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Abstract. Synchronous exocytosis in Paramecium cells 

was analyzed on a subsecond time scale. For this pur- 
pose we developed a quenched flow device for rapid 

mixing and rapid freezing of cells without impairment 

(time resolution in the millisecond range, dead time 

~30 ms). Cells frozen at defined times after stimula- 

tion with the noncytotoxic secretagogue aminoethyldex- 

tran were processed by freeze substitution for electron 

microscopic analysis. With ultrathin sections the time 

required for complete extrusion of secretory contents 

was determined to be <80 ms. Using freeze-fracture 

replicas the time required for resealing of the fused 

membranes was found to be <350 ms. During membrane 
fusion (visible 30 ms after stimulation) specific intra- 

membranous particles in the cell membrane at the at- 

tachment sites of secretory organeUes ("fusion rosette") 

disappear, possibly by dissociation of formerly oligo- 

meric proteins. This hitherto unknown type of rapid 

change in membrane architecture may reflect molecu- 

lar changes in protein-protein or protein-lipid interac- 

tions, presumably crucial for membrane fusion. By a 

modification of the quenched flow procedure extracel- 

lular [Ca ÷÷] during stimulation was adjusted to x< 3 x 

10 -8 M, i.e., below intracellular [Ca÷~]. Only extrusion 

of the secretory contents, but not membrane fusion, 

was inhibited. Thus it was possible to separate both 

secretory events (membrane fusion from contents extru- 

sion) and to discriminate their Ca ++ requirements. We 

conclude that no Ca ++ influx is necessary for induction 

of membrane fusion. 

Yet, the mechanisms of biological membrane fusion 
remain obscure (Diizgfines and Bronner, 1988; Ohki 
et al., 1988; Plattner, 1989; Almers, 1990; Hoekstra 

and Wilschut, 1990). Whereas at least in some viral systems 
fusogenic proteins have been identified (Stegmann et al., 
1989; White, 1990), no comparable molecular effectors are 
known for membrane fusion during exocytosis. The regula- 
tory control of exocytosis is also rather unclear (Plattner, 
1989). While Ca ++ was quite generally established as a sec- 
ond messenger, evidence has been obtained now for secretion 
occurring without any increase of [Ca÷÷], (for example see 
Neher, 1988; Gomperts, 1990). 

Serious problems in the analysis of exocytotic membrane 
fusion involve the short life time and the low frequency of 
membrane fusion events (see Knoll et al., 1987; Plattner, 
1989 for discussion). Appropriate techniques and experi- 
mental systems are much needed to overcome these prob- 
lems. The recent use of patch clamp techniques has allowed 
the study of some aspects in real time (Neher and Marty, 
1982; Penner and Neher, 1989). Thus single fusion events 
have been correlated to a variety of phenomena including 
[Ca+÷]~ changes. Patch clamp observations have also led to 
the proposal of a junction-like "fusion pore" that connects the 
membranes just before the actual joining of the bilayers by 
intercalation of lipids (Almers, 1990). This model is corn- 

patible with a "focal (point) fusion mechanism" (Plattner, 
1981), based on electron microscopic findings with cells rap- 
idly frozen during exocytosis (Heuser et al., 1979; Chandler 
and Heuser, 1980; Ornberg and Reese, 1980; Schmidt et al., 
1983, Olbricht et al., 1984). 

Rapid freezing allows the fixation of dynamic events with 
a millisecond time resolution. This approach has provided 
solid experimental evidence for the correlation of transmitter 
release and exocytosis from synaptic vesicles (Heuser et al., 
1979, Torri-Tarelli et al., 1985). However, even in such a 
well-synchronized system, the frequency of vesicle exocy- 
tosis must be artificially increased in order to obtain signifi- 
cant data. 

This situation is much more favorable with the ciliated pro- 
tozoan Paramecium tetraurelia. More than 1,000 secretory 
vesicles (trichocysts) are docked at the plasma membrane 
ready for exocytosis within 1 s after stimulation with the non- 
cytotoxic secretagogue aminoethyldextran (AED) ~ (Plattner 
et al., 1984, 1985; Plattner, 1987). Since the time range of 
interest lies within 1 s, we have now used rapid mixing of 

