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Abstract. This article studies a semilinear parabolic first initial-boundary value

problem with a concentrated nonlinear source in an N -dimensional infinite strip. Criteria

for the solution to quench are given.

1. Introduction. A first initial-boundary value parabolic quenching problem due

to a concentrated nonlinear source in one spatial dimension was studied by Chan and

Jiang [1]. It was shown that the larger the domain, the larger the solution. This implies

that quenching occurs if the domain is sufficiently large. Chan and Tragoonsirisak [3]

investigated a multi-dimensional version in theN -dimensional Euclidean space RN . They

showed that for this unbounded spatial domain, the solution always quenches in a finite

time for N ≤ 2; for N ≥ 3, they proved that there exists a unique critical number

α∗ (corresponding physically to the strength of the source) such that the solution exists

globally for α ≤ α∗ and quenches in a finite time for α > α∗. Instead of RN , here we would

like to consider the spatial domain to be an infinite strip, which is unbounded. Since we

show later that such a problem is equivalent to a one-dimensional mixed-boundary value

problem, our results for an infinite strip with N ≥ 2 are also valid for the corresponding

problem with N = 1. We prove that for any dimension N (≥ 1), the solution can still

exist globally. Quenching criteria, involving the strength of the source, the width of the

strip and the location of the concentrated nonlinear source, are given. Our result that

for N ≥ 1, u exists globally for α ≤ α∗ is different from that when the domain is R
N ,

since in the latter case for N ≤ 2, u always quenches for any α.

Let a point (x1, x2, . . . , xN−1, xN ) in the N -dimensional Euclidean space R
N be de-

noted by (x, x̃), where x stands for x1. Let L and b be positive numbers such that b < L,
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S = (−L,L)× R
N−1, s = (−b, b)× R

N−1, ∂S =
{
(x, x̃) : x ∈ {−L,L} , and x̃ ∈ R

N−1
}
,

∂s =
{
(x, x̃) : x ∈ {−b, b} , and x̃ ∈ R

N−1
}
, ν (x, x̃) denote the unit outward normal at

(x, x̃) ∈ ∂s, and χs (x, x̃) denote a function which is 1 for |x| > b and 0 for |x| < b.

Since the Dirac delta function is the derivative of the Heaviside function, it follows that

∂χs (x, x̃) /∂ν gives a Dirac delta function at each point on x = |b| and is zero everywhere

else (cf. Chan and Tragoonsirisak [3]). Hence, we have a concentrated source on ∂s. Re-

cently, Chan and Tragoonsirisak [5] studied the following problem with a concentrated

nonlinear source on ∂s:

ut −�u = α
∂χs (x, x̃)

∂ν
f(u) in S × (0, T ],

u(x, 0) = 0 on S̄, u(x, t) = 0 on ∂S × (0, T ],

⎫⎬
⎭ (1.1)

where α and T are positive numbers, S̄ is the closure of S, f is a given function such

that limu→c− f(u) = ∞ for some positive constant c, and f(u) and its derivatives f ′(u)

and f ′′ (u) are positive for 0 ≤ u < c. Let H = ∂/∂t − ∂2/∂x2, D = (0, L), D̄ = [0, L],

and Ω = D× (0, T ]. Using symmetry, problem (1.1) is equivalent to the one-dimensional

problem

Hu = αδ (x− b) f(u) in Ω,

u(x, 0) = 0 on D̄, ux (0, t) = u (L, t) = 0 for 0 < t ≤ T ],

}
(1.2)

where δ (x− b) is the Dirac delta function. A solution u is said to quench if there exists

an extended real number tq ∈ (0,∞] such that

sup
{
u(x, t) : x ∈ D̄

}
→ c− as t → tq.

If tq < ∞, then u is said to quench in a finite time. If tq = ∞, then u quenches in

infinite time. They proved existence, uniqueness, and locations where quenching occurs

for the solution. For ease of reference, let us summarize their main results in the following

theorem. Green’s function g (x, t; ξ, τ ) corresponding to problem (1.2) is given by

g (x, t; ξ, τ ) =
2

L

∞∑
n=1

(
cos

(2n− 1)πx

2L

)(
cos

(2n− 1) πξ

2L

)
exp

(
− (2n− 1)

2
π2 (t− τ )

4L2

)

(cf. Chan and Tragoonsirisak [5]).

Theorem 1.1. (a) For (x, t; ξ, τ ) ∈
(
D̄ × (τ, T ]

)
×
(
D̄ × [0, T )

)
, g (x, t; ξ, τ ) is continuous.

(b) For x, ξ ∈ D and 0 ≤ τ < t ≤ T , g (x, t; ξ, τ ) is positive.

(c) If r (t) ∈ C ([0, T ]), then
∫ t

0
g(x, t; b, τ )r(τ )dτ is continuous for x ∈ D̄ and t ∈ [0, T ].

