
Quenched Phonon Drag in Silicon Nanowires Reveals Significant
Effect in the Bulk at Room Temperature

Jyothi Sadhu,† Hongxiang Tian,† Jun Ma,† Bruno Azeredo,† Junhwan Kim,† Karthik Balasundaram,‡

Chen Zhang,‡ Xiuling Li,‡,§ P. M. Ferreira,† and S. Sinha*,†,§

†Department of Mechanical Science and Engineering, ‡Department of Electrical and Computer Engineering, and §Micro and
Nanotechnology Laboratory, University of Ilinois at Urbana−Champaign, Urbana Illinois 61801, United States

*S Supporting Information

ABSTRACT: Existing theory and data cannot quantify the contribution of phonon drag to the Seebeck coefficient (S) in
semiconductors at room temperature. We show that this is possible through comparative measurements between nanowires and
the bulk. Phonon boundary scattering completely quenches phonon drag in silicon nanowires enabling quantification of its
contribution to S in bulk silicon in the range 25−500 K. The contribution is surprisingly large (∼34%) at 300 K even at doping of
∼3 × 1019 cm−3. Our results contradict the notion that phonon drag is negligible in degenerate semiconductors at temperatures
relevant for thermoelectric energy conversion. A revised theory of electron−phonon momentum exchange that accounts for a
phonon mean free path spectrum agrees well with the data.
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Q uantifying the Seebeck coefficient, S, in semiconductors
across a broad temperature range poses a rigorous test

of fundamental nonequilibrium theory and is important in
engineering thermoelectric1−4 and semiconductor devices.5

The Seebeck effect arising from the diffusion of charge carriers
along a temperature gradient is enhanced by the drag imposed
on carriers from the accompanying diffusion of phonons.
Reflecting this, S is often expressed as a sum of two
contributions,6 charge diffusion (Sd) and phonon drag (Sph).
Quantifying Sph in bulk semiconductors has not received much
attention beyond the initial work,6−9 possibly due to a narrative
that Sph ≪ Sd at the high doping levels10−12 and temperatures
required for practical thermoelectric energy conversion. In the
first derivation provided by Herring,6 Sph = βu0Λ̅/μeT where Λ̅
is mean free path (MFP) of phonons participating in drag, μe is
the electron mobility, u0 is speed of sound, and β is the relative
strength of electron−phonon scattering with respect to the
ionic impurity scattering of electrons. Herring’s formula leads
to the interpretation that Sph ∼ 0 in degenerate semiconductors
when (i) assuming β ≪ 1, based on the Conwell-Weisskopf
(CW) limit13 of ionic impurity scattering; (ii) underestimating
the MFP of long wavelength phonons and; (iii) not accounting
for a phonon MFP spectrum Λ(ω) of drag phonons. Contrary

to the theory, the first experimental data7 in near-degenerate Si
(∼1018 cm−3) shows Sph contributes ∼50% of S at 300 K. The
quantitative understanding of phonon drag remains elusive
even 60 years after the initial exposition, both in bulk
semiconductors and more importantly at the nanoscale. With
the clearer picture of Λ(ω) starting to emerge for several
materials,14,15 reexamining phonon drag and its magnitude is of
immediate physical and technological interest.
However, direct measurements of Sph are unknown even for

bulk semiconductors. Existing experiments derive Sph indirectly
by subtracting a theoretical Sd from the measured S. The
separation of S into Sd + Sph implicitly assumes phonons reach
stationary equilibrium by Umklapp processes more rapidly than
electrons, a condition only true in nondegenerate semi-
conductors. At higher carrier concentrations (>1018 cm−3 for
Si at 300 K) though,16 simultaneous electron−phonon
nonequilibrium can erase any unique distinction between Sd
and Sph. Consideration of simultaneous nonequilibrium is then
necessary to rigorously satisfy the Kelvin-Onsager relations.17
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This complicates an unambiguous extraction of Sph from S data.
In this Letter, we show that comparative measurements of S in
the bulk and in nanowires resolve this issue even in highly
doped Si. In nanowires, phonon boundary scattering drives the
faster equilibration of phonons, decoupling S into the simple
sum Sd + Sph, and also progressively reduces Sph with decreasing
dimensions. In narrow wires (≲100 nm), Sph is completely
quenched across a wide temperature range (∼25−500 K). This
shows the comparison of measurements on such nanowires
against those on equivalently doped bulk yields Sph in the bulk.
Contrary to the common narrative, we find that Sph contributes
significantly to S in bulk Si (∼34% of S) even at 300 K and ∼3
× 1019 cm−3 doping. Quantitative understanding of Sph in the
bulk is a major step toward understanding drag in low-
dimensional materials and nanostructures.
The fundamental insight guiding our experiments is that

