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Abstract— Regular, local-neighbor topologies of quantum

architectures restrict interactions to adjacent qubits, which in

turn increases the latency of quantum circuits mapped to these

architectures. To alleviate this effect, optimization methods that

consider qubit-to-qubit interactions in 2D grid architectures are

presented in this paper. The proposed approaches benefit from

Mixed Integer Programming (MIP) formulation for the qubit

placement problem. Simulation results on various benchmarks

show 27% on average reduction in communication overhead

between qubits compared to best results of previous work.

I. INTRODUCTION

Quantum computing can offer significantly higher perfor-

mance for a set of problems compared to what we have now,

commonly-called classical computing. Quantum algorithms

with superpolynomial speedup on a quantum computer in-

clude algorithms for number factoring, solving discrete-log

and Pell’s equation, and walk on a binary welded tree [1].

A well-known technique to implement a quantum algo-

rithm on a quantum computer is to run a quantum physics

experiment under the control of a classical computer. The

experimental apparatus consists of physical qubits such as

ions or photons where the quantum-mechanical properties

of qubits are used to perform the required computation. A

real-time classical computer directs the experiment by issuing

instructions and reading out the quantum states. Final result

may require post-process computation and answer checking.

A non-ideal quantum computer, however, is subject to noise

and faces numerous limitations and constraints. Environmen-

tal disturbances and errors in the control systems are two com-

mon examples, which if ignored, can result in computational

error. The error rate limits the computation length. In addition,

current quantum technologies are subject to constraints on

parallelism, connectivity, and bandwidth, which further limit

the implementation of quantum algorithms.

Various proposals for quantum technologies with 1D, 2D

and 3D interactions have been introduced. In general, 1D

architectures with only two neighbors per qubit are highly

restrictive, and 3D architectures with six neighbors per qubit

are difficult to control. Hence, the most promising architecture

for a quantum computing system is to arrange qubits in

a 2D structure with four neighbors per qubit. Quantum

technologies with 2D architectures include neutral atoms [2],

superconductors [3], photonics [4], and quantum dots [5].

A physical realization of a quantum program can couple

any distant two qubits with some communication overhead.

However, this can result in a long sequence of operations,

which in turn increases circuit latency and error rate. For

instance, the nearest-neighbor communication overhead re-

sults in 175x reduction in error threshold for fault-tolerant

error correction with a concatenated 7-qubit CSS code [6].

Improving error threshold is costly — it may require a more

sophisticated control protocol to construct gates with higher

fidelities or a more robust error correction code. Accordingly,

optimization of quantum circuits are crucial in order to reduce

the communication overhead.

During recent years, several techniques have been proposed

to map arbitrary circuits to 1D quantum architectures [7]–

[9], which as mentioned earlier have limited number of

neighboring qubits. On the other hand, the few works on

2D architectures are hand-optimized techniques designed for

special type of quantum circuits. Our focus, however, is to

develop a design automation method to optimize qubit in-

teractions considering the connectivity constraint in quantum

technologies that use a 2D grid architecture.

Although conventional placement algorithms for VLSI

physical design can be used for placement of qubits, the

performance of such approaches is limited (Section IV). In

this paper, we first characterize similarities and differences

between the conventional placement algorithm and the one

used in quantum technologies. Then, a Mixed Integer Pro-

gramming (MIP) formulation is proposed as a standard grid

placement algorithm to optimize qubit-to-qubit interaction.

The proposed MIP formulation results in a valid placement for

qubits. However, direct application of this formulation ignores

specific properties of quantum technologies. Accordingly, the

MIP formulation is improved by some heuristic techniques to

properly capture the effects of quantum architectures.

The rest of this paper is organized as follows. We introduce

basic concepts in Section II. Previous work is reviewed

in Section III. Section IV discusses the proposed approach

followed by experiments in Section V. Finally, paper is

concluded in Section VI.
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Fig. 1. A sample quantum circuit (left) and its implementation in 1D
(middle) and 2D grid (right) architectures. The gate in time step 3 has a
non-adjacent interaction in 1D architecture. However, all interactions in the
2D grid involve neighboring qubits.

