


7 -N

CMU-CS-82-150

QUATERNIONS

IN COMPUTER VISION AND ROBOTICS

by. Access ion For
by NTIS GRA&I

:i:.DT IC V B

Edward Pervin n u 'ced

Jon A. Webb

p1/or
Dist

AL
Abstract

Computer vision and robotics suffer from not haying good tools for manipulating three-dimensional objects.

Vectors, coordinate geometry, and trigonometry all have deficiencies. Quaternions can be used to solve many

of these problems. Many properties of quaternions that are relevant to computer vision and robotics are

developed. Examples are given showing how quatemions can be used to simplify derivations in computer

vision and robotics.
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1. Introduction

7, In computer vision and robotics, the nature of the mathematical tools available makes a large difference in

the kind of things that can be done, both in theory and in practice. In deriving any relationship in computer

vision, the researcher is often daunted if a large system of equations develops, and sometimes gives up.

Formulation of equations is important in practice also: for example, in simulating the motion of a robot arm

for the purpose of prediction, the complexity of the equations has a large influence on how fast the simulation

,: can be done. So any tool which reduces the complexity of equations in a derivation or simulation must be

seen as useful.

Several different systems have been used to describe positions and motions in space in computer vision and

robotics: they are three-dimensional vectors, three-dimensional coordinates, and trigonometry. Each of these

has particular advantages and disadvantages. Vectors are the most elegant system, but unfortunately they are

incomplete: certain operations, e.g. rotation, are not easily representable using vectors. Three-dimensional

coordinates are complete, but often lead to lengthy and messy derivations, with many repetitive terms.

Trigonometry is often quite useful in illuminating.an otherwise difficult to see relationship (for example,

Kanade's derivation of the, "skewed symmetry contraint" [2D but here the derivations can be even messier,

requiring clever use of hialf-angle relationships.'

What is needed is a tool which is as powerful as vector notation, but which allows the reprsentation of

operations not directly representable with vectors, such as rotations. The mathematical. object called

"quaternion" is such a tooL

Quaternions were invented by Hamilton in the late 1890s [1]. They were the result of an attempt by

Hamilton to resolve the question: What is the result of dividing one (three-dimesional) vector by another?.

The story (31 goes that Hamilton thought about this question for some time, then while walking across a

bridge he saw the answer, and carved in the stone tie formula that was the basis for quaternions:

j21 = 2 = =k -- (1)

This formula gives the rule for multiplying two quaternions. What Hamilton had discovered is that while it is

not possible to create a three-dimensional system (i.e., one consisting only of three-vectors) that enjoys a

reasonable number of properties of the real and complex numbers, in four dimensions this is possible: in

quaternions, all properties of the real and complex numbers are preserved except for commutativity of

multiplication. Moreover, quaternions can be used to represent many operations in three-dimensional space,

including rotations, affine transformations, and projections.

There are several equivalent ways of writing quaternions in terms of their four components; one way that is

. . . . . . .
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particulary useful is what Hamilton called Standard Quadrinomial Form:

{a= a+ fi + yj+ 8k : .,y,8 real},

In this system Equation 1 gives the rule for multiplications, so that ij = k but ji =-k. (Obviously

multiplication is not commutative here.) These properties of complex and real numbers hold for the set of all

quaternions C1 as well:

1. Addition:

a. Closure: if P, Q c then P + Q C

b. Commutativity: P + Q = Q + P for all P,Q eC

c. Associativity:.(P+Q)+ R = P+(Q+ R) for all P, Q, R 0..

d. Identity: There is aOe isuch that+ P P+O0=P

e. Inverse: For any P c C there exists a (-P) E C. such that P + (-P) (-P) + P = 0

"-: Multiplication:

a. Closure: if P,Q E C then PQ E 0.

b. Associativity: (PQ)R =. P(QR) for all P, Q, R C.

c. Identity: There is a I 0. such that IP PI =P

d. Inverse: If P 0 0, then there is a P- such that PP- 1 = 1 P - I

0 2. Distributivity: P(Q+R) = PQ + PR and (Q+R)P = QP + RP for every P, Q, R 0

3. No zero divisors: IfPQ = 0, then either P-0 or Q-0.

*i 2. Vectors as Quaternions

The fact that the symbols i, J, and k are commonly used in vector analysis to represent elements of an

orthonormal basis suggests that quaternions of the form 81 + yj + 8k might be interpreted as vectors, and this

is in fact the case. Moreover, if two vectors

U = Ul + u j + uzk,

T,-+v +.Yak

........ .. ...... ,........ . . . . . . . . . . .
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arc multiplied as quacernions, the product is

uT = (-u~v1- uyvY - u v) (2)

+ (uzv, - uv 7)l

+ (uxvy - uyv,)k

=-(u* Y) + (U Xv)

Where u.v and uXv are the familiar "dot product" and "cross product" of vector theory. Thus, dot and cross

products, rather than being two separate forms of multiplication, are actually components of a single form of

multiplication: quaternion multiplication.

