QUENCHING FOR A DEGENERATE PARABOLIC PROBLEM DUE TO A CONCENTRATED NONLINEAR SOURCE

By
C. Y. CHAN and X. O. JIANG
Department of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana 70504-1010

Abstract. Let q, a, T, and b be any real numbers such that $q \geq 0, a>0, T>0$, and $0<b<1$. This article studies the following degenerate semilinear parabolic first initial-boundary value problem with a concentrated nonlinear source situated at b :

$$
\begin{gathered}
x^{q} u_{t}-u_{x x}=a^{2} \delta(x-b) f(u(x, t)) \text { in }(0,1) \times(0, T], \\
u(x, 0)=0 \text { on }[0,1], u(0, t)=u(1, t)=0 \text { for } 0<t \leq T,
\end{gathered}
$$

where $\delta(x)$ is the Dirac delta function, f is a given function such that $\lim _{u \rightarrow c^{-}} f(u)=\infty$ for some positive constant c, and $f(u)$ and $f^{\prime}(u)$ are positive for $0 \leq u<c$. It is shown that the problem has a unique continuous solution u before $\max \{u(x, t): 0 \leq x \leq 1\}$ reaches c^{-}, u is a strictly increasing function of t for $0<x<1$, and if $\max \{u(x, t)$: $0 \leq x \leq 1\}$ reaches c^{-}, then u attains the value c only at the point b. The problem is shown to have a unique a^{*} such that a unique global solution u exists for $a \leq a^{*}$, and $\max \{u(x, t): 0 \leq x \leq 1\}$ reaches c^{-}in a finite time for $a>a^{*}$; this a^{*} is the same as that for $q=0$. A formula for computing a^{*} is given, and no quenching in infinite time is deduced.

1. Introduction. Let q, β, a, and ρ be any real numbers with $q \geq 0,0<\beta<a$, and $\rho>0$. Let us consider the following degenerate semilinear parabolic first initial-boundary value problem,

$$
\left.\begin{array}{c}
\varsigma^{q} u_{\gamma}-u_{\varsigma \varsigma}=\delta(\varsigma-\beta) F(u(\varsigma, \gamma)) \text { in }(0, a) \times(0, \rho], \tag{1}\\
u(\varsigma, 0)=0 \text { on }[0, a], u(0, \gamma)=u(a, \gamma)=0 \text { for } 0<\gamma \leq \rho,
\end{array}\right\}
$$

where $\delta(x)$ is the Dirac delta function and F is a given function. These types of problems are motivated by applications in which the ignition of a combustible medium is accomplished through the use of either a heated wire or a pair of small electrodes to supply a large amount of energy to a very confined area. When $q=0$, the problem

[^0](1) can be used to describe the temperature of a one-dimensional rod having a length a and a concentrated nonlinear source at β. When $q=1$, it may also be used to describe the temperature u of the channel flow of a fluid with temperature-dependent viscosity in the boundary layer (cf. Chan and Kong [4]) with a concentrated nonlinear source at β; here, ς and γ denote the coordinates perpendicular and parallel to the channel wall, respectively.

Let $\varsigma=a x, \gamma=a^{q+2} t, \beta=a b, L u=x^{q} u_{t}-u_{x x}, F(u(\varsigma, \gamma))=f(u(x, t)), D=(0,1)$, $\bar{D}=[0,1]$, and $\Omega=D \times(0, T]$. Then (1) is transformed into the following problem:

$$
\left.\begin{array}{c}
L u=a^{2} \delta(x-b) f(u(x, t)) \text { in } \Omega \tag{2}\\
u(x, 0)=0 \text { on } \bar{D}, u(0, t)=u(1, t)=0 \text { for } 0<t \leq T,
\end{array}\right\}
$$

with $0<b<1$ and $T=\rho / a^{q+2}$. We assume that $\lim _{u \rightarrow c^{-}} f(u)=\infty$ for some positive constant c, and $f(u)$ and $f^{\prime}(u)$ are positive for $0 \leq u<c$.

The case $q=0$ was studied by Deng and Roberts [7] by analyzing its corresponding nonlinear Volterra equation at the site b of the concentrated source:

$$
u(b, t)=a^{2} \int_{0}^{t} g(b, t ; b, \tau) f(u(b, \tau)) d \tau
$$

where $g(x, t ; \xi, \tau)$ denotes Green's function corresponding to (2) with $q=0$. By also assuming that $f^{\prime \prime}(u)>0$ for $u \geq 0$, they showed that there exists a length a^{*} such that for $a \leq a^{*}$, the solution $u(b, t)$ of the integral equation exists for all time and is uniformly bounded away from c while for $a>a^{*}$, there exists some finite t_{q} such that $\lim _{t \rightarrow t_{q}} u(b, t)=c$ and $\lim _{t-t_{q}} u_{t}(b, t)=\infty$.

Instead of studying a solution $u(b, t)$ of the nonlinear Volterra equation, we would like to investigate a solution $u(x, t)$ of the degenerate problem (2). Since $u(x, t)$ need not be differentiable at b, we say that a solution of the problem (2) is a continuous function satisfying (2). In Sec. 2, we show that the problem (2) has a unique solution u, and $u_{x x} \geq$ 0 for $x \in(0, b)$ and $x \in(b, 1)$. It follows from $x^{q} u_{t}(x, t)=u_{x x}(x, t)+a^{2} \delta(x-b) f(u(x, t))$ that $u_{t}(b, t)=\infty$ for each $t>0$. Hence, we say that a solution u of the problem (2) is said to quench if there exists some t_{q} such that $\max \{u(x, t): x \in \bar{D}\} \rightarrow c^{-}$as $t \rightarrow t_{q}$ (cf. Chan and Liu [5]). If t_{q} is finite, then u is said to quench in a finite time. On the other hand, if $t_{q}=\infty$, then u is said to quench in infinite time. We also show that u is a strictly increasing function of t in D, and if u quenches, then b is the single quenching point.

The length a^{*} is called the critical length (cf. Chan and Kong [3]) if a unique global solution u exists for $a<a^{*}$, and if the solution u quenches in a finite time for $a>a^{*}$. In Sec. 3, we show existence of a unique critical length, and that it is the same as that for $q=0$. By making use of $\lim _{u \rightarrow c^{-}} f(u)=\infty$, we show that for $a=a^{*}, u$ exists for $0<t<\infty$, and is uniformly bounded away from c. This shows that quenching does not occur in infinite time. We also derive a formula for calculating a^{*}.
2. Existence, uniqueness, and single-point quenching. Green's function $G(x, t ; \xi, \tau)$ corresponding to the problem (2) is determined by the following system:
for x and ξ in D, and t and τ in $(-\infty, \infty)$,

$$
\begin{gathered}
L G=\delta(x-\xi) \delta(t-\tau) \\
G(x, t ; \xi, \tau)=0 \text { for } t<\tau, G(0, t ; \xi, \tau)=G(1, t ; \xi, \tau)=0 .
\end{gathered}
$$

By Chan and Chan [1], we have

$$
G(x, t ; \xi, \tau)=\sum_{i=1}^{\infty} \phi_{i}(x) \phi_{i}(\xi) e^{-\lambda_{i}(t-\tau)}
$$

where $\lambda_{i}(i=1,2,3, \ldots)$ are the eigenvalues of the problem

$$
\phi^{\prime \prime}+\lambda x^{q} \phi=0, \phi(0)=\phi(1)=0
$$

and their corresponding eigenfunctions are given by

$$
\phi_{i}(x)=(q+2)^{1 / 2} x^{1 / 2} \frac{J_{\frac{1}{q+2}}\left(\frac{2 \lambda_{i}^{1 / 2}}{q+2} x^{(q+2) / 2}\right)}{\left|J_{1+\frac{1}{q+2}}\left(\frac{2 \lambda_{i}^{1 / 2}}{q+2}\right)\right|}
$$

with $J_{1 /(q+2)}$ denoting the Bessel function of the first kind of order $1 /(q+2)$. From Chan and Chan [1], $0<\lambda_{1}<\lambda_{2}<\lambda_{3}<\cdots<\lambda_{i}<\lambda_{i+1}<\cdots$. The set $\left\{\phi_{i}(x)\right\}$ is a maximal (that is, complete) orthonormal set with the weight function x^{q} (cf. Gustafson [9, p. 176]).

