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TO A CONCENTRATED NONLINEAR SOURCE
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Abstract. Let q, a, T, and b be any real numbers such that q > 0, a > 0, T > 0,
and 0 < b < 1. This article studies the following degenerate semilinear parabolic first
initial-boundary value problem with a concentrated nonlinear source situated at b:

xqut - uxx = a2S(x - b)f(u(x, t)) in (0,1) x (0, T],
u(:x, 0) = 0 on [0,1], u(0, t) = u(l, t) = 0 for 0 < t < T,

where <5 (x) is the Dirac delta function, / is a given function such that limu^c- f(u) = oo
for some positive constant c, and f{u) and f'(u) are positive for 0 < u < c. It is shown
that the problem has a unique continuous solution u before m&x{u(x,t) : 0 < x < 1}
reaches c~, u is a strictly increasing function of t for 0 < x < 1, and if max{u(x,i) :
0 < x < 1} reaches c~, then u attains the value c only at the point b. The problem is
shown to have a unique a* such that a unique global solution u exists for a < a*, and
max{u(x,t) : 0 < x < 1} reaches c~ in a finite time for a > a*; this a* is the same as
that for q = 0. A formula for computing a* is given, and no quenching in infinite time is
deduced.

1. Introduction. Let q, 0, a, and p be any real numbers with q > 0, 0 < (3 < a, and
p > 0. Let us consider the following degenerate semilinear parabolic first initial-boundary
value problem,

<^u7 - = 6(<;-0)F(u(c,7)) in (0,a) x (0,p], 1
u(<T, 0) = 0 on [0, a], u(0,7) = u(a, 7) = 0 for 0 < 7 < p, J

where S(x) is the Dirac delta function and F is a given function. These types of prob-
lems are motivated by applications in which the ignition of a combustible medium is
accomplished through the use of either a heated wire or a pair of small electrodes to
supply a large amount of energy to a very confined area. When q = 0, the problem
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(1) can be used to describe the temperature of a one-dimensional rod having a length a
and a concentrated nonlinear source at (3. When q = 1, it may also be used to describe
the temperature u of the channel flow of a fluid with temperature-dependent viscosity
in the boundary layer (cf. Chan and Kong [4]) with a concentrated nonlinear source at
/?; here, <r and 7 denote the coordinates perpendicular and parallel to the channel wall,
respectively.

Let <; = ax, 7 = aq+2t, /3 = <26, Lu = xqut - uxx, F(u(<.^,7)) = f(u(x,t)), D = (0,1),
D = [0,1], and tt = D x (0,T]. Then (1) is transformed into the following problem:

Lu = a25(x — b)f(u(x,t)) in !T2,
u(x, 0) = 0 on D, u(0, t) = u( 1, t) = 0 for 0 < t < T, (2)

with 0 < b < 1 and T = p/aq+2. We assume that liinu^c- /(u) = 00 for some positive
constant c, and /(u) and /'(it) are positive for 0 < it < c.

The case q = 0 was studied by Deng and Roberts [7] by analyzing its corresponding
nonlinear Volterra equation at the site b of the concentrated source:

u(b,t) = a2 [ g(b,t;b,T)f(u(b,T))dT,
Jo

where g(x,t;^,r) denotes Green's function corresponding to (2) with q = 0. By also
assuming that f" (u) > 0 for it > 0, they showed that there exists a length a* such
that for a < a*, the solution u(b,t) of the integral equation exists for all time and is
uniformly bounded away from c while for a > a*, there exists some finite tq such that
limt_>tfl u(b,t) = c and limt_tg ut (6, t) — 00.

Instead of studying a solution it (b, t) of the nonlinear Volterra equation, we would like
to investigate a solution u(x,t) of the degenerate problem (2). Since u(x,t) need not
be differentiate at b, we say that a solution of the problem (2) is a continuous function
satisfying (2). In Sec. 2, we show that the problem (2) has a unique solution u, and uxx >
0 for x G (0, b) and x € (b, 1). It follows from xqut (x, t) = uxx (x,t) + a25(x-b)f {u (x, t))
that ut (6, t) = 00 for each t > 0. Hence, we say that a solution it of the problem (2) is
said to quench if there exists some tq such that max{u(x,t) : x € D) —> c~ as t —> tq
(cf. Chan and Liu [5]). If tq is finite, then u is said to quench in a finite time. On the
other hand, if tq = 00, then it is said to quench in infinite time. We also show that u is
a strictly increasing function of t in D, and if u quenches, then b is the single quenching
point.