1. Abbreviations used in this paper: AED, aminothyldextran; EF-face, exo- 
plasmie fracture face; IMP, intramembranous particle; PF-face, protoplas- 
mic fracture face. 
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Figure 1. Set-up for rapid mixing and rapid freezing of cells. (a) 
Two cylinders (2) are filled via 3-way valves (3). By operation of 
a ram (1) the pistons in the cylinders push the reactants (cell and 
secretagogue) through a mixing chamber (4). After passage through 
defined tubing (5) the mixture is sprayed through a sieve plate (6) 
into heavily stiri~! liquid propane (7), cooled by LN2 on a mag- 
netic stirrer (8). (b) Housing of the mixing chamber. (c) Mixing 
chamber. (d) Sieve plate holder. For the shortest trigger time (30 ms) 
any tubing is omitted and the sieve plate fixed immediately to the 
outlet of the mixing chamber. For 80 ms the sieve plate holder (in- 
eluding tubing of 1.5 mm inner diameter) is screwed directly into 
the housing of the mixing chamber. For all longer time periods the 
length of the tubings (1.5 mm inner diameter) is specified, thus result- 
ing in different but defined time periods until freezing. 

the cells, followed by rapid freezing (principally spray freez- 
ing; Bachmann and Schmitt, 1971, Plattner et al., 1972). 
This general procedure is known as quenched flow (Bray, 
1961; Ballou, 1983; Rand et al., 1985), but has not yet been 
used for the preparation of intact cells, Once the cells are fro- 
zen at defined times after stimulation, different analytical 
follow-up procedures may be carried out. 

Initially we determined the time course of events during 
exocytosis. For this purpose we made use of morphological 
criteria, as trichocysts are regularly arranged between the 
cilia and are easily recognized. Freeze-fracture replicas indi- 
cate whether membranes are fused, and thin sections allow 
determination of extrusion of secretory contents. Using the 
results of the time-course study, it was possible to establish 
a close correlation of specific changes in membrane structure 
(indicating for the first time dissociation ofintramembranous 
particles lIMPs]) with membrane fusion. 

Although Ca ++ is well known to be necessary for exocy- 

Figure 2. Light microscopic assay (a) ofceUular integrity after rapid 
mixing and spraying (b) of the etliciency of AED as a secretagogue. 
After passage of the mixing chamber, cells were sprayed through 
the nozzle into a beaker (rather than into cold propane for freezing 
as usual). Picric acid was then applied as a simultaneous trigger and 
fixative. This allows for an estimation of the residual trichocysts, 
because with picric acid trichocysts are not completely extruded and 
remain anchored in the cell. (a) To check whether mechanical im- 
pairment had caused artifactual trichocyst release, ceils were mixed 
with water (instead of the secretagogue AED). They completely re- 
tained their trichocysts during the mixing and spraying procedure. 
Trichocysts can then be expelled upon adding picric acid. (b) Cells 
challenged by the secretagogue AED (inducing vital exocytosis with 
complete extrusion of the trichocyst contents) reveal only a small 
number of trichocysts retained (left side, extruded upon addition of 
pieric acid). Bar, 100 #m. 

tosis of trichocysts in Paramecium (Matt et al., 1978; Platt- 

ner, 1987; Satir et al., 1988; Satir, 1989; Kerboeuf and Co- 
hen, 1990), its distinct (regulatory) role in membrane fusion 

and extrusion of secretory contents has yet to be established 
(Adoutte, 1988). Therefore we chelated Ca ++, during stimu- 
lation to a concentration below the intracellular level. The 
quenched flow device was necessary to overcome the prob- 
lem of rapid lethal effects of Ca ++ deprivation (Plattner et 
al., 1985). Analysis by electron microscopy enabled a safe 
differentiation between membrane fusion and trichocyst de- 
condensation. We demonstrate that membrane fusion occurs 
at [Ca+÷]o even below the resting [Ca÷+]~, but trichocyst ex- 
trusion is inhibited. 
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Materials and Methods 

Cells and Stimulus 

Paramecium tetraurelia 7S (wild type) cells were grown axenically until 
early stationary phase, washed in buffer (5 mM Pipes, 1 mM CaCI2, 1 mM 
KCI, pH 7) and starved in this buffer overnight (for details and for AED 
triggering, see Piattner et al., 1985). 

Stimulation by Rapid Mixing with AED foUowed 
by Rapid Freezing 

A scheme of the quenched-flow device used is presented in Fig. 1. Two glass 
cylinders (of variable diameter) with tightly fitting Teflon pistons are filled 
via threeway valves (HVX, ports with 3 mm diam for cells; HV, ports 
1.5 nun diam for the second component, such as AED; Hamilton, Darm- 
stadt, Germany) by reservoir syringes. For mixing and subsequent freezing 
the pistons are pushed by a pneumatic ram (Festo ZY-35-80-B; Festo Pneu- 
matic, Esslingen, Germany) with an adjustable integrated hydraulic speed 
limiting system. Linearity of movement during the sampling period was as- 
sessad by recording the signal of an attached potentiometer wheel. The 
speed in each actual experiment was determined by a home-made light 
bar system. 

