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QUENCHING FOR A DEGENERATE PARABOLIC PROBLEM DUE
TO A CONCENTRATED NONLINEAR SOURCE

By

C. Y. CHAN anp X. O. JIANG
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Abstract. Let g, a, T, and b be any real numbers such that ¢ > 0, a > 0, T > 0,
and 0 < b < 1. This article studies the following degenerate semilinear parabolic first
initial-boundary value problem with a concentrated nonlinear source situated at b:

U — Uy = a?6(z — b) f(u(z,t)) in (0,1) x (0,77,
u(z,0) =0on [0,1], u(0,t) =u(l,t) =0for 0 <t < T,

where ¢ (z) is the Dirac delta function, f is a given function such that lim,_,.- f(u) = oo
for some positive constant ¢, and f(u) and f'(u) are positive for 0 < u < ¢. It is shown
that the problem has a unique continuous solution u before max{u(z,t) : 0 < z < 1}
reaches ¢~, u is a strictly increasing function of ¢t for 0 < z < 1, and if max{u(z,t) :
0 < z < 1} reaches ¢~, then u attains the value c only at the point b. The problem is
shown to have a unique ¢* such that a unique global solution u exists for a < a*, and
max{u(z,t) : 0 < z < 1} reaches ¢~ in a finite time for a > a*; this a* is the same as
that for ¢ = 0. A formula for computing a* is given, and no quenching in infinite time is
deduced.

1. Introduction. Let ¢, 8, a, and p be any real numbers with ¢ > 0, 0 < 8 < a, and
p > 0. Let us consider the following degenerate semilinear parabolic first initial-boundary
value problem,

1)

where 6(z) is the Dirac delta function and F is a given function. These types of prob-
lems are motivated by applications in which the ignition of a combustible medium is
accomplished through the use of either a heated wire or a pair of small electrodes to
supply a large amount of energy to a very confined area. When ¢ = 0, the problem

§uy — ugs = 8(s — B)F(u(s,7)) in (0,a) x (0, pl, }
u(s,0) =0 on [0,qa], u(0,7) = u(a,y) =0 for 0 < v < p,
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(1) can be used to describe the temperature of a one-dimensional rod having a length a
and a concentrated nonlinear source at . When ¢ = 1, it may also be used to describe
the temperature u of the channel flow of a fluid with temperature-dependent viscosity
in the boundary layer (cf. Chan and Kong [4]) with a concentrated nonlinear source at
3; here, ¢ and ~ denote the coordinates perpendicular and parallel to the channel wall,
respectively.

Let ¢ = az, v = a9 %, B = ab, Lu = 2% — Ugs, F(u(s,?)) = f(u(z,t)), D = (0,1),
D =[0,1],and Q@ = D x (0,T]. Then (1) is transformed into the following problem:

Lu = a?§(z — b) f (u(z,t)) in Q, } (2)

u(z,0) =0on D, u(0,t) =u(l,t) =0for 0 <t < T,

with 0 < b < 1 and T = p/a?"2. We assume that lim,_,.- f(u) = oo for some positive
constant ¢, and f(u) and f'(u) are positive for 0 < u < c.

The case ¢ = 0 was studied by Deng and Roberts [7} by analyzing its corresponding
nonlinecar Volterra equation at the site b of the concentrated source:

u(b,t) = a2/0 g(b,t;b,7) f (u(b,7))dr,

where ¢ (z,t;&,7) denotes Green’s function corresponding to (2) with ¢ = 0. By also
assuming that f” (u) > 0 for u > 0, they showed that there exists a length a* such
that for a < a*, the solution u(b,t) of the integral equation exists for all time and is
uniformly bounded away from ¢ while for a > a*, there exists some finite ¢, such that
lim; ¢, u (b, t) = c and limy—.; 1 (b, t) = .

Instead of studying a solution u (b, t) of the nonlinear Volterra equation, we would like
to investigate a solution u(x,t) of the degenerate problem (2). Since u (z,t) need not
be differentiable at b, we say that a solution of the problem (2) is a continuous function
satisfying (2). In Sec. 2, we show that the problem (2) has a unique solution u, and vz, >
0 for z € (0,b) and = € (b, 1). It follows from x9u, (x,t) = Uy, (x,t)+a28(x—b) f (u(z,t))
that u; (b.t) = oo for each ¢t > 0. Hence, we say that a solution u of the problem (2) is
said to quench if there exists some ¢, such that max{u(z,t) : z € D} — ¢~ ast — t,
(cf. Chan and Liu [5]). If t4 is finite, then u is said to quench in a finite time. On the
other hand, if ¢, = oo, then u is said to quench in infinite time. We also show that u is
a strictly increasing function of ¢t in D, and if u quenches, then b is the single quenching
point.

