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One strategy to fit larger problems on NISQ
devices is to exploit a tradeoff between circuit
width and circuit depth. Unfortunately, this
tradeoff still limits the size of tractable prob-
lems since the increased depth is often not re-
alizable before noise dominates. Here, we de-
velop qubit-efficient quantum algorithms for en-
tanglement spectroscopy which avoid this trade-
off. In particular, we develop algorithms for
computing the trace of the n-th power of the
density operator of a quantum system, Tr(ρn),
(related to the Rényi entropy of order n) that
use fewer qubits than any previous efficient algo-
rithm while achieving similar performance in the
presence of noise, thus enabling spectroscopy of
larger quantum systems on NISQ devices. Our
algorithms, which require a number of qubits
independent of n, are variants of previous algo-
rithms with width proportional to n, an asymp-
totic difference. The crucial ingredient in these
new algorithms is the ability to measure and
reinitialize subsets of qubits in the course of the
computation, allowing us to reuse qubits and in-
crease the circuit depth without suffering the
usual noisy consequences. We also introduce
the notion of effective circuit depth as a gen-
eralization of standard circuit depth suitable for
circuits with qubit resets. This tool helps ex-
plain the noise-resilience of our qubit-efficient
algorithms and should aid in designing future
algorithms. We perform numerical simulations
to compare our algorithms to the original vari-
ants and show they perform similarly when sub-
jected to noise. Additionally, we experimentally
implement one of our qubit-efficient algorithms
on the Honeywell System Model H0, estimating
Tr(ρn) for larger n than possible with previous
algorithms.
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1 Introduction

Full-scale fault-tolerant quantum computers offer even-
tual advantages over classical computation for a vari-
ety of tasks. While work continues toward such de-
vices, more research is needed on how to utilize near-
term devices. As we develop applications for noisy
intermediate-scale quantum (NISQ) computers [14, 42],
a primary limitation is the inverse relationship between
the quality and the quantity of available qubits, i.e.
larger devices tend to be noisier. One way to mitigate
effects of noise is to design algorithms with low circuit
depths, but this is often challenging. While some ap-
proaches help for specific applications [5, 19, 37, 40] or
for individual circuits [39], there are few general tech-
niques for (re)designing low-depth quantum algorithms.
One technique is to trade shorter circuit depth for in-
creased circuit width [1, 9, 50], i.e. use more qubits,
but those qubits may still be unavailable or unaccept-
ably noisy. New strategies are needed for designing low-
width noise-resilient, NISQ algorithms.

One under-explored tool is qubit resetting, by which
we mean the ability to reinitialize subsets of qubits in a
known state, usually the |0〉 state, in the course of the
computation [17]. Generally, qubits are reinitialized ei-
ther to prepare the entire apparatus to run a circuit or
to reuse subsets of qubits in the course of a computation;
we focus on the second use. There exist methods for ac-
tively resetting qubits to their |0〉 state in time compa-
rable to that required for a measurement [24, 36, 38, 45]
— with measurement and reset generally distinct pro-
cesses. The implementation depends on the particular
hardware, but we are interested in resets as an algorith-
mic/software tool. This ability will be critical for error-
correcting codes which require frequent stabilizing mea-
surements [46], and it has recently been used to design
algorithms with reduced circuit width [21, 27, 34, 44].
Work on automatically inserting resets as part of opti-
mization and compiling should be particularly valuable
for the first goal. Here, we contribute to the latter goal.
We present algorithms for the application of entangle-
ment spectroscopy which exploit qubit resets to achieve
low circuit width while remaining noise-resilient.

Entanglement spectroscopy is the task of learning
about the entanglement of a quantum state. The bi-

Accepted in Quantum 2021-08-08, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:2

01
0.

03
08

0v
2 

 [
qu

an
t-

ph
] 

 2
7 

A
ug

 2
02

1

https://quantum-journal.org/?s=Qubit-efficient%20entanglement%20spectroscopy%20using%20qubit%20resets&reason=title-click
https://orcid.org/0000-0001-6173-2465
https://orcid.org/0000-0003-1167-6527
mailto:yirka@utexas.edu
mailto:ysubasi@lanl.gov


partite entanglement of a pure quantum state |ψ〉 on
systems A and B can be characterized by the eigen-
values of the density operator of the reduced state
ρA = TrB(|ψ〉〈ψ|) (equivalent to the eigenvalues of
ρB) [3]. As noted by Li and Haldane, the entangle-
ment spectrum (the eigenvalues of the so-called entan-
glement Hamiltonian H defined via ρA = e−H) contains
much more information than the von Neumann entropy
alone [31]. For instance, it can be used to detect and
characterize topological order and quantum phase tran-
sitions, as well as to determine whether a system obeys
an area law and thus can be efficiently simulated clas-
sically [12, 15, 16, 20, 26, 29, 31, 43, 52]. Thus, Entan-
glement spectroscopy is an especially useful tool for an-
alyzing outcomes of quantum simulation of many-body
systems [28, 30, 33]. It may be similarly useful in char-
acterizing the performance of NISQ devices. Moreover,
learning just the few largest eigenvalues of ρA, rather
than performing full tomography, is often sufficient [29].
This task is computationally hard classically due to the
exponentially growing dimension of the Hilbert space,
making it a clear candidate for quantum algorithms.

Known efficient quantum algorithms to approximate
the nmax largest eigenvalues of ρA generally begin by
reducing the problem to computing the traces of pow-
ers of the reduced density operator, i.e. Tr(ρn

A) for
n = 1, . . . , nmax [29, 49].1 These algorithms compute
Tr (ρn

A) using O(n) copies of the state |ψ〉 [29, 50].
The standard algorithm is an extension of the Swap
Test [11, 25] by [29] which we call the Entanglement
Spectroscopy Hadamard Test (HT) (Fig. 2). It uses n
copies of the state and has depth linear in n and the
size of the state (number of qubits). The recent Entan-
glement Spectroscopy Two-Copy Test (TCT) (Fig. 3)
by [50] uses 2n copies of the state and achieves con-
stant depth. Although the latter algorithm achieves a
depth suitable for NISQ devices, the linear width in n
of both algorithms will likely restrict their application
to small n in the NISQ era.

Having reduced entanglement spectroscopy to com-
puting Tr(ρn

A), we may state the task we study in this
paper formally. Problem: Given as input a parameter n
and black-box access to a circuit preparing a pure state
|ψ〉 on subsystems A,B, estimate Tr(ρn

A).

In this work, we introduce new qubit-efficient variants
of the HT and TCT algorithms that require a number
of qubits sufficient to prepare three or fewer copies of
|ψ〉, independent of n. This is an asymptotically lower
width than any previous efficient algorithm for com-

1An exception to this is qPCA [35], where the spectrum of
a state ρ is obtained using a different approach requiring phase
estimation. This approach is not NISQ-friendly, so we do not
discuss it here.

Width Depth Effective depth Ref.

HT kn+ 1 Tsp +O(kn) O(kn) [29]
4k qe-HT 4k + 1 Θ(n× (Tsp + k)) Θ(n× (Tsp + k)) *
3k qe-HT 3k + 1 Θ(n× (Tsp + k)) Θ(n× (Tsp + k)) *
TCT 4kn Tsp +O(1) Tsp +O(1) [50]
6k qe-TCT 6k Θ(n× (Tsp + 1)) Tsp +O(1) *
4k qe-TCT 4k Θ(n× (Tsp + 1)) Tsp +O(1) *

Table 1: A summary of the algorithms in this paper for comput-
ing Tr(ρn

A) of a state |ψ〉AB on 2k qubits. Algorithms marked
with ‘*’ in the final column are new. See Sections 2 and 3 for
more details.

puting Tr(ρn
A) or the Rényi entropy of order n.2 We

achieve this by using qubit resets and preparing addi-
tional copies of the state in previously used registers,
allowing us to perform computations on many copies of
the state while using few qubits.