II. BASIC CONCEPTS

In quantum computation, a quantum bit (qubit) is a unit

of information which takes a linear superposition of the

basis states |0〉 and |1〉. An n-qubit quantum gate performs

a specific 2n × 2n unitary operation on the selected n
qubits. We do not use particular properties of any 1- or 2-

qubit gates, except for 2-qubit SWAP gate. Therefore, we

omit definitions. More information can be found in standard

quantum computing textbooks and surveys [10], [11].

A quantum algorithm is described by a quantum circuit

where a set of quantum gates is applied to transform the initial

state of the quantum system into a final state. Each gate can

involve an arbitrary number of qubits. The resulting circuit

is then ‘compiled’ into another quantum circuit based on a

library of primitive one- and two-qubit gates. This quantum

circuit is an input to our problem.

Given a quantum circuit with one- and two-qubit gates,

one should map the circuit into a quantum apparatus, which

is a physical experiment that realizes the quantum circuit.

The underlying quantum experiment is usually modeled as

a connectivity graph with pre-defined connectivity patterns

between graph nodes where nodes represent physical qubits.

Therefore, a complete graph is an ideal quantum architecture

with no limit on qubit interactions; and a path is a 1D

architecture where only neighboring qubits on a line can

interact (see Fig. 1 for an example). On the other hand,

the quantum circuit is modeled with another graph, called

interaction graph, where nodes denote qubits of the circuit.

In this case, for each 2-qubit gate working on qubits i and j,

an edge is added between nodes i and j in the graph.

Given an interaction graph and a connectivity graph, the

mapping problem is a standard graph embedding problem

with connectivity and interaction graphs as the host and guest

graphs, respectively. The objective is then to minimize the

total distance between adjacent nodes of the interaction graph.

For a 2D grid connectivity graph, the mapping problem is

NP-complete. Also, determining whether a given interaction

graph can be embedded into a 2D grid is NP-complete [12].

If a solution for the grid-embedding problem is known,

all circuit qubits have corresponding physical qubits. The

next step is to apply quantum gates, which requires gates

to be adjacent. This means that all connected nodes in the

interaction graph should be placed on adjacent grid nodes.

For a qubit located at (i, j) in the grid, all qubits in locations

(i, j − 1) (left), (i − 1, j) (up), (i, j + 1) (right), (i + 1, j)
(down) are neighbors. Therefore for non-adjacent qubits (i, j)
and (m,n) a connection should be made, which is achieved

by applying a sequence of either MOVE or SWAP operations.

If MOVE operation is not supported by the quantum

experiment, adjacent qubits should be exchanged step by step

to transform a qubit from (i, j) to one of the four neighbors

of (m,n). Since exchanging two neighboring qubits requires

one SWAP gate, the total number of SWAP gates by this

process is |m− i| − 1 if n = j (same column), |n− j| − 1 if

m = i (same row), and |m− i|+ |n− j| − 1 otherwise.

The added MOVE or SWAP operations are considered as

communication overhead since such gates are not imposed

by the original algorithm or circuit. Optimizations should

be applied to reduce this overhead. In this paper, we focus

on the quantum experiments that only support SWAP gates

and not MOVE operations. Quantum technologies based on

superconducting [3] and quantum dots [5] are examples of

SWAP-based technologies.

III. PREVIOUS WORK

Certain circuits are amenable for specific interaction-cost

optimizations. Examples include circuits for quantum Fourier

transform [13], quantum adders [14], [15], modular expo-

nentiation [16], [17], and error correction codes [6], [18]. A

more general approach is developed in [19] where particular

operations spanning n wires, e.g., rotation of n wires, were

analyzed to be optimized for depth.

Optimization of arbitrary quantum circuits for 1D architec-

tures is the topic of recent papers. Minimal number of SWAP

gates required to transform one permutation of qubits in a line

into another permutation was explored in [8]. Minimizing the

number of SWAP gates by changing qubit locations dynam-

ically was investigated in [7]. Minimum linear arrangement

problem was employed in [9] to find (near-) optimal solutions,

with respect to the number of SWAP gates, in different parts

of an interaction graph. All these methods are based on 1D

architectures. In [20], the authors considered qubit-to-qubit

interaction optimization to map a circuit to a physical device

where the underlying quantum device is a general graph (not

a grid).