To derive the integral equation from the problem (2), let us consider the adjoint operator L^{*}, which is given by $L^{*} u=-x^{q} u_{t}-u_{x x}$. Using Grcen's second identity, we obtain

$$
\begin{equation*}
u(x, t)=a^{2} \int_{0}^{t} G(x, t ; b, \tau) f(u(b, \tau)) d \tau \tag{3}
\end{equation*}
$$

For ease of reference, let us state below Lemmas $1(\mathrm{a}), 1(\mathrm{~b}), 1(\mathrm{~d})$, and 4 of Chan and Chan [1] as Lemma $1(\mathrm{a}), 1(\mathrm{~b}), 1(\mathrm{c})$, and $1(\mathrm{~d})$, respectively; we also state below Lemma $2.2(\mathrm{a}), 2.2(\mathrm{~b}), 2.2(\mathrm{c})$, and $2.2(\mathrm{~d})$ of Chan and Tian [6] as Lemma 1(e), 1(f), 1(g), and 1(h), respectively.
Lemma 1. (a). For some positive constant $k_{1},\left|\phi_{i}(x)\right| \leq k_{1} x^{-q / 4}$ for $x \in(0,1]$.
(b). For some positive constant $k_{2},\left|\phi_{i}(x)\right| \leq k_{2} x^{1 / 2} \lambda_{i}^{1 / 4}$ for $x \in \bar{D}$.
(c). For any $x_{0}>0$, and $x \in\left[x_{0}, 1\right]$, there exists some positive constant k_{3} depending on x_{0} such that $\left|\phi_{i}^{\prime}(x)\right| \leq k_{3} \lambda_{i}^{1 / 2}$.
(d). In $\{(x, t ; \xi, \tau): x$ and ξ are in $D, T \geq t>\tau \geq 0\}, G(x, t ; \xi, \tau)$ is positive.
(e). For $(x, t ; \xi, \tau) \in(\bar{D} \times(\tau, T]) \times(\bar{D} \times[0, T)), G(x, t ; \xi, \tau)$ is continuous.
(f). For each fixed $(\xi, \tau) \in \bar{D} \times[0, T), G_{t}(x, t ; \xi, \tau) \in C(\bar{D} \times(\tau, T])$.
(g). For each fixed $(\xi, \tau) \in \bar{D} \times[0, T), G_{x}(x, t ; \xi, \tau)$ and $G_{x x}(x, t ; \xi, \tau)$ are in $C((0,1]$ $\times(\tau, T])$.
(h). If $r \in C([0, T])$, then $\int_{0}^{t} G(x, t ; b, \tau) r(\tau) d \tau$ is continuous for $x \in \bar{D}$ and $t \in[0, T]$.

We modify the techniques in proving Lemma 2.3 and Theorems 2.4 and 2.6 of Chan and Tian [6] to show that the integral equation (3) has a unique nonnegative continuous solution. Unlike theirs, we achieve this without using the contraction mapping and
without considering the integral equation (3) at $x=b$; also by making use of (3), we prove further that u is a strictly increasing function of t in D.

Theorem 1. There exists some $t_{q}(\leq \infty)$ such that for $0 \leq t<t_{q}$, the integral equation (3) has a unique nonnegative continuous solution u, and u is a strictly increasing function of t in D. If t_{q} is finite, then u reaches c^{-}at t_{q}.

Proof. Let us construct a sequence $\left\{u_{i}\right\}$ in Ω by $u_{0} \equiv 0$, and for $i=0,1,2, \ldots$,

$$
\begin{aligned}
L u_{i+1} & =a^{2} \delta(x-b) f\left(u_{i}(x, t)\right) \text { in } \Omega \\
u_{i+1}(x, 0) & =0 \text { on } \bar{D}, u_{i+1}(0, t)=u_{i+1}(1, t)=0 \text { for } 0<t \leq T
\end{aligned}
$$

Let $\partial \Omega$ denote the parabolic boundary $(\bar{D} \times\{0\}) \cup(\{0,1\} \times(0, T])$ of Ω. We have

$$
L\left(u_{1}-u_{0}\right)=a^{2} \delta(x-b) f(0) \text { in } \Omega, u_{1}-u_{0}=0 \text { on } \partial \Omega
$$

By Lemma $1(\mathrm{~d})$ and $1(\mathrm{e}), G(x, t ; \xi, \tau)$ is positive and continuous. From (3), $u_{1}>u_{0}$ in Ω. Let us assume that for some positive integer j,

$$
0<u_{1}<u_{2}<\cdots<u_{j-1}<u_{j} \text { in } \Omega
$$

We have

$$
L\left(u_{j+1}-u_{j}\right)=a^{2} \delta(x-b)\left(f\left(u_{j}\right)-f\left(u_{j-1}\right)\right) \text { in } \Omega, u_{j+1}-u_{j}=0 \text { on } \partial \Omega
$$

Since f is a strictly increasing function and $u_{j}>u_{j-1}$, it follows from (3) that $u_{j+1}>u_{j}$. By the principle of mathematical induction,

$$
0<u_{1}<u_{2}<\cdots<u_{n-1}<u_{n} \text { in } \Omega
$$

for any positive integer n.
To show that each u_{n} is an increasing function of t, let us construct a sequence $\left\{w_{n}\right\}$ such that for $n=0,1,2, \ldots, w_{n}(x, t)=u_{n}(x, t+h)-u_{n}(x, t)$, where h is any positive number less than T. Then, $w_{0}(x, t)=0$. By (3), we have

$$
\begin{aligned}
w_{1}(x, t) & =u_{1}(x, t+h)-u_{1}(x, t) \\
& =a^{2} f(0)\left(\int_{0}^{t+h} G(x, t+h ; b, \tau) d \tau-\int_{0}^{t} G(x, t ; b, \tau) d \tau\right)
\end{aligned}
$$

We note that $G(x, t+h ; b, \tau)=G(x, t+h-\tau ; b, 0)$. Let $\sigma=\tau-h$. Then,

$$
\int_{0}^{t+h} G(x, t+h ; b, \tau) d \tau=\int_{0}^{h} G(x, t+h ; b, \tau) d \tau+\int_{0}^{t} G(x, t ; b, \sigma) d \sigma
$$

We have

$$
w_{1}(x, t)=a^{2} f(0) \int_{0}^{h} G(x, t+h ; b, \tau) d \tau
$$

which is positive for $0<t \leq T-h$. Let us assume that for some positive integer j, $w_{j}>0$ for $0<t \leq T-h$. Let $\sigma=\tau-h$. We have

$$
\begin{aligned}
& a^{2} \int_{0}^{t+h} G(x, t+h ; b, \tau) f\left(u_{j}(b, \tau)\right) d \tau \\
& =a^{2}\left(\int_{0}^{h} G(x, t+h ; b, \tau) f\left(u_{j}(b, \tau)\right) d \tau+\int_{0}^{t} G(x, t ; b, \sigma) f\left(u_{j}(b, \sigma+h)\right) d \sigma\right) \\
& >a^{2}\left(\int_{0}^{h} G(x, t+h ; b, \tau) f\left(u_{j}(b, \tau)\right) d \tau+\int_{0}^{t} G(x, t ; b, \sigma) f\left(u_{j}(b, \sigma)\right) d \sigma\right) .
\end{aligned}
$$

In $D \times(0, T-h]$,

$$
\begin{aligned}
w_{j+1}(x, t) & =u_{j+1}(x, t+h)-u_{j+1}(x, t) \\
& >a^{2} \int_{0}^{h} G(x, t+h ; b, \tau) f\left(u_{j}(b, \tau)\right) d \tau>0
\end{aligned}
$$

By the principle of mathematical induction, $w_{n}>0$ for $0<t \leq T-h$ and all positive integers n. Thus, each u_{n} is an increasing function of t.