The length a* is called the critical length (cf. Chan and Kong [3]) if a unique global
solution u exists for a < a*, and if the solution it quenches in a finite time for a > a*.
In Sec. 3, we show existence of a unique critical length, and that it is the same as that
for q = 0. By making use of limu^c- f(u) = 00, we show that for a = a*, u exists for
0 < t < 00, and is uniformly bounded away from c. This shows that quenching does not
occur in infinite time. We also derive a formula for calculating a*.

2. Existence, uniqueness, and single-point quenching. Green's function
G(x,t-,^,r) corresponding to the problem (2) is determined by the following system:
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for x and £ in D, and t and r in (—00,00),

LG = 6{x - £)5{t - t),
G(x, t; £, t) = 0 for t < r, G(0, t\ £, r) = G(l, t; £, r) = 0.

By Chan and Chan [1], we have
OO

G{x,t;Z,r) = x)MZ)e~Xi(t~T),
i=i

where Aj (« = 1, 2, 3,...) are the eigenvalues of the problem

<t>" +\xq<j) = 0, 0(0) = 0(1) = 0,

and their corresponding eigenfunctions are given by

(t£*"+2,/2)
c^-(x) = (<? + 2)1/V/2-

2A1/2

"^1+<I+2 \ 1+2

with Ji/(q+2) denoting the Bessel function of the first kind of order 1 /(q + 2). From
Chan and Chan [1], 0 < Ai < A2 < A3 < • • ■ < A, < AI+i < • • •. The set {(j>i(x)} is a
maximal (that is, complete) orthonormal set with the weight function xq (cf. Gustafson

[9, p. 176]).
To derive the integral equation from the problem (2), let us consider the adjoint

operator L*, which is given by L*u = —xqUt — uxx. Using Green's second identity, we
obtain

u(x,t) = a2 I G(x,t;b,T)f(u(b,r))dT. (3)
Jo

For ease of reference, let us state below Lemmas 1(a), 1(b), 1(d), and 4 of Chan and
Chan [1] as Lemma 1(a), 1(b), 1(c), and 1(d), respectively; we also state below Lemma
2.2(a), 2.2(b), 2.2(c), and 2.2(d) of Chan and Tian [6] as Lemma 1(e), 1(f), 1(g), and
1(h), respectively.

Lemma 1. (a). For some positive constant ki, \<j>i (x)| < k\x~q/4 for x G (0,1].
(b). For some positive constant /c2, \4>i (^)l < k2XX^\\ for x G D.
(c). For any Xo > 0, and x G [xo, 1], there exists some positive constant k<$ depending

on xo such that |<^ (x)| < £3 A J .
(d). In {(x,t;^,r) : x and £ are in D, T > t > t > 0}, G(x,t; £,r) is positive.
(e). For (x,t;€,r) G (D x (r,T]) x (£> x [0, X1)), G{x,t\^,r) is continuous.
(f). For each fixed (£,r) G D x [0,T), Gt(x,i;^,r) G C (D x (r,T]).
(g). For each fixed (£, r) G D x [0, T), Gx (x, t\r) and Gxx(x, t; £, r) are in C ((0,1]

x(r,T]).
(h). If r G C ([0, T]), then J0' G(x, t: b, T)r{r)dT is continuous for x G D and t G [0, T],

We modify the techniques in proving Lemma 2.3 and Theorems 2.4 and 2.6 of Chan
and Tian [6] to show that the integral equation (3) has a unique nonnegative continuous
solution. Unlike theirs, we achieve this without using the contraction mapping and
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without considering the integral equation (3) at x — 6; also by making use of (3), we
prove further that u is a strictly increasing function of t in D.

Theorem 1. There exists some tq (< oo) such that for 0 < t < tq, the integral equation
(3) has a unique nonnegative continuous solution u, and u is a strictly increasing function
of t in D. If tq is finite, then u reaches c~ at tq.

Proof. Let us construct a sequence {u{\ in CI by uq = 0, and for i = 0,1,2,...,

L'Ui+i — a2d(x — b)f(ui(x,t)) in 17,

ui+i(x,0) = 0 on D, ui+i(0,t) = ui+i(l,t) = 0 for 0 < t < T.

Let dCl denote the parabolic boundary (D x {0}) U ({0,1} x (0, T]) of fi. We have

L(u\ — u0) = a25(x — b)f(0) in fl, u\ — u0 = 0 on dfl.

By Lemma 1(d) and 1(e), G(x,t;£,r) is positive and continuous. From (3), u\ > u0 in
fl. Let us assume that for some positive integer j.

0 < Ui < U2 < ■ ■ ■ < Uj-1 < Uj in CI.

We have

L(uj+1 — Uj) = a2(5(x — b)(f(uj) — f(uj-1)) in fi, Uj+\ — Uj = 0 on dCl.