During continuous flow, ceils (30,000/mi) are challenged by the same 
volume of trigger agent (0.01% final concentration AED) in a home-made 
two-jet vortex mixer (7 ~1 vol, see Fig. 1 c). Efficiency of mixing just at 
the outlet of the mixing chamber was confirmed by the color change of 
acidic bromophennl blue after contact with a high pH buffer. 

After passage through Teflon tubing (1.5 ram inner diameter) of varying 
length (allowing the cells to be exposed to the trigger agent for different time 
periods; see Fig. 1 for details) cells pass through an aluminum plate con- 
taming a defined number of drilled holes with 100-pm-diam each (Fig. 1 
d). The actual number of holes is chosen depending on the desired overall 
flow rate (volume/time) in order to adjust the flow speed through each hole. 
In the current experiments Paramecium cells were sprayed with 3 meter/sec- 
ond into forcefully stirred liquid propane (<-180°C). 

The device and the performance were optimized for both high time reso- 
lution and preservation of cell integrity. 

EjOiciency of Mixing and Freezing 

A semiquantitative test, using the well-characterized dehydration ofcarbenic 
acid according to Bray (1961), was performed to check the efficiency of mix- 
ing. Similarly to Bray (1961), who used a comparable set-up, we estimate 
a gross dead time (from mixing till completion of freezing) of ,-o 30 ms with 
the moderate conditions found to be essential for preservation of cell 
integrity. 

Integrity of Cells 

Cells were sprayed into a beaker (rather than into propane) and by light mi- 
croscopy we verified vitality and trichocyst content before each actual ex- 
periment. The latter parameter was checked by triggering the cells (after 
passing the apparatus) with the fixative picric acid, resulting in simultane- 
ous fixation and partial extrusion of elongated trichocysts that remain stuck 
within the cells (Jennings, 1906). Experimental conditions were accepted 
only when >90% of the cells were apparently unaffected by the handling 
procedure (see Fig. 2). 

Vffthdrawal of Calcium before Stimulation 

Cells were mixed with EGTA-buffer before stimulation with AED: Three 
syringes (two with the same volume and one with a double volume) and two 
mixing chambers were connected for mixing cells (60,000/mi in 5 mM 
Pipes, 1 mM KCI, 1 mM CaC12, pH 7) with EGTA (9 mM, in 5 mM 
Pipes, pH 7) for 500 ms, followed by a second mixing of cells with AED 
(0.02% in 5 mM Pipes, 4.5 mM EGTA, pH 7) for 80 ms before freezing. 
The [Ca++]¢ is expected to be adjusted to ,~30 nM (calculated according 
to Bulos and Sacktor, 1979) already ,ul0 ms after mixing (Smith et al., 
1984), and to decrease below this value during the actual stimulation with 
AED/EGTA. 

Preparation for Microscopy 

As a first step after freezing, propane is evaporated at -100°C under vacuum 

in a freeze dryer (GT1; Leybold Heraeus, g.bln, Germany). The remaining 
powder of frozen hydrated material may be stored under liquid nitrogen. 

For freeze fracturing and thin sectioning the material was freeze sub- 
stituted for 2 d in methanol at -80"C, followed by slow rise of temperature 
(,'o5*C/h). Both media contained 3% (vol/vol) glutaraldehyde and 0.5% 
(wt/vol) uranyl acetate; in addition to this, for thin sectioning 1% (wt/vol) 
osmium tetroxide was included. Before embedding the temperature was al- 
lowed to rise to 5"C, the calls were washed in methanol and embedded in 
Spurr's resin at room temperature. After polymerization ultrathin sections 
were stained with uranyl acetate and lead citrate. For freeze fracturing, cells 
were allowed to warm up only to -30"C, then they were centrifuged at that 
temperature and rehydrated in ice cold water. After gradual glycerination 
(10, 20, 30% [eel/veil for 1 h each) at room temperature, cells were pelleted 
and frozen either on gold holders or in Cu-sandwiebes by dipping into liquid 
propane. Freeze fracturing was performed in a Balzers unit type 360 M at 
-IO0°C and a vacuum of 4-6 x 10 -3 Pa with occasional 1 min etching be- 
fore shadowing with Pt/C and C. 

Evaluation 

To determine the content of trichocysts in cells, grazing sections were evalu- 
ated by counting all docking sites, whether hosting a trichocyst or not (Pape 
and Plattner, 1985). The percentage of occupied sites was determined for 
each cell, and the median of all individual percentages was calculated. 