IV. THE PROPOSED METHOD

The conventional circuit placement problem in VLSI design

starts with a (weighted) hypergraph where nodes represent

standard cells and hyperedges denote connections among

these cells. Each node of the hypergraph has a pre-defined

size. Circuit placement determines center positions for nodes

such that a specific objective function is optimized and some

constraints are met (e.g., no overlap between cells). This is

followed by a routing step that connects the placed cells via



wires. Total wirelength, circuit delay, and power consumption

are typical objectives in the VLSI physical design algorithms.

The qubit placement problem is similar to the conventional

circuit placement problem, with some differences. In general,

VLSI placement algorithms can be used for embedding a

weighted undirected interaction graph. Also, similar to the

minimized total wirelength in the conventional placement

problem, we are interested in qubit placements with minimal

total distance between connected nodes. However, in qubit

placement, positions of instructions are not fixed, whereas in

the conventional VLSI circuit placement gates (or instruc-

tions) are fixed. This time-variant nature of qubit placement

imposes dynamic placement. Additionally, nodes (qubits)

have no width and height in the qubit placement problem.

Dynamic placement of qubits can be used to reduce com-

munication overhead. More precisely, after placing qubits in

specific grid nodes in SWAP-based quantum technologies,

one needs to exchange qubits step by step to ‘route’ two

distant qubits towards each other in order to apply a gate.

Location of other qubits on the path will change accordingly.

To follow the placement solution, all moved qubits should

return to their initial location by reversely applying the

same sequence of SWAP gates. As used in e.g., [7] for

1D architectures, instead of returning qubits to their initial

location, one may keep the current (updated) placement, and

then apply the remaining gates based on the new locations of

qubits.

Since VLSI designs include numerous gates, the most

successful VLSI placement tools [21] apply several heuris-

tics to avoid unbearable runtime. However, current quantum

technologies are limited to a small number of qubits. Hence,

we used an MIP-based grid-placement algorithm. Any other

placement technique can also be used to solve the grid-

embedding problem.

A. MIP-based Formulation

The MIP-based grid-embedding problem assigns each qubit

to a unique location on the 2D grid such that frequently

interacting qubits are placed as close together as possible.

As a consequence, less number of SWAP gates is required in

order to route qubits.

To mathematically formulate the problem, a binary variable

xij is used which represents the assignment of qubiti (node i
in the interaction graph) to locationj in the grid. Moreover,

wik denotes the weight between qubiti and qubitk in the

interaction graph (i.e., the number of gates between them

in the circuit), and distjl represents the Manhattan distance

between locationj and locationl in the grid. Hence, the cost

of assigning qubiti to locationj (i.e., xij) and qubitk to

locationl (i.e., xkl) can be expressed as cijkl = wik×distjl.
The problem is then formulated as follows:

min

n∑

i=1

n∑

j=1

n∑

k=1

n∑

l=1

cijklxijxkl (1)

subject to

n∑

j=1

xij = 1, i = 1, . . . , n, (2)

n∑

i=1

xij = 1, j = 1, . . . , n, (3)

xij ∈ {0, 1} , i, j = 1, . . . , n. (4)

In this formulation, n is the number of grid nodes. More

precisely, n = hw for an h×w grid where h and w denote the

number of rows and columns, respectively. Dummy nodes are

also added to the interaction graph for the MIP formulation

in cases where the number of qubits is less than n.

The objective function (1) is not linear; however, sev-

eral equivalent formulations that linearize this objective

function have been proposed. Among them, Kaufmann

and Broeckx’s linearization [22] has the smallest num-

ber of variables and constraints [23] which is described

next. By defining zij = xij

∑n

k=1

∑n

l=1 cijklxkl for

i, j = 1, . . . , n, we can rewrite the objective function as∑n

i=1

∑n

j=1 xij

∑n

k=1

∑n

l=1 cijklxkl =
∑n

i=1

∑n

j=1 zij . Au-

thors of [22] then proved that the following MIP formulation

is equivalent to Eq. (1) - (4):

min

n∑

i=1

n∑

j=1

zij (5)

subject to

(2), (3), (4),

αijxij +

n∑

k=1

n∑

l=1

cijklxkl − zij ≤ αij , i, j = 1, . . . , n, (6)

zij ≥ 0, i, j = 1, . . . , n, (7)

where αij =
∑n

k=1

∑n

l=1 cijkl for i, j = 1, . . . , n. This

new formulation involves n2 binary variables (xij’s), n2 real

variables (zij’s), and n2 + 2n constraints.