The length a* is called the critical length (cf. Chan and Kong [3]) if a unique global
solution u exists for @ < a*, and if the solution u quenches in a finite time for ¢ > a*.
In Sec. 3, we show existence of a unique critical length, and that it is the same as that
for ¢ = 0. By making use of lim,_,.- f{u) = oo, we show that for ¢« = a*, u exists for
0 < t < o0, and is uniformly bounded away from c¢. This shows that quenching does not
occur in infinite time. We also derive a formula for calculating a*.

2. Existence, uniqueness, and single-point quenching. Green’s function
G(z,t;€,7) corresponding to the problem (2) is determined by the following system:
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for z and £ in D, and t and 7 in (—o0, 00),
LG =46(x—&)d(t — 1),
Glz,t; 6, 7)=0fort <7, G0, t; €, 7) = G(1, &, 7) = 0.
By Chan and Chan [1], we have

o0

Gz, t;€,7) = Z (751'(37)(1)1-(5)6_}"“_7),

i=1
where \; (i =1,2,3,...) are the cigenvalues of the problem
¢+ Azip =0, p(0) = ¢(1) =0,

and their corresponding eigenfunctions are given by

22 (q+2)/2
/21 2J"T12 < w7 "
(q+2)"%"

2/\1/2
Jl 1 —
+q+2 q+2

with Jy/(g+2) denoting the Bessel function of the first kind of order 1/(q + 2). From
Chan and Chan [1], 0 < A\ < Ag < A3 < -+ < Ay < Ajp1 < ---. The set {¢:i(2)} is a
maximal (that is, complete) orthonormal set with the weight function z9 (cf. Gustafson

pi(z) =

[9, p. 176]).

To derive the integral equation from the problem (2), let us consider the adjoint
operator L*, which is given by L*u = —x%u; — ug,. Using Green’s second identity, we
obtain

u(x,t) = a2/0 Gz, t;b,7) f(u(b, 7))dT. (3)

For ease of reference, let us state below Lemmas 1(a), 1(b), 1(d), and 4 of Chan and
Chan [1] as Lemma 1(a), 1(b), 1(c), and 1(d), respectively; we also state below Lemma
2.2(a), 2.2(b), 2.2(c), and 2.2(d) of Chan and Tian [6] as Lemma 1(e), 1(f), 1(g), and
1(h), respectively.

LEMMA 1. (a). For some positive constant ki, |¢; (z)| < kyz~9/% for 2 € (0,1].

(b). For some positive constant kg, |¢; ()] < kg.rl/Q)\gM for x € D.

(¢). For any zo > 0, and z € [xg, 1], there exists some positive constant k3 depending
on 1:0 such that |¢] (:L)| < kg/\g/Z.

In {(z, €6, 7):xand Earein D, T >t > 7 > 0}, G(z,t;£,7) is positive.

(e) For (z,t;€,7) € (D x (,T]) x (D x [0,T)), G(z,t;€,7) is continuous.

(f). For each fixed (§,7) € D x [0,T), Gi(z,t;€,7) € C (D x (1,T)).

(g). For each fixed (&,7) € D x [0,T), G (2,t;&,7) and G (2, €, 7) are in C ((0,1]
x (7, T)).
(h). If r € C ([0,77), then fot G(z,t;b, 7)r(1)dr is continuous for 2 € D and ¢ € [0, T].

We modify the techniques in proving Lemma 2.3 and Theorems 2.4 and 2.6 of Chan
and Tian [6] to show that the integral equation (3) has a unique nonnegative continuous
solution. Unlike theirs, we achieve this without using the contraction mapping and
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without considering the integral equation (3) at « = b; also by making use of (3), we
prove further that u is a strictly increasing function of ¢ in D.

THEOREM 1. There exists some ¢, (< oo) such that for 0 < ¢ < ¢, the integral equation
(3) has a unique nonnegative continuous solution u, and u is a strictly increasing function
of t in D. If ¢ is finite, then u reaches ¢~ at ¢,.

Proof. Let us construct a sequence {u;} in @ by ug =0, and for i =0,1,2,...,

Lusyy = a6(z ~ b) f(us(, 1)) in Q,
wir1(z,0) =0o0n D, u;11(0,t) = uj+3(1,¢) =0 for 0 <t < T.

Let 09 denote the parabolic boundary (D x {0}) U ({0,1} x (0,T]) of Q. We have
L(uy — ug) = a?6(z — b) £(0) in 2, u; — uo = 0 on .

By Lemma 1(d) and 1(e), G(z,t; &£, 7) is positive and continuous. From (3), u1 > ug in
Q. Let us assume that for some positive integer j,

O<u1<u2<--~<uj_1<uj in .
We have
L{ujr1 —uj) = a®6(z — b)(f(u;) — f(uj—1)) in €, uj41 —u; = 0 on .