Since vu= -vu + vX u, dot and cross products can be isolated as follows:

uv+- =U.T (3)

UlI-VU

=uxV (4)

*, We also obtain the length of a vector,

2 vt=~ VV+V )I tr (5)

Thus, if v is a vector, then vi. /v is a unit vector, and n is a unit vector if and only if n2 = -1.

3. Vector and Scalar Triple Products

Using the equality (uXv) X w - (v. w)u + (u- w)v and expansion 2 from the previous section, one can

obtain the expansion

mw = [- (uiV) + (uXv)lw

= - (u.v)w - (uXv).w + (uXv)Xw
- [u vwj - (v-w)u + (uow), - (u-v)w

where [u v w] represents the "scalar triple product" (uXv)w = u.(vXw).

By considering different permutations of u, v, and w, one can isolate scalar and vector triple products as

follows:

IV ) ,u (6)

(uxl)xw =

' -
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.X(vw) =
2

Thus, using quaternion notation, triple products are really no more difficult to represent than dot or cross

products.

- 4. Representation of Rotation

The greatest strength of quaternions is their ability to represent rotations. In vector analysis, a rotation of

*! angle 0 about an axis n is represented by some matrix; for example, the rotation matrix for rotation by an

*angle 9 around the x-axis is:

r 1 0
-. (at)= 0 Cos 0 sin I

L ' sin, cos J

and the effect of applying this rotation to a vector v is given by matrix multiplication of (a,) by v. The

general matrix is very complicated and is given in books on computer graphics [4, 5]. The matrix (%s) must be

a "unitary matrix", which means that its columns, treated as vectors, are orthogonal and of unit length.

Finding n and 9 from (a..) involves finding the eigenvalues and eigenvectors of (a..) and can be rather

awkward.

By contrast, in quaternion notation, the same rotation of angle 0 about axis n is represented by

v -o RvR 1

where

R =(cos ) + (sin -)n. (7)

The derivation of R, the explanation for the appearance of half-angles, and the proof that RvR 1 really is a

vector can be found in many places [3, 1]. It should be noted that:

1. It is much easier to retrieve the values of 0 and n, given R, than it is given the matrix (a)

2. The vector v and the rotation R are represented by the samie kind of object, namely quaternions.

In vector theory, rotation are represented by matrices, a much different object than a vector. In

quaternion theory, rotations themselves can be rotatedl

9. . . .. . . - .. . . . . . , . . . . - . . . . - . . . . . . . - , -. , , . .• . - . .,. . . . ..



5. Democracy of Unit Vectors, and Consequences

One of the most important features of quatemions is the fact that ifn is a unit vector then

{a +#a: a,. real)

is isomorphic to the complex numbers. (This follows from the fact that n2 - -1.) This means that no unit

vector is really any more important than any other unit vector. In a sense, the choice of i, j, and k as

coordinate bases is arbitrary;. any mutually perpendicular (andi-commuting) unit vectors will do as welL This

concept will be referred to as the "principle of democracy". This principle will be used to extend many

concepts in complex numbers w apply to quatemions as well. In the following i is the imaginary number V'-i.

One immediate consequence of this democracy is that any two quaternions of the forms a +.8n and y + 8n

will commute under multiplicadon (after all, a+,li and y+8i commute.) Thus, although quaternions in

general do not commute, certain classes of quaternions do. (Note that commutativity of multiplication is an

equivalence relation among non-real quaternions.)

Another very important result is the following generalization of DeMolvres thborem:

Definition 1: en = (cos O) + (sin *)a

Thus, a rotation of angle 9 about axis n can also be represented as

R (8)

In the same way, we can define trigonometric'and hyperbolic functions of quaternions in the same way as

for complex numbers (e.g. since cos Oi = cosh 8, we have by democracy cos On = cosh 0, for any angle 0

and unit vector n.)

Furthermore, since

In [ el (cos 0 + i sin 0)] = r + 01

then we should have

Definition L, in er (cos a + n sin 0)] =r + n

Here we should be careful in two respects: first we should always keep 8 in the interval (- w, w) to avoid

ambiguity, and, secondly and more importantly, we must leave In a undefined for all a S 0. After all, since

ee -I for every n, every unit vector has a claim to the value of In(- 1), so In( - 1) will just have to stay

undefined.