The depths of our qubit-efficient algorithms are lin-
ear in n and the size of the state, but, crucially, our
new algorithms do not suffer as much in the presence of
noise as their increased depth suggests. Intuitively, one
hopes that periodically resetting qubits prevents errors
from accumulating, but because the resets only affect a
subset of the qubits at a time, errors might still carry
over. By carefully choreographing the resets in our new
algorithms, we try to prevent this from happening as
much as possible.

We test our algorithms numerically and find that
our qubit-efficient algorithms perform nearly identi-
cally well in the presence of noise as their higher-width
analogs. We also implement one of our qubit-efficient
TCT algorithms experimentally on the Honeywell Sys-
tem Model H0 [41], estimating Tr(ρn) for larger n than
possible on the device using previous algorithms.

Motivated by our results, we propose a generalization
of circuit depth, which we call effective circuit depth, for
predicting the performance of quantum algorithms that
use qubit resets on noisy devices. This new attribute
helps explain why our qubit-efficient algorithms perform
comparably to their original counterparts; for example,
while the depths of our qubit-efficient TCT variants are
asymptotically greater than that of the original TCT,
their effective depths match up to a constant factor.
Effective circuit depth is a better descriptor of quantum
circuits with qubit resets than standard circuit depth
and should aid in analyzing and designing future qubit-
efficient algorithms.

We begin by reviewing previous algorithms in Sec-

2The algorithm in [51] also uses a number of qubits indepen-
dent of n, and in contrast to the polynomial-time algorithms de-
scribed in this work, it can be used to compute Tr(ρα

A
) for non-

integer α. However, its time complexity scales exponentially in
the system size.
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tion 2. In Section 3, we introduce our qubit-efficient
variants. These algorithms are summarized in Table 1.
In Section 4, we present numerical simulations compar-
ing the performance of the new and original algorithms
in the presence of noise. In Section 5, we report the
results of an experimental implementation of the qubit-
efficient TCT on the Honeywell System Model H0. We
introduce effective circuit depth in Section 6, followed
by discussion in Section 7. Details of the numerical
simulations are in the Appendix.

2 Previous Work

Given an entangled pure state |ψ〉 defined on subsys-
tems A and B, discarding the qubits associated with
subsystem B produces a mixed state ρA. If subsystem
A of interest has k qubits, a subsystem B of equal size is
sufficient to create any mixed state on A (the converse
of purification). In what follows, we will assume that
registers A and B each have k qubits — so |ψ〉 is 2k
qubits and ρA is k qubits. It is straightforward to gen-
eralize the algorithms discussed in this paper to cases
where the registers are different sizes, in part because A
subsystems only ever interact with other A subsystems
and B subsystems with other B subsystems.

Standard methods for entanglement spectroscopy be-
gin with the observation from [29, 49] that traces of
powers of the reduced density operator, i.e. Tr(ρn

A)
for n = 1, . . . , nmax, can be used to approximately re-
construct the largest nmax eigenvalues of ρA via the
Newton-Girard method. This is especially useful given
we are often interested in a small number nmax ≪ 2k

of the largest eigenvalues. Alternatively, Tr(ρn
A) can be

used to exactly compute the Rényi entropy of order n
(see, e.g. [50]).

Such traces can be expressed as the expectation val-
ues of the unitary cyclic permutation operators P cyc

A

over n copies of the state ρ = |ψ〉〈ψ|,3 where the sub-
script indicates that it acts only on the A subsystems
of the copies of ρ, i.e.

Tr (ρn
A) = 〈P cyc

A 〉ρ⊗n

A
= 〈P cyc

A 〉ρ⊗n . (1)

Requiring n copies is optimal for computing an n-th
degree polynomial of ρ since unitary evolution is lin-
ear [10]. Using the permutation operator is a gen-
eralization of the premise for the well-known Swap
Test [11, 25], where the SWAP gate is a cyclic per-
mutation over two qubits. Together, the previous two
paragraphs reduce the problem of entanglement spec-
troscopy to estimating the expectation value of a uni-
tary operator.

3See, e.g. Theorem 4.13 and Definition 3.15 of [7] for a proof.

|0〉 H • H

|Ψ〉 / M

|Ψ〉 /
Bell basis
measurement|Ψ〉 / M

Figure 1: (a) The Hadamard Test is on the left. It applies
controlled-M and requires one copy of |Ψ〉 and one ancilla
qubit. The expectation values of the Pauli Z and −Y op-
erators of the ancilla qubit are the real and imaginary parts
of 〈Ψ|M |Ψ〉, respectively. (b) The Two-Copy Test is on the
right. It requires two copies of |Ψ〉 and applies M to one of
them. Performing an overlap measurement using the Bell basis
algorithm gives |〈Ψ|M |Ψ〉|2.

|0〉 H • • • • • H
ρA / ×× ×××
ρA / ×
ρA / ×
ρA / ×

· · ·
ρA / ×
ρA / ×

|0〉 H • • • • • H
ρA / ××× ××
ρA / ×
ρA / ×
ρA / ×

· · ·
ρA / ×
ρA / ×

Figure 2: The HT algorithm, which is the Hadamard Test with
a cyclic permutation operator, computes Tr (ρn

A). As the two
circuits show, P cyc

A can be implemented as either a left shift
or right shift, respectively. Each CSWAP shown is implicitly
implemented by k sequential CSWAPs. The circuit depth is
Tsp + Θ (kn) and the width is 2kn+ 1.

Note that there are several definitions and imple-
mentations of the cyclic permutation operator that
are equivalent for the purposes of entanglement spec-
troscopy. First, a cyclic permutation may be a left shift
or a right shift, shifting the contents of the first register
back to the n-th register or forwards to the second reg-
ister, respectively. These different definitions are illus-
trated in Fig. 2. Second, either type of shift can be im-
plemented using n−1 transpositions (swaps), but there
are many possible decompositions. For example, using
cycle notation, (4123) is equivalent to (34) (23) (12) and
to (12) (13) (14). Eq. 1 holds for all of these variants.
Our choices of when to use left shift and right shift and
our choice of decomposition are arbitrary.

2.1 Entanglement Spectroscopy Hadamard Test
(HT)

The standard algorithm for estimating the expectation
value of an arbitrary unitary operator M on a state
|Ψ〉 is the Hadamard Test, illustrated and described in
Fig. 1(a). To be clear, the real part of 〈Ψ|M |Ψ〉 is
calculated by p0 − p1, where pi denotes the probability
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that the ancilla qubit is in state |i〉. The estimates of
p0, p1 converge with accuracy O(1/

√
S) where S is the

number of times the circuit is run (this scaling can be
improved using quantum amplitude estimation [29], but
this is impractical in the NISQ era).