Since f is a strictly increasing function and u; > u;_1, it follows from (3) that v > u;.
By the principle of mathematical induction,

O<ur <ug <+ < Un_1 < up in

for any positive integer n.

To show that each u, is an increasing function of ¢, let us construct a sequence {wn}
such that for n = 0,1,2,...,w, (z,t) = un(x,t + k) — us(z,t), where h is any positive
number less than T. Then, wo(z,t) = 0. By (3), we have

wi(z,t) = uy(z,t + h) — w1 (x,t)

= a’f(0) (
0

We note that G(x,t + h;b,7) = G(z,t + h — 7;b,0). Let 0 = 7 — h. Then,

t+h t
G(z,t+ h;b,T)dr — / G(z,t; b,T)dT) .
0

t+h h t
/ G(z,t+ h;b,T)dr :/ G(z,t+h;b,7—)dr+/ G(z,t;b,0)do.
0 0 0

We have

h
wn(z.1) = a(0) / Gzt + h;b, 7)dr,
0
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which is positive for 0 < t < T — h. Let us assume that for some positive integer 7,
w; >0for 0 <t <T —h. Let c =7 — h. We have

t+h
a? G(z,t + h;b, 7) f(u;(b,7))dr
0

h t
= a2 (/ G(x,t+h;b,T)f(uJ-(b,T))dT+/ G(w,t;bﬂ)f(ua'(b’aJrhWU)
0 0
a2 " xT 0, T i T T t ;0,0 U4 ag a
> </0 G( vt+h’b’ )f(u](b’ ))d +/0 G(xvtvb’ )f( J(bv ))d )

In D x (0,T — A,

wi41(7,t) = uj1(z, t+ h) -y (x, 1)

h
> a2/ G(z,t+ h;b,7) f(u;(b,7))dr > 0.
0

By the principle of mathematical induction, w, > 0 for 0 < t < T — h and all positive
integers n. Thus, each u,, is an increasing function of ¢.

By Lemma 1(h), G(x,t;b,7) is integrable. Thus for any given positive constant M
(< ¢), it follows from

un (2,) = a? /0 G, ;b,7) ftnr (b, 7))dr (4)

and u, being an increasing function of ¢ that there exists some ¢; such that u, < M for
0<t<tiandn=20,1,2,.... In fact, ¢; satisfies

131
a’f(M) G(z,t1;b,7)dT < M.
0

Let u denote lim,,_, o, u,. From (4) and the Monotone Convergence Theorem (cf. Royden
[10, p. 87]), we have (3) for 0 < ¢ < ¢;. Thus, u is a nonnegative solution of the integral
equation (3) for 0 <t < #;.

To prove that u is unique, let us assume that the iniegral equation (3) has two distinct
solutions u and @ on the interval [0,¢1]. Let © = maxpyg,lu ~ @|. From (3),

u(z,t) — u(z,t) = a2/0 G(z,t;b,7) (f(u(b, 7)) — f(iu(b,7)))dr. (5)

Using the Mean Value Theorem, we have

|f(u(b, 7)) — f(a(b,7))| < f'(M)®.
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Let € be some positive number. It follows from Lemma 1(a), 1(b), and (5) that

t
O <a?f'(M)O | G(z.t;b,7)dr
JO
t—e O

< a?f'(M)Okykyb~9/* 1in3)/ S te A tmngr
Vo o
t—e

Z )\3/4e_xisd'r.
i=1

Since 3.2, /\3/46_)‘i6 converges uniformly with respect to 7 € [0,t — €], it follows from
the Weierstrass M-Test that

< a® f/(M)Okykyb~ /4 lim
=P Jo

> t—e
© < ' (M)Okikb™?/* lim 3~ / AV eMit=m g
im0
o
S G,Qf/(]\j)@klk?b_Q/‘l eh_r},(l]Zl )\;‘3/4(e—~/\i€ _ e—)\it)
< a?f'(M)Okykgb 9/ !%Z; ,\;3/4(1 _ Aty

= a%f'(M)kykab~9/* [i AT - e_’\it)] o, (6)

i=1

which converges since O(\;) = O(i?) (cf. Watson [12, p. 506]) for large 7. Let us choose
some positive number gy (< #;) such that for t € [0, 01],

i=1

a2 f'(M)k1kob™9/4 [Z A - e—M)] <1 (7)

This gives a contradiction. Thus, u is unique for 0 < t < o1. If 07 < t1, then it follows
from (3) that for oy <t <y,

u(z,t) = a* /001 G(z,t;b,7)f(u(b, 7))dT + a® / Gz, t; b, 7) f(u(b, 7))dr. (8)

Since u = @ for 0 < ¢t < 71, we have for gy <t < 14,

u(z,t) — iz, 1) = a? / G, t,b,7) (f(ulb, 7)) — (@b, 7)) dr,
from which we obtain

O < a®f'(M)kykyb~ /4 [Z AT (1 - e—*i“—m))l o. (9)

i=1

It follows from (7) that for ¢ € [o7, min{201,t;}],

a2 f'(M)kykab™9/4 [Z AT (1 - e—*i“'*al))} < 1. (10)

i=1
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This gives a contradiction. Thus, we have uniqueness of a solution for 0 < ¢t <
min{20,,t;}. By proceeding in this way, the integral equation (3) has a unique non-
negative solution u for 0 <t < ¢;.

