B1)
whereg is the generalized quaternion
—3(1+i]i+j]j+klk).
We can define a real norior metrig
(2,9.2) ,=Rel.2779.2) =x"g,,X".
The vectors which transform under a Lorentz transformatiomill be denoted by
2 =L,

with % real linear operatorksee Eq.(12)]. From the postulated invariance of the norm we can
deduce the generators of Lorentz group.
If we consider infinitesimal transformations

ZL=1+.7,
we have
Re(.2""9.2")=Re(292+.27" (. #1g+9.7).2)=Re.2g.2),
and therefore
#tg+9.#4=0. (B2)
Using real scalar products, given an operator
A=q+pli+r|j+sk, q,p,r,.se. 7,
we can write its Hermitian conjugate as follows:
AT=q =pTli—r*|j—sTlk.
Then Eq.(17) can be rewritten as
g.74+h.c.=0.
If we pose
g.7=B=q+p|i+T |j+5s |k,
we obtain the following conditions on the operair

Req=Vecp=VecT=Vecs=0.
J. Math. Phys., Vol. 37, No. 6, June 1996
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Noting that.Z=gB we can quickly write the generators of Lorentz group. We give explicitly an
example

Ar=g(Lli)=—H—i+1]i+jlk—K}),
Ap=gi=—Hi—1i+j[k—kl}),

i 1i

_Kli—ilk
2 '
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