there exists a crystal size below which Sph ∼ 0 across a wide
range of temperatures. We obtain approximate quantitative
estimate of this size from Herring’s classic theory6Herring
models drag in Peltier framework (Π-approach, a reserve of
Seebeck effect) where phonon drag is the thermal flux set up in
an isothermal conductor by an unit electric current. The
thermal flux is a result of a balance of the momentum added to
phonons through electron−phonon processes and that
destroyed through phonon−phonon processes. Sph is propor-
tional to the spectral average of the net change in phonon
momentum ΔP0(q) and depends on the phonon MFP
spectrum τ(q) where q is phonon wavenumber. While the
specific form of ΔP0(q) is complicated, its scaling with the
boundary length, lb is readily obtained. Assuming phonons are
propagating in a cylinder wire (along x-axis) of radius lb, the net
crystal momentum change ΔP(q;r) due to boundary scattering
is related to that in bulk ΔP0(q) by the Boltzmann equation for
momentum transfer6
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where τq
−1 is the phonon scattering rate of mode q in absence of

boundary scattering. We solve for ΔP in eq 1 assuming diffuse
boundaries such that ΔP(q;lb) = 0 (see Supporting Information
S1). The spectral and radial average of net momentum change
of each mode, ΔP̅(q;r) is proportional to Sph in nanowire. We
define a scattering ratio γ = ΔP̅/ΔP̅0 that quantifies the scaling
of Sph with boundary scattering. Figure 1 plots γ with crystal
size lb at 300 K, showing that the boundary scattering starts

affecting Sph at wire radii <10 μm. Drag is completely quenched
as the wire radius approaches ∼100 nm. In this Letter, we show
that indeed this is the case and by comparing S in ∼100 nm
diameter wire with that in the bulk at the same doping, we
directly quantify Sph in the bulk.
We employed a frequency-domain technique18,19 to perform

cross-plane measurements of S in silicon nanowire (SiNW)
arrays. This is in contrast to steady state, in-plane measure-
ments of S in individual or few nanowires in previous work,20,21

where both electrical and thermal contact resistances can be
relatively large and introduce significant errors, often difficult to
quantify. The cross-plane geometry enables measurements
from a top contact of ∼mm2 area over the nanowire array.
Cross plane measurements by the well-known Harman
technique22,23 suffer from parasitic joule heating at the contacts
and nonuniform current injection through the sample
complicates the extraction of S. We avoid these issues by
employing instead an open-circuit measurement based on
frequency dependent heating. Steady periodic heating creates a
frequency dependent temperature distribution across a SiNW
array fabricated on top of a Si substrate. The open circuit
Seebeck voltages developed across the array, the substrate and
any contacts have distinguishable frequency responses due to
variable heat penetration in each layer. The geometry further
facilitated secondary ion mass spectrometry (SIMS) for
measuring dopant concentrations, important in estimating Sd.
In past work,20 carrier concentration has been inferred from
resistivity measurements but known issues complicate a reliable
extraction.24