For evaluation of freeze fractured exocytosis sites a set of structural- 
functional categories was elaborated (see Results). The number of docking 
sites belonging to the different categories was counted for each cell, the per- 
centage computed and the median for all cells was calculated. 

IMPs were counted within the double ring ('~300 nm diam) of IMPs 
delineating fusion spots in the plasma membrane, both in a central area of 
130 nm diana (where at rest almost exclusively rosette IMPs are found) and 
in the peripheral area between the central area and the double ring of IMPs 
mentioned above. 

Results 

Time Course of Exo-Endocytosis 

Trichocyst Extrusion. First  we analyzed the lag t ime for the 

extrusion of  trichocysts. For  this purpose cells frozen at 

defined t ime points after s t imulat ion were freeze substituted 

and embedded  for sectioning. In  sections grazing the cell 

surface, the regular  a r rangement  of  predetermined trichocyst 

docking sites enables the count ing of the percentage of sites 

actually occupied (Fig. 3, a and b). After  m e m b r a n e  fusion 

and extrusion of  the secretory contents  an empty  m e m b r a n e  

compar tment  is visible on ly  in the p lane  of trichocyst tips 

(for terminology,  see Plattner,  1987), and the m e m b r a n e  for- 

mer ly  enclosing the trichocyst body  is collapsed (see also 

H a u s m a n n  and Allen,  1976; Al len  and Fok,  1984). The 

results of  the evaluat ion are shown in  Fig. 3 c: after 80 ms, 

all trichocysts have been  extruded. The near ly  complete  oc- 

cupat ion of  docking sites in untr iggered controls after pass- 

ing the quenched flow apparatus indicates the absence of  cell 

impai rment  by the procedure  (see also Fig. 2). 

Membrane Fusion and Resealing. To analyze  the t ime 

course of  m e m b r a n e  coalescence we subjected the frozen 

cells to freeze fracturing. The predetermined docking sites 

of  the plasma membrane  exhibit  a well  characterized freeze 

fracture appearance (Plat tner  et al . ,  1973, Plattner,  1987): 

W h e n  a trichocyst is docked ready for exocytosis, this is indi-  

cated by a "fusion rosette"; its name  indicates the correlat ion 

with competence  for m e m b r a n e  fus ion (Beisson et al . ,  1976, 

1980; Pouphile  et al . ,  1986). This rosette consists of  about  

seven to eight IMPs  encircled by a 300-rim-large double  r ing 

of smal ler  IMPs  (Fig. 4, a-c). A collapsed "parenthesis" 

without rosette IMPs  occurs when the site is not  occupied 
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Figure 3. Trichocyst content of cells analyzed on ultrathin sections. 
Cells were rapidly mixed with AED (or with water for controls), 
frozen and further processed by freeze substitution and plastic embed- 
ding. In tangentional sections the regular arrangement of trichocysts 
allowed their quantitation at the docking sites (located between the 
cilia or their basal bodies, respectively, depending on the section 
plane), ci, cilium. (a) A control cell, frozen after mixing with an 
equal volume of water, shows virtually complete retainment of 
trichocysts (arrowheads). (b) A cell frozen 80 ms after mixing with 
AED shows docking sites devoid of a trichocyst (asterisks) and fre- 

(Fig. 4, j-l). The rosette IMPs are located at the contact site 
of the plasma membrane with the trichocyst membrane, and 
the ring IMPs at contacts of the plasma membrane with the 
"alveolar sacs" (Plattner et al., 1973). 

In control cells most docking sites in the plasma mem- 
brane reveal the usual fusion rosette (Fig. 4, a-c). 30 ms af- 
ter triggering by AED exocytotic openings prevail (Fig. 4, 
d-f) and after 350 ms the membranes are resealed (Fig. 4, 
g-i). However, the freshly resealed plasma membrane shows 
no parenthesis or "oval ring" as described earlier (Olbricht 
et al., 1984). Instead, the double ring of IMPs is still round 
and it is filled with numerous small IMPs instead of rosette 
IMPs. The density of the small IMPs declines with time, and 
only after almost 1 min do we observe a substantial increase 
of parenthesis stages (data not shown). The time dependence 
of the consecutive stages of exocytosis as defined in Fig. 4 
is quantified in Fig. 5. 

