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The number of qubits used by a quantum algorithm will be a crucial computational resource
for the foreseeable future. We show how to obtain the classical query complexity for continuous
problems. We then establish a simple formula for a lower bound on the qubit complexity in terms
of the classical query complexity.
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I. INTRODUCTION

There are two major motivations for studying al-
gorithms and complexity of continuous problems.

1. Many scientific problems have continuous for-
mulations. Examples include path integra-
tion, Feynman-Kac path integration, and the
Schrödinger equation.

2. Are quantum computers more powerful than
classical computers for important scientific
problems? How much more powerful?

To answer these questions one must know the
classical computational complexity of the problem.
There are especially constructed problems such as
Simon’s problem [1] for which the quantum speedup
is known; see also [2]. Furthermore, it is known
that quantum computers enjoy quadratic speedup
for search of an unordered database [3]. Knowing
the quantum speedup for such a discrete problem is
the exception. Generally, for discrete problems we
do not know the computational complexity. (Exam-
ples of discrete problems are 3-SAT and the traveling
salesman problem.) We have to settle for the conjec-
ture that the complexity hierarchy does not collapse.
A famous example of this conjecture is that P 6= NP.
Thus although is is widely believed that Shor’s al-
gorithm [4] gives an exponential speedup it is only a
conjecture because the classical computational com-
plexity of integer factorization is an important open
problem.

In what follows it is important to stress the dif-
ference between the cost of an algorithm for solving
a given problem, and the computational complex-
ity of this problem. The computational complexity
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(for brevity, the complexity) is the minimal compu-
tational resources needed to solve the problem. Ex-
amples of computational resources, which have been
studied, include memory, time, and communication
on a classical computer and qubits, quantum gates
and queries on a quantum computer. For the fore-
seeable future qubits will be a limiting resource and
in this paper we’ll give a general lower bound on the
qubit complexity for continuous problems.

For continuous problems we often know the classi-
cal complexity. There is a large literature in the field
of information-based complexity which studies prob-
lems with partial and/or contaminated information;
see [5, 6] and the references therein. Since func-
tions of a continuous variable cannot generally be
input into a digital computer, the computer has only
partial information about them. As we shall see in
Section II this makes it possible to use an adversary
argument to get a lower bound on the classical query
complexity, and, therefore, on the total complexity
of many continuous problems.

Most continuous problems arising in practice can-
not be solved analytically; they must be solved nu-
merically. Since a digital computer has only partial
information about the input function the problem
can only be solved approximately, to within an er-
ror threshold ε. If one insists on an error at most
ε for all inputs in a class F (the worst case setting)
it’s been shown that for many multivariate prob-
lems the complexity is exponential in the number of
variables. This is known as the curse of dimension-
ality and such problems are said to be intractable.
Note that for continuous problems many problems
are known to be intractable while for discrete prob-
lems the intractability of NP-hard problems is only
conjectured; see Remark II.4.

There are two major ways to break the curse of
dimensionality, see [6, p. 24]. We can weaken the
worst case assurance, accepting instead a stochastic
assurance such as in the randomized setting. The
Monte Carlo algorithm is known to be optimal for
integration in this setting if F is the class of bounded
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continuous functions. Or we can change the class F
of inputs. By suitable choices of F we can some-
times provide a worst case guarantee while breaking
intractability.

We outline the remainder of the paper. In Section
II we illustrate the adversary argument which will
provide us with the classical information complexity.
We use a very simple example to do this. In Section
III we provide a more general formulation and intro-
duce notation. In the concluding section we’ll prove
a general theorem giving a lower bound on the qubit
complexity in terms of the classical query complex-
ity.

II. CLASSICAL INFORMATION
COMPLEXITY

We will illustrate the adversary argument used to
obtain the classical query complexity using a very
simple example. The same idea can be applied very
generally [5, 6].

We want to compute I(f) =
∫ 1

0
f(x) dx. Call f

the mathematical input. For most integrands we
can’t use the fundamental theorem of calculus to
compute the integral analytically; we have to ap-
proximate it numerically. Although we can input
the symbolic form of f into a digital computer it
doesn’t help us to compute the integral. We com-
pute

yf = [f(t1), . . . , f(tn)]

at n a priori chosen deterministic points ti, i =
1, . . . , n. Given yf , there are an infinite number of
functions with the same yf . That is, we have only
partial information about the mathematical input.
Even though the functions may have the same yf

their integrals may be very different. Let G be the
set of functions with the same yf ; see Figure 1.
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FIG. 1: Indistinguishable functions

If we only assume that f is, say, Riemann-
integrable the classical query complexity is infinite,
i.e, we cannot achieve any desired accuracy no mat-
ter how large n is. To get finite complexity we have
to make a promise about f . With the promise that
the absolute value of the functions under considera-
tion is uniformly bounded by a known constant is it

is easy to show the complexity is still infinite. Thus
we further restrict the class of inputs and assume
that our function belongs to

F = {f : |f ′(x)| ≤ L, x ∈ [0, 1]} .