For entanglement spectroscopy, we substitute the
cyclic permutation operator P cyc

A for M and |ψ〉⊗n

for |Ψ〉. This is the algorithm of Johri, Steiger, and
Troyer [29], which we refer to as the Entanglement
Spectroscopy Hadamard Test (HT).4 It is illustrated in
Fig. 2. HT is a generalization of the Swap Test [11, 25],
where the Swap Test is the Hadamard Test with M =
SWAP acting on two states ρ, σ to compute the over-
lap Tr (SWAPρ⊗ σ) = Tr (ρσ), which equals the purity
Tr

(

ρ2
)

when ρ = σ.
A swap of two k-qubit registers can be implemented

with k swaps of individual qubits, so the total number of
controlled-SWAP (CSWAP) gates in HT is k(n − 1).
A downside of HT is that all of the swap operations
are controlled on the same ancilla, so the CSWAP

gates must be applied sequentially. Given that CSWAP

has constant depth, the circuit depth of HT scales lin-
early with kn. Specifically, it is Tsp + Tcskn + 2TH =
Tsp +Θ (kn), where Tsp is the time it takes to prepare a
single copy of the state, Tcs is the time to implement a
CSWAP, and TH is the time to implement a Hadamard
gate. Note that we treat Tcs and TH as constants which
depend on the hardware and decompositions used, in-
dependent of the input; we also assume all-to-all con-
nectivity. The circuit width of HT is 2kn+ 1 = Θ(kn),
including the qubits for the B subsystems — recall |ψ〉
is 2k qubits and each subsystem is k qubits.

We just stated the depth of HT as Tsp + Θ(kn), but
previous work has usually stated the depth as being lin-
ear in kn, dropping the time for state preparation. In
the model considered in previous work, algorithms ac-
cept many copies of |ψ〉 as input at the beginning, as in
Fig. 1. Thus, state preparation and the algorithm are
considered independently. Our new algorithms will re-
quire a setting in which state preparation is intertwined
with the rest of the algorithm. This is also a reasonable
setting since the states used as input in the previous
setting are prepared by some physical procedure which
we may represent by a subcircuit as in Fig. 4. Rather
than many copies of |ψ〉, we assume that a description
of the state preparation circuit is given as input. (In
fact, our algorithms work in the more restricted black
box model, in that we only consider the output of the
state preparation circuit, never examining the circuit
itself.) To fairly compare the new and previous algo-
rithms, we assume the same setting, so we include state

4In [50], this was referred to as the JST algorithm after the ini-
tials of the authors of [29]. Here, we opt to use a more descriptive
name which is easier to extend to our new algorithms.

preparation in the depths of all algorithms.

Finally, we note that in the setting where state prepa-
ration is included as part of the algorithm, a simple
modification can improve noise resilience. Instead of
preparing all copies at the start of the algorithm, state
preparation should be delayed until needed. For exam-
ple, in the second HT circuit in Fig. 2, the preparation
of the third copy could be delayed by Tcs compared to
the preparation of the first copy.

2.2 Entanglement Spectroscopy Two-Copy Test
(TCT)

Recently, Cincio, Subaşı, Sornborger, and Coles [13]
rediscovered an algorithm of Garcia-Escartin and
Chamorro-Posada [23] for computing the overlap be-
tween two states using Bell basis measurements of cor-
responding pairs of qubits from each state followed by
efficient classical post-processing. For intuition, the Bell
basis is an eigenbasis of the SWAP operator, allow-
ing a Bell basis measurement to reproduce the result
of the Swap Test. Ref. [23] related this algorithm to
the Hong-Ou-Mandel effect in the context of quantum
optics and referred to it as a destructive Swap Test,
while [13] emphasized that it can be implemented with
constant depth in a quantum computer. We refer to
this algorithm as the Bell basis algorithm.

For completeness, a Bell basis measurement on a pair
of qubits involves applying a controlled-not (CNOT)
gate and then a Hadamard on one of the qubits followed
by measuring in the standard basis; see Fig. 3(a) for
an example. Importantly, because each CNOT acts
on a different pair of qubits, the measurement can be
performed with a single layer of CNOTs and a single
layer of Hadamards, which is constant depth. To then
compute the overlap between two states ρ and σ each of
size m, the classical post-processing step is to compute
the linear function

∑

r,s∈{0,1}m

(−1)r1s1+···+rmsm pr,s , (2)

where pr,s is the experimentally measured frequency
that the first m qubits, corresponding to ρ, are mea-
sured in state |r〉 and that the second m qubits, corre-
sponding to σ, are measured in state |s〉. This classical
step can be performed in time linear in the number of
trials.

Building on the Bell basis algorithm, Subaşı, Cini-
cio, and Coles [50] introduced an algorithm for esti-

mating |〈Ψ|M |Ψ〉|2 for a unitary operator M , which
is called the Two-Copy Test. Classical post-processing
can then yield the magnitude of the expected value,
|〈Ψ|M |Ψ〉| = |Tr(M |Ψ〉〈Ψ|)|. This algorithm relies on
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Figure 3: (a) On the left is the Two-Copy Test with a P cyc
A gate for computing Tr (ρn

A)2 for n = 3. Gates on registers are implicitly
applied to all qubits in parallel: for example, H is H⊗k. The top and bottom wires for each state contain subsystems A and B,
respectively. The classical post-processing step is as in Eq. (2). (b) On the right is the TCT algorithm, developed from the circuit
on the left by indirectly implementing the cyclic permutation by reindexing the CNOT gates. The classical post-processing is as
in Eq. (3). The circuit depth is Tsp +O(1) and the width is 4kn.

the observation that for pure states, the squared expec-
tation value |〈Ψ|M |Ψ〉|2 is equivalent to the overlap be-
tween states |Ψ〉 and M |Ψ〉. As depicted in Fig. 1(b),
the Two-Copy Test accepts two copies of the state |Ψ〉,
appliesM to one, and performs an overlap measurement
using the Bell basis algorithm. This requires enough
qubits for two copies of the state. Because the Bell basis
measurement is constant-depth, the depth of the over-
all algorithm only depends on M and Tsp. Unlike the
Hadamard Test, the Two-Copy Test cannot be used to
obtain the real and imaginary parts of 〈Ψ|M |Ψ〉. Also,
while the Hadamard Test works both for pure states and
for mixed states, the Two-Copy Test can only be used
to compute expectation values for pure states. Estimat-
ing |〈Ψ|M |Ψ〉| using the Two-Copy Test converges with
accuracy O(1/

√
S), where S is the number of times the

circuit is run.

A crucial difference between the Hadamard Test and
the Two-Copy Test is that the latter uses the unitary M
instead of controlled-M . Recalling that HT has linear
depth because the controlled gates have to be applied
sequentially, eliminating the control not only reduces
the gate count, it also allows for the possibility of par-
allelization. Given the right operator M , this can lead
to applications of the Two-Copy Test with very shallow
circuits.

The Two-Copy Test can be applied to entanglement
spectroscopy by observing that Eq. (1) can be recov-

ered from |〈Ψ|M |Ψ〉|2 = Tr (ρn
A)

2
with the choices

M = P cyc
A and |Ψ〉 = |ψ〉⊗n

combined with the fact
Tr (ρn

A) is real and nonnegative. This circuit is depicted

in Fig. 3(a). Unlike HT, this requires access to the full
state |ψ〉. Next, since an (uncontrolled) permutation
operator is equivalent to a relabeling of the registers
on which it acts, the cyclic permutation can be imple-
mented without any gates by carefully changing the reg-
isters which the CNOTs in the Bell basis measurement
act on and reindexing the classical post-processing for-
mula. We refer to this algorithm as the Entanglement
Spectroscopy Two-Copy Test (TCT) [50]. This circuit
is depicted in Fig. 3(b).