Since / is a strictly increasing function and Uj > Uj-1, it follows from (3) that Uj+1 > uj.
By the principle of mathematical induction,

0 < u\ < U2 < ■ ■ ■ < iin_i < un in Cl

for any positive integer n.
To show that each un is an increasing function of t, let us construct a sequence {wn}

such that for n = 0,1,2,..., wn (x,t) = u„(x,t + h) - un(x,t), where h is any positive
number less than T. Then, wo(x,t) = 0. By (3), we have

w\(x, t) = u\(x, t + h) — Ui (x, t)

= a2/(0) G(x,t + h;b,T)d,T - J G(x, t; b, r)dr^ .

We note that G(x,t + h;b,r) = G(x, t + h — r; 6,0). Let a — r — h. Then,

We have

ri-tn pn pi

/ G(x,t + h-b,T)dr = / G(x,t + h;b,T)dr + / G(x,t;b,a)
Jo Jo Jo

rh

Wi(x,t) = a2f(0) / G(x,t + h;b,T)dT,
Jo
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which is positive for 0 < t < T — h. Let us assume that for some positive integer j,
Wj > 0 for 0 < t < T — h. Let a — r — h. We have

a2
ri-\-n

/ G(x,t + h;b,T)f(uj(b,T))d,T
Jo

a2 ( f G(x,t + h',b,T)f(uj(b,T))dT+ f G(x, t;b,a)f(uj(b, a + h))da
\Jo Jo y

J G(x,t + h;b,T)f(uJ(b,T))dT + s: G(x, t; b, a)f{uj (b,cr))daj .> a2

In D x (0, T — h],

Wj+i(x,t) = Uj+i (x, t + h) - Uj+\(x, t)

: f G(x,t + h;b,T)f(uj(b,T))dT>0.
Jo

> a2

By the principle of mathematical induction, wn > 0 for 0 < t < T — h and all positive
integers n. Thus, each un is an increasing function of t.

By Lemma 1(h), G(x,t;b,r) is integrable. Thus for any given positive constant M
(< c), it follows from

un(x,t) = a2 G(x,t;b,T)f(un-i(b,T))dT (4)
Jo

and un being an increasing function of t that there exists some t\ such that un < M for
0 < t < t\ and n = 0,1, 2,.... In fact, t\ satisfies

rti
a2f(M) / G(x,ti;b,r)dT < M.

Jo

Let u denote limn^oo un. From (4) and the Monotone Convergence Theorem (cf. Royden
[10, p. 87]), we have (3) for 0 < t < t\. Thus, u is a nonnegative solution of the integral
equation (3) for 0 < t < t\.

To prove that u is unique, let us assume that the integral equation (3) has two distinct
solutions u and u on the interval [0,£i]. Let 0 = maxg^o^jlw — u\. From (3),

u(x, t) - u(x, t) =a2 [ G(x, t; b, r) r)) - f(u(b, r))) dr. (5)
J 0

Using the Mean Value Theorem, we have

I f(u{b,r)) - f(u(b,r))\ < f'{M)G.
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Let e be some positive number. It follows from Lemma 1(a), 1(b), and (5) that

0 < a2/'(M)0 f G(x,t\b,T)dT
Jo

ft-t °°
< a2 f {M)Qklk2b~q'A lim / ^ A^V^^^r

C_> i= 1

ft-6 OO
< a2f\M)Qk1k2b-q'A lim / ^ A^V^r.

v'° i=i

Since A, converges uniformly with respect to r € [0,£ — e], it follows from
the Weierstrass M-Test that

oo rt-e^ pi — e

0 < a2f\M)Qk1k2b-q,A lim]T / A\/Ae~Xi(t~T)dT
e_> »=l

OO

< a2f'(M)<dklk2b-q,i lim V A~3/4(e"A*e - e~Xit)
e—»0 '

i= 1
oo

< a2f'(M)ek1k2b-q/4 lim V A7"3/4(l - e~Ait)
e—>0 ̂ '

= a2f{M)k1k2b-q'A

i= 1
OO

5X3"(1
,2=1

0, (6)

which converges since O(Aj) = 0(i2) (cf. Watson [12, p. 506]) for large i. Let us choose
some positive number o\ (< ti) such that for t € [0, cri],

a2f'(M)k1k2b~q/4 < I- (7)EAT8/4(l-e-M)
.i=i

This gives a contradiction. Thus, u is unique for 0 < t < a\. If <j\ < t\, then it follows
from (3) that for o\ < t < 11,

/•cr i nt

u(x,t) = a2 / G(x,t;b,T)f(u(b,T))d,T + a2 / G(x, t\ b, r)f(u(b, t))cLt. (8)
Jo J (7\