By Lemma $1(\mathrm{~h}), G(x, t ; b, \tau)$ is integrable. Thus for any given positive constant M $(<c)$, it follows from

$$
\begin{equation*}
u_{n}(x, t)=a^{2} \int_{0}^{t} G(x, t ; b, \tau) f\left(u_{n-1}(b, \tau)\right) d \tau \tag{4}
\end{equation*}
$$

and u_{n} being an increasing function of t that there exists some t_{1} such that $u_{n} \leq M$ for $0 \leq t \leq t_{1}$ and $n=0,1,2, \ldots$ In fact, t_{1} satisfies

$$
a^{2} f(M) \int_{0}^{t_{1}} G\left(x, t_{1} ; b, \tau\right) d \tau \leq M
$$

Let u denote $\lim _{n \rightarrow \infty} u_{n}$. From (4) and the Monotone Convergence Theorem (cf. Royden [10, p. 87]), we have (3) for $0 \leq t \leq t_{1}$. Thus, u is a nonnegative solution of the integral equation (3) for $0 \leq t \leq t_{1}$.

To prove that u is unique, let us assume that the integral equation (3) has two distinct solutions u and \tilde{u} on the interval $\left[0, t_{1}\right]$. Let $\Theta=\max _{\bar{D} \times\left[0, t_{1}\right]}|u-\tilde{u}|$. From (3),

$$
\begin{equation*}
u(x, t)-\tilde{u}(x, t)=a^{2} \int_{0}^{t} G(x, t ; b, \tau)(f(u(b, \tau))-f(\tilde{u}(b, \tau))) d \tau \tag{5}
\end{equation*}
$$

Using the Mean Value Theorem, we have

$$
|f(u(b, \tau))-f(\tilde{u}(b, \tau))| \leq f^{\prime}(M) \Theta
$$

Let ϵ be some positive number. It follows from Lemma $1(\mathrm{a}), 1(\mathrm{~b})$, and (5) that

$$
\begin{aligned}
\Theta & \leq a^{2} f^{\prime}(M) \Theta \int_{0}^{t} G(x, t ; b, \tau) d \tau \\
& \leq a^{2} f^{\prime}(M) \Theta k_{1} k_{2} b^{-q / 4} \lim _{\epsilon \rightarrow 0} \int_{0}^{t-\epsilon} \sum_{i=1}^{\infty} \lambda_{i}^{1 / 4} e^{-\lambda_{i}(t-\tau)} d \tau \\
& \leq a^{2} f^{\prime}(M) \Theta k_{1} k_{2} b^{-q / 4} \lim _{\epsilon \rightarrow 0} \int_{0}^{t-\epsilon} \sum_{i=1}^{\infty} \lambda_{i}^{1 / 4} e^{-\lambda_{i} \epsilon} d \tau
\end{aligned}
$$

Since $\sum_{i=1}^{\infty} \lambda_{i}^{1 / 4} e^{-\lambda_{i} \epsilon}$ converges uniformly with respect to $\tau \in[0, t-\epsilon]$, it follows from the Weierstrass M-Test that

$$
\begin{align*}
\Theta & \leq a^{2} f^{\prime}(M) \Theta k_{1} k_{2} b^{-q / 4} \lim _{\epsilon \rightarrow 0} \sum_{i=1}^{\infty} \int_{0}^{t-\epsilon} \lambda_{i}^{1 / 4} e^{-\lambda_{i}(t-\tau)} d \tau \\
& \leq a^{2} f^{\prime}(M) \Theta k_{1} k_{2} b^{-q / 4} \lim _{\epsilon \rightarrow 0} \sum_{i=1}^{\infty} \lambda_{i}^{-3 / 4}\left(e^{-\lambda_{i} \epsilon}-e^{-\lambda_{i} t}\right) \\
& \leq a^{2} f^{\prime}(M) \Theta k_{1} k_{2} b^{-q / 4} \lim _{\epsilon \rightarrow 0} \sum_{i=1}^{\infty} \lambda_{i}^{-3 / 4}\left(1-e^{-\lambda_{i} t}\right) \\
& =a^{2} f^{\prime}(M) k_{1} k_{2} b^{-q / 4}\left[\sum_{i=1}^{\infty} \lambda_{i}^{-3 / 4}\left(1-e^{-\lambda_{i} t}\right)\right] \Theta \tag{6}
\end{align*}
$$

which converges since $O\left(\lambda_{i}\right)=O\left(i^{2}\right)$ (cf. Watson [12, p. 506]) for large i. Let us choose some positive number $\sigma_{1}\left(\leq t_{1}\right)$ such that for $t \in\left[0, \sigma_{1}\right]$,

$$
\begin{equation*}
a^{2} f^{\prime}(M) k_{1} k_{2} b^{-q / 4}\left[\sum_{i=1}^{\infty} \lambda_{i}^{-3 / 4}\left(1-e^{-\lambda_{i} t}\right)\right]<1 . \tag{7}
\end{equation*}
$$

This gives a contradiction. Thus, u is unique for $0 \leq t \leq \sigma_{1}$. If $\sigma_{1}<t_{1}$, then it follows from (3) that for $\sigma_{1} \leq t \leq t_{1}$,

$$
\begin{equation*}
u(x, t)=a^{2} \int_{0}^{\sigma_{1}} G(x, t ; b, \tau) f(u(b, \tau)) d \tau+a^{2} \int_{\sigma_{1}}^{t} G(x, t ; b, \tau) f(u(b, \tau)) d \tau \tag{8}
\end{equation*}
$$

Since $u=\tilde{u}$ for $0 \leq t \leq \sigma_{1}$, we have for $\sigma_{1} \leq t \leq t_{1}$,

$$
u(x, t)-\tilde{u}(x, t)=a^{2} \int_{\sigma_{1}}^{t} G(x, t ; b, \tau)(f(u(b, \tau))-f(\tilde{u}(b, \tau))) d \tau
$$

from which we obtain

$$
\begin{equation*}
\Theta \leq a^{2} f^{\prime}(M) k_{1} k_{2} b^{-q / 4}\left[\sum_{i=1}^{\infty} \lambda_{i}^{-3 / 4}\left(1-e^{-\lambda_{i}\left(t-\sigma_{1}\right)}\right)\right] \Theta . \tag{9}
\end{equation*}
$$

It follows from (7) that for $t \in\left[\sigma_{1}, \min \left\{2 \sigma_{1}, t_{1}\right\}\right]$,

$$
\begin{equation*}
a^{2} f^{\prime}(M) k_{1} k_{2} b^{-q / 4}\left[\sum_{i=1}^{\infty} \lambda_{i}^{-3 / 4}\left(1-e^{-\lambda_{i}\left(t-\sigma_{1}\right)}\right)\right]<1 \tag{10}
\end{equation*}
$$

This gives a contradiction. Thus, we have uniqueness of a solution for $0 \leq t \leq$ $\min \left\{2 \sigma_{1}, t_{1}\right\}$. By proceeding in this way, the integral equation (3) has a unique nonnegative solution u for $0 \leq t \leq t_{1}$.

