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Replacing current refractory treatments for melanoma with new prevention and thera-
peutic approaches is crucial in order to successfully treat this aggressive cancer form. 
Melanoma develops from neural crest cells, which express tyrosinase – a key enzyme 
in the pigmentation pathway. The tyrosinase enzyme is highly active in melanoma cells 
and metabolizes polyphenolic compounds; tyrosinase expression thus makes feasible 
a target for polyphenol-based therapies. For example, quercetin (3,3′,4′,5,7-penta-
hydroxyflavone) is a highly ubiquitous and well-classified dietary polyphenol found in 
various fruits, vegetables, and other plant products including onions, broccoli, kale, 
oranges, blueberries, apples, and tea. Quercetin has demonstrated antiproliferative and 
proapoptotic activity in various cancer cell types. Quercetin is readily metabolized by 
tyrosinase into various compounds that promote anticancer activity; additionally, given 
that tyrosinase expression increases during tumorigenesis, and its activity is associated 
with pigmentation changes in both early- and late-stage melanocytic lesions, it suggests 
that quercetin can be used to target melanoma. In this review, we explore the potential 
of quercetin as an anti-melanoma agent utilizing and extrapolating on evidence from 
previous in vitro studies in various human malignant cell lines and propose a “four-focus 
area strategy” to develop quercetin as a targeted anti-melanoma compound for use 
as either a preventative or therapeutic agent. The four areas of focus include utiliz-
ing quercetin to (i) modulate cellular bioreduction potential and associated signaling 
cascades, (ii) affect transcription of relevant genes, (iii) regulate epigenetic processes, 
and (iv) develop effective combination therapies and delivery modalities/protocols. In 
general, quercetin could be used to exploit tyrosinase activity to prevent, and/or treat, 
melanoma with minimal additional side effects.

Keywords: melanoma, quercetin

Abbreviations: α-MSH, alpha-melanocyte-stimulating hormone; AC, adenylyl cyclase; ARE, antioxidant response element; 
Bax, Bcl-2-associated X protein; cAMP, cyclic adenosine monophosphate; CpG, cytosine–guanine dinucleotide; CREB, cAMP 
response element-binding protein; Cul3, Cullin-3; DNMT, DNA methyltransferase; ERK, extracellular signal-regulated kinase; 
GST, glutathione S-transferase; HAT, histone acetyltransferase; HDAC, histone deacetylase; Keap1, Kelch-like ECH-associated 
protein 1; MAPK, mitogen-activated protein kinase; MC1R, melanocortin 1 receptor; miR, micro-RNA; NQO1, NAD(P)H dehy-
drogenase [quinone] 1; Nrf2, nuclear factor (erythroid-derived 2)-like 2; PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; 
PKA, protein kinase A; PLA, polylactic acid; PLGA, poly(lactic-co-glycolic acid); POMC, pro-opiomelanocortin; PTEN, phos-
phatase and tensin homolog; PUMA, p53 upregulated modulator of apoptosis; Q3G, quercetin 3-O-glucoside; Qct, quercetin; 
Rbx1, RING-box protein 1; ROS, reactive oxygen species; TF, transcription factors; Thio, thioreductase; Ubiq, ubiquitin.
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iNTRODUCTiON

Melanoma is an aggressive form of skin cancer that develops from 
neural crest-derived melanocytes. Due to its metastatic potential, 
melanoma is the leading cause of death of all skin cancer types, 
and its incidence and mortality has increased dramatically over 
the last 30 years. In the United States alone, 76,380 individuals 
are projected be diagnosed with melanoma in 2016 and 10,130 
deaths are estimated to occur (1). The stage of melanoma 
determines the course of treatment. When diagnosed in its early 
states, melanoma can often be cured by surgery. However, when 
diagnosed at the metastatic stages, the prognosis is poor, with 
the 5-year survival rates of stages III and IV being 45 and 10%, 
respectively (2–4). As a result of new developments in cancer 
therapy, treatment at these stages now includes immunotherapy 
and targeted therapeutic drugs. Yet, despite these new develop-
ments, the response rate to such therapies (~10–20% for the 
immunotherapeutic agent, ipilimumab, and ~50% for the B-RAF 
inhibitor, dabrafenib) varies depending upon the molecular and 
genetic profile of the tumor (5–7). With the recent advancements 
in genomic sequencing, including RNA-seq, single-gene assays, 
and metabolomics, the unique molecular profile of tumors can 
now be identified rapidly and cost effectively. By investigating 
genomic variations, new molecular targets specific to a patient’s 
melanoma can be recognized and utilized for prevention, detec-
tion, and treatment.

Functional foods and dietary supplements as anticancer 
agents have gained interest because of their ability to increase the 
responsiveness of tumors to current treatments while keeping 
normal tissue toxicity low. Quercetin, a dietary polyphenol, is 
one bioactive compound that is of particular therapeutic inter-
est because of its potential to both prevent and treat cancer. At 
low concentration (e.g., <100 μM), quercetin induces signaling 
cascades that lead to the induction of antitumor pathways. At 
relatively higher concentrations, quercetin can induce damaging 
cellular effects, including the production of pro-oxidant adducts 
and the alteration of glutathione (GSH) or bioreduction potential. 
Studies have also shown a selective sensitivity of melanoma tumor 
cells to the cytotoxic effects of quercetin (8), whereas normal 
tissues could be protected through antioxidant activity or the 
induction of protective cellular signaling pathways (9).

Melanocytes and melanoma cells, in particular, have a unique 
feature in that they specifically express the oxidative enzyme 
tyrosinase, which can oxidize quercetin into reactive adducts (10, 
11). In this review, we propose that quercetin can be used as a basis 
for the development of a strategy for melanoma therapeutics. By 
exploiting the characteristics of quercetin and the expression of 
tyrosinase, therapies could be developed that specifically target 
melanoma and preserve or protect normal tissue. With modern 
genomic sequencing and drug delivery mechanisms, quercetin-
based therapeutics could provide a great therapeutic advantage 
and positively impact prevention and treatment of melanoma. 
To use quercetin as an antitumor agent, several limitations must 
be overcome. This review proposes four focus areas to develop 
quercetin as anticancer compound. The four focus areas include 
utilizing quercetin to (i) modulate cellular bioreduction poten-
tial and associated signaling cascades, (ii) affect transcription 

of relevant genes, (iii) regulate epigenetic processes, and (iv) 
develop effective combination therapies and delivery modalities/
protocols. By focusing on these areas, quercetin could be used 
to exploit tyrosinase activity, as well as prevent, and/or treat, 
melanoma with minimal additional side effects.