Since u = u for 0 < t < cri, we have for cri < t < ti,

u(x, t) - u(x, t) = a2 f G(x, t; 6, r) {f(u(b, r)) - f{u{b, r))) dr,
J CT1

^TA-^l-e-^-^)

from which we obtain

0 < a2f'(M)k1k2b~q/4
J = 1

It follows from (7) that for t E [cri,min{2<Ji,ti}],
OO

^A-^l-e-^-^)
.1=1

0. (9)

a2 f\M)klk2b~q,A < 1. (10)
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This gives a contradiction. Thus, we have uniqueness of a solution for 0 < t <
min{2cri,ti}. By proceeding in this way, the integral equation (3) has a unique non-
negative solution u for 0 < t < t\.

From Lemma 1(h) and (4), each un is continuous. To show that u is continuous, we
note that

Un+i (x, t) - un(x, t) = a2 / G(x, t\ 6, r) [/(u„(6, r)) - f(un-i (b, r))] dr.
J o

Let Sn = maxgx[0itl](un — un-i). Using the Mean Value Theorem, we have

f{un{b,T)) - f(un-i(b,T)) < f'(M)Sn.

As in the derivation of (6), we obtain for 0 < t < ui,

Sn+i < a2/'(M)fc1fc26-«/4 £Ar3/4(l-e-^) sn.

By (7), the sequence {un} converges uniformly to u with respect to x € D and t G [0, e^].
Thus, the integral equation (3) has a unique nonnegative continuous solution u for 0 <
t < a\. From Lemma 1(a) and 1(b), the integrand of the first term on the right-hand side
of (8) is bounded by / (M) k\k-2b~q^ Aj/'4e_A^t_T\ which is integrable for t > o\.
Thus, if (71 < t\, then for cr\ < t < t\, the first term on the right-hand side of (8) is
continuous. Let

z(x,t) = a2 / G(x,t-,b,T)f(z(b,T))d,T.
J G\

From (8), z < M. For <j\ <t< 11, let us construct a sequence {zi} by zq (x,t) = 0, and
for i = 0,1,2,...,

zi+1(x,t) = a2 / G(x, t\ b, T)f(zi(b, r))dr.
J (J i

By Lemma 1(h), each zn is continuous. We have

zn+1{x,t) - zn(x,t) = a2 / G(x,t;b,T)(f(zn(b,T))~ f{zn-i{b,T)))d,T.
J G i

Let Zn = maxox[CTlimin{2<71,t1}] \zn ~ zn-i\. As in the derivation of (9),

Z,i+i < a2/'(M)fcifc2^9/4 Zn-52X73/\l-e-x«-^)
.i=i

From (10), the sequence {zn} converges uniformly to z, and hence, z is continuous for
<7i < t < min{2cri, t{\. From (8), u is continuous for cr\ <t < min{2<7i, ii}. If 2<ti < t\,
then for 2<j\ < t < t\,

r2cri pt

u(x,t) = a2 / G(x,t;b,T)f(u(b,T))dT + a2 / G(x,t;b,T)f(u(b,T))d.T.
JO J 2<7i

Since the first term on the right-hand side is continuous, we consider the second term.
An argument analogous to the above shows that u is continuous for 0 < t < min{3(Ji, ii}.
By proceeding in this way, the integral equation (3) has a unique nonnegative continuous
solution u for 0 < t < t\.
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Let tq be the supremum of all t\, where [0,£i] is the interval for which the integral
equation (3) has a unique nonnegative continuous solution u. If tq is finite and u does
not reach c~ at tq, then given any number between maXQu(x,tq) and c, a proof similar
to the above shows that there exists some t% > tq such that the integral equation (3)
has a unique nonnegative continuous solution u for 0 < t < t^. This contradicts the
definition of tq. Hence, if tq is finite, then u reaches c~ at tq.

It follows from un being an increasing function of t in D that u is a nondecreasing
function of t. Let a = r — e. We have

rt-\-e

a2 / G(x,t + e;b,T)f(u(b,T))d,T
Jo

f G(x,t + e;b,T)f(u(b,T))d,T+ f G(x,t;b,a)f(u(b,a + e))da\
0 J 0 /

a2 (^J G(x,t + e;b,T)f(u(b,T))dr + J G(x,t\b,a)f(u(b,a))do^j

since / is an increasing function. Thus,

u(x, t + e) — u(x, t) > a2 / G(x, t + e; b, r)f(u(b, r))dr > 0.
Jo

Hence, u is a strictly increasing function of i in D. □
We modify the method of proving Theorem 2.5 of Chan and Tian [6] to show that the

solution of the integral equation (3) is actually the solution of the problem (2).