Changes in Membrane Structure 

The most significant aspect during membrane fusion and re- 
sealing is the disappearance of the rosette IMPs, and the ap- 
pearance of a new population of smaller IMPs on the proto- 
plasmic fracture face (PF-face) (Fig. 6, Fig. 4 g). To test the 
assumption that this is due to dissociation o f  the rosette 
IMPs, we counted the IMPs in the inner central area (130 nm 
diam) of the double ring, where at rest almost exclusively ro- 
sette IMPs (seven to eight) are found. The result is presented 
in Fig. 7. After stimulation by AED the number of small 
IMPs suddenly (30 ms) increases to ~35, whereas only a few, 
on the average below two, prominent rosette particles are still 
recognized. The number of small IMPs always present in the 
more peripheral area of the double ring ("b-type" particles 
as defined by Plattner et al., 1973) remains unchanged. Thus 
the disappearance of the rosette IMPs is correlated with a lo- 
cal increase of small IMPs by a factor of ~6. The situation 
does not change significantly during the first second after 
membrane resealing (Fig. 7). Only after 40 s (first point on 
a longer time scale analyzed as yet) we observed a reduction 
of IMP densities close to the number found in the final paren- 
theses (Fig. 4, j-l) (data not shown). 

Examples for presumable early stages of membrane co- 
alescence are shown in Fig. 6. The plasma membrane shows 
a protrusion towards the trichocyst tip in exoplasmic fracture 
(EF-) faces and a complementary dip in the PF-faces. While 
the EFface is nearly completely smooth, the PF-face shows 
a very high density of the small particles just at the fusion 
spot. A high density of IMPs occurs particularly around ex- 
ocytotic openings in the PF-face (see Fig. 4 d). 

Requirements of ExtraceUular Calcium 

Membrane fusion and decondensation of secretory products 

quently exhibits trichocyst membrane ghosts with a varying degree 
of collapse (arrowhead). (c) Evaluation of ultrathin sections as shown 
in a and b, as described in Materials and Methods. The percentage 
of trichocysts retained (in relation to the total number of docking 
sites analyzed) after AED triggering is presented. The time periods 
indicated include the dead time of the experimental set up (see text). 
In at least three independent experiments ~20 cells were analyzed 
for each time point. As early as 80 ms after contact with the secreta- 
gogue, AED, trichocyst extrusion was completed. Bar, 1 /.tm, 
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Figure 4. Ultrastructural changes in the plasma membrane during exo-endocytosis. Freeze-fracture aspects of both membrane leaflets, PF- 
(top) and EF-face (middle) are depicted as representative of the categories of exo-endocytosis stages considered in the quantitative evaluation 
of Fig. 5. Drawings illustrate our interpretation by a combination of freeze fracture and ultrathin section aspects of docking sites (see text). 
as, alveolar sacs; pro, plasma membrane; tm, trichocyst membrane; tt, trichocyst tip. (a-c) Preformed exocytosis sites containing a central 
aggregate of rosette particles, encircled by a double ring of IMPs (on PF-faces) or pits (on EF-faces), are indicative of "resting stages" 
with an exocytosis-competent trichocyst docked underneath. Note also the more peripheral small b-type IMPs (Plattner et al., 1973, see 
also Fig. 7) within the double ring on the PF-face. Cells were mixed with water instead of AED. (d-f) Exocytotic openings are seen during 
the period when plasma membrane and trichocyst membrane are actually fused. Some prominent rosette particles are diffusely distributed 
around the exocytotic opening just formed, and several small IMPs are visible in the PF-face near the exocytotic opening. Cells were frozen 
80 ms after stimulation with AED. (g-i) The resealed plasma membrane displays a round double ring filled with numerous small and 
"ill-defined" IMPs on the PF-face, whereas the EF-face is totally smooth. No or only a few rosette IMPs (arrowhead) are seen on either 
fracture face at the exocytosis sites. Cells were frozen 1,200 ms after stimulation with AED. (j-l) "Parentheses" are indicative for nonoc- 
cupied exocytosis sites (after detachment of ghosts). Cells were frozen 40 s after stimulation with AED. Bar, 100 nm. 

during exocytosis are distinct steps in Paramecium (Bilinski 

et al., 1981; Matt and Plattner, 1983). Because Ca ++ is as- 

sumed to be involved in these processes, we tried to answer 

the question whether Ca÷% is necessary for exocytotic mem- 

brane fusion. Since these cells are very sensitive to 

prolonged withdrawal of  Ca+%, we made use of  the quenched 

flow device to chelate Ca++o for a defined short time (500 ms) 

before stimulation. On the basis of  the experiments described 

above, we know that in the presence of  [Ca++]~ = 10 -3 M, 

membranes are fused and the trichocyst contents are ex- 

truded 80 ms after AED stimulation. We chose this time 

point to freeze the cells stimulated under conditions of re- 

duced [Ca÷÷]o (i.e., 500 ms EGTA and 80 ms AED + 

EGTA, [Ca++]c <30  nM). Evaluation of  grazing thin sections 

revealed retention of  trichocyst contents (Fig. 8; Table I). 