From Lemma 1(h) and (4), each u, is continuous. To show that u is continuous, we
note that

un+1(x7t) - un(xa t) = a2/0 G(-T»t;bv T) [f(un(baT)) - f(un—l(baT))] dr.

Let S, = maxpjgs,](un — un—1). Using the Mean Value Theorem, we have

Fun(b,7)) = flun-1(b,7)) < f'(M)Sy.

As in the derivation of (6), we obtain for 0 <t < gy,

o0
Sni1 < a® f'(M)kykab™/ [Z A - e—“)} Sn.

i=1
By (7), the sequence {u,,} converges uniformly to u with respect to z € D and t € [0, 74].
Thus, the integral equation (3) has a unique nonnegative continuous solution u for 0 <
t < 3. From Lemma 1(a) and 1(b), the integrand of the first term on the right-hand side
of (8) is bounded by f (M) kykob=9/43°2°, )\;/46_’\1“_”, which is integrable for ¢ > 0.
Thus, if o1 < t;, then for o7 < t < ¢, the first term on the right-hand side of (8) is
continuous. Let

z(z,t) = a® /lt Gz, t;b,7) f(2(b, T))dT.

From (8), z < M. For o1 <t < t1, let us construct a sequence {z;} by 2z (z,t) = 0, and
fori=0,1,2,...,
t
Zi+1(x7 t) = a2 G(ﬂ?, t; b’ T)f(zl(ba T))dT'
o1

By Lemma 1(h), each z, is continuous. We have

Zni1(2,1) — 20 (2, 1) = az/ G(z,£:0,7) (f(2n(b, 7)) = f(2n-1(b,7))) d7.

Let Z, = MaXpy (o), min{2e1,t:})] [#n — Zn—1]. As in the derivation of (9),

Zuwn € a2 (M)krkyb ™" lZ AT 1= e )| 7,

i=1

From (10), the sequence {z,} converges uniformly to z, and hence, z is continuous for
o1 < ¢ <min{201,%}. From (8), u is continuous for o7 < ¢ < min{204, 41 }. If 207 < ¢4,
then for 20; <t <y,
201 t
u(z,t) = a? G(z,t;b,7)f(u(b, 7))d7 + a® Gz, t;b,7) f(u(b, 7))dr.
0 207

Since the first term on the right-hand side is continuous, we consider the second term.
An argument analogous to the above shows that u is continuous for 0 < ¢t < min{307,1 }.

By proceeding in this way, the integral equation (3) has a unique nonnegative continuous
solution u for 0 < ¢ < #;.
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Let t, be the supremum of all ¢;, where [0,¢;] is the interval for which the integral
equation (3) has a unique nonnegative continuous solution u. If ¢, is finite and u does
not reach ¢ at t4, then given any number between maxpu(z,t,) and ¢, a proof similar
to the above shows that there exists some t2 > ¢, such that the integral equation (3)
has a unique nonnegative continuous solution u for 0 < t < t5. This contradicts the
definition of ¢,. Hence, if ¢, is finite, then u reaches ¢~ at t,.

It follows from u, being an increasing function of ¢ in D that u is a nondecreasing
function of t. Let 0 = 7 — e. We have

a? /Ot+E G(z,t +¢b,7)f(u(b,7))dr
=a? (/06 Gz, t+€b,7)f(ud,1))dr + /OtG(m,t;b,a)f(u(b,o+ 6))da)
a? (/(: G(z,t+ ¢ b, 7) f(u(b,7))dr + /OtG(z,t;b, U)f(u(b,U))dU)

since f is an increasing function. Thus,
u(z,t+¢€) —u(z, t) > a2/ G(z,t+ e b, 7)f(ulb, 7))dr > 0.
0

Hence, u is a strictly increasing function of ¢ in D. O
We modify the method of proving Theorem 2.5 of Chan and Tian [6] to show that the
solution of the integral equation (3) is actually the solution of the problem (2).

THEOREM 2. Before quenching occurs, the problem (2) has a unique nonnegative solution
u. If t, is finite, then u quenches at ¢,.