-o °) o • , ~~~~~~............ ................. o.° °...... . . °- ..-. .mo..• •,. .............................-.-......
-........
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In any case, if P and Q commute, we can define

Definition 3: PQ = exp [Q In P]

Note that P and Q commute iff (In P) and Q commute.

The following three relations hold for manipulating powers of quaternions:

:-I . (PQ)- I = Q - 1p-1.

2. Qa+P = QQP.

3. Qa, = (Qay# for IIQ 1 < 1 but in general, ep+ Q 0 ereQ and e1Q # (el)' Q.

Actually, ?-+ Q = ePeQ iff P and Q commute.

4. ePQ = (eP)Q if P and Q commute.

&. The Rotation

Let u and v be unit vectors separated by an angle 0. Let g be the great circle containing u and v, and let n

be the pole of g, as shown in Figure 6-1.

Then,

-vo V0 - TXu

- u-T + UXv

= cos 0 + n sin 0

=e.

So

v = vu e (9)

But e*l/2 is just the rotation with pole n that maps u into v. Thus,

Theorem 4: If we want to rotate a sphere so that a unit vector u is shifted along a great circle

until it reaches unit vector Y, the proper rotation is ViI.

A:,

*s
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I

Figure 6-1: u is rotated into v along the great circle passing through them

7. The rotation [(wv - vw) (wu - uw)-Jl 12

Suppose now that we wanted to rotate the unit sphere in such a way that u gets mapped onto v, but a third

point w gets mapped onto itself, as shown in Figure 7-1. What rotation should be used now? Well, ifg is the

great circle with pole w then wXu and wXv will both lie on g, and wXu will be mapped onto wXy. Thus the

appropriate rotation is

[- (wXvXwXu)lfl = [(wXvXwXu)-'1I
n "

= [((wv -,Yw)/2)((wu - uw)/2)- 111/2

= [(wv - Vw)(Wu - uw)-']In

8. Reflections and Projections

We turn our attention now to reflections about, and projections onto, a line or plane. Let n be a unit

vector. Then we can speak of

Deflnition S: Line(n) = (v: ny = Yn)

,, . ,.,;,-. ,,. .' '. -. ,. .-. .... .. ..- .. .. . . .. 4
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Figure 7-1: u rotates into v, while w is fixed

Definition 6:, Plane(n) = (v ny -i)

which are, respectively,- the line passing through 0 and n, and the plane passing through 0 perpendicular to

-. "3.

Reflecting a vector across Line(n) is the same as 1800 rotation around the n-axis, which is accomplished by

18- 180

(cgs 10 )+( sin 1801,)n =n (see Equation 8)

Thus a vector Y would be mapped onto the point nvu 1 =nyu. If we consider Figure 8-1 we see that

1Teorem 7: If is a vector and n is a unit vector, then

-- 1. The projection of Y onto Plane(n) is ny

4"' 2. The prr 'cton of v or )Line(n) is

3: The reflerc.-.a oftY across Planae(n) is umn
.1

I4. heDef lection fta osLne(n) is{ :n - n

whiC-,- ch arCsetvl teln asn through- 0 an*.***d nC~ an tepln psin hruh erediuar

4..L.C

- *.
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v-nvn
2n

-nvn V

0

/Plane(n)
v + nvn

2

nvn

Figure 8-1: Relationship between v, its projection, and its reflection

9. Affine Transformations

This section will describe two ways of representing affine transformations. The first method involves the

formulas for representing reflections from Section 8. If n is a unit vector, then the mapping

,--Q + a)v + (1- a)nvn
2

"stretches" everything in the n direction by a factor of a, as shown in Figure 9-1. This can be seen by the fact

that the right side of Equation 10 is a linear combination of Y and - nvn, made in such a way that if a -1 then

v is mapped into v, and if a z -1 then v gets reflected into -nvn.

Another form of affine transformation is the rotation

I--# RYR'I

Presumably, every affine mapping should be expressible as the composition of rotations and strctchings

like Equation 10, but in practice, this could become clumsy if too many of these rotations and stretching are

'" ", - . "", ... . ',' ." ,'• " '. . .. ' . .• " " •• •. . . .: i ... ... . ....
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+a 1.a vn
• :. -nv

n 2

nvn V

:° \ I

nvn

Figure 9-1: v is stretched by a in the direction of n

used in a row. There is a much nicer and more general way:

Theorem 8: The linear transformation with eigenvectors a, b, c and real eigenvalues a, f6, y, is

'.at, b cla+ ga v clb+y-[a b vlc

a [b c]

Here, [a b c] and the like stand for the scalar triple product in Equation 6. It is easy to see that a is mapped

into aa, b into fib, and c into fc. One can also show that Equations 8 and 10 are just special cases of Equation
!i:! 8.