Freeze-fracture replicas, however, showed the membranes to 

be fused, as can also be seen in median thin sections (Fig. 

9; Table I). Thus, only decondensation of the trichocyst ma- 

trix, but not membrane fusion depends on Ca+%. 

Discussion 

In the present study we report on three major findings. (a) 

The time course of  exo-endocytosis in Paramecium cells is 

described. (b) Specific membrane integrated ("rosette") par- 

ticles dissociate into smaller IMPs during membrane fusion. 
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Figure 5. Time dependence of ultrastructural changes in the plasma 
membrane. Fracture faces of cells frozen at defined time points af- 
ter exocytosis stimulation were analyzed as indicated in Materials 
and Methods, to determine the frequency of stages (defined and 
described in Fig. 4). In at least three independent experiments ap- 
proximately 20 cells were analyzed for each data point. (Open cir- 
cles) Resting stages with fusion rosettes, (filled circles) exocytotic 
openings of variable size, (open triangles) double ring filled with 

numerous small particles (resealing stage). Parentheses depicted in 
Fig. 4 were not considered here, since they were observed only at 
a very low and not significantly changing frequency during the time 
period analyzed; preliminary data indicated an increase only at times 
where retrieval of the trichocyst membrane has been observed (Pape 
and Plattner, 1985). 
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Figure 7. Change in frequency of rosette IMPs and small central 
IMPs (c.f. Fig. 6) during membrane fusion. The number of rosette 
IMPs and small IMPs at fusion spots (central area of 130 nm diam) 
during rest and after AED stimulation (30 and 1,200 ms) was count- 
ed. (As an internal control we also determined the more peripheral 
b-type IMPs in the area adjacent to the double ring, see also Fig. 
4). In the fusogenic (central) area the number of rosette IMPs is 
reduced from '~7-8 to below 2, whereas the number of central small 
IMPs increases from ~3 (some very central b-type IMPs) to ",,35 
upon AED stimulation. (The number of small peripheral IMPs did 
not change). More than 20 docking sites obtained in different ex- 
periments were evaluated for controls and stimulated cells. 

Figure 6. Fusion intermediates. Restructuring of the fusogenic zone in the plasma membrane during exocytotic membrane fusion (30-50 
ms AED), i.e., at a stage between those depicted in Fig. 4, a-c and d-f. (a) PF-face. (b) EF-face. Note the funnel-like depression of the 
cell membrane, the occurrence of a central focal (point) fusion intermediate at arrowheads (represented by a pit [a] or an IMP [b], respec- 
tively, as well as the numerous surrounding small IMPs in the PF-face and few rosette IMPs in both fracture faces. Bar, 100 nm. 
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Figure 8. Trichocyst content and membrane fusion in cells stimulated in the absence or presence of EGTA. as, alveolar sacs; ci, cilium; 
tc, trichocyst contents. (a) Thin section of control cell stimulated in the absence of EGTA ([Ca++]e = 1 mM) for 80 ms as indicated in 
Materials and Methods. All trichocysts are extruded here; empty trichocyst membrane ghosts (only visible in the plane of the tips) are 
marked by arrowheads. (b) Thin section of a cell stimulated in the presence of 4.5 mM EGTA ([Ca++]c < 30 nM) for 80 ms. Trichocyst 
contents are completely retained and marked by arrowheads. (c) Freeze-fractured plasma membrane (EFface) of a control cell stimulated 
in the absence of EGTA ([Ca++]c = 1 mM) for 80 ms. Small exocytotic openings characteristic of membrane fusion spots after discharge 
of trichocysts are visible (arrowheads). (d) Freeze-fractured plasma membrane (EF-face) of a cell stimulated in the presence of 4.5 mM 
EGTA ([Ca++]c < 30 nM) after 80 ms. Exocytotic openings indicative of fused membranes are visible. The diameter of the openings is 
larger than in control cells and trichocyst contents, though still in a condensed state, are also recognized. Bar, 1 ~m. 

(c) No Ca ++ influx is required for induction of membrane 

fusion. All results are based on experiments using rapid mix- 
ing followed by rapid freezing, i.e., quenched flow. 