To be clear, let |ψi〉 denote the i-th state in the first
copy of |Ψ〉 and |ψ′

i〉 denote the i-th state in the second
copy of |Ψ〉, where the operator P cyc

A is applied to the
second copy. Then, the B subsystem of |ψi〉 is paired
with the B subsystem of |ψ′

i〉, and the A subsystem of
|ψi〉 is paired with the A subsystem of |ψ′

i−1〉 when the
permutation is a right shift (|ψ′

i+1〉 when a left shift).
The edge case of |ψ1〉 (|ψn〉 when a left shift) is handled
by performing indexing modulo n. The post-processing
calculation, derived from Eq. (2), is more complicated
but still efficient. Assuming the permutation is a right
shift, the formula for Tr (ρn

A) is the square root of
∑

~Aj , ~Bj , ~A′
j
, ~B′

j
∈{0,1}k

j∈[n]

(−1)
∑

n

ℓ=1

~Aℓ· ~A′
ℓ−1

+ ~Bℓ· ~B′
ℓ p ~A1, ~B1,...

,

(3)
where p ~A1, ~B1,...

is the experimentally measured fre-

quency that for all i ∈ [n], the qubits initially contain-
ing the A and B subsystems of |ψi〉 are measured in the

states | ~Ai〉 and | ~Bi〉, respectively, and that the qubits

initially containing |ψ′
i〉 are measured in the states | ~A′

i〉
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|0〉 H • • • · · · • H

|0〉 / |ψ1〉 × × × · · · ×
|0〉 / · · ·
|0〉 / |ψ2〉 × |0〉 |ψ3〉 × |0〉 |ψ4〉 × · · · |0〉 |ψn〉 ×
|0〉 / |0〉 |0〉 · · · |0〉

Figure 4: The 4k qubit-efficient HT. A break in a wire followed by a new |0〉 indicates a reset. Each |ψi〉 indicates the preparation
of another copy of |ψ〉; the subscripts are only for guidance. The circuit depth and effective depth are Θ(n × (Tsp + k)) and the
circuit width is 4k + 1.

|0〉 H • • · · · • H

|0〉 / |ψ1〉 × × · · · ×
|0〉 / |0〉 |ψ2〉 × |0〉 |ψ3〉 × · · · |0〉 |ψn〉 ×
|0〉 / |0〉 · · · |0〉

Figure 5: The 3k qubit-efficient HT. The circuit depth and effective depth are Θ(n × (Tsp + k)), asymptotically the same as the
4k qe-HT, and the circuit width is 3k + 1.

and | ~B′
i〉, respectively. The circuit depth of TCT is

Tsp + Tcn + TH = Tsp + O(1), independent of k and n,
where Tcn is the time to implement a CNOT gate. This
is asymptotically better than HT, but comes with the
tradeoff that the circuit width is 4kn, almost twice the
width of HT.

3 Qubit-Efficient Algorithms

In this work, we give variations of the HT and TCT
algorithms which achieve asymptotically lower circuit
width — proportional to k but independent of n —
without significantly increasing the susceptibility to
noise. We refer to these as qubit-efficient HT and TCT
algorithms. For both the HT and TCT, we give two
variants where one achieves lower width than the other;
we do this in part because the higher-width variants
are easier to understand. The high-level idea we rely
on is to prepare only as many copies of the state |ψ〉
at a time as necessary. The structures of both HT and
TCT are such that every time a new copy is needed to
interact with existing copies, one of the existing copies
is finished, with no gates left to act on it. So, the lat-
ter copy’s qubits may be measured, reset, and used to
prepare the new copy of the state (the measurement
is optional depending on the particular algorithm: for
example, some error mitigation methods might require
measurement results). This allows us to run the HT and
TCT algorithms with a circuit width independent of n.
These algorithms rely on the ability to reset qubits in
the course of a quantum computation.

3.1 Qubit-Efficient HT

Observe that every register in the HT circuit (Fig. 2)
except for the ancilla qubit interacts with just two other
registers and the ancilla. The state of the ancilla qubit,
and so the output of the algorithm, is not affected by
discarding other registers, so they can be reset and re-
cycled once the last gate on them has been applied. At
any time, we just need enough qubits to prepare two
copies of the state and the ancilla qubit. So, by reset-
ting qubits when we are done with their contents, we
can implement HT using a constant number of registers.
Note that measuring the qubits before resetting them
is unnecessary unless one wants to perform postselec-
tion [33, 50].

Our first algorithm implementing this qubit-efficient
strategy is given in Fig. 4. Recalling that |ψ〉 is a state
on 2k qubits, the circuit width is 4k + 1, independent
of n. We refer to this algorithm as the 4k qe-HT.

The action of the algorithm can be verified by com-
puting the reduced density matrix of the ancilla qubit
after the m-th controlled-SWAP operation:

ρanc =
1

2
I +

1

2
Tr (ρm

A )X . (4)

Thus, after n controlled-SWAP operations, a measure-
ment in the X basis yields Tr (ρn

A), as desired.
Our second algorithm comes from the observation

that in the 4k qe-HT, the third register stays idle af-
ter the first state preparation. So, instead of preparing
two copies simultaneously, we modify the algorithm to
prepare one copy, reset the qubits associated with sub-
system B, and reuse them to prepare successive copies.
This saves k qubits. This algorithm is given in Fig. 5.
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|0〉 / |ψ′
1〉 |0〉 |ψ′

2〉 · · ·
|0〉 / |0〉 |ψ2〉 • H |0〉 |0〉 |ψ3〉 · · ·
|0〉 / |ψ1〉 • H |0〉 • H |0〉 · · ·
|0〉 / • H |0〉 |ψn〉 • H |0〉 |ψn−1〉 · · ·
|0〉 / |ψ′

n〉 |0〉 • H |0〉 |ψ′
n−1〉 |0〉 · · ·

|0〉 / |0〉 · · ·

Figure 6: The 6k qubit-efficient TCT. The circuit depth is Θ(n × (Tsp + 1)), the effective depth is 2(Tsp + O(1)) = Θ(Tsp + 1),
and the width is 6k.

|0〉 /
|ψ1〉

• H |0〉
|ψ2〉

• H |0〉 |ψn〉 · · ·
|0〉 / • H |0〉

|ψ′
n〉

|0〉 · · ·
|0〉 /

B
A|ψ′

1〉
|0〉 |0〉

B
A|ψ′

2〉
· · ·

|0〉 / |0〉 |ψn〉 • H |0〉 · · ·

Figure 7: The 4k qubit-efficient TCT. Some of the copies of |ψ〉 are prepared “upside-down”, preparing the B subsystem on the
upper wire, and some copies are prepared using non-adjacent wires. The circuit depth is Θ(n× (Tsp + 1)), about twice that of 6k
qe-TCT, the effective depth is 3(Tsp +O(1)) = Θ(Tsp + 1), and the width is 4k.

Here, the circuit width is 3k+1 qubits. We refer to this
as the 3k qe-HT.

Our two qubit-efficient versions differ only slightly.
The second version requires k fewer qubits than the
first one. This savings come at the cost that the second
wire will have to wait longer before gates are applied,
exposing it to more thermal noise. The length of the
extra wait depends on how long state preparation takes,
but compared to the depth of the n − 1 other state
preparations, the effect should be negligible. After the
first two state preparations, the circuits are effectively
the same.