(d) There exists some tq such that for 0 ≤ t < tq, the nonlinear integral equation

u (x, t) = α

∫ t

0

g (x, t; b, τ ) f (u (b, τ )) dτ (1.3)

has a unique continuous nonnegative solution u. This solution u is the unique solution of

problem (1.2) and is a strictly increasing function of t in D. For any t ∈ (0, tq), u (x, t)
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attains its absolute maximum at (b, t) on the region D̄ × [0, t]. If tq is finite, then at tq,

u quenches only at x = b.

We remark that the above results are valid not only for an infinite strip with N ≥ 2,

but also for N = 1 (which is problem (1.2)). In Section 2, we show that there exists a

unique positive number α∗ such that u exists globally for α ≤ α∗ and quenches in a finite

time for α > α∗. We also derive a formula for computing α∗. In Section 3, we study the

effects of L and b respectively on quenching.

2. Critical α. Let us study the effect of α on quenching. We fix L and b.

Lemma 2.1. For each b ∈ (0, L),

lim
t→∞

∫ t

0

g (b, t; b, τ ) dτ = L− b. (2.1)

Proof. Let

gi (b, t; b, τ ) =
2

L

i∑
n=1

(
cos2

(2n− 1)πb

2L

)
exp

(
− (2n− 1)

2
π2 (t− τ )

4L2

)
.

For i = 1, 2, 3, . . ., the sequence∫ t

0

gi (b, t; b, τ ) dτ =
2

L

i∑
n=1

∫ t

0

(
cos2

(2n− 1) πb

2L

)
exp

(
− (2n− 1)2 π2 (t− τ )

4L2

)
dτ

is monotone increasing. As i tends to ∞, the sequence

lim
i→∞

∫ t

0

gi (b, t; b, τ ) dτ =

∫ t

0

g (b, t; b, τ ) dτ

exists by Theorem 1.1(c). Thus,∫ t

0

g (b, t; b, τ ) dτ

=
2

L

∞∑
n=1

∫ t

0

(
cos2

(2n− 1)πb

2L

)
exp

(
− (2n− 1)2 π2 (t− τ )

4L2

)
dτ

=
8L

π2

∞∑
n=1

cos2 (2n−1)πb
2L

(2n− 1)2
− 8L

π2

∞∑
n=1

(
cos2 (2n−1)πb

2L

)
exp

(
− (2n−1)2π2t

4L2

)
(2n− 1)2

=
4L

π2

∞∑
n=1

1 + cos (2n−1)πb
L

(2n− 1)2
− 8L

π2

∞∑
n=1

(
cos2 (2n−1)πb

2L

)
exp

(
− (2n−1)2π2t

4L2

)
(2n− 1)2

=
4L

π2

∞∑
n=1

1

(2n− 1)
2 +

4L

π2

∞∑
n=1

cos (2n−1)πb
L

(2n− 1)
2

− 8L

π2

∞∑
n=1

(
cos2 (2n−1)πb

2L

)
exp

(
− (2n−1)2π2t

4L2

)
(2n− 1)

2 . (2.2)
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Since

∞∑
n=1

1

(2n− 1)
2 =

π2

8
,

∞∑
n=1

cos (2n−1)πb
L

(2n− 1)
2 =

π2

8
− π2b

4L

(cf. Stromberg [6, p. 518]), it follows from (2.2) that

∫ t

0

g (b, t; b, τ ) dτ = L− b− 8L

π2

∞∑
n=1

(
cos2 (2n−1)πb

2L

)
exp

(
− (2n−1)2π2t

4L2

)
(2n− 1)2

. (2.3)

We have

0 <

∞∑
n=1

(
cos2 (2n−1)πb

2L

)
exp

(
− (2n−1)2π2t

4L2

)
(2n− 1)

2

≤
∞∑

n=1

exp
(
− (2n−1)2π2t

4L2

)
(2n− 1)

2

≤
∞∑

n=1

exp
(
−n2π2t

4L2

)
n2

≤
∞∑

n=1

exp

(
−nπ2t

4L2

)
,

which is a geometric series with the common ratio exp
(
−π2t/

(
4L2

))
. Hence,

0 ≤ lim
t→∞

∞∑
n=1

(
cos2 (2n−1)πb

2L

)
exp

(
− (2n−1)2π2t

4L2

)
(2n− 1)2

≤ lim
t→∞

1

exp
(
π2t
4L2

)
− 1

= 0. (2.4)

From (2.3) and (2.4), we have (2.1). �

Lemma 2.2. For α sufficiently small, u exists globally.

Proof. For any t ∈ (0, tq), it follows from Theorem 1.1(d) that on the region D̄× [0, t],

u attains its absolute maximum at the point (b, t). Thus for any u(x, t) ≤ c/2, it follows

from f ′(u) > 0 that

u (x, t) ≤ u (b, t) ≤ αf
( c

2

)∫ t

0

g (b, t; b, τ ) dτ.