Metal-assisted chemical etching on low-doped Si provided
silicon nanowire arrays (SiNWs) with mean diameter 120 nm
and standard deviation 20 nm.25 The arrays were subsequently
doped ex situ26 and the dopant concentrations in the SiNW
arrays was characterized using secondary ion mass spectroscopy
(see Supporting Information S2). Figure 2a shows the
schematic of the measurement platform. Joule heating in the
line heater using an ac current (∼40 mA) at frequency ω set up
temperature oscillations across the sample and the heater
(ΔTh) at frequency 2ω. The Seebeck voltage across the SiNW
array (ΔVNW) and the substrate (ΔVsub) also oscillate at 2ω and
is measured by a lock-in amplifier to yield an open-circuit
voltage, V2ω = ΔVNW + ΔVsub. In order to isolate the
contribution of the SiNW array from that of the substrate,
we measured an additional reference sample comprising only
the substrate with the same insulation layer. Comparing the
reference and the NW array sample, we could differentially
extract the temperature drop across the SiNW array (ΔTNW =
ΔTh,NW − ΔTh,ref) and its Seebeck voltage contribution (ΔVNW

= V2ω,NW − V2ω,ref) to obtain the Seebeck coefficient of the
array (SNW = ΔVNW/ΔTNW). Good fits to the data of ΔTh and
V2ω with modulation frequency using standard 3ω heat
diffusion models show negligible contributions from the
contacts in our measurements on bulk and NWA samples
(see Supporting Information S3). The thermal conductivity of
the SOG filled array is simultaneously obtained as kARRAY =
PhNW/(2bLh ΔTNW) where hNWis the height of NW array, Lh

and 2b are the length and the full width of the heater line with
heating power P. The thermal conductivity of NW array is
calculated from the areal coverage (x) of NWs as kARRAY = xkNW
+ (1 − x)kSOG. The differential measurement scheme requires
the thermal penetration depth to be smaller than the substrate
thickness and the length of the heater in both the reference and
the SiNW samples. Selecting appropriate frequency windows at

Figure 1. Phonon drag quenching by boundary scattering represented
by γ, the ratio of total crystal momentum ΔP̅ in low-dimensional wires
in comparison to that in bulk ΔP̅0. Sph reduces by boundary scattering
at dimensions below ∼10 μm at 300 K. Validated Umklapp scattering
rates are considered for τq

−1 with τumk
−1 = 1.6 × 10−17ω2 for longitudinal

and 2.5 × 10−17ω2 for transverse modes at 300 K.39
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different temperatures ensures this condition. Figure 2b,c
illustrates the frequency responses of the heater temperature
rise and the Seebeck voltage respectively in measurements
conducted at 300 K. Measurements at 300 K employed
frequencies in the range 200−4000 Hz but those at low
temperature, for example, 80 K, required a frequency window
>1 kHz.
Figure 3a shows the temperature trend of the measured S for

bulk Si and p-type NW arrays doped to ∼1019 cm−3 with
surface roughness height of 0.4 nm (diameter d = 108 nm) and
1.3 nm (d = 98 nm) respectively. We find that S in SiNWs
decreases by ∼62% at 100 K and by ∼34% at 300 K irrespective
of roughness. The temperature trend of S is markedly different
than the trend in the bulk and, as discussed later, is consistent
with the argument that phonon drag is quenched in nanowires.
Figure 3a also shows S measured on mesoporous nanowires
obtained through direct metal-assisted etching of a degenerate
Si wafer27 (N = 3 × 1019 cm−3). Interestingly, S at 300 K in this
case is similar in magnitude to that in the bulk Si but possesses
a steeper slope with respect to temperature. We varied doping
in SiNWs in the degenerate range to further investigate the
trends. Figure 3b shows the Seebeck measurements in the
temperature range 300−450 K on smooth nanowire arrays (d =
100−125 nm) doped between 3 × 1018 and 7 × 1019 cm−3.
Table 1 summarizes the details of the samples used in this
work.
To understand the reduction in S in SiNW relative to the

bulk across all doping, we first calculate the diffusion
component, Sd, in the wires. The diffusion component is the
average energy transported by the carriers relative to the Fermi
level (EF) and assuming phonon equilibrium28
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where D(E) is three-dimensional (3D) density of states, f 0′ is
the energy derivative of the Fermi distribution f 0, EF is the
Fermi level relative to band edge, vx is electron velocity, ⟨*⟩ is
the average over the electron relaxation time τ(E), which is
obtained from the literature29,30 (see Supporting Information
S4). The dashed lines in Figure 3a show the Sd calculated using
eq 2. The temperature-dependent electron scattering rate
τ−1(E) is obtained using Mattheissen’s sum of electron (hole)-
phonon, ionic impurity, intervalley, plasma, and boundary
scattering rates.31 When considering scattering from ionic
impurities, a simple revision to the Brooks-Herring formula32