Next, we compare the two qubit-efficient versions to
the original HT algorithm (Fig. 2). First, all of the cir-
cuits have the same number of gates and measurements,
so we expect gate and readout errors to affect them sim-
ilarly. If the fidelity of qubit reinitialization, i.e. qubit
reset, is significantly worse than the fidelity of initializa-
tion in the beginning of computation, the qubit-efficient
algorithms will have a disadvantage. The depth of the
original algorithm is Tsp + Θ(kn) while the depths of
the two qubit-efficient algorithms are Θ (n× (Tsp + k)).
Thus, when Tsp is small, the original and new algo-
rithms have similar depth. Fortunately, even short-
depth circuits have the potential to prepare many in-
teresting states; indeed, the recent quantum supremacy
experiment by [6] used 53-qubit circuits with just forty
layers of gates. These observations suggest that our
new algorithms may perform similarly to the original

algorithm, given small Tsp, even as they achieve asymp-
totically lower circuit width.

3.2 Qubit-Efficient TCT

In the TCT (Fig. 3), each copy of the state inter-
acts with two other copies of the state, one via its A
subsystem and one via its B subsystem. After these
interactions and, in the case of the A subsystem, a
Hadamard gate, the registers containing that copy can
be measured, reset, and reused. Therefore, we just need
enough qubits to maintain three copies of the state.
However, we must be careful, since while the HT did
not require any particular ordering of the n copies of
|ψ〉, the TCT does. Fortunately, the TCT is struc-
tured such that simply following a greedy strategy of
preparing whichever copy is needed to interact with the
current longest-lived copy is sufficient.

Our first qubit-efficient variant is given in Fig. 6. The
circuit width is 6k qubits, so we refer to this algorithm
as the 6k qe-TCT. Recall that we refer to the first n
copies of the state by |ψi〉 and to the second n copies
(which are acted on by the permutation operator) by
|ψ′

i〉.
To further reduce the number of qubits, we observe

that it is unnecessary to simultaneously prepare both
copies needed by the current one. For example, after
preparing |ψ1〉, it is sufficient to first prepare |ψ′

1〉, in-
teract the B subsystems of those copies, and then pre-
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pare |ψ′
n〉 and interact the A subsystems. The register

containing the B subsystem of |ψ′
1〉 can be measured,

reset, and reused to prepare |ψ′
n〉. In this way, four

such registers is sufficient. Our second variant is given
in Fig. 7. The circuit width is 4k, and we refer to it as
the 4k qe-TCT.

Our two qubit-efficient variants are similar. The sec-
ond version uses 2k fewer qubits. In both versions, half
of the wires are measured quickly, after just Tsp +O(1)
timesteps. While the remaining wires in the first algo-
rithm are used for 2Tsp + O(1) timesteps between ini-
tialization and measurement, the wires in the second
algorithm must be maintained for 3Tsp + O(1) time.
So, the second algorithm may suffer from thermal noise
more than the first.

Next, we compare the two qubit-efficient versions to
the original TCT algorithm. First, all the circuits have
the same number of gates and measurements, so we ex-
pect gate and readout errors to affect them similarly. If
the fidelity of qubit reinitialization, i.e. qubit reset, is
significantly worse than the fidelity of initialization in
the beginning of computation, the qubit-efficient algo-
rithms will have a disadvantage. The original TCT has
depth Tsp +O(1), while our qubit-efficient variants have
depth Θ (n× (Tsp + 1)) (note the constant term is only
asymptotic, like O(1), rather than a literal 1). Based
on this observation, the qubit-efficient versions might
appear like they should perform significantly worse in
the presence of noise.

Given the results of [50] demonstrating that the TCT
is more noise-resilient than the HT, we expect that each
of the variants of the TCT should outperform their HT
analogs, e.g. we expect the 6k qe-TCT to outperform
the 4k qe-HT. However, it is unclear a priori whether the
qubit-efficient variants of the TCT will still outperform
the original HT.

4 Numerical simulations

In this section, we test the performance of our qubit-
efficient algorithms for entanglement spectroscopy and
compare them to the original versions. The most sig-
nificant observation from our results is that our qubit-
efficient algorithms perform similarly to the originals in
the presence of noise.

We use IBM’s Qiskit [2] and QASM simulator to nu-
merically simulate noisy quantum circuits. Our simula-
tions include thermal relaxation and decoherence error,
readout error, and gate noise in the form of depolarizing
and Pauli errors. See the Appendix for details and pa-
rameters. These simulations and selection of noise pa-
rameters are independent of the experimental results in
the next section. The postselection methods introduced
by [33, 50] for improving the accuracy of the HT and

A H •
B U2(θ− π

2 ,
π
2 )

Figure 8: State preparation circuit. The U2(φ, λ) gate has the
matrix form 1√

2
((1,−eiλ), (eiφ, ei(φ+λ))).

TCT apply in the same way to our qubit-efficient vari-
ants, but because we expect them to affect the old and
new algorithms similarly, we do not implement postse-
lection here.

The number of qubits we can simulate is limited by
memory, and the circuit widths of the original algo-
rithms scale with n and k while the widths of our new
algorithms scale only with k. So, in order to simulate
the prior algorithms for many values of n, we restrict our
simulations to k = 1, which corresponds to two-qubit
states |ψ〉 and single-qubit density matrices ρA. In this
case, knowing Tr(ρn

A) for n = 2 is sufficient to recon-
struct the entire entanglement spectrum. Although the
values for n > 2 are redundant, we compute them in
order to assess the performance of the algorithms.

For each n, we generate twenty quantum states with
varying levels of entanglement ranging from product
states to maximally entangled using the circuit in Fig. 8.
We choose the twenty angles θ therein such that the as-
sociated Tr(ρn

A) are evenly spaced from the minimum to
the maximum possible values, from 21−n (fully mixed)
to 1 (pure state).

After simulating the algorithms for all twenty states
corresponding to a particular n, we first plot the val-
ues of the ideal Tr(ρn

A) versus the value estimated by
each quantum algorithm. Fig. 9 shows these plots for
simulations of all algorithms, including original algo-
rithms and our qubit-efficient algorithms, for n = 2 to
n = 6. Note that an ideal set of results would lie on a
straight line from (21−n, 21−n) to (1, 1) with slope equal
to one. Our results deviate from this line due both to
simulated hardware noise and to statistical noise due
to finite sampling. Intuitively, random hardware noise
leads pure states to appear more mixed, leading the re-
sults to concentrate about a flatter line, and statistical
noise causes the results to deviate about that line. Ob-
serve that as long as the data concentrate about some
line, it is easier to confidently identify a state as more or
less mixed based on the algorithm’s estimate for Tr(ρn

A)
when the slope of the line is closer to one, i.e. when
the line is steeper. This is in contrast to an error in
the vertical intercept of a line, which can be corrected
by learning the error and shifting future results. There-
fore, we characterize the performance of the algorithms
by their slopes. For each value of n that we tested, we
compute the slope of each line in plots like in Fig. 9
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Figure 9: (Color) Numerical simulations of prior algorithms and our variants estimating twenty values of Tr(ρn
A) under simulated

hardware noise for several values of n. Noise parameters are in the Appendix. True values are on the horizontal axis, estimated
values on the vertical. The topmost line shows ideal results. All points are marked. Error bars, some of which are smaller than
the lines, are based on expected statistical noise only. The upper group of lines are the variants of the TCT. The lower group of
dashed lines are the variants of the HT. We compare the slopes of these lines in Fig. 10.

using a linear regression. We plot the values of n versus
those computed slopes.