Proof. It follows from Lemma 1(h) that for any t3 € (0,1),

/0 Gz, t; b, 1) f(ulb, 7))dr

t—1/n

= lim G(z, t;b,7) f(u(b, 7))dr

n—o0 0

' t F) ¢—1/n .
— i [ 2 ( /0 Gz, Cib,7) f(u(b,T))dT> dc

t3
t3—1/n

+ lim G(xz,t3;b,7) f(u(b, 7))dr.

n—o0 0

For ¢ — 7 > 1/n, it follows from Lemma 1(f) and 1(b) that for any x € D,

Gelw, (b, 7)f(u(b,7)) < flu(b, 7)) (Zm ) 164(8)] A= r>>

< K2 f(u(b, 7)) ZA?/Qe-*i/n,

i=1
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which is integrable with respect to 7 over (0, — 1/n). Using the Leibnitz rule (cf.
Stromberg [11, p. 380]), we have

¢-1/n
6% ( /0 G(w,c;b,ﬂf(u(b,r))dT)

e (x,(;b,( _ %) f (u (b,g - %)) + /Om/n Ge(x,C;b,7) f(u(b, 7))dr.

Let us consider the problem

Lw=0forzand £in D, 0 <7 < ¢,
w(0,¢,7) =w(l,€,7)=0for 0 < 7 < ¢,
Iim+ 2tw(z, t;€,7) = 6(x — £).

t—T1

Using Green'’s second identity, we obtain for t > 7,

w(e,tim) = [ YG(a by Ty - )y
=Gz, €, 7).
It follows that lim; ..+ 29G(z,t; €, 7) = 6(z — £).

Since f is an increasing function, and G(z,{;b,{ — 1/n) = G(z,1/n;b,0), which is
independent of {, we have

/t 29G(z, t;b,7) f(u(b,7))dr

0
t t p¢-1/n

—5@—b) [ Flulb,c))dc + lim / / 29Ge(, G b, 7) f (u(b, 7)) drdC
t3 n—oo t3 JO

+/t3 29G(z, t3; b, 7) f (u(b, 7))dr. (11)
0
Let
¢-1/n
@O = [ #Ge(w. G0, f(u )

Without loss of generality, let n > [. We have
(—-1/n

(@0~ a0 = [ G, b 7wl )i
¢-1

Since 29G¢(z,{;b,7) € C(D x (r,T]) and f(u(b,7)) is an increasing function of 7, it

follows from the Second Mean Value Theorem for Integrals (cf. Stromberg [11, p. 328])

that for any = # b and any ¢ in any compact subset of (0,%,), there exists some real

number v such that ( —v € (( —1/1,{ — 1/n) and

{—v
gn(I,C) - gl(-’lf,g) = f <u <b74 - %)) /C quC(x’C;bv T)dT

—1/1

(—1/n
s (oo ) s
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From G¢(z,¢;b,7) = —=G,(z,(; b, 7), we have

@)= ae, )= |1 (w(nc= 1)) = 1 (u (b= 7)) er6tncine-n
w1 (u(nc- 7))o (wcivg- )
—f(u(b,g—g> zqG(a:,(;b,(—E>.

Since for  # b, 9G(z,(;b,( — €) = 29G(x, €, b,0), which converges to 0 uniformly with
respect to ¢ as € — 0, it follows that for  # b, {g,} is a Cauchy sequence, and hence
{gn} converges uniformly with respect to ¢ in any compact subset of (0,¢,). Hence for

x #b,
t pC—1/n
Jm [ [T atGe(a, b b
t ¢-1/n
=/ lim/ 219G (z, (b, 1) f(u(b, 7))drd¢
ts P Jo
t ¢
:/ / G (x, ¢ b, 1) f(u(b, 7))drd(.
tz3 JO
For x = b,

~Ge(b, ¢ b, 7) f(u(b, 7)) = Zcz»?(b»ie—*f“—”f(u(b, 7)),

which is positive. Thus, {—g,} is a nondecreasing sequence of nonnegative functions
with respect to . By the Monotone Convergence Theorem,

t pl—1/n t rC
lim /3 /0 bIG (b, C;b, 7) f(u(b, 7)) drdC = /t /D bIG, (b, C; b, 7) f(u(b, 7))drdC.

Thus from (11),

% i 294G (z, t; b, 7) f(u(b, 7))dr = 6(z — b) f(u(b,t)) + /0 zIGy(z, t;b,7) f(u(b, 7))dr.