Differentiating the right-hand side of (2.3) term by term with respect to t, we obtain

2

L

∞∑
n=1

(
cos2

(2n− 1)πb

2L

)
exp

(
− (2n− 1)2 π2t

4L2

)
≤ 2

L

∞∑
n=1

exp

(
−n2π2t

4L2

)
,
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which converges uniformly for t in any compact subset of (0, tq). Thus, we can differen-

tiate the right-hand side of (2.3) term by term (cf. Wade [7, pp. 190-191]) to obtain

∂

∂t

∫ t

0

g (b, t, b, τ ) dτ =
2

L

∞∑
n=1

(
cos2

(2n− 1) πb

2L

)
exp

(
− (2n− 1)

2
π2t

4L2

)
> 0. (2.5)

Using Lemma 2.1, we have

u (b, t) ≤ αf
( c

2

)
lim
t→∞

∫ t

0

g (b, t; b, τ ) dτ

= α (L− b) f
( c

2

)
.

By choosing α sufficiently small, namely

α ≤ c

2 (L− b) f
( c

2

) ,
we have u(x, t) ≤ u (b, t) ≤ c/2 for t ∈ (0,∞). This proves the lemma. �

Lemma 2.3. For α sufficiently large, u quenches in a finite time.

Proof. From (1.3),

u(b, t) ≥ αf(0)

∫ t

0

g(b, t; b, τ )dτ.

From (2.1) and (2.5), there exists some t̃ ∈ (0,∞) such that for t ≥ t̃,
∫ t

0
g(b, t; b, τ )dτ ≥

(L− b) /2. Thus for t ≥ t̃,

u(b, t) ≥ α (L− b) f(0)

2
.

By choosing

α ≥ 2c

(L− b) f (0)
,

we have u(b, t) ≥ c, which implies that u quenches in a finite time. This proves the

lemma. �
The proof of the following result is similar to that of Theorem 4 of Chan and Jiang

[1] for a first initial-boundary value problem (cf. Chan and Kaper [2], and Chan and

Tragoonsirisak [4]).

Theorem 2.4. If u(x, t) ≤ C for some constant C ∈ (0, c), then u(x, t) converges from

below to a solution U(x) = limt→∞ u(x, t) of the nonlinear two-point boundary value

problem
−U ′′ (x) = αδ (x− b) f (U) in D,

U ′ (0) = 0, U (L) = 0.

}
(2.6)

Furthermore,

U(x) = αG(x; b)f(U(b)), (2.7)

where

G(x; ξ) =

{
L− ξ, x ≤ ξ,

L− x, x > ξ
(2.8)

is Green’s function corresponding to problem (2.6).
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546 C. Y. CHAN AND P. TRAGOONSIRISAK

Proof. The homogeneous problem corresponding to (2.6) has only the trivial solution.

Its Green’s function G (x; ξ) exists and is given by (2.8). Let

F (x, t) =

∫
D

G (x; ξ)u (ξ, t) dξ,

which is bounded since the integrand is bounded. Because u is the solution of problem

(1.2), F (x, t) may be regarded as a distribution. Using Green’s second identity, we have

Ft (x, t) =

∫
D

G (x; ξ) (uξξ (ξ, t) + αδ (ξ − b) f (u (ξ, t))) dξ

= −u (x, t) + αG (x; b) f (u (b, t)) .

By Theorem 1.1(d), u is a strictly increasing function of t in D. The term

αG (x; b) f (u (b, t)) is monotone increasing with respect to t since f ′ (u) > 0. Thus,

lim
t→∞

Ft (x, t) = − lim
t→∞

u (x, t) + αG (x; b) f
(
lim
t→∞

u (b, t)
)
,

which exists, because u ≤ C. It follows from u being a strictly increasing function of

t in D that F is also a strictly increasing function of t in D. If limt→∞ Ft (x, t) were

strictly positive at some point x, then F (x, t) would increase without bound as t tends

to infinity. Hence, limt→∞ Ft (x, t) = 0. This gives

Ũ (x) = αG (x; b) f
(
Ũ (b)

)
,

where Ũ (x) denotes limt→∞ u (x, t). It follows from u being a strictly increasing function

of t in D that u (x, t) < Ũ (x) in D × (0,∞). Differentiating Ũ (x) twice, we have

Ũ ′′ (x) = −αδ (x− b) f
(
Ũ (b)

)
= −αδ (x− b) f

(
Ũ (x)

)
.