Theorem 2. Before quenching occurs, the problem (2) has a unique nonnegative solution
u. If tq is finite, then u quenches at tq.

Proof. It follows from Lemma 1(h) that for any 13 € (0, t),

= a2

>

G(x,t-b, T)f(u(b,T))dr

■t—l/n
fJo

rt—L/n

= lim / G(x,t;b,T)f(u(b,T))dT
n~*°° Jo

= ri1™o Jt §c,{j G(xX',b, T)f(u{b,T))dr \ d(

rts — l/n
+ lim / G(x, <3; b, T)f(u(b, r))dr.

n—>00

For ( — t > 1 /n, it follows from Lemma 1(f) and 1(b) that for any x G D,

(OO N

^2 l^(x)l l^i(^)| Aie_Ai(c_T)
»=1 /

OO

< k2f{u(b, t)) A-/2e"Ai/n,
i= 1
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which is integrable with respect to r over (0,£ — 1/n). Using the Leibnitz rule (cf.
Stromberg [11, p. 380]), we have

g ( K-i/n \
dC\Jo G{x,C;b,T)f{u{b,T))dTj

= G (x,C,b,( - ^ / (u ^fe,C - + J Gx(x, b, r)f(u(b, t))dr.

Let us consider the problem

Lw = 0 for x and £ in D, 0 < r < t,
w(0, i; £, r) = to(l, t; £, r) = 0 for 0 < r < t,

lim xqw(x, t\£, r) = 5{x — £).
t—»t+

Using Green's second identity, we obtain for t > r,

w(x,t;£,r) — [ yqG{x,t;y,r)y q6(y - £)dy
Jd

= G(x,t-^,r).

It follows that lim^T+ xqG(x,t; £, t) = (5(x — £).
Since / is an increasing function, and G(x,£;6, C - 1/n) = G(x, 1/n; 6,0), which is

independent of C, we have
rt
f xqG(x,t',b,T)f(u(b,T))dT

J o

= 5{x-b) [ f(u(b,())d(+ lim [ [ x9G?(x, C; fr, r)/(u(6, T))drd(
Jt3 n—>00 Jt3 JQ

+ f xqG(x,t3;b,T)f(u(b,T))dT. (11)
Jo

Let
/■C-i/n

ffn(z,C) = / x9Gc(x,C;6,r)/(u(6,r))dr.
Jo

Without loss of generality, let n > Z. We have
/■{-1/n

9n{x,() - 9i(x,0 = / x9Gc(x,C;6,r)/(u(6,r))dr.
J(-i/i

Since x9G^(x, £; 6, r) € G(jD x (t, T]) and f(u(b,r)) is an increasing function of r, it
follows from the Second Mean Value Theorem for Integrals (cf. Stromberg [11, p. 328])
that for any x ^ b and any £ in any compact subset of (0,£g), there exists some real
number v such that ( - i/ e (( - 1/Z, C — 1/n) and

i\\9n{x. C) - 0j(a;,C) = / ^ ~ x9Gc(x, C; b, r)dr

+ / (u (ft, C - ^)) J xqG<(x,C1b,T)dT.
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From G^(x,C;b,r) — —Gr (x, C; 6, r), we have

9n0,0 -gi(x,C) = xqG(xX;b,( - v)

+ / (u (b, C - |) ) x9G (a;, j

~f(u(b,C~^) xqG (z, C; b, C - ^ •

Since for x ^ b, xqG(x, £; b, £ — e) = xqG(x, e\ b, 0), which converges to 0 uniformly with
respect to ( as e —> 0, it follows that for i / 6, {gn} is a Cauchy sequence, and hence
{gn} converges uniformly with respect to £ in any compact subset of (0,tq). Hence for
x^b,

ft /<-!/"
lim / / xqG^(x,(',b,r)f(u{b,T))dTd^

n—>oo t3 JO

ft f C-l/n
/ lim / xqGc{x,(t\b,T)f(u(b,T))dTd(<

Jt3 n^°° Jo

[ [ xqG((x,^;b,T)f(u(b,T))dTd(.
Jt*-1 J0

For x = b,

-Gc(b, C; 6, r)f(u{b, t)) = 4>l{b)\e A,(c r)f(u{b, r)),
i=l

which is positive. Thus, {—gn} is a nondecreasing sequence of nonnegative functions
with respect to £. By the Monotone Convergence Theorem,

rt nC, — 1/n pt nC,

lim / / bqGc(bX;b,T)f(u{b,T))dTd(= / (6, C; b, r)f{u{b, T))drd(.
71 *°° Jo JO

Thus from (11),

^ f xgG(x,t;b,T)f(u(b,T))dT = 5(x-b)f(u(b,t))+ [ xqGt(x,t;b,T)f(u(b,T))dT.
Jo J 0