By Lemma 1(b) and 1(c),

5 0 o (6] e =)
;(%dn (z) ¢ (€

<Z|¢ ) |6: (€)] e

< koks Z )\?/46*&(«‘,77),
i=1
which converges uniformly with respect to x in any compact subset of (0, 1] with t—7 > e.
By Lemma 1(g) and the Leibnitz rule, we have for any x in any compact subset of (0, 1]
and ¢ in any compact subset of (0,%,),

6 t—e
9z Jo

Gz, t;b,7) f(u(b, 7))dr = /0 - Gz, t;0,7) f(u(b, 7))d7.
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Since ¢; is an eigenfunction, it follows from Lemma 1(b) that

82
Zag¢l( >¢z( —/\(t T) <Z|¢// ||¢z |—)\(t T)
=1

o

=2 et s ol s ()] e

<R3 NN,
i=1
which converges uniformly with respect to z in any compact subset of (0, 1] with t—7 > e.
By Lemma 1(g) and the Leibnitz rule, we have for any z in any compact subset of (0, 1]
and ¢ in any compact subset of (0,t,),

—€ t—e
O [ ottt dr = [ Gualas tib,7) F(ulb,r))dr.
6CU 0 0

For any z; € D,

t—e
lir% G(z,t;b,7) f(u(b, 7))dr
€— 0
x 8 t—e t—e
= lim (— G(n,t;b,7) f(u(b, T))dT> dn + lim G(z1,t;b,7) f(u(b, 7))dr
e—0 z a'q 0 e—0 0
T t—e t
=t [ [ Gt futbrdran+ [ Glantibr)f(utt, ar (12)
e X 0 0

By the Fubini Theorem (cf. Stromberg [11, p. 352]),

t—e

z t—e
lim/ / Gr(n,t;b,7) f(u(b, 7))drdn = lil%
z1 JO e

e—0

(f(u(b,7) /G (1, t; b, 7)dn)dr
=1in(1)/ flu(b, ))(G(=z, t;b,7) — G(z1,t;b,7))dT

- / (b, 7)) (G, £:b,7) — Glan, b, 7))dr,

which exists by Lemma 1(h). Therefore,

/Ot flu(b, )Gz, t;b,7) — G(z1,8;b,7))dr —/ flu(b, ) (/ Gr(n, b, T)d’l])
/ / Gr(n,t;b,7) f(u(b, 7))drdn.

From (12)

/OG(:l:,t;b,T)f(u(b,T))dT

:/I/ G,,(n,t;b,T)f(u(b,T))den+/ G(z1,t;b,7) f(u(b, 7))dr.
x; JO 0
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Thus,

a9 It t
%/0 G(l),t;b,T)f(u(b,T))dTZ/o Ge(x, t;6,7) f(u(db, 7))dT. (13)

For any zo € D,
t—e

hII'El) Gz(x,t,b,T)f(U(b,T))dT
e—0 Jq

t—e

x t—e
= lim (% Gr(n t;b,7) f(u(b, T))dT> dn + lir% Grlz2,t;b,7) f(ul(b, 7))dr
=Y Jo

e—0 z2 0

x t—e t
= lir%/ / Gon(n, t; b, 7) f(u(b, T))den+/ Gz, t;b,7) f(u(b, 7))dT. (14)
Yz JO 0
By the Fubini Theorem,

z t—e t—e T
tim [ [ G, 0,0l r)drdn =ty [l 7)) [ G0, )dn)ar
e— z2 JO e 0 z2

= lim /t_E Fulb, TW(Gy(z,t;b,7) — Gy(z2,t; b, 7))dT
0

e—0

t
— [ 1. 1)(Gale.tib,7) = Gofan,tiby 7Y,
0
which exists by (13). Therefore,

/ fu(b, 7)) Gy, t;b,7) — Gp(z2,t; b, 7))dT = /z/ Grn(n, b, 7) f(u(b, 7))dTdn.
0 zo JO
From (14),

/()Gz(x,t;b,T)f(u(b,T))dT

- / ’ / (1, £:b,7) f (ul(b, 7)) drdy + / G, t:b,7) f(ulb, 7))dr.
o JO 0
Thus,

8 It ¢
%/0 Gz(:c,t,b,r)f(u(b,r))dfz/ﬂ Goz(z, t;0,7) f(u(b, 7))dT.

It follows from (13) that for any z in any compact subset of D and any ¢ in any compact
subset of (0,t,),
82 t t
5; / G(l‘, t; b7 T)f(u(bv T))dT = / Grz (iI?, i b) T)f(u(ba T))dT'
0 0

Before quenching occurs, it follows from the integral equation (3) that for z € D and
t >0,

Lu = a?§(x — b) f(u(b,t)) + a® /t LGz, t;b,7) f(u(b, 7))dT
0

t—e

=a25(x — b) f(u(b,t)) + a?6(x — b) lim §(t — 1) f(u(b, 7))dr
e—0 Jq
=a%5(x — b) f(u(z,1)).
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From (3), lim;_ou(z,t) = 0 for x € D. Since G(0,t;&,7) = G(1,t;€,7) = 0, we have
u(0,t) = u(1,t) = 0. Thus, the nonnegative continuous solution of the integral equation
(3) is a solution of the problem (2). Since a solution of the problem (2) is a solution of
the integral equation (3), which has a unique solution before quenching occurs, u is the
unique solution of the problem (2).
If t; is finite, then by Theorem 1, u reaches ¢~ at ¢;. Thus, u quenches at t,. [l
Our next result shows that b is the single quenching point.