Also, Ũ ′ (0) = 0 and Ũ (L) = 0. Thus, Ũ (x) is a solution of the problem (2.6), and we

have (2.7). �
The next result shows that there exists a critical value α∗ for α. The proof for showing

that the solution exists globally when α = α∗ is the same as that for Theorem 7 of Chan

and Jiang [1]

Theorem 2.5. There exists a unique

α∗ =
1

L− b
sup

0<U(b)<c

(
U(b)

f(U(b))

)
(2.9)

such that u exists globally for α ≤ α∗ and quenches in a finite time for α > α∗. Further-

more, u does not quench in infinite time.

Proof. Let us construct the sequence {un} by u0 (x, t) = 0, and for n = 0, 1, 2, . . .,

un+1(x, t) = α

∫ t

0

g(x, t; b, τ )f(un(b, τ ))dτ .

Using mathematical induction, we have 0 < u1 < u2 < u3 < · · · < un < un+1 in Ω. Since

un is an increasing sequence as n increases, it follows from the Monotone Convergence
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Theorem (cf. Stromberg [6, pp. 266-268]) that

u(x, t) = α

∫ t

0

g(x, t; b, τ )f(u(b, τ ))dτ,

where limn→∞ un(x, t) = u(x, t). To show that the larger the α, the larger the solution,

let β be a positive number such that β < α. We construct the sequence {vn} by v0 (x, t) =

0, and for n = 0, 1, 2, . . .,

vn+1(x, t) = β

∫ t

0

g(x, t; b, τ )f(vn(b, τ ))dτ .

Similarly, 0 < v1 < v2 < v3 < · · · < vn < vn+1 in Ω, and

v(x, t) = lim
n→∞

vn(x, t) = β

∫ t

0

g(x, t; b, τ )f(v(b, τ ))dτ.

Because un > vn for n = 1, 2, 3, . . ., we have u ≥ v. Hence, the solution u is a nonde-

creasing function of α. Since the solution u of problem (1.2) is unique, it follows from

Lemmas 2.2 and 2.3 that there exists a unique α∗ such that u exists globally for α < α∗

and quenches in a finite time for α > α∗.

The critical value α∗ is determined as the supremum of all positive values α for which

a solution U of (2.6) exists. From Theorem 1.1(d), U(x) attains its maximum at x = b.

From (2.7) and (2.8),

U(b) = α (L− b) f (U (b)) .

Thus, we have (2.9).

To show that u exists globally when α = α∗, let us consider the function ψ(s) = s/f(s).

Since ψ(s) > 0 for 0 < s < c, and ψ(0) = 0 = lims→c− ψ(s), a direct computation shows

that ψ(s) attains its maximum when ψ(s) = 1/f ′(s), where s ∈ (0, c) by the Rolle

Theorem. Thus, sup0<U(b)<c (U(b)/f(U(b))) occurs with U (b) ∈ (0, c). This implies

that when α = α∗, U(x) exists and is bounded away from c. Thus, u exists globally

when α = α∗. Since u quenches in a finite time for α > α∗, it does not quench in infinite

time. �

3. Critical domain and location of the source. In this section, we fix α and

study the effects of L and b on quenching.

Theorem 3.1. (i) If

L− b ≤ 1

α
sup

0<U(b)<c

(
U(b)

f(U(b))

)
, (3.1)

then u exists globally.

(ii) If

L− b >
1

α
sup

0<U(b)<c

(
U(b)

f(U(b))

)
, (3.2)

then u quenches in a finite time.
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Proof. (i) Using (3.1), we have

α ≤ 1

L− b
sup

0<U(b)<c

(
U(b)

f(U(b))

)
= α∗.

It follows from Theorem 2.5 that u exists globally.

(ii) From (3.2),

α >
1

L− b
sup

0<U(b)<c

(
U(b)

f(U(b))

)
= α∗.

By Theorem 2.5, u quenches in a finite time. �
The following result follows from Theorem 3.1(i).

Corollary 3.2. If L ≤ L∗, where

L∗ =
1

α
sup

0<U(b)<c

(
U(b)

f(U(b))

)
,

then u exists globally for any location b.

With Corollary 3.2, we obtain the following results respectively from Theorem 3.1(i)

and (ii).

Corollary 3.3. For L > L∗, there exists a unique number

b∗ = L− 1

α
sup

0<U(b)<c

(
U(b)

f(U(b))

)

such that

(i) if b ∈ [b∗, L), then u exists globally;

(ii) if b ∈ (0, b∗), then u quenches in a finite time.

For illustration, let α = 1 and f(u) = 1/(1 − u). A direct computation shows that

U(b) (1− U(b)) attains its supremum when U(b) = 0.5. Thus, L∗ = 0.25. For any

L ≤ 0.25, it follows from Corollary 3.2 that independent of where b is, u exists globally.

If L > 0.25, then it follows from Corollary 3.3 that u exists globally when b ∈ [L− 0.25, L)

and quenches in a finite time when b ∈ (0, L− 0.25).
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