Quenched Flow as a Tool for the Analysis 

of  SubceUular Dynamics 

Flow techniques (with a time resolution in the millisecond 
range) as a means for the analysis of rapid kinetics have been 
used since 1923 (Hartridge and Roughton), as continuous, 
stopped or quenched flow (Chance et al., 1964). But only 
occasionally have flow techniques (in whatever form) been 
used for the analysis of whole cells (Utsunomiya et al., 1986; 
Sage and Rink, 1987; Merritt and Rink, 1987; Carty et al., 
1986; Jones et al., 1989). Cell damage induced by the proce- 

Table I. Influence of [Ca++]e on Membrane Fusion and 
Trichocyst Decondensation 80 ms after AED Stimulation 

[Ca2+o] Trichocysts retained Membranes fused 

% % 

1 mM 29 52 
<30 nM 79 50 

The values (medians from 7 to 25 cells from two independent experiments) 
have been determined by counting retained trichocysts (on ultrathin sections) 
and fused membranes (analyzed on freeze-fracture replicas). While the differ- 
ence in trichocyst content is highly significant (p < 0.0001), the amount of 
membranes fused is not different (even at p > 0.1; determined by U-test). 

dure (a serious risk, as we had learned in pilot experiments 
with commercial equipment) might have hampered its more 

general use. This problem has now been overcome for ceils 
even as big and as fragile as Paramecium tetraurelia. 

After mixing we stopped cellular responses and collected 
the cells by rapid freezing. For analytical techniques, where 
real-time observation of living cells is not possible, this rep- 
resents a generally applicable alternative. In this study we 
used electron microscopy for a first description and defini- 
tion of events during exocytosis; but the same cell batches 
may be used for correlated alternative biochemical analyses. 

Time Course of Membrane Fusion and Resealing 

By the use of quenched flow and electron microscopy, single 
events during synchronous exocytosis in Paramecium tetra- 
urelia were discerned on a subsecond time scale: membrane 
fusion ('~30 ms), extrusion of secretory contents (<80 ms) 
and resealing of the fused membranes (<350 ms). (The time 
periods indicated apply to all events in the whole population 
of cells analyzed.) To our knowledge this is the best defined 
exocytotic system as yet, and therefore represents a solid ba- 
sis to address various questions specific to each of the single 
events, particularly since all secretory organelles are released 
synchronously. 

Changes in Membrane Structure 

During membrane fusion and resealing the morphology of 
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Figure 9. Membrane fusion aspects of cells stimulated in the presence of EGTA. as, alveolar sacs; ci, cilium; cs, collar striations; pro, 
plasma membrane; an, trichocyst membrane; tb, trichocyst body; it, trichocyst tip. (a) In a cross-fractured cell, continuity of the plasma 
membrane (pro) with the trichocyst membranes (tin) is apparent. (b) Detail from a; cs, collar striations of trichocyst membrane in continuity 
with the plasma membrane. (c) Median section of a trichocyst revealing continuity of the plasma membrane with the trichocyst membrane. 
The trichocyst body shows no sign of decondensation, but the trichocyst tip sticks through a 0.3-#m-wide exocytotic opening. Bars, 1 #m. 

the freeze-fractured plasma membrane  displays a significant 
change: a rosette of about seven to eight prominent IMPs at 
the docking site is replaced by numerous small IMPs. This 
transition is already obvious 30 ms after stimulation, a time 

during which membrane fusion, but not resealing, is consid- 
ered to take place. Most trichocysts are not yet extruded. 
Two possibilities can be envisaged. (a) The rosette IMPs 
diffuse very rapidly out of the double ring encircling the fu- 
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sion spot (Olbricht et al., 1984) and the numerous small 
IMPs would be rapidly inserted. (b) The rosette IMPs dis- 
sociate giving rise to smaller subunits. The following argu- 
ments are in favor of the second possibility. (a) Rosette IMPs 
were identified as proteins due to their sensitivity to proteo- 
lytic enzymes (Vilmart and Plattner, 1983), and integral 
membrane proteins exhibit diffusion coefficients in the order 
of 10 -1° cm2/s (McCloskey and Poo, 1984). This is too slow 
to allow most rosette IMPs to diffuse out of the double ring, 
even if any restraints holding them in place before would 
have been lost very rapidly. (b) It is suggested that rosette 
IMPs are assembled from smaller subunits by the underlying 
"connecting material" (Beisson et al., 1980), and indeed 
during docking of the trichocysts a "filled ring" exhibiting 
small IMPs has been observed preceding the assembly of ro- 
sette IMPs (Pape and Plattner, 1985). (c) A ratio of about 
six smaller IMPs to one rosette IMP has been observed. 
This would be a reasonable stoichiometry for an oligomeric 
protein. 