By Lemma 1(b) and 1(c),
oo

dt

]T — (®)0< (0e"A'(t-r)
dxi=1 i=l

<fc2fc3^A^/4e-Ai(t-r),
i=1

which converges uniformly with respect to x in any compact subset of (0,1] with t — r > e.
By Lemma 1(g) and the Leibnitz rule, we have for any x in any compact subset of (0,1]
and t in any compact subset of (0 ,tg),

|/ G(x,t; 6, r)f(u(b, r))dr = J Gx(x.t:b. r)f(u(b. t))Ht.
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Since 4>i is an eigenfunction, it follows from Lemma 1(b) that

°° rfi

dx2
i=1

00

(x)\\4>i (0|e"Ai(t_T)
2=1

OO

= (x)H^ (0|e"Ail
i=1

00

<fc22^Ape-^(t-T),
i=l

which converges uniformly with respect to x in any compact subset of (0,1] with t — r > e.
By Lemma 1(g) and the Leibnitz rule, we have for any x in any compact subset of (0,1]
and t in any compact subset of (0,tq),

U Gx(x,t\b,T)f(u{b,T))dT = J Gxx(x,t;b,r) f (u(b, t))(It.

For any x\ £ D,

lim [ G(x,t;b,T)f(u(b,T))dT
Jo

= ]im J f G(rj,t;b,T)f(u(b,T))dT^ dr]+lim j G(x1,t;b,T)f(u(b,T))dT
px pt—e ft

= lim / / Gv(r],t;b,T)f(u(b,T))dTdT]+ G{x1,t;b,r)f(u(b,T))dT. (12)
£_>0 Jx, Jo Jo

By the Fubini Theorem (cf. Stromberg [11, p. 352])
rx ft — e pt—e

limim f [ Gv(ri,t-,b,T)f(u(b,T))dTdr] = lim [ (f{u{b,T)) [ Gn(r),t;b,T)dr))dT
^°JXlJ 0 e^°J 0 Jxx

= lim [ f(u(b, t))(G(x, t\ b, r) — G(xi, t\b, r))dr
e^°i o

= [ f{u{b,T))(G(x,t;b,T) - G(x!,t;b,T))dT,
J 0

which exists by Lemma 1(h). Therefore,

J f(u(b,T))(G(x,t;b,T)-G(xi,t;b,T))dT = J f(u(b,r))^J Gv(r],t;b,T)dr]^ dr

= [ [ Gv(t), t; b, t)f (u(b, T))drdr].
Jx 1 Jo

From (12),

[ G{x, t; b,T)f(u(b,T))dr
Jo

= [ f Gv(rj, t; b, r)f(u(b, r))drdr] + [ G(xi,t;b,T)f(u(b,T))dT.
Jxi Jo JO
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Thus,
d_

dx
For any x2 6 D,

pt—e

f G(x,t; b, r)f(u(b, r))dr — f Gx(x,t;b,T)f(u(b,T))dr. (13)
Jo Jo

lim [ Gx(x, t\ b, t)f(u(b, r))dr
J 0

lim / J Gr,(ri,t]b,T)f(u(b,T))dT^dri+limJ Gtl{x2,t;b,T)f{u(b,T))dr

Gr)r){v,t;b,T)f(u(b,T))dTdri+ [ Gv{x2,t-,b,T)f(u(b,T))dT. (14)
Jo

'X-2.

pX pt — €

= lim
e^° Jx2 JO

By the Fubini Theorem
px rt — e rt — e rx

lim/ / Gr,r,(v, t; 6, r)f(u(b, T))drdri = lim / (f{u{b,r)) GVr,(r), t\ b, T)dt])dr
e^°Jx2Jo e—* J0 Jx2

= lim / f(u(b, T))(Gr,{x,t;b, r) - Gv(x2,t-,b, r))dr
£^° Jo

= / f(u{b,T))(Gv(x,t-,b,T) - Gv(x2,t;b,T))dT,
Jo

which exists by (13). Therefore,

f f(u(b, T))(Gv(x,t-b,T) - Gv(x2,t; b, r))dr = f [ Gvv(ri,t-1b,T)f(u{b,T))dTdii
Jo J X-2 J0

From (14),

[ Gx(x, t; b, t)f (u(b, r))dr
Jo

pX pt ot

Gnrjiv, t", b, T)f(u(b, r))drdrj + / Gv(x2, t; 6, r)f(u(b, r))dr.
Jox2 JO

[ Gx(x, t;b,T)f(u(b,r))dT = [ GXX (•£? ̂ 5 b,T)f{u(b,T))dr.
Jo Jo

Thus,
_a_ ̂
dx

It follows from (13) that for any x in any compact subset of D and any t in any compact
subset of (0, tq),

d2 rt rt

dx2
f G{x,t;b,r)f{u(b,T))dT= [ Gxx(x,t;b,T)f(u(b,T))dT.