OveRview OF MeLANOMA

Melanoma is characterized as a malignant tumor that often 
originates from pigment-producing melanocytes. Melanocytes 
are derived from neural crest cells, which are embryonic cells that 
have the ability to migrate to specific locations, where they can 
then differentiate into specific cells, including mature melanocytes 
(12). There are a large array of melanocyte populations, and their 
location spans multiple regions including the skin, meninges, 
mucosal surfaces, ear, and eye (13). The formation of melanoma 
then arises from a series of steps. The first step, known as the hori-
zontal and radial growth phase, occurs when certain mutations 
in melanocytes lead to an increase in proliferative capacity (14). 
Progression to the vertical growth stage occurs when the altered 
melanocytes enter the dermis and/or hypodermis of the skin. 
Once the tumor cells invade the endothelium, they can travel 
to other locations within the body, thus leading to metastatic 
melanoma (15). Determinants of melanoma are influenced by 
both environmental (i.e., sunlight UV) and genetic factors. Such 
factors can influence the expression of the pigment-producing 
enzyme, tyrosinase, which has been shown to increase in tumors 
arising from melanocytes (16).

Several pathways are proposed to influence melanoma devel-
opment, such as the RAS/RAF/MAPK, PI3K/AKT, and Notch 
pathways. Specifically, single base substitution mutations in 
two key genes involved in the MAPK signaling pathway, B-RAF 
and N-RAS, are commonly associated with development of 
melanoma (17–19). The most common oncogenic mutation in 
melanoma occurs in the serine/threonine kinase B-RAF gene at 
the 600 position, where a valine is replaced by either an arginine 
(V600K) or glutamic acid (V600E). Many studies have observed 
constitutive activation of ERK signaling in nude mice harboring 
the B-RAFV600E mutation, leading to higher rates of proliferation 
and transformation (20–24). Although this mutation commonly 
occurs in melanoma, it should be noted that the mutation itself 
is not sufficient to cause cancer since it is also found in benign 
melanocytic lesions (17, 19, 25).

Likewise, the phosphoinositol-3-kinase–AKT (PI3K–AKT) 
pathway is also involved in melanomagenesis, and its activation 
often leads to increased cell survival, proliferation, and motility. 
Activation of this pathway in melanoma has been attributed to 
oncogenic mutations in the N-RAS gene as well as loss of expres-
sion or function of the tumor suppressor protein, PTEN (26). 
N-RAS mutations have been shown to activate the PI3K–AKT 
pathway via the direct binding to PI3K or through accumulation 
of activated RAS–GTP (27, 28). Although independent from 
N-RAS mutations, loss of PTEN is often found concurrently with 
the BRAF mutation mentioned above. Concurrent loss of PTEN 
with the BRAF mutation often leads to activation and cross talk 
between the MAPK and PI3K–AKT pathways (29). One study 
showed increased melanoma invasiveness in mice expressing 
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TAbLe 1 | Current FDA-approved therapies for melanoma.

Type of therapy Drug name Mechanism of action

Immunotherapy Interferon alfa-2b IFNAR/JAK/STAT activation
Interleukin-2 Immune cell activation
Ipilimumab Anti-CTLA-4 monoclonal antibody
Nivolumab Anti-PD-1 monoclonal antibody
Pembrolizumab Anti-PD-1 monoclonal antibody
Talimogene 
laherparepvec

Oncolytic viral therapy

Targeted  
therapies

Cobimetinib MEK inhibitor
Dabrafenib BRAFV600E inhibitor
Trametinib MEK-1/2 inhibitor
Vemurafenib BRAFV600E inhibitor

Chemotherapy Dacarbazine DNA alkylating
Temozolomide DNA alkylating/methylating

List of types of the therapy and specific drugs with corresponding mechanisms of 
action, currently in use for melanoma treatment.

3

Harris et al. Quercetin: An Emerging Anti-Melanoma Agent

Frontiers in Nutrition | www.frontiersin.org October 2016 | Volume 3 | Article 48

melanocyte-specific BRAFV600E with consecutive PTEN gene 
silencing, in comparison to mice expressing BRAFV600E alone (30).

Involvement of the Notch pathway in melanoma development 
also plays an important role. Upregulation of the Notch receptors 
has been observed in malignant melanoma lesions, and activation 
of this pathway often leads to increased cell survival and growth 
(31). An in vivo study investigating the expression of Notch recep-
tors in multiple uveal melanoma cell lines observed an increase 
in tumor growth, while suppression of the pathway utilizing 
short hairpin RNA segments that targeted the Notch2 receptor 
displayed a reduction in tumor growth (32).

In recent years, advances in the knowledge of the pathways 
described above and their role in metastatic melanoma have led 
to the development of new therapeutic agents. Until recently, the 
prognosis for advanced malignant melanoma was poor, and the 
only treatments approved by the Food and Drug Administration 
(FDA) were dacarbazine and IL-2. Even with these available 
treatment options, the 5-year survival rate and median overall 
survival were 6% and 7.5  months, respectively (4, 33). Recent 
advances in molecular profiling of tumors and immunotherapy 
have led to the development of new FDA-approved agents 
for metastatic melanoma, including the immune-checkpoint 
inhibitor, ipilimumab (34), and the BRAF inhibitor, vemurafenib 
(35). Ipilimumab’s mechanism of action allows for a prolonged 
antitumor T-cell response to malignant melanocyte antigens (34). 
One randomized, double-blind study evaluated the response of 
multiple doses of ipilimumab and found that a 10  mg/kg dose 
elicited a median overall survival rate of ~11 months (7). Other 
treatment options for metastatic melanoma include dabrafenib 
(36), another BRAF inhibitor used specifically in patients with 
the BRAFV600E mutation, as well as trametinib (25), a MEK1/2 
inhibitor used specifically in patients with the BRAFV600E/K muta-
tion. Table 1 shows current FDA-approved drugs for melanoma 
therapy including immune therapies, targeted therapies, and 
chemotherapeutics. For more information on the current treat-
ments, we refer readers to the review by Maverakis et  al. (37). 
Multiple phases II and III melanoma trials studying the effect of 
combination treatments are currently underway. However, due to 
the evolving resistance to such drugs and the adverse effects they 

carry, more effective combination treatments are still needed. 
Specifically, there is a need to prevent the induction of melanoma 
or develop combination therapies that target the unique molecu-
lar profile of melanoma tumors.