The above MIP formulation can find optimal placement

solution with respect to the aforementioned objective and

constraints. However, the resulting qubit placement may not

be a valid solution for a SWAP-based quantum technology. In

other words, the MIP formulation does not guarantee that all

two-qubit gates become local; rather, it tends to place qubits

that frequently interact with other as close as possible on the

grid. Therefore, a mechanism is required to localize all two-

qubit gates. For this purpose, after the MIP problem is solved,

two-qubit gates are checked in order until a non-local gate is

found. Afterwards, the corresponding control qubit is routed

towards the target qubit based on xy routing algorithm (first

along x-axis and then along y-axis) by inserting SWAP gates.

B. MIP-based Optimization Framework

The qubit placement discussed in Section A is obtained

by applying the grid-embedding formulation on the whole



interaction graph. Basically, the interaction graph has no view

on scheduling of instructions. In other words, while wi,k

reflects the number of interactions (or gates) between qubits i
and k, qubits may interact in very different time steps. In this

case, placing qubits i and k close to each other in the whole

computation is not useful — one may place highly interacting

qubits at different scheduling levels close to each other and

move them to other locations when the corresponding qubits

will not interact to leave space for other qubits.

In general, a small number of consecutive gates in a given

circuit can be executed in parallel due to sharing control

or target qubits. Accordingly, a given circuit is (almost)

scheduled. Hence, working with gates at one scheduling level

results in very few gates. As an alternative approach, we can

apply m instances of the grid-embedding formulation on m
subsets (subcircuits) of the interaction graph for a circuit with

N gates. In this case, the interaction graph for subcircuit j is

obtained by only considering consecutive gates between time

steps (j − 1) ∗N/m+1 and j ∗N/m. Thus, each subcircuit

can work on N/m gates simultaneously.

Using several instances of the grid-embedding problem,

qubit placements for subcircuits j and j+1 can be different.

This requires a swapping network to align qubit arrangement

of subcircuit j with qubit arrangement of subcircuit j + 1.

For this purpose, we use the snake-like indexing (shown

in Fig. 2(a)) with 2D bubble sort algorithm [24, Chapter

9]. While for 1D bubble sort, one can move the maximum

element among unsorted items towards its proper location

in one way, this is not the case in a 2D grid. If x and y
are the row and column differences between an element and

its proper location respectively, then the number of paths

to move the element towards its proper location is
(x+y)!
x!y! .

Different paths for each element can affect other elements in

the grid, which may result in very different number of SWAP

gates. Moreover, considering the effect of moving minimum

or maximum elements exacerbates the situation. Fig. 2(b)

shows one example using two different strategies.

Fig. 3 illustrates the structure of the final circuit which

is obtained from the following three steps. (1) MIP-based

grid-embedding problem is solved for each subcircuit j in

order to find the initial qubit placement of that subcircuit,

P i
j . (2) SWAP gates are inserted before non-local two-qubit

gates of each subcircuit j which eventually leads to its final

quibit placement, P f
j . (3) In the end, swapping networks are

added to change the final qubit placement of subcircuit j to

initial qubit placement of subcircuit j + 1 (P f
j → P i

j+1 for

1 ≤ j ≤ m− 1).

V. EXPERIMENTAL RESULTS

Proposed methods were implemented in C++ and tested on

a server machine with 4 Intel E7-8837 processors and 64GB

memory. For MIP solver, we used Gurobi Optimizer Ver. 5.5.0

[25], which uses linear-programming relaxation techniques

along with other heuristics in order to quickly solve large-

scale MIP problems.
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There are two methods in literature on optimization of

communication overhead in 2D architectures for modular

exponentiation [17] and adders [14], [15]. The method in [17]

added O(n4) ancilla to reach O(log2 n) depth for modular

exponentiation. We do not add ancillae and our focus is on

circuit size. Applying our techniques on log-size adders does

not improve circuits in [15] (which improves [14]) in most

cases. In particular, the optimizations in [15] are similar to

our Method 2 (described next) while qubit placements for

components were hand-optimized.

To evaluate the proposed methods we used reversible

benchmarks in [7], [9] along with circuits for Shor’s algorithm

in [8]. The previous techniques [7]–[9], [16] are based on 1D

interactions, which can also be mapped to 2D architectures1.

However, using 2D interactions adds more flexibility and

thus can lower the communication overhead. Accordingly, we

do not intend to compare our results with 1D architectures.