From Lemma 1(h) and (4), each u_{n} is continuous. To show that u is continuous, we note that

$$
u_{n+1}(x, t)-u_{n}(x, t)=a^{2} \int_{0}^{t} G(x, t ; b, \tau)\left[f\left(u_{n}(b, \tau)\right)-f\left(u_{n-1}(b, \tau)\right)\right] d \tau
$$

Let $S_{n}=\max _{\bar{D} \times\left[0, t_{1}\right]}\left(u_{n}-u_{n-1}\right)$. Using the Mean Value Theorem, we have

$$
f\left(u_{n}(b, \tau)\right)-f\left(u_{n-1}(b, \tau)\right) \leq f^{\prime}(M) S_{n}
$$

As in the derivation of (6), we obtain for $0 \leq t \leq \sigma_{1}$,

$$
S_{n+1} \leq a^{2} f^{\prime}(M) k_{1} k_{2} b^{-q / 4}\left[\sum_{i=1}^{\infty} \lambda_{i}^{-3 / 4}\left(1-e^{-\lambda_{i} t}\right)\right] S_{n}
$$

By (7), the sequence $\left\{u_{n}\right\}$ converges uniformly to u with respect to $x \in \bar{D}$ and $t \in\left[0, \sigma_{1}\right]$. Thus, the integral equation (3) has a unique nonnegative continuous solution u for $0 \leq$ $t \leq \sigma_{1}$. From Lemma 1 (a) and 1(b), the integrand of the first term on the right-hand side of (8) is bounded by $f(M) k_{1} k_{2} b^{-q / 4} \sum_{i=1}^{\infty} \lambda_{i}^{1 / 4} e^{-\lambda_{i}(t-\tau)}$, which is integrable for $t>\sigma_{1}$. Thus, if $\sigma_{1}<t_{1}$, then for $\sigma_{1} \leq t \leq t_{1}$, the first term on the right-hand side of (8) is continuous. Let

$$
z(x, t)=a^{2} \int_{\sigma_{1}}^{t} G(x, t ; b, \tau) f(z(b, \tau)) d \tau
$$

From (8), $z<M$. For $\sigma_{1} \leq t \leq t_{1}$, let us construct a sequence $\left\{z_{i}\right\}$ by $z_{0}(x, t) \equiv 0$, and for $i=0,1,2, \ldots$,

$$
z_{i+1}(x, t)=a^{2} \int_{\sigma_{1}}^{t} G(x, t ; b, \tau) f\left(z_{i}(b, \tau)\right) d \tau
$$

By Lemma 1(h), each z_{n} is continuous. We have

$$
z_{n+1}(x, t)-z_{n}(x, t)=a^{2} \int_{\sigma_{1}}^{t} G(x, t ; b, \tau)\left(f\left(z_{n}(b, \tau)\right)-f\left(z_{n-1}(b, \tau)\right)\right) d \tau
$$

Let $Z_{n}=\max _{\bar{D} \times\left[\sigma_{1}, \min \left\{2 \sigma_{1}, t_{1}\right\}\right]}\left|z_{n}-z_{n-1}\right|$. As in the derivation of (9),

$$
Z_{n+1} \leq a^{2} f^{\prime}(M) k_{1} k_{2} b^{-q / 4}\left[\sum_{i=1}^{\infty} \lambda_{i}^{-3 / 4}\left(1-e^{-\lambda_{i}\left(t-\sigma_{1}\right)}\right)\right] Z_{n}
$$

From (10), the sequence $\left\{z_{n}\right\}$ converges uniformly to z, and hence, z is continuous for $\sigma_{1} \leq t \leq \min \left\{2 \sigma_{1}, t_{1}\right\}$. From (8), u is continuous for $\sigma_{1} \leq t \leq \min \left\{2 \sigma_{1}, t_{1}\right\}$. If $2 \sigma_{1}<t_{1}$, then for $2 \sigma_{1} \leq t \leq t_{1}$,

$$
u(x, t)=a^{2} \int_{0}^{2 \sigma_{1}} G(x, t ; b, \tau) f(u(b, \tau)) d \tau+a^{2} \int_{2 \sigma_{1}}^{t} G(x, t ; b, \tau) f(u(b, \tau)) d \tau
$$

Since the first term on the right-hand side is continuous, we consider the second term. An argument analogous to the above shows that u is continuous for $0 \leq t \leq \min \left\{3 \sigma_{1}, t_{1}\right\}$. By proceeding in this way, the integral equation (3) has a unique nonnegative continuous solution u for $0 \leq t \leq t_{1}$.

Let t_{q} be the supremum of all t_{1}, where $\left[0, t_{1}\right]$ is the interval for which the integral equation (3) has a unique nonnegative continuous solution u. If t_{q} is finite and u does not reach c^{-}at t_{q}, then given any number between $\max _{\bar{D}} u\left(x, t_{q}\right)$ and c, a proof similar to the above shows that there exists some $t_{2}>t_{q}$ such that the integral equation (3) has a unique nonnegative continuous solution u for $0 \leq t \leq t_{2}$. This contradicts the definition of t_{q}. Hence, if t_{q} is finite, then u reaches c^{-}at t_{q}.

It follows from u_{n} being an increasing function of t in D that u is a nondecreasing function of t. Let $\sigma=\tau-\epsilon$. We have

$$
\begin{aligned}
& a^{2} \int_{0}^{t+\epsilon} G(x, t+\epsilon ; b, \tau) f(u(b, \tau)) d \tau \\
& =a^{2}\left(\int_{0}^{\epsilon} G(x, t+\epsilon ; b, \tau) f(u(b, \tau)) d \tau+\int_{0}^{t} G(x, t ; b, \sigma) f(u(b, \sigma+\epsilon)) d \sigma\right) \\
& \geq a^{2}\left(\int_{0}^{\epsilon} G(x, t+\epsilon ; b, \tau) f(u(b, \tau)) d \tau+\int_{0}^{t} G(x, t ; b, \sigma) f(u(b, \sigma)) d \sigma\right)
\end{aligned}
$$

since f is an increasing function. Thus,

$$
u(x, t+\epsilon)-u(x, t) \geq a^{2} \int_{0}^{\epsilon} G(x, t+\epsilon ; b, \tau) f(u(b, \tau)) d \tau>0
$$

Hence, u is a strictly increasing function of t in D.
We modify the method of proving Theorem 2.5 of Chan and Tian [6] to show that the solution of the integral equation (3) is actually the solution of the problem (2).

Theorem 2. Before quenching occurs, the problem (2) has a unique nonnegative solution u. If t_{q} is finite, then u quenches at t_{q}.

Proof. It follows from Lemma $1(\mathrm{~h})$ that for any $t_{3} \in(0, t)$,

$$
\begin{aligned}
& \int_{0}^{t} G(x, t ; b, \tau) f(u(b, \tau)) d \tau \\
& =\lim _{n \rightarrow \infty} \int_{0}^{t-1 / n} G(x, t ; b, \tau) f(u(b, \tau)) d \tau \\
& =\lim _{n \rightarrow \infty} \int_{t_{3}}^{t} \frac{\partial}{\partial \zeta}\left(\int_{0}^{\zeta-1 / n} G(x, \zeta ; b, \tau) f(u(b, \tau)) d \tau\right) d \zeta \\
& \quad+\lim _{n \rightarrow \infty} \int_{0}^{t_{3}-1 / n} G\left(x, t_{3} ; b, \tau\right) f(u(b, \tau)) d \tau
\end{aligned}
$$

For $\zeta-\tau \geq 1 / n$, it follows from Lemma $1(\mathrm{f})$ and $1(\mathrm{~b})$ that for any $x \in \bar{D}$,

$$
\begin{aligned}
G_{\zeta}(x, \zeta ; b, \tau) f(u(b, \tau)) & \leq f(u(b, \tau))\left(\sum_{i=1}^{\infty}\left|\phi_{i}(x)\right|\left|\phi_{i}(b)\right| \lambda_{i} e^{-\lambda_{i}(\zeta-\tau)}\right) \\
& \leq k_{2}^{2} f(u(b, \tau)) \sum_{i=1}^{\infty} \lambda_{i}^{3 / 2} e^{-\lambda_{i} / n}
\end{aligned}
$$

which is integrable with respect to τ over $(0, \zeta-1 / n)$. Using the Leibnitz rule (cf. Stromberg [11, p. 380]), we have

$$
\begin{aligned}
& \frac{\partial}{\partial \zeta}\left(\int_{0}^{\zeta-1 / n} G(x, \zeta ; b, \tau) f(u(b, \tau)) d \tau\right) \\
& =G\left(x, \zeta ; b, \zeta-\frac{1}{n}\right) f\left(u\left(b, \zeta-\frac{1}{n}\right)\right)+\int_{0}^{\zeta-1 / n} G_{\zeta}(x, \zeta ; b, \tau) f(u(b, \tau)) d \tau
\end{aligned}
$$