QUeRCeTiN

The development of agents that produce limited side effects in 
prevention or therapy protocols is highly important. Dietary 
compounds as anticancer agents have gained attention because of 
the recent elucidation of their mechanisms of action. Flavonoids, 
for example, are a group of bioactive polyphenolic compounds 
that hold promise in the prevention and treatment of melanoma. 
More than 4,000 varieties of flavonoids are present in nature (38) 
and were first identified and isolated by Szent-Gyorgyin in 1936 
(39). They are classified into seven main categories based upon 
variations in their heterocyclic C-ring, namely, flavones (e.g., 
apigenin, luteolin, and diosmetin), flavonols (e.g., quercetin, 
myricetin, and kaempferol), flavanones, isoflavones, catechins, 
anthocyanins, and chalcones (38, 40). Even though flavonoids 
are considered non-nutrients, they are important components of 
the human diet, presenting numerous beneficial health effects.

Quercetin derivatives account for 60% of the total flavonoids 
ingested daily and are the most abundant and important dietary 
flavonoids present in the human diet (41). The derivatives are 
commonly found in many vegetables and fruits, such as red 
onions, apples, berries (e.g., cranberries, strawberries, dark cher-
ries, and blue berries), parsley, olive oil, cocoa, citrus fruits, tea, 
and red wine (42, 43). The estimated daily intake of quercetin 
varies according to food habits and can range between 5 and 
40 mg a day, although these levels may rise up to 200–500 mg/
day depending on the consumption of certain beverages, such as 
red wine and tea, in combination with a diet high in vegetables 
and fruits (44, 45). The potential toxicity of quercetin is quite low 
as human studies failed to demonstrate any adverse effects when 
quercetin was administered orally in single doses of 4 g or 500 mg 
thrice daily (46–48). Similarly, studies have reported no toxic-
ity in humans with intake up to 1 g/day (42). This observation 
represents a critical factor that favors the utilization of quercetin 
in combination with standard cancer therapeutics.

Flavonoids are the most widely found compounds of plant 
phenolics. Their basic chemical structure is composed of diphe-
nylpropanes (C6–C3–C6) with two aromatic rings linked through 
a pyran ring. Quercetin is classified as one of the best-described 
flavonoids. This compound possesses hydroxyl groups (–OH) 
attached to the 3, 5, 7, 3′, and 4′ positions (Figure  1). It  may 
be present in plants and fruits in several different glycosidic 
forms in which one or more sugar groups are linked to phenolic 
groups by glycosidic linkage (49). For instance, quercetin forms 
the glycosides, quercitrin and rutin, together with rhamnose 
and rutinose sugars, respectively. Unlike quercetin glycosides, 
aglycone quercetin is not a normal dietary component.

The distribution, absorption, and metabolism of polyphenolic-
containing foods, including quercetin, have been greatly studied 
in human and animal models in order to elucidate the biologi-
cal activity and the ability of these compounds to enter cells. 
Quercetin is commonly found as a glycoside, which contains a 
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FigURe 1 | Quercetin induces tyrosinase and stress response proteins in melanocytic cells. Expression of tyrosinase in melanocytic cells is induced 
through the α-MSH pathway. Quercetin induces the expression of tyrosinase and several stress-responsive proteins, including NQO1 and p53. Tyrosinase oxidizes 
quercetin (red arrow) into an o-quinone and other reactive compounds that induce NQO1 and p53. NQO1 stabilizes p53 and can recycle activated quercetin back 
into the parent compound. Expression of p53 can also stimulate α-MSH activity completing a cyclical response to quercetin exposure. Open arrows indicate 
biochemical reactions. Closed arrows represent induction/stimulus.
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sugar group bound to phenolic groups by glycosidic linkage (49). 
Present in a broad variety of vegetables, isoquercetin [quercetin 
3-O-glucoside (Q3G)], represents a quercetin glycoside with a 
sugar at the 3-position (49). Aglycones (the forms lacking sugar 
moieties) occur less frequently.

Although not completely understood, numerous studies have 
shown that quercetin and other flavonoids are subject to hydroly-
sis and metabolic conversion during their absorption in the intes-
tinal epithelial cell before reaching the bloodstream (49, 50). It is 
generally accepted that dietary quercetin glycosides are mainly 
hydrolyzed to the aglycone forms by intracellular β-glucosidases, 
which are subsequently converted into 3′-O-methylquercetin 
(isorhamnetin) and, to a smaller extent, into 4′-methoxyquercetin 
(tamaraxetin) (50, 51). It may also be sulfated or glucuronidated 
at one of the hydroxyl groups in the absorptive cells of the intes-
tinal epithelium and the liver (52–54). Following this process, the 
resulting quercetin derivatives and any remaining unmetabolized 
quercetin are released into the circulation via the hepatic system.

Despite the difficulty in determining how quercetin is metabo-
lized, several studies have confirmed that it reaches systemic 
circulation. Dietary studies in humans and animals have been 

performed and extensively reviewed (55); however, the number 
of studies is limited, and the quercetin administration protocol 
varies widely between studies, including differences in chemical 
composition of the compound administered, delivery medium, 
purity, and length of exposure. Pharmacokinetic studies in 
humans (56) and animals (57) demonstrate active metabolism 
and significant chemical modification. Additionally, consid-
eration of the mixed polyphenols in the diet and their impact 
on absorption are important (58) as is the potential for synergy 
(59). Many polyphenols have anticancer properties with different 
mechanisms of action, bioavailability, and potency (60), and it is 
important to consider how multiple polyphenols interact.

In humans, Egert et al. administered 50, 100, or 150 mg/day 
quercetin orally for 2 weeks, and plasma levels were elevated by 
178, 359, and 570%, respectively (54). Other studies conducted 
on animal and human models also confirmed the presence of 
quercetin metabolites and conjugates in blood samples (47, 61). 
Several studies demonstrate the formation of conjugates fol-
lowing metabolism. The most commonly observed metabolites 
in circulation involve conjugation with glucuronides and/or 
sulfates, and methylated forms of these metabolites. Glutathione 
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conjugates have also been observed but are likely restricted to 
enzymatic activity in the liver (62). It is, however, important to 
consider what role cellular effects of these conjugates play, and 
how it may differ from pure quercetin is an important question.