qualitatively corrects the erroneous narrative of β ≪ 1 obtained
from the CW limit at high doping. For solid NWs in Figure 3a,
we found the SiNW data to be in good agreement with Sd
calculated at the same doping concentration as measured from
SIMS. The carrier concentration was also verified using single
nanowire measurements where possible (see Supporting
Information S5). For calculating Sd at higher temperatures
(300−450 K), it is useful to express τe ∝ Er−1/2 or (electron
MFP Λe ∼ Er) where the “scattering exponent” r can vary from
0 to 2 depending on the dominant scattering process. The
dashed lines in Figure 3b shows Sd calculated from eq 2 by
fitting the parameter r in τ(E). We find that the best fit value of
r varies between 0.7 at low doping (N = 3 × 1018 cm−3) to 1.2
at high doping (N = 7 × 1019 cm−3). The increase in r with
doping reflects the increasing dominance of ionic impurity
scattering over longitudinal acoustic phonon and boundary
scattering.
Previous reports on Seebeck effect in nanowires suggested21

that nanowires can exhibit an anomalous phonon drag
enhancement. The present work contradicts this possibility;
instead, boundary scattering reduces phonon drag as expected.
In contrary, we observe larger magnitude and steeper trend of S
in wires obtained by directly etching highly doped Si, similar to
data reported by Hochbaum et.al.20 Such steep S versus T trend
is unphysical for uncompensated c-Si and we attribute the result
to porosity in the wires. Similarly, we also find the thermal

Figure 2. (a) Schematic showing the platform for the simultaneous measurement of Seebeck coefficient and thermal conductivity on the spin-on
glass filled nanowires. The frequency response of the temperature rise of the heater (b) and the measured Seebeck voltage (c) normalized by heating
power at 300 K.
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conductivity (kNW) of these wires dramatically reduced to 2.6
W/mK (Table 1) similar to the ref 20 while the solid NWs have
kNW close to Casimir limit for doped wires. To understand the
anomalous trend of S in the mesoporous wires, we measured
the electrical resistivity of the NW arrays versus temperature

(see Supporting Information Figure S5). The temperature
trend of resistivity and Sd are sensitive to the energy exponent
of the electron scattering rate while their magnitudes depend
on Fermi level. Assuming a fixed carrier concentration, we fit
the resistivity using energy exponent r and obtained the best fit
value as r = 2.2, consistent with previously reported carrier
scattering in bulk porous silicon.33 We find that the Sd
calculated from using r = 2.2 also fits the measured S
remarkably well. Thus, the larger S in mesoporous nanowires is
influenced either by the strong energy dependence in carrier
scattering (τe ∝ E1.7) or carrier depletion and is unrelated to
phonon drag.
The quenched phonon drag in solid NWs further allows us

to directly infer the contribution of drag in the bulk from the
difference between the data for the bulk and the nanowires. We
find that phonon drag enhancement in the bulk is comparable
to kb/e (where kb is the Boltzmann constant and e is the
electronic charge) at 300 K even at doping of 3 × 1019 cm−3.
This contradicts the narrative34 that drag is relevant only at low
temperature. Figure 4 plots this contribution across several
doping levels. At low doping (N < 3 × 1018 cm−3), the
temperature dependence is Sph ∼ T−2.1 (100−300 K) as shown
in Figure 4a and decreases at higher doping. The exponent
agrees closely with the data of Geballe et al.7 and deviates from
Herring’s prediction6 of ∼T−3.5 dependence. The discrepancy
has previously been attributed to the finite size of samples but
never satisfactorily explained. We now show that incorporating
the appropriate MFP spectrum of phonons, Λ(ω), in the
theory yields the exact observed temperature dependence.
To revise the formula for Sph, we require the relation for the

electron energy flux resulting from the interacting with diffusing
phonons of relevant frequencies. For this, we need to obtain the
change in electron ( f = f 0 + f 0′ge·kx) and phonon distributions
(N= N0 − N0′gp·qx) in response to the temperature gradient
dT/dx and the resulting electric field Fx*. Here, f 0(k) and
N0(q) are distribution of electrons and phonons respectively at
equilibrium while ge and gp are their respective deviations from
equilibrium. f 0′ and N0′ are the derivatives with respect to
electron and phonon energy, respectively. kx and qx are electron
and phonon wavevector, respectively, along the direction of
transport. Using these distribution functions, we can write the
Boltzmann transport equation for electrons16,35 under external
forces and scattering processes including e-ph interaction as