Let us consider the problem

$$
\begin{gathered}
L w=0 \text { for } x \text { and } \xi \text { in } D, 0<\tau<t \\
w(0, t ; \xi, \tau)=w(1, t ; \xi, \tau)=0 \text { for } 0<\tau<t \\
\lim _{t \rightarrow \tau^{+}} x^{q} w(x, t ; \xi, \tau)=\delta(x-\xi)
\end{gathered}
$$

Using Green's second identity, we obtain for $t \geq \tau$,

$$
\begin{aligned}
w(x, t ; \xi, \tau) & =\int_{D} y^{q} G(x, t ; y, \tau) y^{-q} \delta(y-\xi) d y \\
& =G(x, t ; \xi, \tau)
\end{aligned}
$$

It follows that $\lim _{t \rightarrow \tau^{+}} x^{q} G(x, t ; \xi, \tau)=\delta(x-\xi)$.
Since f is an increasing function, and $G(x, \zeta ; b, \zeta-1 / n)=G(x, 1 / n ; b, 0)$, which is independent of ζ, we have

$$
\begin{align*}
& \int_{0}^{t} x^{q} G(x, t ; b, \tau) f(u(b, \tau)) d \tau \\
& =\delta(x-b) \int_{t_{3}}^{t} f(u(b, \zeta)) d \zeta+\lim _{n \rightarrow \infty} \int_{t_{3}}^{t} \int_{0}^{\zeta-1 / n} x^{q} G_{\zeta}(x, \zeta ; b, \tau) f(u(b, \tau)) d \tau d \zeta \\
& +\int_{0}^{t_{3}} x^{q} G\left(x, t_{3} ; b, \tau\right) f(u(b, \tau)) d \tau \tag{11}
\end{align*}
$$

Let

$$
g_{n}(x, \zeta)=\int_{0}^{\zeta-1 / n} x^{q} G_{\zeta}(x, \zeta ; b, \tau) f(u(b, \tau)) d \tau
$$

Without loss of generality, let $n>l$. We have

$$
g_{n}(x, \zeta)-g_{l}(x, \zeta)=\int_{\zeta-1 / l}^{\zeta-1 / n} x^{q} G_{\zeta}(x, \zeta ; b, \tau) f(u(b, \tau)) d \tau
$$

Since $x^{q} G_{\zeta}(x, \zeta ; b, \tau) \in C(\bar{D} \times(\tau, T])$ and $f(u(b, \tau))$ is an increasing function of τ, it follows from the Second Mean Value Theorem for Integrals (cf. Stromberg [11, p. 328]) that for any $x \neq b$ and any ζ in any compact subset of $\left(0, t_{q}\right)$, there exists some real number ν such that $\zeta-\nu \in(\zeta-1 / l, \zeta-1 / n)$ and

$$
\begin{aligned}
g_{n}(x, \zeta)-g_{l}(x, \zeta) & =f\left(u\left(b, \zeta-\frac{1}{l}\right)\right) \int_{\zeta-1 / l}^{\zeta-\nu} x^{q} G_{\zeta}(x, \zeta ; b, \tau) d \tau \\
& +f\left(u\left(b, \zeta-\frac{1}{n}\right)\right) \int_{\zeta-\nu}^{\zeta-1 / n} x^{q} G_{\zeta}(x, \zeta ; b, \tau) d \tau
\end{aligned}
$$

From $G_{\zeta}(x, \zeta ; b, \tau)=-G_{\tau}(x, \zeta ; b, \tau)$, we have

$$
\begin{aligned}
g_{n}(x, \zeta)-g_{l}(x, \zeta) & =\left[f\left(u\left(b, \zeta-\frac{1}{n}\right)\right)-f\left(u\left(b, \zeta-\frac{1}{l}\right)\right)\right] x^{q} G(x, \zeta ; b, \zeta-\nu) \\
& +f\left(u\left(b, \zeta-\frac{1}{l}\right)\right) x^{q} G\left(x, \zeta ; b, \zeta-\frac{1}{l}\right) \\
& -f\left(u\left(b, \zeta-\frac{1}{n}\right)\right) x^{q} G\left(x, \zeta ; b, \zeta-\frac{1}{n}\right) .
\end{aligned}
$$

Since for $x \neq b, x^{q} G(x, \zeta ; b, \zeta-\epsilon)=x^{q} G(x, \epsilon ; b, 0)$, which converges to 0 uniformly with respect to ζ as $\epsilon \rightarrow 0$, it follows that for $x \neq b,\left\{g_{n}\right\}$ is a Cauchy sequence, and hence $\left\{g_{n}\right\}$ converges uniformly with respect to ζ in any compact subset of $\left(0, t_{q}\right)$. Hence for $x \neq b$,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{t_{3}}^{t} \int_{0}^{\zeta-1 / n} x^{q} G_{\zeta}(x, \zeta ; b, \tau) f(u(b, \tau)) d \tau d \zeta \\
& =\int_{t_{3}}^{t} \lim _{n \rightarrow \infty} \int_{0}^{\zeta-1 / n} x^{q} G_{\zeta}(x, \zeta ; b, \tau) f(u(b, \tau)) d \tau d \zeta \\
& =\int_{t_{3}}^{t} \int_{0}^{\zeta} x^{q} G_{\zeta}(x, \zeta ; b, \tau) f(u(b, \tau)) d \tau d \zeta
\end{aligned}
$$

For $x=b$,

$$
-G_{\zeta}(b, \zeta ; b, \tau) f(u(b, \tau))=\sum_{i=1}^{\infty} \phi_{i}^{2}(b) \lambda_{i} e^{-\lambda_{i}(\zeta-\tau)} f(u(b, \tau)),
$$

which is positive. Thus, $\left\{-g_{n}\right\}$ is a nondecreasing sequence of nonnegative functions with respect to ζ. By the Monotone Convergence Theorem,

$$
\lim _{n \rightarrow \infty} \int_{t_{3}}^{t} \int_{0}^{\zeta-1 / n} b^{q} G_{\zeta}(b, \zeta ; b, \tau) f(u(b, \tau)) d \tau d \zeta=\int_{t_{3}}^{t} \int_{0}^{\zeta} b^{q} G_{\zeta}(b, \zeta ; b, \tau) f(u(b, \tau)) d \tau d \zeta
$$

Thus from (11),

$$
\frac{\partial}{\partial t} \int_{0}^{t} x^{q} G(x, t ; b, \tau) f(u(b, \tau)) d \tau=\delta(x-b) f(u(b, t))+\int_{0}^{t} x^{q} G_{t}(x, t ; b, \tau) f(u(b, \tau)) d \tau
$$

By Lemma 1(b) and 1(c),

$$
\begin{aligned}
\left|\sum_{i=1}^{\infty} \frac{\partial}{\partial x} \phi_{i}(x) \phi_{i}(\xi) e^{-\lambda_{i}(t-\tau)}\right| & \leq \sum_{i=1}^{\infty}\left|\phi_{i}^{\prime}(x)\right|\left|\phi_{i}(\xi)\right| e^{-\lambda_{i}(t-\tau)} \\
& \leq k_{2} k_{3} \sum_{i=1}^{\infty} \lambda_{i}^{3 / 4} e^{-\lambda_{i}(t-\tau)}
\end{aligned}
$$

which converges uniformly with respect to x in any compact subset of $(0,1]$ with $t-\tau \geq \epsilon$. By Lemma $1(\mathrm{~g})$ and the Leibnitz rule, we have for any x in any compact subset of $(0,1]$ and t in any compact subset of $\left(0, t_{q}\right)$,

$$
\frac{\partial}{\partial x} \int_{0}^{t-\epsilon} G(x, t ; b, \tau) f(u(b, \tau)) d \tau=\int_{0}^{t-\epsilon} G_{x}(x, t ; b, \tau) f(u(b, \tau)) d \tau
$$