Pertaining to melanoma prevention or therapy, the exact form 
and concentration of quercetin in skin are unknown. There is 
evidence that quercetin does have biological activity in skin. For 
example, quercetin mitigated radiation-induced skin fibrosis fol-
lowing oral administration in C3H/HeN mice (63). For detailed 
descriptions of the pharmacokinetics including bioavailability, 
metabolism, and biodistribution of quercetin and related poly-
phenolic compounds, we refer readers to the review articles by 
Cai et  al. (64), and Kawabata et  al. (65). We also refer readers 
to a review by Biasutto et al., which discusses potential insights 
and mechanisms to improve the bioavailability and bioefficacy 
of polyphenolic compounds (66). The limited number of clinical 
studies using quercetin that investigate oral bioavailability, the 
effect of supplementation protocols, and mechanisms of action, 
limits the ability to rationally design clinical protocols. Although 
quercetin holds promise, more clinical studies are required to 
fully realize the benefit of quercetin.

However, the rapid metabolism and low bioavailability is of 
concern especially with therapeutic applications. It is therefore 
proposed that long-term and low-dose dietary quercetin would 
be ideal for preventative protocols, but to achieve therapeutic 
applications, the compound must be used as an adjuvant 
and more technologically advanced delivery mechanisms must 
be utilized.

biOReDUCTiON POTeNTiAL AND 
ASSOCiATeD SigNALiNg CASCADeS

Biological and pharmacological studies suggest that dietary poly-
phenols, such as quercetin, exhibit antioxidant, anti-inflammatory, 
antiproliferative, anti-obesogenic, anticancer, and other proper-
ties (11, 67, 68). In particular, the role of quercetin in anticancer 
activity has been established and extensively reviewed in vitro (69). 
Etiology and progression of many diseases are directly related 
to the oxidative stress generated by an imbalance between the 
formation and neutralization of pro-oxidants (70–74). Beneficial 
effects of quercetin on normal tissues have been attributed to 
several mechanisms, especially antioxidant effects. Within the fla-
vonoid family, quercetin is the most potent scavenger of reactive 
oxidative species (ROS), and its anti-oxidative capacity is mainly 
due to the presence of phenolic hydroxyl groups on the B-ring 
and at the 3-position (49). At low concentrations, quercetin acts 
as an antioxidant by donating electrons to unstable ROS that have 
the potential to damage cellular DNA. Such damage can lead to 
mutations and influence the transformation of cancer cells that 
would be critically important in cancer prevention studies (11).

Quercetin’s anticarcinogenic effects have also been directly 
associated with its pro-oxidative properties in colon cancer, 
hepatoma, and melanoma cells (8, 75–77). Some studies have 
shown that the effects of quercetin are dependent on the con-
centration in tissue, mode of metabolism, and bioavailability 
(78). High concentrations of quercetin (e.g., 40–100 μM) likely 
promote pro-oxidant effects through oxidation of quercetin 

into o-quinone and the formation of reactive species, which 
culminate in apoptosis. Alternatively, low concentrations 
(<40  μM) have been shown to exert antioxidant properties 
(9,  79). Therefore, the biphasic nature of quercetin has the 
potential to be used as a dietary component for prevention of 
cancer at low doses and an adjuvant therapy to conventional 
cancer treatments at higher doses.

The biosynthesis of melanin and other pigments in melano-
cytes are catalyzed by tyrosinase, a copper-containing enzyme 
(80). In melanoma, the effect of quercetin can be amplified due 
to tyrosinase activity (Figure 1). Importantly, tyrosinase expres-
sion in melanocytic tumors increases during tumorigenesis (81). 
Enzymatic action catalyzed by tyrosinase utilizes quercetin as a 
substrate, which can form reactive o-quinone compounds (82). 
The activation of quercetin into quinone compounds has been 
observed in various cell lines, including melanoma cells (10, 11). 
Subsequently, after the formation of reactive species and metabo-
lized quercetin, the compounds can bind to and deplete GSH, the 
main bioreductive antioxidant agent to prevent cellular damage 
(83). Additionally, the generation of ROS may directly trigger p53 
induction and p53-mediated gene transcription and/or cell death 
through p53-independent apoptosis. The increase in ROS can 
also trigger endoplasmic reticulum stress (9) and the induction 
of mitochondrial proteins such as NOXA, p53, and PUMA with 
subsequent activation of procaspases 3 and 9 (84).