Figure 3. Seebeck coefficient of NW arrays (a) temperature dependent
and (b) measured across several doping concentrations. The dashed
lines represent the diffusion component, Sd calculated theoretically
using eq 2. The open symbols represent data for bulk Si.

Table 1. Summary of the Samples Used in the Seebeck Measurements with Their Room Temperature Thermal Conductivity
with the Labels Px (p-type), Nx (n-type) and MS (mesoporous) SiNW arraysa

sample # est. doping diameter length areal coverage k (300 K)

BK1 3 × 1019 cm−3 B 83 Wm−1 K−1

BK2 3 × 1018 cm−3 B 128 Wm−1 K−1

BK3 6 × 1019 cm−3 P 72 Wm−1 K−1

BK4 2 × 1017 cm−3 B 141 Wm−1 K−1

P1 3 × 1018 cm−3 B 123 nm 1.3 μm 20.3% 21 Wm−1 K−1

P2 8 × 1018 cm−3 B 95 nm 1.25 μm 19.6% 26 Wm−1 K−1

P3 5 × 1019 cm−3 B 104 nm 2.3 μm 18.6% 17 Wm−1 K−1

P4 1.5 × 1019 cm−3 B 98 nm 1.2 μm 24.8% 23 Wm−1 K−1

P5 2 × 1019 cm−3 B 108 nm 2.1 μm 28.6% 34 Wm−1 K−1

MS1 3 × 1019 cm−3 B 112 nm 1.6 μm 27.3% 2.6 Wm−1 K−1

N1 7 × 1019 cm−3 P 122 nm 1.4 μm 17.2% 18 Wm−1 K−1

aBK are the bulk Si wafers of 550 μm thick.
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Solving eq 3 along with BTE for phonons and imposing zero

current condition ∫ 0
∞D(E)f 0′ge(E)dE = 0, we obtain the

Seebeck coefficient S = Fx*/(dT/dx). Here lae = πℏ4ρu0
2/

m*2Ξ2kbT is the characteristic length of electron acoustic

phonon scattering, where Ξ is the deformation potential, ρ is

the crystal density, m* is the conductivity effective mass, and u0
is phonon speed. When gp is set to zero in eq 3, the resulting S

is simply the diffusion component Sd shown in eq 2. However,

in the presence of a temperature gradient dT/dx the nonzero gp
adds to the electron momentum (second term in RHS of eq 3)

leading to phonon drag. The integral indicates that an electron

in state (E,k) receives momentum from phonons of wavevector

q ≤ 2k. To calculate gp, let us first assume that phonons are

restored to the stationary state rapidly by phonon−phonon
processes. In this case, gp is independent of electron distribution

f and can be simply expressed as gp(q) = ℏu0(Λph/T)(dT/dx).

Here, Λph is the phonon MFP calculated using Mattheissen’s

sum of all phonon scattering processes. We assume a linear

dispersion, ω = u0q for long wavelength phonons. Sph is then

obtained from the contribution of the integral containing gp in

eq 3. Using the specific heat per frequency C(ω) = ℏω(dN0/

dT)(ω2/u0
3) and phonon−electron MFP Λep

−1 = xf 0(q/2)/2lae
where x = ℏω/kbT, the resulting phonon drag is
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At low doping, momentum conservation dictates phonons only
up to ωc ∼1 THz contribute to drag.