Since ϕ_{i} is an eigenfunction, it follows from Lemma 1(b) that

$$
\begin{aligned}
\left|\sum_{i=1}^{\infty} \frac{\partial^{2}}{\partial x^{2}} \phi_{i}(x) \phi_{i}(\xi) e^{-\lambda_{i}(t-\tau)}\right| & \leq \sum_{i=1}^{\infty}\left|\phi_{i}^{\prime \prime}(x)\right|\left|\phi_{i}(\xi)\right| e^{-\lambda_{i}(t-\tau)} \\
& =\sum_{i=1}^{\infty} \lambda_{i} x^{q}\left|\phi_{i}(x)\right|\left|\phi_{i}(\xi)\right| e^{-\lambda_{i}(t-\tau)} \\
& \leq k_{2}^{2} \sum_{i=1}^{\infty} \lambda_{i}^{3 / 2} e^{-\lambda_{i}(t-\tau)}
\end{aligned}
$$

which converges uniformly with respect to x in any compact subset of $(0,1]$ with $t-\tau \geq \epsilon$. By Lemma $1(\mathrm{~g})$ and the Leibnitz rule, we have for any x in any compact subset of $(0,1]$ and t in any compact subset of $\left(0, t_{q}\right)$,

$$
\frac{\partial}{\partial x} \int_{0}^{t-\epsilon} G_{x}(x, t ; b, \tau) f(u(b, \tau)) d \tau=\int_{0}^{t-\epsilon} G_{x x}(x, t ; b, \tau) f(u(b, \tau)) d \tau
$$

For any $x_{1} \in D$,

$$
\begin{align*}
& \lim _{\epsilon \rightarrow 0} \int_{0}^{t-\epsilon} G(x, t ; b, \tau) f(u(b, \tau)) d \tau \\
& =\lim _{\epsilon \rightarrow 0} \int_{x_{1}}^{x}\left(\frac{\partial}{\partial \eta} \int_{0}^{t-\epsilon} G(\eta, t ; b, \tau) f(u(b, \tau)) d \tau\right) d \eta+\lim _{\epsilon \rightarrow 0} \int_{0}^{t-\epsilon} G\left(x_{1}, t ; b, \tau\right) f(u(b, \tau)) d \tau \\
& =\lim _{\epsilon \rightarrow 0} \int_{x_{1}}^{x} \int_{0}^{t-\epsilon} G_{\eta}(\eta, t ; b, \tau) f(u(b, \tau)) d \tau d \eta+\int_{0}^{t} G\left(x_{1}, t ; b, \tau\right) f(u(b, \tau)) d \tau \tag{12}
\end{align*}
$$

By the Fubini Theorem (cf. Stromberg [11, p. 352]),

$$
\begin{aligned}
\lim _{\epsilon \rightarrow 0} \int_{x_{1}}^{x} \int_{0}^{t-\epsilon} G_{\eta}(\eta, t ; b, \tau) f(u(b, \tau)) d \tau d \eta & =\lim _{\epsilon \rightarrow 0} \int_{0}^{t-\epsilon}\left(f(u(b, \tau)) \int_{x_{1}}^{x} G_{\eta}(\eta, t ; b, \tau) d \eta\right) d \tau \\
& =\lim _{\epsilon \rightarrow 0} \int_{0}^{t-\epsilon} f(u(b, \tau))\left(G(x, t ; b, \tau)-G\left(x_{1}, t ; b, \tau\right)\right) d \tau \\
& =\int_{0}^{t} f(u(b, \tau))\left(G(x, t ; b, \tau)-G\left(x_{1}, t ; b, \tau\right)\right) d \tau
\end{aligned}
$$

which exists by Lemma $1(\mathrm{~h})$. Therefore,

$$
\begin{aligned}
\int_{0}^{t} f(u(b, \tau))\left(G(x, t ; b, \tau)-G\left(x_{1}, t ; b, \tau\right)\right) d \tau & =\int_{0}^{t} f(u(b, \tau))\left(\int_{x_{1}}^{x} G_{\eta}(\eta, t ; b, \tau) d \eta\right) d \tau \\
& =\int_{x_{1}}^{x} \int_{0}^{t} G_{\eta}(\eta, t ; b, \tau) f(u(b, \tau)) d \tau d \eta
\end{aligned}
$$

From (12),

$$
\begin{aligned}
& \int_{0}^{t} G(x, t ; b, \tau) f(u(b, \tau)) d \tau \\
& =\int_{x_{1}}^{x} \int_{0}^{t} G_{\eta}(\eta, t ; b, \tau) f(u(b, \tau)) d \tau d \eta+\int_{0}^{t} G\left(x_{1}, t ; b, \tau\right) f(u(b, \tau)) d \tau
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\frac{\partial}{\partial x} \int_{0}^{t} G(x, t ; b, \tau) f(u(b, \tau)) d \tau=\int_{0}^{t} G_{x}(x, t ; b, \tau) f(u(b, \tau)) d \tau \tag{13}
\end{equation*}
$$

For any $x_{2} \in D$,

$$
\begin{align*}
& \lim _{\epsilon \rightarrow 0} \int_{0}^{t-\epsilon} G_{x}(x, t ; b, \tau) f(u(b, \tau)) d \tau \\
& =\lim _{\epsilon \rightarrow 0} \int_{x_{2}}^{x}\left(\frac{\partial}{\partial \eta} \int_{0}^{t-\epsilon} G_{\eta}(\eta, t ; b, \tau) f(u(b, \tau)) d \tau\right) d \eta+\lim _{\epsilon \rightarrow 0} \int_{0}^{t-\epsilon} G_{\eta}\left(x_{2}, t ; b, \tau\right) f(u(b, \tau)) d \tau \\
& =\lim _{\epsilon \rightarrow 0} \int_{x_{2}}^{x} \int_{0}^{t-\epsilon} G_{\eta \eta}(\eta, t ; b, \tau) f(u(b, \tau)) d \tau d \eta+\int_{0}^{t} G_{\eta}\left(x_{2}, t ; b, \tau\right) f(u(b, \tau)) d \tau \tag{14}
\end{align*}
$$

By the Fubini Theorem,

$$
\begin{aligned}
\lim _{\epsilon \rightarrow 0} \int_{x_{2}}^{x} \int_{0}^{t-\epsilon} G_{\eta \eta}(\eta, t ; b, \tau) f(u(b, \tau)) d \tau d \eta & =\lim _{\epsilon \rightarrow 0} \int_{0}^{t-\epsilon}\left(f(u(b, \tau)) \int_{x_{2}}^{x} G_{\eta \eta}(\eta, t ; b, \tau) d \eta\right) d \tau \\
& =\lim _{\epsilon \rightarrow 0} \int_{0}^{t-\epsilon} f(u(b, \tau))\left(G_{\eta}(x, t ; b, \tau)-G_{\eta}\left(x_{2}, t ; b, \tau\right)\right) d \tau \\
& =\int_{0}^{t} f(u(b, \tau))\left(G_{\eta}(x, t ; b, \tau)-G_{\eta}\left(x_{2}, t ; b, \tau\right)\right) d \tau
\end{aligned}
$$

which exists by (13). Therefore,

$$
\int_{0}^{t} f(u(b, \tau))\left(G_{\eta}(x, t ; b, \tau)-G_{\eta}\left(x_{2}, t ; b, \tau\right)\right) d \tau=\int_{x_{2}}^{x} \int_{0}^{t} G_{\eta \eta}(\eta, t ; b, \tau) f(u(b, \tau)) d \tau d \eta
$$