Instead, 1D results are reported to consider the effect of

architectures on reducing overhead.

Runtime for the conventional placement algorithms in

VLSI design is important, but as a secondary objective. In

quantum computing, runtime for qubit placement is much less

important, given that quantum technologies are in preliminary

stages — there is no aggressive time to market. Accordingly,

the main objective is still circuit quality. Additionally, due

to the limitations of current quantum technologies to work

with a large number of gates, investing runtime in favor

of circuit quality is reasonable. Therefore, we used a time-

limit of 30 minutes for each attempted benchmark. For small

1For mapping a 1D path onto a 2D grid, please see Fig. 2(a).



benchmarks, runtime varies from a few seconds to 5 minutes.

For larger ones, we reported the best result after 30 minutes.

For each circuit, we applied two methods:

• Method 1: This method uses a single grid-based MIP

formulation on the whole interaction graph. When the

global qubit placement solution is found, all 2-qubit

gates are checked in order and SWAP gates are inserted

before each non-adjacent gate. Placement of qubits will

change accordingly. This new qubit placement is consid-

ered for the remaining gates.

• Method 2: Multiple instances of the grid-based place-

ment problem are used in this method. For each instance,

we used k consecutive gates. If a circuit includes < k
gates, the interaction graph is analyzed at once, same as

Method 1. After finding a qubit placement for each in-

stance, SWAP gates are applied before each non-adjacent

gate. Swapping networks are also required between any

two consecutive placements. We used a 2D bubble sort

algorithm that moves (1) the maximum element in XY

direction, (2) the maximum element in YX direction, (3)

the minimum element in XY direction, (4) the minimum

element in YX direction towards its proper location, and

then selects the best network.

The results of applying the aforementioned methods are

reported in Table I. In this table, for each benchmark we

reported the number of qubits and the number of gates in the

original circuit, as well as the number of two-qubit gates after

decomposing the circuit based on [26] into one- and two-qubit

gates. Columns 5-9 report the grid size (h×w) that results in

the smallest number of SWAPs along with its corresponding

number of SWAP gates after applying the proposed methods.

For Method 2, we also report the percentage of SWAPs in the

swapping network as compared with total number of SWAPs

(column 9). Column 10 shows the minimum number of SWAP

gates achieved by our proposed methods (i.e., minimum of

columns 6 and 8). Best prior result from different sources are

also presented in Columns 11-12.

Comparing the best results for 2D architectures versus the

best prior result for 1D architectures shows that the number

of SWAP gates can be reduced extensively if one allows

interactions in 2D architectures. As can be seen in Table I,

our methods improve the best results of 1D architectures 27%

on average and up to 67%. A sample circuit mapped to a 2D

grid based on Method 1 is also illustrated in Fig. 4.

VI. CONCLUSION

We optimized qubit-to-qubit interactions in quantum tech-

nologies that allow 2D grid architectures. To achieve this, we

formulated our problem by mixed integer programming as

a grid-embedding problem. To consider scheduling of gates,

the interaction graph is partitioned into several instances

where the grid-embedding formulation is applied on each

instance. To align qubit placement of one instance in the

interaction graph with qubit placement of another instance,

we applied a 2D bubble sort algorithm. Furthermore, for each

benchmark various grid sizes were examined to find the one

with smallest number of SWAP gates. The proposed methods

result in considerable reduction of communication overhead

in 2D architectures. However, further heuristics can be applied

to reduce the overhead more. For small circuits the prior

methods for 1D architectures result in better circuits.

There are several lines for future researches. For very large

circuits, conventional placement algorithms can be adopted

to solve the graph-embedding problem. In addition, grid

clustering and hierarchical qubit placement may be considered

for large circuits, where our proposed method can be applied

in each hierarchy level. Another topic for future research is

to directly focus on depth of circuits. The method in [19]

considered circuit depth for several basic operations in 1D

architectures. The problem for 2D architectures is new and

indeed interesting.
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Fig. 4. The result of applying Method 1 on the 4gt13-v1 93 benchmark. Circuit in (a) is the original circuit with one- and two-qubit gates. The initial
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NUMBER OF SWAP GATES AFTER APPLYING PROPOSED METHODS AS WELL AS THE BEST PRIOR RESULT IN 1D ARCHITECTURES. FOR EACH
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