36 At these frequencies, the
phonon−phonon processes (Λpp

−1 ∼ ω2Te−c/T) dominate the
phonon scattering rate Λph

−1 at sufficiently high temperatures.
Using Λpp

−1 ≫ Λep
−1 in eq 4, we obtain Sph ∝ T−3/2ec/T with a

weak dependence on carrier density. Figure 4a shows that this
temperature trend correctly predicts the ∼T−2.1 trend of the
data for low-doped Si (Figure 4a). The data for 3 × 1018 cm−3

also approaches a similar temperature trend for T > 200 K
where Umklapp processes becomes dominates phonon
scattering. Ignoring the MFP spectrum and using a single
MFP Λ̅ at 300 K10,37 under predicts the measure of Sph.
However, revising the theory to include the MFP spectrum and
averaging over frequencies up to the critical cutoff frequency ωc

is crucial in understanding the trend and measure of Sph.
At degenerate doping, the higher rate of electron−phonon

scattering decreases the magnitude of Sph. Figure 4b plots the
data and the predictions from eq 4 to show good agreement
with some deviations in the intermediate temperatures. Here,
the deformation potential of longitudinal phonons, Ξ = 7 eV is
the only fitting parameter. High carrier densities (n) broaden
the phonon spectrum that interacts with electrons because the
phonon critical frequency ωc (= 2u0KF, where KF is Fermi
wavevector) scales as n1/3. At n ∼ 3 × 1019 cm−3, ωc increases to
∼2.5 THz. At low temperatures, the increased excitation of
phonon modes below ωc (Tc = ℏωc/kb =125 K) competes
against increased phonon scattering. Consistent with this
picture, the Sph data reaches a peak value of ∼2kb/e at 90 K
as shown in Figure 4b. The temperature trend for T > 90 K is
flatter in comparison to nondegenerate Si due to the
dominance of phonon−electron scattering (Λep

−1 ∼ ω) over
phonon−phonon scattering that has a steeper temperature
dependence. At higher temperatures, Λpp

−1 becomes comparable
to Λep

−1 for ω < ωc, and we observe a steeper decline in Sph with
a transition toward ∼T−2.1 dependence. An extrapolation
reveals that phonon drag does not vanish until T ∼ 600 K.
Finally, we discuss the validity of the assumption in deriving

eq 4. Strong electron−phonon scattering at degenerate doping
sets up simultaneous nonequilibrium between electrons and
phonons.17,36 The phonon imbalance gp now depends on ge,
requiring the solution of coupled Boltzmann equation of
electrons and phonons. The Seebeck coefficient in this case
cannot be decomposed into drag and diffusion. In metals, the
coupled treatment is well established38 (where electrons at EF

only contribute to transport), but not straightforward for
semiconductors. Using Conwell’s iterative solution scheme35

for solving coupled ge and gp in degenerate semiconductors, we
obtain the first order effect of this coupling on S (see
Supporting Information S6). Figure 4b plots the resulting S
minus Sd, showing a slight increase in phonon contribution to S
at 3 × 1019 cm−3 peaking at ∼80 K. This result shows that
simultaneous nonequilibrium effects between electrons and
phonons require much higher carrier concentration than ∼1019

Figure 4. (a) The phonon drag component in bulk Si extracted at
various doping concentrations with temperature dependent fits
(dashed lines). (b) Equation 4 for Sph (dashed line) that accounts
for phonon MFP spectrum agrees with the data for degenerate Si. Sph
(solid line)from first order iterative solution of coupled BTE of
electrons and phonons.
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cm−3 and that eq 4 is a good approximation for Sph of ∼3 ×

1019 cm−3.
In conclusion, we have experimentally shown that phonon

drag contributes significantly to S in bulk Si even near room
temperature and at degenerate doping. Boundary scattering of
phonons in Si nanowires completely quenches drag and
reduces S by ∼34% and the power factor for optimal doping
by at least ∼57% at 300 K. We further expect the absence of Sph
will reduce Seebeck coefficient in nanoarchitectures like
nanomeshes and thin films with characteristic length scales
≲100 nm. In matching the magnitude and trend of Sph from
Herring’s theory, we have revised the formulation to consider a
phonon MFP spectrum. We further find that the issue of
simultaneous nonequilibrium of electrons and phonons is not
pronounced at n ∼ 1019 cm−3. Finally, phonon drag
measurements can provide a means to further study the
phonon MFP spectrum.
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