From (14),

$$
\begin{aligned}
& \int_{0}^{t} G_{x}(x, t ; b, \tau) f(u(b, \tau)) d \tau \\
& =\int_{x_{2}}^{x} \int_{0}^{t} G_{\eta \eta}(\eta, t ; b, \tau) f(u(b, \tau)) d \tau d \eta+\int_{0}^{t} G_{\eta}\left(x_{2}, t ; b, \tau\right) f(u(b, \tau)) d \tau
\end{aligned}
$$

Thus,

$$
\frac{\partial}{\partial x} \int_{0}^{t} G_{x}(x, t ; b, \tau) f(u(b, \tau)) d \tau=\int_{0}^{t} G_{x x}(x, t ; b, \tau) f(u(b, \tau)) d \tau
$$

It follows from (13) that for any x in any compact subset of D and any t in any compact subset of $\left(0, t_{q}\right)$,

$$
\frac{\partial^{2}}{\partial x^{2}} \int_{0}^{t} G(x, t ; b, \tau) f(u(b, \tau)) d \tau=\int_{0}^{t} G_{x x}(x, t ; b, \tau) f(u(b, \tau)) d \tau
$$

Before quenching occurs, it follows from the integral equation (3) that for $x \in D$ and $t>0$,

$$
\begin{aligned}
L u & =a^{2} \delta(x-b) f(u(b, t))+a^{2} \int_{0}^{t} L G(x, t ; b, \tau) f(u(b, \tau)) d \tau \\
& =a^{2} \delta(x-b) f(u(b, t))+a^{2} \delta(x-b) \lim _{\epsilon \rightarrow 0} \int_{0}^{t-\epsilon} \delta(t-\tau) f(u(b, \tau)) d \tau \\
& =a^{2} \delta(x-b) f(u(x, t))
\end{aligned}
$$

From (3), $\lim _{t \rightarrow 0} u(x, t)=0$ for $x \in \bar{D}$. Since $G(0, t ; \xi, \tau)=G(1, t ; \xi, \tau)=0$, we have $u(0, t)=u(1, t)=0$. Thus, the nonnegative continuous solution of the integral equation (3) is a solution of the problem (2). Since a solution of the problem (2) is a solution of the integral equation (3), which has a unique solution before quenching occurs, u is the unique solution of the problem (2).

If t_{q} is finite, then by Theorem $1, u$ reaches c^{-}at t_{q}. Thus, u quenches at t_{q}.
Our next result shows that b is the single quenching point.
Theorem 3. The solution $u(x, t)$ of the problem (2) attains its maximum at (b, t). If u quenches, then b is the single quenching point.

Proof. Since $u(b, t)$ is known, let us consider the following problems:

$$
\begin{gather*}
\left.\begin{array}{c}
L u=0 \text { in }(0, b) \times\left(0, t_{q}\right) \\
u(x, 0)=0 \text { for } 0 \leq x \leq b, u(0, t)=0 \text { and } u(b, t)=u(b, t) \text { for } 0<t<t_{q} \\
\\
L u=0 \text { in }(b, 1) \times\left(0, t_{q}\right) \\
u(x, 0)=0 \text { for } b \leq x \leq 1, u(b, t)=u(b, t) \text { and } u(1, t)=0 \text { for } 0<t<t_{q} .
\end{array}\right\} \tag{15}
\end{gather*}
$$

By the weak maximum principle (cf. Friedman [8, p. 39]), u attains its maximum at b for each of the problems (15) and (16). Since u is a strictly increasing function of t in $D, u(x, t)$ attains its maximum at (b, t).

If u quenches, then it quenches at b. For the problem (15), it follows from the parabolic version of Hopf's Lemma (cf. Friedman [8, p. 49]) that for any fixed $t \in\left(0, t_{q}\right), u_{x}(0, t)>$ 0 . For any $x \in(0, b), u_{x x}=x^{q} u_{t}$, which is nonnegative by Theorem 1. Hence, u is concave up. Similarly for any fixed $t \in\left(0, t_{q}\right), u_{x}(1, t)<0$. For any $x \in(b, 1), u_{x x}=x^{q} u_{t} \geq 0$, and hence, u is concave up. Thus if u quenches, then b is the single quenching point.
3. Critical length and no quenching in infinite time. We modify the proof of Theorem 3 of Chan and Kaper [2] to obtain the following result.

Theorem 4. If there exists a constant $C \in(0, c)$ such that $\lim _{t \rightarrow \infty} u(x, t) \leq C$, then $u(x, t)$ converges uniformly on \bar{D} from below to a solution $U(x)$ of the nonlinear two-point boundary value problem,

$$
\begin{equation*}
-U^{\prime \prime}(x)=a^{2} \delta(x-b) f(U(x)) \text { in } D, U(0)=U(1)=0 \tag{17}
\end{equation*}
$$

Furthermore, $u(x, t)<U(x)$ in $D \times(0, \infty)$.
Proof. Since the homogeneous problem corresponding to (17) has only the trivial solution, its Green's function $g(x ; \xi)$ exists. A direct computation gives

$$
g(x ; \xi)= \begin{cases}\xi(1-x), & 0 \leq \xi \leq x \\ x(1-\xi), & x<\xi \leq 1\end{cases}
$$

Let

$$
F(x, t)=\int_{D} g(x ; \xi) \xi^{q} u(\xi, t) d \xi
$$

which is bounded, because the integrand is bounded. Since u is the solution of the problem (2), $F(x, t)$ may be regarded as a distribution. By Green's second identity,

$$
\begin{align*}
F_{t}(x, t) & =\int_{D} g(x ; \xi)\left(u_{\xi \xi}(\xi, t)+a^{2} \delta(\xi-b) f(u(\xi, t))\right) d \xi \\
& =-u(x, t)+a^{2} g(x ; b) f(u(b, t)) . \tag{18}
\end{align*}
$$

Since u is a strictly increasing function of t in D and $f(u)$ is strictly increasing, the term $a^{2} g(x ; b) f(u(b, t))$ in (18) is monotone increasing with respect to t. It follows from the continuity of f that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} F_{t}(x, t)=-\lim _{t \rightarrow \infty} u(x, t)+a^{2} g(x ; b) f\left(\lim _{t \rightarrow \infty} u(b, t)\right) \tag{19}
\end{equation*}
$$

which exists since $u \leq C$. We note that F is a strictly increasing function of t in D. If $\lim _{t \rightarrow \infty} F_{t}(x, t)$ were strictly positive at some point x, then $F(x, t)$ would increase without bound as t tends to infinity. Thus, $\lim _{t \rightarrow \infty} F_{t}(x, t)=0$. It follows from (19) that

$$
\begin{equation*}
\tilde{U}(x)=a^{2} g(x ; b) f(\tilde{U}(b)) \tag{20}
\end{equation*}
$$

where $\tilde{U}(x)=\lim _{t \rightarrow \infty} u(x, t)$. Since u is a strictly increasing function of t in D, we have $u(x, t)<\tilde{U}(x)$ in $D \times(0, \infty)$. By a direct differentiation,

$$
\tilde{U}^{\prime \prime}(x)=-a^{2} \delta(x-b) f(\tilde{U}(b))=-a^{2} \delta(x-b) f(\tilde{U}(x)) .
$$

From (20), $\tilde{U}(0)=\tilde{U}(1)=0$. Thus, $\tilde{U}(x)$ is a solution of the problem (17). Since \tilde{U} is continuous, the uniform convergence of u to \tilde{U} on \bar{D} follows from the Dini Theorem. The theorem is then proved.