Let K = F ∩ G. The functions in K are indistin-
guishable; see Figure 2.
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FIG. 2: Restrict the class of functions

Let H denote the set I(f̃), f̃ ∈ K. It is easy to
show that H is an interval and that its length varies
with yf , n and the points t1, . . . , tn. Any number in
H is a potential approximation to the integral. A
measure of the intrinsic uncertainty in our approxi-
mations is the size ofH. There is a standard concept
of the size of a set; it is the radius of the smallest
ball containing the set. We call this radius the ra-
dius of information, rad, because its magnitude de-
pends on how much information we have about the
true f . It is easy to show that we can guarantee
an ε-approximation iff rad ≤ ε. Let m(ε) be the
minimum number of function evaluations needed to
solve the problem to within ε. The condition rad ≤ ε
implies that if we compute less than m(ε) function
evaluations there does not exist any algorithm which
solves the problem with error ε. See [6, Section II.2]
for a general discussion of the radius of information.

Let c be the cost of a query, that is of a function
evaluation. We define the classical query complexity,
compquery

clas (ε), as

compquery
clas (ε) = c m(ε). (1)

The query complexity is the minimum amount that
must be paid to obtain the information about f
needed to compute I(f) to within ε.

In the concluding section we will see how the clas-
sical query complexity is used to lower bound the
quantum qubit complexity. We conclude this sec-
tion with some remarks.

Remark II.1. The type of argument we have used
in this section is called an adversary argument be-
cause if we don’t collect enough information an
imagined adversary can claim the mathematical in-
put is a function g for which I(g) is very different
than I(f), foiling the assurance that we’ve computed
an ε-approximation to I(f).
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Remark II.2. Note that there has been no mention
of how yf = [f(t1), . . . , f(tn)] is used to approximate
the integral I(f). This can be done by an algorithm
φ of the form

φ(f) =
n∑

j=1

ajf(tj).

There is a large literature on the optimal choice of
the coefficients aj in φ, and on the optimal choice of
the points tj; see, for example [6]. Part of the power
of the approach we’ve illustrated here is that deci-
sions concerning information can be separated from
decisions regarding algorithms.

Remark II.3. The mathematical tools for lower
and upper bounds on classical query complexity (and
other types of complexity) are often deep but this ex-
ample gives the idea of the adversary argument.

Remark II.4. Why can we obtain the complexity
of continuous problems whereas we have to settle for
conjectures about the complexity hierarchy for dis-
crete problems? For continuous problems we have
partial information and we can use the adversary
argument to get lower bounds. For discrete prob-
lems we have complete information. For example,
for the traveling salesman problem we are given the
locations of the cities and these coordinates can be
input into a digital computer. There is no informa-
tion level and no adversary argument.

III. FUNDAMENTAL CONCEPTS AND
NOTATION FOR QUANTUM

COMPUTATION

A quantum algorithm consists of a sequence of
unitary transformations applied to an initial state.
The result of the algorithm is obtained by measuring
its final state. The quantum model of computation
is discussed in detail in [2, 7–11]. We summarize this
model to the extent necessary for this paper.

The initial state |ψ0〉 of the algorithm is a unit
vector of the Hilbert space Hν = C2 ⊗ · · · ⊗ C2,
ν times, for some appropriately chosen integer ν,
where C2 is the two dimensional space of complex
numbers. The dimension of Hν is 2ν . The number ν
denotes the number of qubits used by the quantum
algorithm.

The final state |ψ〉 is also a unit vector of Hν and
is obtained from the initial state |ψ0〉 through a se-
quence of unitary 2ν × 2ν matrices, i.e.,

|ψ〉 := UTQfUT−1Qf · · ·U1QfU0|ψ0〉. (2)

The unitary matrix Qf is called a quantum query
and is used to provide information to the algorithm

about a function f . Qf depends on n function eval-
uations f(t1), . . . , f(tn), n ≤ 2ν . The U0, U1, . . . , UT

are unitary matrices that do not depend on f . The
integer T denotes the number of quantum queries.

For algorithms solving discrete problems, such as
Grover’s algorithm for the search of an unordered
database [3], the input f is considered to be a
Boolean function. However, classical algorithms
solving continuous problems using floating or fixed
point arithmetic can also be written in the form of
(2). Indeed, all classical bit operations can be simu-
lated by quantum computations, see e.g., [8].

The most commonly studied quantum query is the
bit query. For a Boolean function f : {0, . . . , 2m −
1} → {0, 1}, the bit query is defined by

Qf |j〉|k〉 = |j〉|k ⊕ f(j)〉.