Jo Jo
Before quenching occurs, it follows from the integral equation (3) that for x G D and

t > 0,

Lu = a2S(x — b)f(u(b,t)) + a2 f LG(x,t;b,r)f(u(b,T))dT
Jo

pt-e

= a2S(x — b)f(u(b, t)) + a2S(x — b) lim / 5(t — r)f(u(b,T))dT
Jo

= a2S(x — b)f(u(x, t)).
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From (3), lim^o u(x,t) = 0 for x G D. Since G(0, t;£, r) = G(l,t;£, t) = 0, we have
w(0, t) = u(l,t) = 0. Thus, the nonnegative continuous solution of the integral equation
(3) is a solution of the problem (2). Since a solution of the problem (2) is a solution of
the integral equation (3), which has a unique solution before quenching occurs, u is the
unique solution of the problem (2).

If tq is finite, then by Theorem 1, u reaches c~ at tq. Thus, u quenches at tq. □
Our next result shows that b is the single quenching point.

Theorem 3. The solution u(x,t) of the problem (2) attains its maximum at (b, t). If u
quenches, then b is the single quenching point.

Proof. Since u{b, t) is known, let us consider the following problems:

(15)
Lu = 0 in (0, b) x (0, tq),

u(x, 0) = 0 for 0 < x < 6, u{0, t) = 0 and u(b, t) = u(b, t) for 0 < t < tqi

Lu = 0 in (6,1) x (0, tq),
u(x, 0) = 0 for b < x < 1, u(b,t) = u(b,t) and u(l,t) = 0 for 0 < t < tq (16)

By the weak maximum principle (cf. Friedman [8, p. 39]), u attains its maximum at b
for each of the problems (15) and (16). Since u is a strictly increasing function of t in
D, u(x,t) attains its maximum at (b,t).

If u quenches, then it quenches at b. For the problem (15), it follows from the parabolic
version of Hopf's Lemma (cf. Friedman [8, p. 49]) that for any fixed t G (0, tq), ux(0, t) >
0. For any x G (0, 6), uxx = xqut, which is nonnegative by Theorem 1. Hence, u is concave
up. Similarly for any fixed t G (0,tq), ux(l,t) < 0. For any x G (6,1), uxx = xqut > 0,
and hence, u is concave up. Thus if u quenches, then b is the single quenching point. □

3. Critical length and no quenching in infinite time. We modify the proof of
Theorem 3 of Chan and Kaper [2] to obtain the following result.

Theorem 4. If there exists a constant C G (0, c) such that limf_»00 u(x, t) < C, then
u(x, t) converges uniformly on D from below to a solution U(x) of the nonlinear two-point
boundary value problem,

-U"(x) = a26(x - b)f(U(x)) in D, U{0) = U(l) = 0. (17)

Furthermore, u(x,t) < U(x) in D x (0, oo).

Proof. Since the homogeneous problem corresponding to (17) has only the trivial
solution, its Green's function g(x;£) exists. A direct computation gives

3(z;0 =

Let

£(l-x), 0<^<x,
x(l — £), x < £ < 1.

F(x,t)= [ g(x-,t)£qu(t,t)d£,
J D
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which is bounded, because the integrand is bounded. Since u is the solution of the
problem (2), F(x,t) may be regarded as a distribution. By Green's second identity,

Ft{x,t) = [ g(x;0(utt{Z,t) + a26(£,-b)f(u(£,t)))d£,
JD

=-u{x,t) + a2g(x;b)f(u(b,t)). (18)

Since it is a strictly increasing function of t in D and f(u) is strictly increasing, the term
a2g(x-,b)f(u(b,t)) in (18) is monotone increasing with respect to t. It follows from the
continuity of / that

lim Ft(x, t) = — lim u(x, t) + a2g{x\ b)f( lim u(b, t)), (19)
t—> oo t—>oo t—>oo

which exists since u < C. We note that F is a strictly increasing function of t in D.
If lim^oo Ft (x, t) were strictly positive at some point x, then F(x,t) would increase
without bound as t tends to infinity. Thus, limt^oc Ft(x,t) — 0. It follows from (19)
that

U(x) = a2g(x;b)f(U(b)), (20)
where U (x) = lim^oo u (x, t). Since u is a strictly increasing function of t in D, we have
u(x,t) < U(x) in D x (0, oo). By a direct differentiation,

U"{x) = —a25(x - b)f(U(b)) = -a2S{x - b)f{U(x)).