TRANSCRiPTiON OF ReLevANT geNeS

The role quercetin plays in the induction of p53 is critical to 
anticancer therapies because of the potent transcriptional activ-
ity of p53 (Figure  2). In DB-1 melanoma cells overexpressing 
tyrosinase, quercetin administration led to significant increase 
of p53 protein and the number of cells in apoptosis compared 
to untreated cells (8). In particular, quercetin may potentiate 
p53-dependent apoptosis in melanocytic cells via stimulation 
of nuclear factor E2-related factor 2 (Nrf2) transcriptional 
activity, which has been observed in various cell types including 
human hepatoblastoma HepG2 cells (85, 86), human BJ foreskin 
fibroblasts and skin HaCaT keratinocytes (87), rat DI TNC1 
astrocytes (88), and UVA-irradiated mouse B16F10 melanoma 
cells (89). Nrf2 is a basic leucine zipper (bZIP) transcription 
factor that induces the expression of several genes involved in 
cellular redox reactions, drug metabolism and transport, energy 
metabolism, and intracellular iron homeostasis in response to 
oxidative and electrophilic stress (90). A particular Nrf2 target 
gene of interest is NQO1, which encodes the cytoplasmic protein 
NAD(P)H dehydrogenase [quinone] 1 (NQO1) (90). NQO1 is 
a FAD-binding reductase that catalyzes two-electron reductions 
of quinone compounds, using NADH and NADPH as electron-
donating cofactors (91). It has been demonstrated that NQO1 sta-
bilizes p53 and prevents its ubiquitin-independent degradation 
(92–96) via a physical protein–protein interaction (92, 97). Given 
that the majority of melanomas (80–90%) express wild-type p53 
proteins (98), upregulation of NQO1 by quercetin-mediated Nrf2 
activity may provide potential means for targeted anti-melanoma 
therapy. Indeed, in DB-1 cells, upregulation of p53 was observed 
in parallel with increased NQO1 protein (8).
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FigURe 2 | (A,b) Proposed Nrf2/ARE pathway leading to NQO1-mediated 
p53 stabilization in melanoma. (A) In steady-state conditions, Nrf2 
transcriptional activity is suppressed by Keap1, which sequesters Nrf2 in the 
cytosol and facilitates Cul3-dependent ubiquitinylation and 26S proteasomal 
degradation. (b) Electrophilic stress at key cysteine residues of Keap1 leads 
to disassociation of Keap1/NRF2–DLG interface, which inhibits Cul3-
dependent ubiquitinylation and promotes Keap1 degradation. Degradation of 
Keap1 protein allows accumulation of Nrf2 and translocation into the 
nucleus, which promotes expression of NQO1 and other genes under the 
control of AREs. Stabilization of p53 by NQO1 may potentiate expression of 
proapoptotic proteins and miRNAs.
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Nrf2 target gene activation is dependent on its nuclear 
translocalization and heterodimerization with small Maf pro-
teins  (90,  99). Nrf2–Maf heterodimers activate gene transcrip-
tion by binding antioxidant response element (ARE) consensus 
sequences (5-A/G-TGA-C/G-NNNGCA/G-3) located in the regula-
tory regions of their target genes (99, 100). Nrf2 transcriptional 
activity is regulated in part by posttranslational ubiquitin-
dependent proteasomal degradation and is induced in the pres-
ence of several electrophilic compounds, such as hydroquinones 
and quinones (91). Under normal conditions (Figure 2A), Nrf2 
levels are constitutively repressed via Kelch-like ECH-associated 

protein 1 (Keap1)-dependent ubiquitylation by a Cullin-3 (Cul3) 
and RING-box protein 1 (Rbx1) E3 ubiquitin ligase complex 
(90). Under oxidative and electrophilic stress (Figure 2B), Nrf2 
is stabilized, and its accumulation leads to increased ARE activa-
tion (90). Keap1 is an electrophile sensor protein that contains 
critical cysteine residues in the BTB (Cys151) and intervening 
region (IVR) (Cys273 and Cys288) domains (101). Modification 
of the nucleophilic cysteine residues of Keap1 by electrophilic 
Nrf2 inducers inhibits Cul3–Rbx1 ubiquitin ligase activity and 
stabilizes Nrf2 (90).

Single-particle electron microscopy data suggest a “hinge and 
latch model” for Nrf2 regulation by the Keap1/Cul3–Rbx1 com-
plex (102). This model proposes that C-terminal Kelch-repeat 
domains of Keap1 homodimers bind a single Nrf2 protein at the 
DLG and ETGE motifs within the Neh2 domain (103). Binding 
at the Keap1–ETGE interface has ~2 orders of magnitude higher 
binding affinity than at the Keap1–DLG interface, which can be 
disrupted under oxidative and electrophilic stimulus (90, 103). 
An intact Keap1–DLG interface (“closed hinge”) puts Nrf2 in the 
optimal position for ubiquitylation by Cul3–Rbx1. Conversely, 
destabilization of the Keap1–DLG interface (“open hinge”) pre-
vents the ubiquitylation and degradation of Nrf2 and increases 
ARE transcriptional activation (90). Although the exact mecha-
nism remains to be fully elucidated, interruption of Keap1–DLG 
binding is likely the result of conformational changes brought on 
by modification of key cysteine residues of Keap1 by electrophilic 
Nrf2 inducers (90).

Quercetin has been demonstrated to induce Nrf2-mediated 
ARE activation in  vitro in human hepatoblastoma HepG2 
cells (85, 86), human BJ foreskin fibroblasts and skin HaCaT 
keratinocytes (87), rat DI TNC1 astrocytes (88), and UVA-
irradiated mouse B16F10 melanoma cells (89). Tanigawa et  al. 
demonstrated the ability of quercetin treatment to upregulate 
ARE transcription by regulating both Nrf2 and Keap1 in 
HepG2 cells (85). Quercetin treatment at a range of concentra-
tions (5–40  μM) led to an increase in NQO1 protein levels, 
which was paralleled by increases in Nrf2 mRNA. This effect 
was attenuated by pretreatment with actinomycin D, which 
suggested that quercetin mediates Nrf2 expression, in part, at 
the transcriptional level. Quercetin also stabilized Nrf2 protein 
and decreased steady-state turnover by inhibiting Cul3–Rbx1-
dependent ubiquitylation, which increased Nrf2 t1/2 reduction 
time by fourfold and suggests quercetin may prevent 26S 
proteasomal degradation of Nrf2. Finally, quercetin decreased 
levels of Keap1 protein but had no effect on Keap1 mRNA 
expression or ubiquitylation, suggesting it may downregulate 
Keap1 protein levels through a 26S proteasome-independent 
degradation mechanism. The upregulation of Nrf2 expression 
and stabilization of Nrf2 protein, coupled with decreased Keap1, 
leads to accumulation of Nrf2 in the nucleus and induction of 
Nrf2/ARE-activated target genes (85). Other studies in HepG2 
cells suggest that the effect of quercetin on Nrf2 activation may 
be dose dependent (86). At lower concentrations (5–10  μM), 
quercetin significantly increased the nuclear translocation of 
Nrf2 and the nuclear content of phosphorylated Nrf2, whereas 
higher concentrations (50  μM) decreased both phospho-Nrf2 
levels and the nuclear/cytosolic Nrf2 ratio (86).
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TAbLe 2 | epigenetic activity elicited by quercetin.

epigenetic 
activity

Specific outcome experimental 
model

Concentration/
dose

exposure 
time

Analytical method Reference

DNA 
methylation

DNMT inhibition In vitro reaction IC50 = 1.6 μM 30 m 3H-radioactivity assay Lee et al. (107)
DNMT inhibition Human PC3 and 

DU145 prostate 
cancer cell lines

12 μM 24, 48, 
and 72 h

Colorimetric assay Sharma et al. 
(108)

CpG demethylation Human PC3 and 
DU145 prostate 
cancer cells

12 μM 48 h Bisulfite sequencing Sharma et al. 
(108)