Here ν = m + 1, |j〉 ∈ Hm, and |k〉 ∈ H1 with ⊕
denoting the addition modulo 2. For a real function
f the query is constructed by taking the most signif-
icant bits of the function f evaluated at some points
tj . More precisely, as in [10], the bit query for f has
the form

Qf |j〉|k〉 = |j〉|k ⊕ β(f(τ(j)))〉,

where the number of qubits is now ν = m′ + m′′

and |j〉 ∈ Hm′ , |k〉 ∈ Hm′′ . The functions β
and τ are used to discretize the domain D and the
range R of f , respectively. Therefore, β : R →
{0, 1, . . . , 2m′′ − 1} and τ : {0, 1, . . . , 2m′ − 1} → D.
Hence, we compute f at tj = τ(j) and then take the
m′′ most significant bits of f(tj) by β(f(tj)), for the
details and the possible use of ancillary qubits see
[10].

At the end of the quantum algorithm, a measure-
ment is applied to its final state |ψ〉. The measure-
ment produces one of M outcomes, where M ≤ 2ν .
Outcome j ∈ {0, 1, . . . ,M − 1} occurs with proba-
bility pf (j), which depends on j and the input f .
Knowing the outcome j, we compute classically the
final result φf (j) of the algorithm.

In principle, quantum algorithms may have many
measurements applied between sequences of unitary
transformations of the form presented above. How-
ever, any algorithm with many measurements can
be simulated by a quantum algorithm with only one
measurement at the end [8].

We are interested in continuous problems such as
multivariate and path integration, multivariate ap-
proximation, ordinary and partial differential equa-
tions, and the Sturm-Liouville eigenvalue problem.
For many continuous problems we know tight quan-
tum complexity bounds [10, 12–18].

Let S be a linear or nonlinear operator such that

S : F → G. (3)
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Typically, F is a linear space of continuous real func-
tions of several variables, and G is a normed linear
space. We wish to approximate S(f) to within ε
for f ∈ F . We approximate S(f) using n function
evaluations f(t1), . . . , f(tn) at deterministically and
a priori chosen sample points. The quantum query
Qf encodes this information, and the quantum al-
gorithm obtains this information from Qf .

Without loss of generality, we consider algorithms
that approximate S(f) with probability p ≥ 3

4 . The
local error of the quantum algorithm (2) that com-
putes the approximation φf (j), for f ∈ F and the
outcome j ∈ {0, 1, . . . ,M − 1}, is defined by

e(φf ) = min
{
α :

∑
j: ‖S(f)−φf (j)‖≤α

pf (j) ≥ 3
4

}
,

(4)
where pf (j) denotes the probability of obtaining out-
come j for the function f . The worst probabilistic
error of a quantum algorithm φ is defined by

equant(φ) = sup
f∈F

e(φf ). (5)

IV. LOWER BOUND ON QUBIT
COMPLEXITY

For the foreseeable future the number of qubits
used by a quantum algorithm will be a crucial com-
putational resource. We will show how to obtain a
lower bound for the number of qubits needed for
algorithms that approximate continuous problems
such as (3). In particular, let compqubit(ε) be the
minimal number of qubits required by a quantum
algorithm of the form (2) approximating S(f) with
accuracy ε and probability at least 3

4 .
We will derive a lower bound for the qubit com-

plexity using facts about the classical complexity of
continuous problems. A similar lower bound result
was announced by H. Woźniakowski at the DARPA
PI meeting in Chicago in May 2004; see [19] for his
proof. The proof we present here is different and
constructive. In the analysis of classical algorithms
one considers the classical query cost, which depends
on the number of function evaluations n used by the
classical algorithm. It suffices to consider determin-
istic classical algorithms φ in the worst case, i.e., to
measure the error by

ewor(φ, n) = sup
f∈F

∥∥S(f)− φ(f(t1), . . . , f(tn))
∥∥. (6)

The classical query complexity, compquery
clas (ε), of the

problem (3) is the minimal number of function eval-
uations that are necessary for accuracy ε times the

cost of a query, i.e.,

m(ε) = min {n : ∃ φ with ewor(φ, n) ≤ ε} ,

compquery
clas (ε) = c m(ε). (7)

The classical query and combinatorial complexities
of many continuous problems are known [5, 6]. We
are now ready to show how to use classical query
complexity lower bounds to derive qubit complexity
lower bounds.

Recall that quantum algorithms may require some
classical computations to be performed, for instance,
at the end after the measurement to produce the fi-
nal result, or at the beginning to prepare the initial
state. These classical computations may or may not
include a number of function evaluations. To exclude
trivial cases that reduce the qubit complexity at the
expense of classical computations, we will assume
that the number of function evaluations computed
by the classical components of the quantum algo-
rithm cannot exceed the number of function evalua-
tions obtained in superposition by the query due to
quantum parallelism.