Therefore we conclude that dissociation of the fusion ro- 
sette IMPs is correlated with membrane fusion, and that this 
is likely a causal relationship. The dissociation of oligomeric 
proteins as a means to expose previously hidden hydropho- 
bic moieties (and thus turn proteins fusogenic) is discussed 
by Stegmann et al. (1989). The authors are attracted by the 
fact that such a change in protein conformation could easily 
be induced under physiological conditions. Oligomeric pro- 
tein dissociation as a possible mechanism for membrane fu- 
sion has also been proposed by Lew et al. (1988) based on 
observations of inside-out vesiculation of erythrocytes. The 
disruption of the spectrin network liberates integral mem- 
brane proteins for monomerization and free diffusion. These 
monomers can disturb the continuous bilayer by the forma- 
tion of openings, of free edges and of various fusion and 
fission events. 

Such a mechanism would be compatible with our observa- 
tions. The rosette IMPs are stabilized and kept in place by 
a connecting material between the plasma membrane and the 
trichocyst membrane (Beisson et al., 1980; Plattner et al., 
1980; Westphal and Plattner, 1981; Pouphile et al., 1986). 
The trigger for membrane fusion would then affect this link, 
thereby setting the monomers of the rosette IMPs free to turn 
fusogenic. 

The Role and Possible Source of Calcium 

Chelation of Ca +÷ to 30 nM before, and considerably below 
this value during AED stimulation, resulted in inhibition of 
trichocyst decondensation, but membrane fusion was not af- 
fected. This result provides strong evidence against a gradient- 
driven Ca ÷+ influx as a step necessary for induction of mem- 
brane fusion during trichocyst exocytosis (Satir et al., 1988; 
Satir, 1989; Kerboeuf and Cohen, 1990). Instead, the signal 
transduction pathway between AED binding and membrane 
fusion might require the liberation of Ca ÷+ from intracellular 
stores, presumably the alveolar sacs underlying the plasma 
membrane (Stelly et al., 1991). On the other hand, extrusion 
of secretory contents is obviously tightly coupled to the form- 
ing of exocytotic openings: membrane fusion allows a Ca +÷ 
influx for decondensation of the trichocyst matrix, as sug- 
gested previously (Bilinski et al., 1981). 

This apparent contradiction may be explained by the fact, 
that in several reports a light microscopic assay was applied 

to study Ca ~ requirements for trichocyst exocytosis. There- 
fore membrane fusion and trichocyst decondensation could 
not be discriminated. However, these are distinct events, as 
can be seen clearly in electron micrographs (Figs. 8 and 9) 
in this study and former reports (Gilligan and Satir, 1983; 
Matt and Plattner, 1983). Apparently trichocyst extrusion is 
not suited as the sole parameter to assay membrane fusion. 

In their study Kerboeuf and Cohen (1990) observed an 
AED-induced Ca ++ influx a few seconds after AED stimu- 
lation. The correlation between this influx and membrane fu- 
sion is not very strict, since we show completion of the mem- 
brane fusion step already after 80 ms. At present it seems 
more likely that a Ca ++ influx occurs only after membrane 
fusion, but more highly resolved time measurements are 
clearly necessary. A secondary Ca ++ influx could serve for 
replenishment of Ca+% stores exhausted during stimulation, 
as has been proposed as one general mechanism for IP3- 
induced Ca ++ influx (Putney, 1990). 

Since we have made evident that no Ca ++ influx is neces- 
sary for membrane fusion, we suggest two other possible al- 
ternatives. (a) A rise in [Ca++]i might not be necessary for 
membrane fusion at all. This would be in line with recent 
findings showing that GTP, rather than a rise in [Ca++]i, can 
stimulate exocytosis in some cells (Gomperts, 1990; Platt- 
ner, 1989). In vitro experiments involving the addition of 
GTP to cortices from Paramecium cells have also shown a 
shift of the Ca +÷ sensitivity of the exocytotic response close 
to resting levels (Lumpert et al., 1990). Possibly AED, a ba- 
sic secretagogue as compound 48/80, could directly activate 
a putative GTP-binding protein closely coupled to mem- 
brane fusion (Mousli et al., 1990; Aridor et al., 1990). (b) 
There might be a rapid liberation of Ca ÷÷ from intracellular 
stores. This would be possible, since Ca-storing alveolar 
sacs are in close vicinity of the fusion sites (Schmitz et al., 
1985; Stelly et al., 1991). 
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