CpG demethylation Human RKO 
colon cancer cells

1 μM 120 h MSP Tan et al. (109)

CpG demethylation Human 9706 
esophageal 
cancer cells

40 μM 
(nanoliposomal 
delivery)

48 h MSP Zheng et al. 
(110)

Histone 
modification

H3 acetylation Human HL-60 
leukemia cells

75 and 100 μM 3, 6, and 
12 h

Western blot and 
ChIP assay

Lee et al. (111)

HAT activation/HDAC inhibition Human HL-60 
leukemia cells

100 μM 6 h Colorimetric assay Lee et al. (111)

HDAC inhibition Human 9706 
esophageal 
cancer cells

40 μM 
(nanoliposomal 
delivery)

48 h Immunocytochemical 
assay

Zheng et al. 
(110)

HDAC inhibition Human HepG2 
liver cancer cells

40 and 80 μM 
(nanoparticle 
delivery)

24 h Colorimetric assay 
and Western blot

Bishayee et al. 
(112)

Micro-RNA 
expression

miR-155 downregulation Murine RAW264.7 
macrophages

10 μM quercetin 
and 10 μM 
isorhamnetin

6 h Two-step RT-PCR Boesch-
Saadatmandi 
et al. (113)

Hepatic miR-125b and miR-122 upregulation C57B6/j mice 2 mg/g enriched 
diet

6 weeks Two-step RT-PCR Boesch-
Saadatmandi 
(114)

Hepatic upregulation of miR-467b, miR-374*, miR-30c-1, 
miR-450a-5p, miR-30b*, miR-197, miR-137, miR-466c-5p, 
miR-335-5p, miR-10b, miR-29a*, miR-196a, miR-7b, miR-
190, miR-335-3p, miR196b, let-7c-2* and downregulation 
of miR-671-5p, miR-878-3p, miR-466f-3p, miR-486, miR-
451, miR-144, miR-291b-5p, miR-324-5p, miR-296-5p, 
miR290-3p, let-7f*, miR-429, miR-298, let-7b*

Apo E−/− mice 30 mg/day 
supplemental

2 weeks Microarray analysis Milenkovic 
et al. (115)

Compilation of studies documenting quercetin’s effect on epigenetic activity.
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Schadich et al. was able to demonstrate that quercetin admin-
istration in human BJ foreskin fibroblasts and aneuploid immor-
talized skin HaCaT keratinocytes led to significant upregulation 
of Nrf2 activity, as determined by a luciferase reporter assay (87). 
Nrf2 activity was increased in both cell lines treated with either 
40  μg/mL of ginger extract or 30  μM of quercetin for 10  h. 
Western blot analysis showed increased levels of glutathione-
S-transferase P1 (GSTP1) protein, a downstream target of Nrf2 
activity, in BJ fibroblasts but not in HaCaT keratinocytes. It 
was suggested that the refractory response to upregulation of 
GSTP1 protein in HaCaT by activated Nrf2 is likely due to 
constitutively high expression in these types of cells, indicating 
a potentially distinct role of GSTP1 in HaCaT keratinocytes 
compared to normal cells (87). In immortalized rat DI TNC1 
astrocytes, a range of quercetin concentrations (2.5–10  μM) 
attenuated lipopolysaccharide (LPS)-induced NF-κB activity and 
upregulated Nrf2 activity in both the presence and absence of 
LPS (88). Treatment with 10 μM of quercetin led to ~20-fold and 
25-fold increase in Nrf2 activity in LPS-free and LPS-containing 
media, respectively, as determined by luciferase assay (88).

Loss of Nrf2 activity appears to play a role in melanogenesis 
(89). In primary human epidermal melanocytes and mouse 
B16F10 melanoma cells, siRNA-mediated silencing of Nrf2 
enhances melanogenesis after UVA-radiation exposure (89). 
In B16F10 cells, UVA radiation alone significantly decreased 
Nrf2 nuclear translocation and ARE–luciferase activity 1  h 
post-irradiation. Pretreatment with quercetin (15 and 30  μM) 
30  m before UVA exposure increased Nrf2 translocation and 
ARE–luciferase activity compared to control cells not treated 
with quercetin (89).

RegULATiON ePigeNeTiC CHANgeS

Epigenetic alterations have recently been suggested to play a role 
in the initiation of carcinogenesis and induction of pro-cancer 
characteristics; thus, epigenetic modifying compounds have 
been proposed as anticancer agents (104–106). Quercetin has the 
potential to elicit significant epigenetic changes across multiple cell 
and tissue types (Table 2) (107–115). Specific epigenetic changes 
attributed to quercetin include changes in DNA methylation, 
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histone acetylation, and micro-RNA (miR) expression. Although 
there is currently a lack of information regarding the epigenetic 
effects of quercetin specifically in melanocytes or melanoma, the 
epigenetic effects observed in other tissues likely play a role in 
the pathogenesis of malignant melanoma. Therefore, this area 
of research is critical to advancing prevention or therapeutic 
approaches.

Inhibition and reversal of aberrant methylation on tumor sup-
pressor genes may represent a significant target mechanism in 
cancer prevention and therapy (106). DNA methylation reactions 
are catalyzed by DNA methyltransferases (DNMTs), of which 
multiple forms are expressed in humans and other mammals 
(107). DNMT1 is the most abundant form expressed in humans 
and functions as a maintenance methyltransferase with high affin-
ity for hemimethylated DNA. DNMT3A and DNMT3B are also 
expressed in humans and function as de novo methyltransferases 
with similar affinity to both hemimethylated and unmethylated 
CpG sites (116). Prokaryotic SssI DNMT is a bacterially derived 
de novo DNMT with functional similarities to DNMT3A and 
DNMT3B (107).

Quercetin inhibits both human DNMT1- and SssI DNMT-
mediated DNA methylation in a dose-dependent manner 
(IC50  =  1.6  μM), as determined by an in  vitro DNMT activity 
assay; however, this effect was dependent on the presence of 
catechol-O-methyltransferase (COMT) (107). Double-stranded 
dinucleotides (~2 mol CpG sites) were incubated with DNMTs, 
the methyl donor S-adenosyl-l-methionine (SAM, containing 
~0.5  μCi of [methyl-3H]SAM), and a range of quercetin con-
centrations, and DNMT activity was determined by scintillation 
counting (107).