Results for all algorithms, including original algo-
rithms and our qubit-efficient versions, for n = 2 to
n = 6 are given in Fig. 10. Note that a noiseless im-
plementation would have slope equal to one for all n.
Decreasing values indicate an algorithm’s performance
degrading for larger values of n. We were limited to
n = 6 by the Two-Copy Test, for which the circuit width
scales as 4kn; simulating 28 qubits was impractical due
to time-constraints, and 32 qubits would be impractical
due to memory constraints. In contrast, the number
of qubits required for our qubit-efficient algorithms is
independent of n, so we are able to simulate these algo-
rithms for much larger values of n.

Results for the qubit-efficient algorithms for n = 2
to n = 20 are given in Fig. 11. The noise strength is
reduced compared to the previous simulations (see the
Appendix for details).

The most significant observation from these results
is that our qubit-efficient algorithms perform similarly
to the original variants. In Fig. 10, the qubit-efficient
variants of the HT perform very similarly to the original
algorithm. In fact, the original HT performs slightly
worse than the qubit-efficient variants, likely due to
Qiskit’s “as soon as possible” gate scheduling which pre-
pares copies of |ψ〉 for the original HT earlier than is op-
timal. As we stated previously, we expected the qubit-
efficient variants to perform similarly to the original
when Tsp is small. In the case of the TCT, the qubit-
efficient variants suffer almost no degradation compared
to the original algorithm. For both the HT and TCT,
the wider, lower-depth qubit-efficient variants perform
better than the corresponding lower-width algorithms.
We note that, as explored further in [50], the TCT and
its variants are more susceptible to statistical noise than
the HT. The TCT is most affected by statistical noise

Figure 10: (Color) Comparison of the performance of all HT
and TCT variants in the presence of simulated noise for n =
2 to n = 6. Values of n are on the horizontal axis, slopes
computed by a linear regression on the corresponding lines in
Fig. 9 are on the vertical axis. Ideal results would produce
a horizontal line at height 1. Error bars, some of which are
smaller than the lines, are based on the quality of the linear fit
for the corresponding data in Fig. 9. The upper group of lines
are the TCT variants. The lower group of dashed lines, with
marked points, are the HT variants.

when estimating small values of Tr(ρn
A), which is the

case for highly entangled states |ψ〉 and exasperated by
large powers n; this is visible in Fig. 9.

In Fig. 11, simulating larger n, the two qubit-efficient
variants of HT continue to perform almost identically, as
expected. For the TCT variants, the 6k qe-TCT slightly
outperforms the 4k qe-TCT. Notably, both the qubit-
efficient variants of the TCT still appear to produce
meaningful results when n = 20 (as good as the qe-HT
when n = 8).
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Figure 11: (Color) Comparison of the performance of our qubit-
efficient variants of the HT and TCT for n = 2 to n = 20.
The noise strength is reduced here compared to the previous
simulations (see the Appendix for details).

5 Experimental demonstration on Hon-
eywell System Model H0

In this section, we report the results of testing one of
our qubit-efficient algorithms on the Honeywell System
Model H0 [41]. We were able to estimate Tr(ρn

A) for
larger n than would have been possible on the device
using any previous algorithm, and our results correctly
distinguish more and less entangled states.

This quantum computer is a trapped-ion quantum
charge-coupled device architecture; for details, see [41].
At the time of access (September 2020), the device sup-
ported six qubits and supported mid-circuit measure-
ments and qubit resets. In order to test the widest vari-
ety of parameters possible given our limited time on the
device, we chose to test one qubit-efficient algorithm,
choosing the one which performed best in simulations:
the 6k qe-TCT (Fig. 6).

As in our numerical simulations, we set k = 1, cor-
responding to two-qubit states |ψ〉 and one-qubit ρA.
We prepare three states with varying levels of bipar-
tite entanglement using the state preparation circuit of
Fig. 8, setting the angle θ therein to θ = 1.33, 1.05, 0.87.
Because the TCT is more sensitive to statistical noise
when estimating smaller values of Tr(ρn

A), correspond-
ing to more mixed ρA, and because we had only a lim-
ited number of runs available, we chose these states to
be closer to pure than to fully mixed.

For each of the three states, we run the 6k qe-TCT
for n = 2, . . . , 7 for 1,000 runs. Note that given six
qubits, the original TCT would not fit on the device
even for n = 2. Each circuit was sent via the HQS
API, specified using operations U2,CNOT, Measure,
and Reset (U2 defined in Fig. 8). From there, each

circuit was compiled to the device’s native gate set, in-
cluding standard optimization according to Honeywell’s
software stack, and submitted to the device. Circuits
were sent in batches, with calibration performed within
and between each batch.

Results are shown in Fig. 12. Rather than comparing
several algorithms, here we test the performance of the
6k qe-TCT on several different inputs. For each of the
three states, we plot the values of n versus the estimates
for Tr(ρn).

After receiving the results from our tests, we found
that two data points, for θ = 1.33, n = 3 and for θ =
1.05, n = 4, were outliers compared to the rest of the
data. Honeywell offered to rerun these tests. Both the
initial and second points are shown in Fig. 12.

Because of noise, the results from our tests are insuf-
ficient to recover the true, analytical values of Tr(ρn

A).
However, results for each of the three states are clearly
distinguishable from each other and are correctly or-
dered according to their degree of entanglement. The
data is remarkably smooth across varying n, with simu-
lations predicting more varied outcomes and with these
tests using only 1,000 runs versus the simulations in
Fig. 9 using 100,000. Although we only tested the algo-
rithm on states closer to pure than fully mixed (recall
the minimum value of Tr(ρn

A) is 21−n), the results ap-
pear promising for more entangled states. They also
suggest that tests with larger values of n should pro-
duce results along a similar trend.

Figure 12: (Color) Results from our experimental test of the 6k
qe-TCT on the Honeywell System Model H0. Values of n are
on the horizontal axis, Tr(ρn

A) on the vertical. Three different
states ρA corresponding to different values of θ were used. For
each state, there is a solid line of true values and a dashed
line of experimental results. Tests were repeated for two data
points because the results were outliers; the initial points, one
for θ = 1.33 and one θ = 1.05, are respectively marked by ‘+’
and ‘×’. Error bars are based on expected statistical noise.
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|0〉 H • × |0〉 × • × |0〉 × • · · · × |0〉 × • H

|0〉 × × |0〉 × × · · · |0〉 × ×
|0〉 / |ψ1〉 × × × · · · ×
|0〉 / · · ·
|0〉 / |ψ2〉 × |0〉 |ψ3〉 × |0〉 |ψ4〉 × · · · |0〉 |ψn〉 ×
|0〉 / |0〉 |0〉 · · · |0〉

Figure 13: An alternative implementation of the qe-HT that uses an extra qubit to disguise how long the ancilla qubit is required
to remain coherent.

6 Effective circuit depth

In this section, we introduce a generalization of circuit
depth which is more useful for circuits using qubit re-
sets, which we call effective depth. The depth of a cir-
cuit is defined as the number of timesteps assuming that
gates can be applied in parallel, or equivalently as the
maximum length of a path from the input to the output.
Circuit depth is often used to quantitatively judge how
susceptible a quantum computation will be to thermal
decoherence and relaxation noise. Intuitively, the higher
a circuit’s depth, the more time during which the circuit
may be affected by noise. This is especially relevant in
the NISQ era, as coherence times remain a primary lim-
iting factor on tractable problem sizes. However, depth
is only a heuristic for judging noise-resilience. Circuits
may be affected by various sources of noise besides ther-
mal noise, and comparing the depths of two circuits does
not perfectly predict the relative performance of the cir-
cuits even when the noise model is restricted to thermal
noise. For example, circuits which produce highly en-
tangled states will be significantly more affected by de-
coherence than circuits which remain in computational
basis states (entirely classical information) even when
those circuits have the same depth. Nevertheless, con-
sidered alongside other factors, circuit depth is a conve-
nient, often-used tool for assessing quantum algorithms.