THEOREM 3. The solution u (z,t) of the problem (2) attains its maximum at (b,t). If u
quenches, then b is the single quenching point.

Proof. Since u(b,t) is known, let us consider the following problems:

Lu=0in (0,b) x (0,t4), (15)
u(z,0) =0 for 0 <z <b, u(0,t) =0 and u(b, t) = u(b,t) for 0 <t < ¢4,
Lu=0in (b 1) x (0,t,

u(z,0) =0for b <z <1, u(b,t) = u(b,t) and u(1,t) = 0 for 0 < ¢ < 4. } (16)

By the weak maximum principle (cf. Friedman [8, p. 39]), u attains its maximum at b
for each of the problems (15) and (16). Since u is a strictly increasing function of ¢t in
D, u(z,t) attains its maximum at (b, t).

If u quenches, then it quenches at b. For the problem (15), it follows from the parabolic
version of Hopf’s Lemma. (cf. Friedman [8, p. 49]) that for any fixed t € (0,¢,), u5(0,t) >
0. For any z € (0,b), 4z, = %, which is nonnegative by Theorem 1. Hence, u is concave
up. Similarly for any fixed ¢ € (0,t,), uz(1,£) < 0. For any x € (b,1), gz = 2% > 0,
and hence, v is concave up. Thus if u quenches, then b is the single quenching point. [

3. Critical length and no quenching in infinite time. We modify the proof of
Theorem 3 of Chan and Kaper [2] to obtain the following result.

THEOREM 4. If there exists a constant C' € (0,c) such that lim;, u(z,t) < C, then
u{x, ) converges uniformly on D from below to a solution U(z) of the nonlinear two-point
boundary value problem,

~U'(z) = a*6(z — b) f(U(z)) in D, U(0) = U(1) = 0. (17)
Furthermore, u(z,t) < U(z) in D x (0, 00).

Proof. Since the homogeneous problem corresponding to (17) has only the trivial
solution, its Green’s function g(z;&) exists. A direct computation gives

: _ 5(1_‘1:)7 0§§§x,
g(m,&)—{ z(1-§), z<€<1

Let

Fz,t) = /D oz €)€M(E, 1),
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which is bounded, because the integrand is bounded. Since u is the solution of the
problem (2), F'(z,t) may be regarded as a distribution. By Green’s second identity,

Fiz,t) = /D 0 €)(uge(€.1) + a®5(€ — b F(ule, 1)))de
= —u(z,t) + a2g(:v; b) f(u(b, t}). (18)

Since u is a strictly increasing function of ¢ in D and f(u) is strictly increasing, the term
a?g(z;b) f(u(b,t)) in (18) is monotone increasing with respect to ¢. It follows from the
continuity of f that

tlim Fi(z,t) = —tlim u(zx,t) + azg(m;b)f(tlim u(b, t)), (19)

which exists since u < C. We note that F' is a strictly increasing function of ¢ in D.
If limy oo Fi(z,t) were strictly positive at some point x, then F(z,t) would increase
without bound as ¢ tends to infinity. Thus, lim;_.. Fi(z,t) = 0. It follows from (19)
that

U(z) = a®g(z;b) f(U (b)), (20)
where U () = limy_,oo u (2, t). Since u is a strictly increasing function of ¢ in D, we have
u(z,t) < U(z) in D x (0,00). By a direct differentiation,

U"(z) = —a®6(z — b)f(T (b)) = —a’6(z — b) f(U()).
From (20), U(0) = U(1) = 0. Thus, U(z) is a solution of the problem (17). Since U
is continuous, the uniform convergence of u to U on D follows from the Dini Theorem.
The theorem is then proved. a
Let v denote the solution of the problem (1) with a and 3 being replaced by a+ « and

B (a+ @) /a respectively for some constant o > 0. Let ¢ = (@ + a)z, v = (a + a)?1?,
8= (a+a)b, F(u(s,v)) = f(v(z,1), Ta = p/(a + a)?*?, and Qa = D x (0,T]. Then,

Lv=(a+ a)25(x = b)f(v(z,t)) in Q, }

v(z,0) =0 on D, v(0,t) = v(1,t) =0 for 0 < t < Th,. (21)

THEOREM 5. In Q, v(z,t) > u(x,t).