Let v denote the solution of the problem (1) with a and β being replaced by $a+\alpha$ and $\beta(a+\alpha) / a$ respectively for some constant $\alpha>0$. Let $\varsigma=(a+\alpha) x, \gamma=(a+\alpha)^{q+2} t$, $\beta=(a+\alpha) b, F(u(\varsigma, \gamma))=f(v(x, t)), T_{\alpha}=\rho /(a+\alpha)^{q+2}$, and $\Omega_{\alpha}=D \times\left(0, T_{\alpha}\right]$. Then,

$$
\left.\begin{array}{l}
L v=(a+\alpha)^{2} \delta(x-b) f(v(x, t)) \text { in } \Omega_{\alpha} \tag{21}\\
=0 \text { on } \bar{D}, v(0, t)=v(1, t)=0 \text { for } 0<t \leq T_{\alpha}
\end{array}\right\}
$$

Theorem 5. In $\Omega_{\alpha}, v(x, t)>u(x, t)$.
Proof. Let us construct two sequences $\left\{v_{i}(x, t)\right\}$ and $\left\{u_{i}(x, t)\right\}$ in Ω_{α} by $v_{0}(x, t)=$ $u_{0}(x, t)=0$, and for $i=0,1,2, \ldots$,

$$
\begin{gathered}
L v_{i+1}=(a+\alpha)^{2} \delta(x-b) f\left(v_{i}(x, t)\right) \text { in } \Omega_{\alpha} \\
v_{i+1}(x, 0)=0 \text { on } \bar{D}, v_{i+1}(0, t)=v_{i+1}(1, t)=0 \text { for } 0<t \leq T_{\alpha} \\
L u_{i+1}=a^{2} \delta(x-b) f\left(u_{i}(x, t)\right) \text { in } \Omega_{\alpha} \\
u_{i+1}(x, 0)=0 \text { on } \bar{D}, u_{i+1}(0, t)=u_{i+1}(1, t)=0 \text { for } 0<t \leq T_{\alpha} .
\end{gathered}
$$

By (3),

$$
v_{1}(x, t)-u_{1}(x, t)=\left[(a+\alpha)^{2}-a^{2}\right] f(0) \int_{0}^{t} G(x, t ; b, \tau) d \tau>0
$$

Let us assume that for some positive integer $j, v_{j}(x, t)>u_{j}(x, t)$. Then,

$$
v_{j+1}(x, t)-u_{j+1}(x, t)>a^{2} \int_{0}^{t} G(x, t ; b, \tau)\left(f\left(v_{j}(b, \tau)\right)-f\left(u_{j}(b, \tau)\right)\right) d \tau>0
$$

By the principle of mathematical induction, $v_{n}(x, t)>u_{n}(x, t)$ for all positive integers n. A proof similar to those of Theorems 1 and 2 shows that $v(x, t)=\lim _{n \rightarrow \infty} v_{n}(x, t)$ is the solution of the problem (21). Hence, $v(x, t) \geq u(x, t)$ in Ω_{α}.

By (3),

$$
v(x, t)-u(x, t)>a^{2} \int_{0}^{t} G(x, t ; b, \tau)(f(v(b, \tau))-f(u(b, \tau))) d \tau \geq 0
$$

The theorem is then proved.
Theorem 6. If $\lim _{t \rightarrow s} u(b, t)=c^{-}$, where $s \leq \infty$, then $v(b, t)$ quenches in a finite time.
Proof. From (3),

$$
\lim _{t \rightarrow s} \int_{0}^{t} G(b, t ; b, \tau) f(u(b, \tau)) d \tau=\frac{c}{a^{2}}
$$

Since in D, u and v are strictly increasing functions of t and $v>u$, there exists some t_{q} $(<s)$ such that

$$
\lim _{t \rightarrow t_{q}} \int_{0}^{t} G(b, t ; b, \tau) f(v(b, \tau)) d \tau=\frac{c}{(a+\alpha)^{2}}
$$

Hence, $v(b, t)$ quenches in a finite time.
Theorems 4 and 5 imply that there exists a critical length a^{*} such that u exists on \bar{D} for all $t>0$ if $a<a^{*}$. The critical length a^{*} is determined as the supremum of all positive values a for which a solution U of (17) exists. Hence, it is the same as that for $q=0$. According to Theorem $6, u$ quenches in a finite time if $a>a^{*}$.

Theorem 7. The solution u does not quench in infinite time.
Proof. Since $u(x, t)$ attains its maximum at $(b, t), U(x)=\lim _{t \rightarrow \infty} u(x, t)$ attains its maximum at b. From (20),

$$
\begin{aligned}
a^{*} & =\max \left(\frac{U(b)}{g(b, b) f(U(b))}\right)^{1 / 2} \\
& =\frac{1}{[b(1-b)]^{1 / 2}} \max \left(\frac{U(b)}{f(U(b))}\right)^{1 / 2}
\end{aligned}
$$

Let us consider the function

$$
\psi(s)=\frac{s}{f(s)}
$$

Since $\psi(s)>0$ for $0<s<c$, and $\psi(0)=0=\lim _{s \rightarrow c^{-}} \psi(s)$, a direct computation shows that $\psi(s)$ attains its maximum when $\psi(s)=1 / f^{\prime}(s)$, where $s \in(0, c)$ by Rolle's Theorem. Thus, $\max (U(b) / f(U(b)))^{1 / 2}$ occurs when

$$
\frac{U(b)}{f(U(b))}=\frac{1}{f^{\prime}(U(b))},
$$

where $0<U(b)<c$. This implies that $U(x)$ exists when $a=a^{*}$. Hence for $a \leq a^{*}, u$ exists globally and is uniformly bounded away from c. Since u quenches in a finite time for $a>a^{*}, u$ does not quench in infinite time.

For illustration, let $f(u)=(1-u)^{-p}$. A direct computation shows that $U(b)[1-U(b)]^{p}$ attains its maximum when $U(b)=1 /(1+p)$. Therefore,

$$
a^{*}=\left(\frac{p^{p}}{b(1-b)(1+p)^{1+p}}\right)^{1 / 2}
$$

References

[1] C. Y. Chan and W. Y. Chan, Existence of classical solutions for degenerate semilinear parabolic problems, Appl. Math. Comput. 101, 125-149 (1999)
[2] C. Y. Chan and H. G. Kaper, Quenching for semilinear singular parabolic problems, SIAM J. Math Anal 20, 558-566 (1989)
[3] C. Y. Chan and P. C. Kong, Quenching for degenerate semilinear parabolic equations, Appl. Anal. 54, 17-25 (1994)
[4] C. Y. Chan and P. C. Kong, Channel flow of a viscous fluid in the boundary layer, Quart. Appl. Math 55, 51-56 (1997)
[5] C. Y. Chan and H. T. Liu, Does quenching for degenerate parabolic equations occur at the boundaries?, Dynam. Contin. Discrete Impuls. Systems (Series A) 8, 121-128 (2001)
[6] C. Y. Chan and H. Y. Tian, Single-point blow-up for a degenerate parabolic problem due to a concentrated nonlinear source, Quart. Appl. Math. 61, 363-385 (2003).
[7] K. Deng and C. A. Roberts, Quenching for a diffusive equation with a concentrated singularity, Differential Integral Equations 10, 369-379 (1997)
[8] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, NJ, 1964, pp. 39 and 49
[9] K. E. Gustafson, Introduction to Partial Differential Equations and Hilbert Space Methods, 2nd ed., John Wiley \& Sons, New York, NY, 1987, p. 176
[10] H. L. Royden, Real Analysis, 3rd ed., Macmillan Publishing Co., New York, NY, 1988, p. 87
[11] K. R. Stromberg, An Introduction to Classical Real Analysis, Wadsworth International Group, Belmont, CA, 1981, pp. 328, 352, and 380
[12] G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge University Press, New York, NY, 1958, p. 506

[^0]: Received July 7, 2003.
 2000 Mathematics Subject Classification. Primary 35K60, 35K65, 35K57.
 Key words and phrases. Degenerate parabolic problem, concentrated nonlinear source, unique continuous solution, single-point quenching, critical length, no quenching in infinite time.
 E-mail address: chan@louisiana.edu
 E-mail address: xoj8985@louisiana.edu