In the setting of circuits that use qubit resets, circuit
depth is no longer useful for assessing noise resilience.
Consider, for example, that the depth of the original
TCT is Tsp+O(1) while the depths of the qubit-efficient
versions are Θ(n × (Tsp + 1)), an asymptotic increase.
But, as shown numerically in Section 4, the algorithms
perform similarly in the presence of noise. Circuit depth
judges circuits with resets too harshly. Anticipating
increased use of qubit resets, we would like a measure
which incorporates their presence.

Defining such an attribute is subtle. A naive idea for a
depth-like predictor of noise-resilience for circuits with
qubit resets might be the largest amount of time be-
tween resets of any particular qubit. However, consider
the alternative implementation of the qe-HT shown in

Fig. 13. This implementation utilizes two ancilla qubits
where our previous implementations used one, making
frequent swaps between the two ancilla qubits. It is de-
signed to obfuscate the long time for which the ancilla
qubit in the qe-HT must be kept coherent. This naive
measure would rate this circuit as Θ(k), and with fur-
ther changes this could be made O(1). Clearly though,
information stored in the ancilla is just as exposed to
thermal noise in this new circuit as in the other qubit-
efficient circuits.

Instead, our definition is inspired by the idea of infor-
mation flow and locality. At a high level, quantum infor-
mation is only transferred between qubits when multi-
qubit gates are applied.5 In particular, the corruption
of quantum information due to noise on one register
cannot propagate to another register except through
future multi-qubit interactions. These ideas are con-
sidered further in [47, 48]. By focusing on information
flow, the shortcomings of traditional circuit depth for
circuits using resets can be eliminated.

We define the effective depth of a circuit to be the
maximum length of a path along which there is infor-
mation flow. Equivalently, it is the maximum num-
ber of timesteps for which some quantum information
is propagated. Such directed paths can be constructed
by beginning from any qubit (re)initialization, following
the qubit, optionally crossing from one qubit to another
when there is a two-qubit gate between them, and ter-
minating when there is a reset or when the last opera-
tion is reached;6 the longest path which can be formed
in this way gives the effective depth.

To justify our definition, consider the following. First,
effective depth reduces to the standard definition of
depth for circuits which do not use resets. Second, ob-
serve that the graph of paths stemming from any set of
qubit initializations can effectively be viewed as a sub-
circuit. Then, an equivalent definition of effective depth
is the maximum (standard) depth of such a subcircuit.

5We consider a level of abstraction that ignores potential
crosstalk.

6A similar but distinct construction is used in [9] with the
different motivation of parallelizing circuits.
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From this perspective, effective depth is a natural ex-
tension of depth, rating a circuit with resets according
to the depth of its largest complete subcircuit. Third,
although effective depth is not a perfect tool, it is a
heuristic which provides a worst-case assessment just as
standard circuit depth does. The length of the longest
path may be unusually long compared to the rest of the
paths, some multi-qubit gates may transfer information
asymmetrically, or the distribution of inputs may mean
certain paths are more significant than others: these
factors should be considered alongside effective depth
just as additional factors are needed alongside tradi-
tional depth. Finally, effective depth sensibly rates all
of the circuits in this article, as we discuss next.

Since effective depth reduces to standard depth for
circuits which do not use resets, the effective depth
of HT is Tsp + Θ(nk) and the effective depth of TCT
is Tsp + O(1). For the qubit-efficient variants of HT,
the ancilla qubit leads to effective depths the same as
their depths, Θ(n × (Tsp + k)), which asymptotically
matches that of HT when Tsp is small. Now, for the
qubit-efficient TCT variants, standard circuit depth is
insufficient to explain our numerical results. The effec-
tive depth of 6k qe-TCT is 2(Tsp +O(1)) and the effec-
tive depth of 4k qe-TCT is 3(Tsp +O(1)). These values
asymptotically match the effective depth of the original
TCT, Tsp +O(1), which helps explain why our qe-TCTs
perform just as well as the original TCT: their effective
depths are the same.7 Finally, effective depth assigns
the same value to the contrived qe-HT circuit (Fig. 13)
as standard depth, thus avoiding the potential pitfall of
assessing this circuit too gently. Our numerical results
in Section 4 are consistent with all these observations.

7 Discussion

In this work, we introduced new qubit-efficient algo-
rithms for performing entanglement spectroscopy via
computing Tr(ρn

A) that use qubit resets to achieve
asymptotically lower width than previous algorithms.
Our numerical results show that the performance of
our algorithms is only slightly degraded by noise even
as they save a significant number of qubits. First, the
qubit-efficient HT requires as few as 3k + 1 qubits and
achieves similar performance to the original HT algo-
rithm; we expect this to hold given small state prepa-
ration time Tsp. Second, and in particular, the qubit-
efficient TCT requires as few as 4k qubits while achiev-

7Intuitively, the 4k qe-TCT should experience three times
more thermal noise (two times for the 6k qe-TCT algorithm) than
the original TCT because its effective depth is three (two) times
greater. We have tested this intuition using numerical simula-
tions with only thermal noise, multiplying the gate times for the
original TCT by three, and found it correct.

ing similar performance to the original TCT algorithm,
and we expect this to hold in general. Our algorithms
demonstrate the usefulness of the as yet understudied
tool of qubit resets.

Just as the HT algorithm of [29] may be better than
the TCT for the case of n = 2 (i.e. the Swap Test), the
original TCT algorithm of [50] may remain preferable
to our new variants for small powers n. Our approach
is preferable for values of k and n where at least 4kn
qubits are unavailable or when a smaller circuit width
is desired.

To demonstrate the practicality of our qubit-efficient
algorithms, we experimentally implemented the 6k qe-
TCT for k = 1 and n = 2, . . . , 7 on the Honeywell
System Model H0, which supported (at the time of im-
plementation) six qubits. As a comparison, the original
TCT would require 8 qubits for n = 2 and so could not
be run for any n, while the original HT would require
5 qubits for n = 2 and could not be run for any larger
n. Although the results of the experiment are too noisy
to immediately recover the spectrum, they successfully
differentiate and rank states with different amounts of
entanglement, which could be useful for quantum sim-
ulation applications in the near future.

Traditional circuit depth is insufficient for assessing
our algorithms or future algorithms using qubit resets.
In contrast, effective depth justifies the performance
of our new algorithms; for example, the qubit-efficient
variants of the TCT have the same asymptotic effective
depth as the original TCT. Our definition is a simple
and useful heuristic for predicting noise-resilience, just
as traditional circuit depth is for circuits without re-
sets. Notably, when there are no qubit resets present,
effective depth reduces to standard circuit depth. Effec-
tive depth will be a useful tool in the future design and
analysis of qubit-efficient algorithms and it should be
preferred over circuit depth for describing circuits with
qubit resets.