Proof. Let us construct two sequences {v;(z,t)} and {u;(z,t)} in Q, by vo(z,t) =
ug(x,t) =0, and for ¢ =0,1,2,...,
Lviyy = (a+ @)26(z — b) f(vi(z, 1)) in Qq,
’Ui+1(:17,0) =0 on D, Ui+1(0,t) = ’l)i+1(1,t) =0for 0 <t <Ty;

Luiyy = a?8(x — b) f(us(z,t)) in Qq,
’U,i+1(33,0) =0on D, ui+1(0,t) - uH—l( t) =0for 0 <t < T,
By (3),

vi{z,t) —ur{z,t) = [(a—l—a G(z,t;b,7)dr > 0.
0

Let us assume that for some positive integer j, v, (a:, t) > u;(z,t). Then,

vi1(z,t) —ujpa(z,t) > a2/0 Gz, t;b,7) (f(vj(b, 7)) = f(u;(b,7)))dr > 0.
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By the principle of mathematical induction, v,(z,t) > wu,(z,t) for all positive integers
n. A proof similar to those of Theorems 1 and 2 shows that v{z,t) = lim,_ o vn(z,t) is
the solution of the problem (21). Hence, v(x,t) > u(x,t) in Q4.

By (3),

v(z,t) — u(z,t) > a? /t Gz, t;b,7) (f(v(b, 7)) — f(u(b,7)))dr > 0.
0
The theorem is then proved. a

THEOREM 6. If lim;_,; u(b,t) = ¢~, where s < oo, then v{b,t) quenches in a finite time.

Proof. From (3),
¢

lim | G(b,t;b,7)f(ub,7))dr =

t—s 0

¢
a?’

Since in D, v and v are strictly increasing functions of ¢ and v > u, there exists some ¢,

(< s) such that
¢

. ¢
tllvnt,t A G(b,t,b,T)f(U(b,T))dT = m
Hence, v(b,t) quenches in a finite time. O

Theorems 4 and 5 imply that there exists a critical length a* such that u exists on
D for all t > 0 if a < a*. The critical length a* is determined as the supremum of all
positive values a for which a solution U of (17) exists. Hence, it is the same as that for
q = 0. According to Theorem 6, u quenches in a finite time if a > a*.

THEOREM 7. The solution u does not quench in infinite time.

Proof. Since u (x,t) attains its maximum at (b,t), U (z) = lims—o u (z,t) attains its
maximum at b. From (20),

a* = max (———————U(b) )1/2
a g(b,b) f(U(b))

B 1 e (LU®) 12
D (f(U(b))> '

Let us consider the function

)

¢(5)=f(s)-

Since ¥ (s) > 0 for 0 < s < ¢, and ¥ (0) = 0 = lim,_,.- ¥ (s), a direct computation
shows that ¢ (s) attains its maximum when ¥ (s) = 1/f’ (s), where s € (0,¢) by Rolie’s
Theorem. Thus, rnax(U(b)/f(U(b)))l/2 occurs when

upe) 1
fU®)  fue)

where 0 < U(b) < ¢. This implies that U (z) exists when a = a*. Hence for a < a*, u
exists globally and is uniformly bounded away from ¢. Since u quenches in a finite time
for @ > a*, u does not quench in infinite time. O
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For illustration, let f(u) = (1—u)~P. A direct computation shows that U(b) [L — U (b)]”
attains its maximum when U(b) = 1/(1 + p). Therefore,

*

t <b<1—b>ff+p>1+f’)l/2'

REFERENCES

[1] C. Y. Chan and W. Y. Chan, Existence of classical solutions for degenerate semilinear parabolic
problems, Appl. Math. Comput. 101, 125-149 (1999)
[2] C.Y. Chan and H. G. Kaper, Quenching for semilinear singular parabolic problems, SIAM J. Math
Anal 20, 558-566 (1989)
[3] C.Y. Chan and P. C. Kong, Quenching for degenerate semilinear parabolic equations, Appl. Anal.
54, 17-25 (1994)
[4] C. Y. Chan and P. C. Kong, Channel flow of a viscous fluid in the boundary layer, Quart. Appl.
Math 55, 51-56 (1997)
[5] C. Y. Chan and H. T. Liu, Does quenching for degenerate parabolic equations occur at the bound-
aries?, Dynam. Contin. Discrete Impuls. Systems (Series A) 8, 121-128 (2001)
[6] C. Y. Chan and H. Y. Tian, Single-point blow-up for a degenerate parabolic problem due to a
concentrated nonlinear source, Quart. Appl. Math. 61, 363-385 (2003).
[7] K. Deng and C. A. Roberts, Quenching for a diffusive equation with a concentrated singularity,
Differential Integral Equations 10, 369-379 (1997)
[8] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, NJ,
1964, pp. 39 and 49
[9] K. E. Gustafson, Introduction to Partial Differential Equations and Hilbert Space Methods, 2nd
ed., John Wiley & Sons, New York, NY, 1987, p. 176
[10] H. L. Royden, Real Analysis, 3rd ed., Macmillan Publishing Co., New York, NY, 1988, p. 87
[11] K. R. Stromberg, An Introduction to Classical Real Analysis, Wadsworth International Group,
Belmont, CA, 1981, pp. 328, 352, and 380
[12] G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge University Press,
New York, NY, 1958, p. 506