Quercetin has also demonstrated DNMT inhibitory effects 
in human PC3 and DU145 prostate cancer cells, RKO colon 
cancer cells, and Eca9706 esophageal cancer cells (108–110). 
The combination of quercetin (12 μM) and curcumin (14 μM) 
significantly decreased methylation at specific CpG sites within 
the AR promoter of both PC3 and DU145 prostate cancer cell 
lines, as determined by sodium bisulfite sequencing (108).

p16INK4α is an important tumor suppressor protein involved 
in cellular senescence by preventing CDK-dependent phos-
phorylation of Rb (117). Silencing of p16INK4α is associated 
with development of multiple tumor types, and the loss of the 
p16INK4α/Rb is suggested to contribute to melanomagenesis 
(118). Venza and colleagues investigated the epigenetic control 
of p16INK4α in clinical cutaneous (n = 60) and uveal (n = 6) 
melanoma tissue sections compared to normal skin samples 
(n = 48) (119). It was found that 63.33% (n = 38) and 50% (n = 3) 
of cutaneous and uveal melanomas, respectively, did not express 
p16INK4α mRNA, and 15% (n  =  9) of cutaneous melanomas 
displayed expression levels below the cutoff point established in 
healthy samples. Of the 38 cutaneous samples with absent expres-
sion, 76.31% (n = 29) had aberrant homozygous hypermethyla-
tion within the p16INK4α promoter, and all 9 samples with low 
p16INK4α expression had heterozygous methylation (119). 
Another study using 59 clinical metastatic cutaneous melanoma 
samples found that p16INK4α was methylated in 25% of samples 
(n = 15) and that promoter methylation was significantly over-
represented in samples harboring NRAS mutations (120).

Administration of quercetin (1  μM) alone inhibited growth 
of human RKO colon cancer cells and restored p16INK4α gene 
expression in a dose-dependent manner, which was associated 
with a significant reversal of hypermethylation of the p16INK4α 
promoter (109). Similar effects have been observed in human 
Eca9706 esophageal cancer cells using nanoliposomal delivery 
of quercetin (40 μM), which suppressed cell growth, increased 
apoptosis, and increased p16INK4α expression (110). Increased 
p16INK4α expression was associated with decreased p16INK4α 
gene methylation, as determined by MSP, and decreased expres-
sion of DNMT1 (110).

Methylation of several other tumor suppressor genes has been 
observed to increase in melanoma including RAR-b2, GATA4, 
WIF1, SOCS1, RASSF1A, TFP12, MINT17, and MINT 31 (121). 
It is likely that the methylation status of these factors and other 
tumor suppressor genes, including p16INK4α, are sensitive to 
treatment with demethylating agents such as quercetin, which 
may play a role in prevention and therapy of melanoma.

Histone acetylation, which refers to the addition of an acetyl 
group on specific amino acid residues on histone proteins, repre-
sents another epigenetic regulatory factor that may be targeted by 
quercetin in cancer prevention and therapy (122). Quercetin may 
also affect histone acetylation and subsequent gene expression by 
regulating histone acetyl transferase (HAT) and histone deacety-
lase (HDAC) activity (110–112). Activation of HATs by quercetin 
(100  μM) has been demonstrated in human HL-60 leukemia 
cells, which was associated with increased acetylation of histone 
3 and FasL-related apoptosis (111). Treatment with quercetin also 
inhibited HDAC activity (111), which has also been observed in 
Eca9706 cells (40 μM) (110) and human HepG2 liver cancer cells 
(40 and 80 μM) (112).

Overall, evidence of the effect of quercetin on key cancer-driv-
ing epigenetic modifications in melanoma is lacking. However, 
given that epigenetic activity, such as aberrant methylation of 
tumor suppressor genes, is associated with melanomagenesis, this 
is a field that is largely open for further exploration to enhance 
preventative and therapeutic strategies.

COMbiNATiON THeRAPieS AND DeLiveRY

Melanoma is an aggressive form of cancer that is refractory to 
current therapies. Additionally, as discussed above, bioavailabil-
ity of quercetin is low, and as a food component, its anticancer 
potency is limited compared to pharmaceuticals. On the other 
hand, there are minimal side effects associated with dietary or 
systemic administration of quercetin, even at high levels. Thus, 
quercetin could be used in combination with other cytotoxic 
drugs, provided that bioavailability is addressed through chemi-
cal modification or use of a delivery system. Quercetin affects 
multiple signaling cascades and gene transcription, which also 
makes it a desirable adjuvant to biologicals. For example, there 
is new evidence suggesting the emergence of drug resistance 
to some of the newly approved FDA biological therapeutics in 
the treatment of advanced melanoma. Of particular interest are 
dabrafenib and trametinib. Dabrafenib is a selective inhibitor of 
the kinase, B-RAFV600, which causes upregulation of the MAPK 
pathway and is commonly mutated in over 50% of patients with 
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metastatic melanoma (20, 123). This leads to further inhibition 
of B-RAFV600’s downstream targets, MEK1/2 and ERK, and thus 
decreased levels of cell survival and proliferation. Trametinib, 
on the other hand, functions to inhibit MEK1 and MEK2, also 
leading to reduced cell survival and proliferation. Resistance 
to these drugs has been attributed to activation of non-MAPK 
pathways (PI3K/Akt/mTOR), adaptive upregulation of Akt, 
overexpression of RTKs, and mutations in MEK (124–126). 
These mechanisms can significantly reduce the ability of both 
trametinib and dabrafenib to exert their antiproliferative effects 
and usually results in a reduced survival rate. Mechanistically, 
quercetin inhibits multiple pathways and could be an ideal 
candidate as an adjunct with current therapies, such as dabre-
fenib and trametinib (Figure 3). Quercetin (10–40 μM) displays 
dose-dependent attenuation of PI3K/Akt and MAPK signaling 
in UVB-irradiated B16F10 melanoma cells (127). This effect 
was observed in parallel with reduced cell viability, increased 
apoptosis, and enhanced nuclear translocation of NF-κB, a 
downstream effector in the PI3K/Akt pathway (127). A recent 
study in cervical cancer lines also demonstrated a dose-depend-
ent decrease in levels of both phosphorylated PI3K and Akt, 
as well as of translocation of NF-kB (128). Similar effects were 
seen in another study where co-administration of quercetin and 
temozolomide decreased the levels of phosphorylated Akt more 
than temozolomide alone in glioblastoma cells (129). Quercetin 
was also shown to suppress the activity of PI3K through directly 
binding in an H-Ras-transformed MCF10A human breast epi-
thelial cell line (130). These studies suggest that quercetin could 
be used in combination with current BRAF and MEK inhibitors 
to aid in the inhibition of pathways used for proliferation and 
survival in melanoma.