10. Applications in computer vision

Most important computer vision functions can be represented simply using quaternions. We ha~e already

seen how to -represent general rotations and affine transformations. This section develops expressions for

expressions that are uscd exclusively in computer vision.

. - - " .. . . . .. . .. .
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We define the image plane to be Plane(v), the plane passing through the origin with surface normal v.

From Section 8 we may dcfine the (parallel or orthogonal) projection of a point p onto Plane(v) to be

pr(p) " p

2

(Note that this is also a special case of Equation 10 with a = 0.) Similarly we may define the (central or

perspective) projection of a point p to be

PR(p) = - (p+vpv)/(vp + pv)

= vx(pxv)
V.P

as shown in Figure 10-1.

V

'2v
vn + nv

. vn-nvh

Figure 10-1: Parallel and central projection

Spherical projection onto a unit sphere can also be defined:

spr(p)= p/1--r -

U

It was also mentioned in the last section that a general affine mapping can be represented as the

composition of stretchings and rotations. However, if we are just studying a plane, all we need are

-. . . . . . . . .
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compositions of rotations and projections. rn particular, consider the mapping

RvR- + nRvR-ln
Y --* 

2

where R is some rotation eeP.This mapping will have the effect of rotating v by an angle 0 about the axis p,

and then projecting it onto Plane(n). If we allow R to be any quaternion, and not just a unit quaternion (a

rotation), we can represent any affine transformation in this way, and can think of R as representing the affine

transformation.

11. Describing the projection of the motion of a plane

Quaternions can be used to develop an interesting equation that relates motion of a plane in space to

motion as seen on the im.3e plane. This relationship is quite important in three-dimensional computer

vision, since many objects are planar, or nearly so, over small areas. The relationship developed here is

similar to the relationships developed by Kanade [2] using trigonometry, and Webb [6] using vectors and

gradient space.

Consider a plane with surface normal n. Let the plane rotate by some quaternion Q (we are ignoring the

effects of translation here). Assume-parallel projection. Under this assumption, the plane will be observed to

move by some affine transformation; let this transformation be represented by the quaternion A. Let the

image plane be Plane(v).

First consider the motion of the point in space. Let y be a point on the plane. The position of y after

rotation is QyQ 1 . The position of this point on the image plane is QYQ- + QYQY-* Now consider the

2-.. motion of the point on the image plane. The position of y before the motion is . The affine

transformation moves this point to

AyA - + AvyvA 1' + vAyA- 1v + vAvYvA-1Y
4

The observed image plane motion and the projection of the real motion must be the same, so that

Qy- + vQyQ-,v AyA 1 + AvYnA- + w~yA-'v + vAvyvA-lv
~2 - 4

The variable y in this equation is restricted to lie on the plane normal to n. This restriction can be.': . . x+nxn

incorporated into the equation by Writing y = X 2 , i.e., by writing y as the projection of some arbitrary

quaternion x. Once we do this substitution, we have an equation which is true for all quaternions. This

*i equation can then be used to develop algorithms to determine motion in space from the observed affine

transformation associated with the motion.
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12. Representation of Robot Arms

Another field in which quaternions should come in handy is the study of robot arm orientation.

Traditionally a robot arm has been thought of as a series of links, each with its own coordinate system, as

shown in Figure 12-1. The relation between succesive links' coordinate systems is expressed in terms of a

series of angles ai and 0i, and involves the rotation matrix

.04 k

rtor

Figure 12-1: Coordinate system of a robot arm

"Cos:. -Cosca sin . sin asin 1
I igur 121 Cor int sytmoI oo

A'-.1 sin ei  COS ai Cos - sin ai Cos e i

[~L 0 sin ai Cos a, J

But, recalling from Section 4 how much more elegantly rotations of coordinate systems can be expressed as

quaternions, one is led to suspect that a quatemion representation of AL should exist. In fact it is
i - e2 aki2

These rotations are still composed

= R0R. R'
0- 0 1 * 1-1

The only important change is that if v, represents a vector in link i coordinates, then its representation in

link 0 coordinates is
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vo o R)

-(RV) 'vjRO

instead of

-. i =

-(AD Tvi
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