Theorem IV.1. The qubit complexity of a quan-
tum algorithm ( 2) that solves the problem ( 3) with
accuracy ε is bounded from below as follows

compqubit(ε) ≥ log2 [compquery
clas (3ε)]− 1.

Proof: Consider a quantum algorithm that solves
the problem with accuracy ε. This algorithm uses
Qf which, in turn, depends on a number of function
evaluations of f which we denote by n(ε). It follows
that the number of qubits of the quantum algorithm
is at least log2 n(ε).

A quantum algorithm that approximates (3) with
accuracy ε can be simulated by a classical algorithm.
The computational cost of this simulation is not im-
portant here. The important fact is that the classi-
cal algorithm also uses n(ε) function evaluations and
approximates S(f) with worst probabilistic error (5)
less than ε.

Since the algorithm achieves error ε, the final state
of the quantum algorithm, and the corresponding
state of its classical simulation, contain outcomes j
such that ‖S(f)−φf (j)‖ ≤ ε, where the sum of their
probabilities is

∑
j pf (j) ≥ 3

4 . Moreover, the classi-
cal simulation can compute the probabilities of all
the outcomes, since it has computed all the ampli-
tudes in the final state of the quantum algorithm.

The quantities pf (j) and φf (j), for all possible
outcomes j, suffice for computing deterministically
an approximation of S(f) with error 3ε. To see this
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observe that the local error (4) of a quantum algo-
rithm can be equivalently rewritten as

e(φf ) = min
A: µ(A)≥ 3

4

max
j∈A

∥∥S(f)− φf (j)
∥∥, (8)

where A ⊂ {0, 1, . . . ,M − 1} and µ(A) =∑
j∈A pf (j). Consider all sets of outcomes where

the sum of the respective probabilities is at least 3
4 .

From these discard any set that contains outcomes
j 6= k such that ‖φf (j)− φf (k)‖ > 2ε.

Let A denote one of the remaining sets of out-
comes then µ(A∗) =

∑
j∈A∗ pf (j) ≥ 3

4 and ‖φf (j)−
φf (k)‖ ≤ 2ε, j, k ∈ A. The fact that e(φf ) ≤ ε,
equation (8) and the triangle inequality imply that
A exists.

There exists j∗ ∈ A such that ‖S(f)−φf (j∗)‖ ≤ ε.
Indeed, if we assume that ‖S(f) − φf (j)‖ > ε, for
all j ∈ A, then the quantum algorithm cannot have
accuracy ε with probability at least 3

4 , and we reach
a contradiction.

The triangle inequality yields that ‖S(f) −
φf (j)‖ ≤ ‖S(f)− φf (j∗)‖+ ‖φf (j∗)− φf (j)‖ ≤ 3ε,
for any j ∈ A. Hence, we have obtained a deter-
ministic classical algorithm that solves the problem
with error 3ε.

By our assumption, the classical components of
the quantum algorithm may contain a number of
function evaluations up to n(ε) which implies

2n(ε) ≥ compquery
clas (3ε). (9)

Since the quantum algorithm must have at least
log2 n(ε) qubits, as we indicated at the beginning of
the proof, equation (9) implies that the qubit com-
plexity of the quantum algorithm is bounded from

below as follows

compqubit(ε) ≥ log2 n(ε) ≥ log2 [compquery
clas (3ε)]− 1

and the proof is complete.

As we have already indicated quantum algorithms
may have several measurements. They are sequences
of quantum algorithms with a single measurement,
i.e., a sequences of algorithms of the form (2), and
the resulting algorithm has success probability, say,
3
4 . The individual quantum algorithms may use dif-
ferent numbers of qubits, and we denote by k the
maximum of these numbers. One may reduce k
not only at the expense of classical function eval-
uations but also by considering extremely long se-
quences of quantum algorithms with a single mea-
surement. Therefore, to exclude such trivial cases we
will assume that the total number of classical func-
tion evaluations used by the classical components of
a sequence of quantum algorithms is a polynomial
in 2k, and so is the number of quantum algorithms
with a single measurement that have been combined
together to form the quantum algorithm with sev-
eral measurements. Under these conditions we have
the following corollary.

Corollary IV.1. The qubit complexity of a quan-
tum algorithm with several measurements is bounded
as

compqubit(ε) = Ω (log2 [compquery
clas (3ε)]) .

[1] D. R. Simon, SIAM J. Comput. 26, 1474 (1997).
[2] C. H. Bennett, E. Bernstein, G. Brassard, and

U. Vazirani, SIAM J. Computing 26(5), 1510
(1997).

[3] L. Grover, Phys. Rev. Lett. 79(2), 325 (1997),
quant-ph/9706033.

[4] P. W. Shor, SIAM J. Comput. 26(5), 1484 (1997).
[5] J. F. Traub, G. W. Wasilkowski, and
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