In addition to enhancing drugs that target signaling pathways, 
quercetin has shown efficacy in improving cytotoxic therapies 
such as temozolamide, which is commonly used to treat mela-
noma. For example, a recent study demonstrated that quercetin 
increased the effect of glioblastoma treatment compared to 
standard chemoradiotherapy alone through the inhibition of 
PI-3-kinase–Akt pathway. The study utilized cell lines, and the 
greatest reduction in cell viability and colony formation was 
observed when cells were treated with a combination therapy 
that included quercetin (129). Several studies have also addressed 
quercetin bioavailability in combination treatments. For example, 
a study analyzed liposomes loaded with quercetin and temozolo-
mide to enhance the chemosensitization of drug-resistant cancer 
cells. The study demonstrated that DSPE-PEG2000 polymeric 
liposomes were an effective nanocarrier for enhancing drug 
delivery to tumors (131).

More novel approaches to compensate for the low bioavail-
ability of quercetin have been made using liposomes, PLGA, 
PLA, chitosan, silica, and other compounds (69). Specifically 
designed nanosystems have proven to be effective at increas-
ing bioavailability, such as the use of quercetin nanocrystals 
and nanoparticles. A  recent in  vitro study found that the 
efficiency of quercetin-loaded PLA nanoparticles was ~97%, 
and the nanoparticle encapsulation significantly improved the 
bioavailability of quercetin (132). Another study investigat-
ing the effects of nanocrystals found that its solubility was 

significantly higher compared to quercetin alone (133). Other 
important advances include the use of nanoparticles to improve 
solubilization of quercetin for increased oral uptake. For exam-
ple, a quercetin-containing self-nanoemulsifying  drug delivery 
system (Q-SNEDDS) was developed to increase  quercetin 
oral bioavailability (134). Optimization of the delivery system 
significantly improved quercetin transport into cells grown 
as a monolayer. Oral ingestion resulted in rapid gut uptake 
following administration and resulted in peak plasma con-
centration, approximately twofold to threefold over control, 
24  h after administration. Overall, the results suggested that 
Q-SNEDDS was a potent formulation that increased solubility 
and bioavailability through oral administration. Overall, the use 
of nanoparticles as a delivery platform for quercetin provides 
encouraging possibilities for therapeutic administration at high 
doses. Additional platforms can be used to co-deliver quercetin, 
such as co-administration of chemotherapies and drugs or 
biological therapeutics (135, 136), and can also be targeted to 
specific melanoma or tumor markers (Figure  3). These new 
emerging strategies of increasing quercetin bioavailability may 
further enhance quercetin’s effects in combination with cur-
rent drugs that target tumor cells; however, more research and 
clinical testing is needed (69), especially in treatment protocol 
development to maximize tumor toxicity of the combinations 
and avoid any attenuation effects by the antioxidant properties 
of quercetin (137).

CONCLUSiON

Quercetin has great potential to be used an antitumor agent in 
melanoma, and various preventative and therapeutic options 
can be developed. This review has outlined four specific areas, 
that with further investigation, could facilitate the develop-
ment of quercetin into an anticancer compound (Figure  3). 
The polyphenolic food compound has several desirable char-
acteristics that can be exploited by targeting cells that express 
tyrosinase. The oxidation of quercetin can lead to a potentia-
tion of its pro-oxidant effects such as an increase in p53 and 
Nrf2. There are several transcriptional events that result from 
quercetin treatment, which long term may aid in the prevention 
of melanoma or can be used to compliment current therapies. 
Activation of tyrosinase (oxidation) leads to enhancement 
of quercetin’s pro-oxidant effects and can also induce several 
signaling pathways, at least indirectly. Little is known about 
quercetin and its affect on epigenetic processes in melanoma, 
but observing other cancers as reference warrants investigation 
into this emerging area of prevention and therapy. Although 
data on quercetin’s influence on epigenetic changes in the skin 
and in melanoma are currently lacking, sufficient data exist to 
demonstrate quercetin’s capacity to elicit epigenetic changes in 
other tissues types.

Another future area that should be addressed is the induction 
of miRNA. Changes in miRNA expression have been suggested to 
play a role in human diseases such as cancer and cardiovascular 
disease among others (138). MiRNAs function to negatively regu-
late gene expression by repressing the translation of target mRNA 
sequences (139). Quercetin has demonstrated the capacity to 
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FigURe 3 | Summary of the four focus areas to develop quercetin as a chemo-preventative or therapeutic agent. In melanoma prevention scenarios 
(left), quercetin would be ingested through food sources and the concentration in normal melanocytes would be relatively low. Antioxidant activities and signaling 
pathways leading to the induction of cytoprotective proteins would dominate. Evidence suggests that quercetin may impart transcriptionally permissive epigenetic 
modifications within key tumor suppressor genes, including p16, which could confer resistance to oncogenesis. Induction of miRNAs could also aid in cancer 
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compounds could be delivered through nanoparticles targeted to melanoma cells, or in an untargeted regimen. Pro-oxidant effects would be desired, and induction 
of wild-type p53 and other apoptotic factors would aid in therapy. Epigenetic mechanisms would likely be more prominent in prevention (blue line), but miRNAs have 
been shown to play a significant role in circumventing drug resistance.
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affect miRNA expression in both cell culture and animal models. 
The effect of a quercetin-rich diet on miRNA expression has also 
been investigated in human lung cancer cases from the EAGLE 
case–control study (140).

Four focus areas were proposed to develop quercetin as a 
targeted anti-melanoma compound for use as either a preven-
tative or therapeutic agent (Figure  3). Overall quercetin could 
be used to exploit tyrosinase activity to prevent, and/or treat, 
melanoma with minimal additional side effects. Dietary intake 
would be suitable in the development of preventative approaches, 
while nanoparticle systems will be required to achieve effective 
concentrations of quercetin for therapeutic approaches, likely 
as an adjuvant to melanoma-specific biologicals or possibly 
chemotherapeutics.
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