From (20), U(0) = U( 1) = 0. Thus, U(x) is a solution of the problem (17). Since U
is continuous, the uniform convergence of u to U on D follows from the Dini Theorem.
The theorem is then proved. □

Let v denote the solution of the problem (1) with a and /3 being replaced by a + a and
(3 (a + a) /a respectively for some constant a > 0. Let q = (a + a)x, 7 = (a + a)q+2t,
0 = (a + a)b, F{u(q, 7)) = f(v(x, t)), Ta — p/(a + a)q+2, and £la = D x (0, Ta\. Then,

Lv = (a + a)2S(x — b)f(v{x, t)) in fla,
v(x, 0) = 0 on /), w(0, t) = d(1, t) = 0 for 0 < t < Ta.

Theorem 5. In Qa, v(x,t) > u(x,t).

(21)

Proof. Let us construct two sequences {vi(x, t)} and {ui(x,t)} in fla by vq(x,t) =
Uo(x, t) = 0, and for i = 0,1, 2,...,

Lvl+1 = (a + a)2S(x - b)f(vi(x, t)) in
Vi+i(x, 0) = 0 on D, ui+i(0, t) — Uj+i(l, t) = 0 for 0 < t < Ta\

Lui+i_= a2S(x - b)f(ui(x, t)) in fla,
Ui+i(x, 0) = 0 on D, wi+i(0, t) = iti+i(l, t) = 0 for 0 < t < Ta.

By (3),

v\{x, t) — ui(x, t) — [(a + a)2 — a2] /(0) / G(x,t;b,r)dT > 0.
Jo

Let us assume that for some positive integer j, Vj(x,t) > Uj(x,t). Then,

vj+i(x,t) - uj+1(x,t) > a2 G(x,t\ b,r) (.f(vj(b,T)) - f(uj(b,T)))d,T > 0.
Jo
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By the principle of mathematical induction, vn(x,t) > un(x,t) for all positive integers
n. A proof similar to those of Theorems 1 and 2 shows that v(x,t) = limn^oo vn(x,t) is
the solution of the problem (21). Hence, v(x,t) > u(x,t) in fla.

By (3),

v(x, t) — u(x, t) > a2 f G(x, t; 6, r) (f(v(b, r)) — f(u(b, r))) dr > 0.
Jo

The theorem is then proved. □

Theorem 6. If limt_»s u(b,t) = c~, where s < oo, then v(b, t) quenches in a finite time.

Proof. From (3),

lim [ G(b,t;b,T)f(u(b,T))d,T —
4^s Jo

c
~t2'a'

Since in D, u and v are strictly increasing functions of t and v > u, there exists some tq
(< s) such that

lim f G(b,t\b,T)f(v(b,T))dT= ^ .
t->tqJ o (a + a.y

Hence, v(b,t) quenches in a finite time. □
Theorems 4 and 5 imply that there exists a critical length a* such that u exists on

D for alH > 0 if a < a*. The critical length a* is determined as the supremum of all
positive values a for which a solution U of (17) exists. Hence, it is the same as that for
<7 = 0. According to Theorem 6, u quenches in a finite time if a > a*.

Theorem 7. The solution u does not quench in infinite time.

Proof. Since u(x,t) attains its maximum at (b,t), U (x) = lim^oo u (x, t) attains its
maximum at b. Prom (20),

a = max
U(b) \1/2

g(.b, b)f(U(b))J
i ( u(b) y/2

[6(1 — 6)]1/2 maX \/(^(k))/ '

Let us consider the function

Hs) = m
Since if) {s) > 0 for 0 < s < c, and ip (0) = 0 = lims_»c- ip(s), a direct computation
shows that ip (s) attains its maximum when xp (s) = 1//' (s), where s £ (0, c) by Rolle's
Theorem. Thus, max {U(b)f f{U(b)))1^2 occurs when

U(b)  L_
f(u(b)) f'(u(b)Y

where 0 < U(b) < c. This implies that U (x) exists when a = a*. Hence for a < a*, u
exists globally and is uniformly bounded away from c. Since u quenches in a finite time
for a > a*, u does not quench in infinite time. □
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For illustration, let f(u) — (1—u)~p. A direct computation shows that U(b) [1 — U(6)]p
attains its maximum when U(b) = 1/(1 +p). Therefore,

* ( p" y/2

\b(l - b){l + Py+p J ■
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