Quantum error mitigation techniques developed for
use in NISQ devices [18] may improve the performance
of our algorithms. Notably, postselection strategies for
the HT [33] and the TCT [50] can also be used with the
corresponding qubit-efficient algorithms (these methods
fit into the broader framework of symmetry verifica-
tion [8]). These postselection strategies generally shift
estimates of Tr (ρn

A) upward by a constant independent
of the input ρA (see Fig. 6 of [50]). This is indeed useful
for obtaining more accurate estimates. However, not
having a particular application in mind, in this work
we decided to compare the performance of various algo-
rithms by their ability to distinguish varying degrees of
entanglement (see Sec. 4). Postselection does not seem
to improve this ability due to the uniform improvement
in estimates. Extrapolation [32, 53] techniques may
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be particularly helpful in this regard. Throughout our
tests, we observed that noise shifts the algorithms’ esti-
mates of Tr (ρn

A) proportionally to the ideal value such
that results plotted as in Fig. 9 consistently remain lin-
ear; this effect can be leveraged by testing the algorithm
on some known states and comparing the ideal and ex-
perimental outputs to extrapolate the effect of noise and
correct for the error. We leave further improvement and
error mitigation, which will depend on a range of fac-
tors including the particular hardware and inputs, for
future work.

Similarly, further work on analytically modeling the
effect of various potential errors on our algorithms
would help to improve their performance. The analysis
of [22] on the robustness of the Swap Test would be a
good starting point for analyzing the HT and the TCT.
The TCT is a special case of convolutional circuits re-
cently studied by [4]. In addition to being convolutional,
all of the variants of TCT have constant depth and con-
stant effective depth. These features of TCT provide a
framework for understanding its noise resilience.

Developing qubit-efficient algorithms will be critical
in the NISQ era. Similar devices with fewer qubits tend
to be less noisy than those with more qubits, so it is ad-
vantageous to be able to run an algorithm on the small-
est quantum device possible. Given a particular device,
carefully choreographing operations, qubits resets, and
the resulting flow of information will help increase the
size of the largest problems that can be solved. Ad-
ditionally, because these algorithms use fewer qubits,
they will benefit from requiring fewer swaps to imple-
ment gates between arbitrary qubits on architectures
with limited connectivity. The performance could be
further improved by designing special purpose devices
optimized to run these algorithms. Ongoing work on
compiling and optimizing quantum algorithms may en-
able automatically using qubit resets to reduce circuit
width, as well as optimizing reset placement based on
qubit connectivity and noise.

As shown in this work, entanglement spectroscopy
is one application for which qubit-efficient algorithms
are possible. Efficient characterization of the entangle-
ment in quantum states will be useful in many areas.
In particular, it is well-suited to the promising NISQ
application of quantum simulation. In this context, our
qubit-efficient algorithms might be paired with quan-
tum simulation methods which utilize qubit resets in
order to reduce the necessary number of qubits, such as
recent work on simulating correlated spin systems [21].
Our algorithms may also prove helpful in characterizing
the performance of NISQ devices themselves.

Additional algorithms, known and future, may be im-
plemented with fewer qubits using qubit resets. Promis-
ing candidates include algorithms which are already

low-depth and which have a structure such that reg-
isters generally do not require interaction with many
other registers.
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A Numerical simulation details

Code available. The code we developed for our
numerical simulations is available at the GitHub
repository
lanl/qubit-efficient-entanglement-spectroscopy

We use IBM’s Qiskit [2] to perform our numerical
tests. Qiskit is an open-source Python SDK for working
with quantum circuits. We implement our circuits using
Qiskit and simulate them in the presence of noise using
the QASM simulator from the Qiskit Aer module. All
simulations were performed locally using Python ver-
sion 3.6.9 and Qiskit version 0.12.1.

All circuits are implemented using a native gate set
of I, U1, U2, and CNOT and with operations Measure-
ment and Reset, where

U1(λ) :=

(

1 0
0 eiλ

)

, U2(φ, λ) :=
1√
2

(

1 −eiλ

eiφ ei(φ+λ)

)

are gates provided by Qiskit. Note that H = U2(0, π)
and T = U1(π/4). We decompose the CSWAP gate as

• • • T •
• • T T †

• H T † T T † T H •

where the top qubit is the control.
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By default, Qiskit applies gates “as soon as possible”,
minimizing circuit depth by shifting gates to the left. In
order to correctly apply thermal noise, we insert iden-
tity gates to fill any gaps when a register must wait for
operations to finish on other registers, taking into ac-
count the duration of each operation. Thermal noise is
applied on a gate-by-gate basis, but no gate noise, i.e.
Pauli and depolarizing errors, is applied to the identity
gates. Other than the changes mentioned in this and
the previous paragraph, all circuits are implemented as
they appear in the figures.

The duration of each single-qubit gate is set to one
timestep, the duration of a CNOT gate five timesteps,
the duration of a measurement three timesteps, and the
duration of a qubit reset two timesteps (we always per-
formed a measurement before performing a reset).

In all plots, each value of Tr(ρn
A) is estimated using

100,000 runs. For the plots which include the original
HT and TCT, the probability of readout error is 2%,
which means that for each single-qubit measurement,
there is a 2% probability that the measurement result
would be recorded incorrectly. Thermal relaxation and
decoherence errors are applied using parameters T1 =
T2 = 2000 and Tpop = 10−7. For an operation which
takes time t, let prel = 1−exp(−t/T1). Then, this means
that for each qubit acted on, the probability that the
qubit relaxes to |1〉 is prelTpop and the probability that
the qubit relaxes to |0〉 is prel (1 − Tpop) (Qiskit can also
apply a Z operator to simulate decoherence, but for
T1 = T2, the probability of this is zero). A Pauli error
channel is applied to all gates except identity such that
for one-qubit gates, the probabilities of an X,Y , or Z
operator being applied are each 0.001. A depolarizing
error channel E(ρ) = (1 −λ)ρ+λTr(ρ) I

2m is applied to
all m-qubit gates except identity such that for single-
qubit gates, λ = 0.001. For the CNOT gate, the Pauli
and depolarizing error parameters are multiplied by five.

For the plots which only include qubit-efficient algo-
rithms, all of the noise parameters are set the same as
above except for the Pauli and depolarization error pa-
rameters, which are reduced by a factor of ten. The gate
noise is reduced from the previous simulations in order
to produce meaningful results for n as high as twenty;
we chose to reduce the gate noise because reducing the
readout or thermal errors by a similar factor was not as
effective.

All plots include error bars, although some of the bars
may be too small to see. The error bars in the plots
of Tr(ρn

A) versus experimental Tr(ρn
A) are based on the

expected statistical noise due to finite sampling and its
effect on the post-processing formulas. For the algo-
rithms based on HT, we use Hoeffding’s inequality and
a 68% confidence level to calculate an additive error of
at most ±2

√

− ln(0.16)/(2S), where S is the number of

trials performed. For the algorithms based on TCT, we
calculate a confidence interval [clow, chigh] for the raw

output, |〈Ψ|M |Ψ〉|2, (before taking the square root)
in the same way and set the final confidence interval to
[
√
clow,

√
chigh]. Note that unlike for HT, the confidence

intervals for TCT are affected by Tr(ρn
A), enlarging for

smaller values. However, when Tr(ρn
A) is treated as a

constant, the size of the error bars scales as O(1/
√
S)

in both cases.

The error bars in the plots of n versus computed
slopes are influenced by both statistical and simulated
hardware noise. The error bar for each point (a value of
n versus a slope) is calculated by applying a t-test with
a 68% confidence level to the linear regression which
produced that slope. Intuitively, more linear underly-
ing data produces smaller error bars.
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