
San Jose State University

From the SelectedWorks of Magdalini Eirinaki

July, 2014

QueRIE: Collaborative Database
Exploration
Magdalini Eirinaki, San Jose State University
Suju Abraham, Lucille Packard’s Children Hospital
Neoklis Polyzotis, University of California, Santa Cruz
Naushin Shaikh, Data Domain, EMC

Available at: https://works.bepress.com/

magdalini_eirinaki/31/

http://www.sjsu.edu
https://works.bepress.com/magdalini_eirinaki/
https://works.bepress.com/magdalini_eirinaki/31/
https://works.bepress.com/magdalini_eirinaki/31/

1

QueRIE: Collaborative Database Exploration
Magdalini Eirinaki, Suju Abraham, Neoklis Polyzotis, Naushin Shaikh

Abstract—Interactive database exploration is a key task in information mining. However, users who lack SQL expertise or

familiarity with the database schema face great difficulties in performing this task. To aid these users, we developed the QueRIE

system for personalized query recommendations. QueRIE continuously monitors the user’s querying behavior and finds matching

patterns in the system’s query log, in an attempt to identify previous users with similar information needs. Subsequently, QueRIE

uses these “similar” users and their queries to recommend queries that the current user may find interesting. In this work we

describe an instantiation of the QueRIE framework, where the active user’s session is represented by a set of query fragments.

The recorded fragments are used to identify similar query fragments in the previously recorded sessions, which are in turn

assembled in potentially interesting queries for the active user. We show through experimentation that the proposed method

generates meaningful recommendations on real-life traces from the SkyServer database and propose a scalable design that

enables the incremental update of similarities, making real-time computations on large amounts of data feasible. Finally, we

compare this fragment-based instantiation with our previously proposed tuple-based instantiation discussing the advantages and

disadvantages of each approach.

Index Terms—[H.2.8d] Data Mining; [H.2.8h] Interactive data exploration and discovery; [H.2.8k] Personalization;

+

1 IN T RO D U CT I O N

Database systems provide the critical infrastructure
to access and analyze large volumes of data in a
variety of applications. Prominent examples include
large-scale data warehouses that support business-
intelligence tools, systems for ad-hoc analytics over
big data, and services for scientific-data exploration,
such as the Genome browser1 or SkyServer2, which
allow scientists to query large databases of scientific
data over a web-enabled interface.

Despite the availability of querying tools over large
databases, users often have difficulties in understand-
ing the underlying schema and formulating queries.
For instance, the study on Hive3, the data warehouse
platform used in Facebook, mentions the following
[1]: “A result of heavy usage has also lead to a lot of
tables generated in the warehouse and this has in turn
tremendously increased the need for data discovery
tools, especially for new users.” Similar issues appear

• M. Eirinaki is with the Computer Engineering Department, San Jose
State University, San Jose, CA, USA.

• S. Abraham was with the Computer Engineering Department, San
Jose State University, San Jose, CA, USA when this project was
developed. She is currently affiliated with Lucille Packard’s Children
Hospital, Palo Alto, CA, USA.

• N. Polyzotis is with the Computer Science Department, University of
California, Santa Cruz, CA, USA.

• N. Shaikh was with the Computer Engineering Department, San Jose
State University, San Jose, CA, USA when this project was developed.
She is currently affiliated with Data Domain, EMC, Santa Clara, CA,
USA.

1. http://genome.ucsc.edu
2. http://cas.sdss.org
3. http://hive.apache.org

in other domains, particularly in the domain of scien-
tific data management (e.g., the Genome Browser and
SkyServer services mentioned earlier), where users are
not necessarily experts and the underlying schemas
can be complicated. As a result, even when users
have the ability to issue complex queries over large
data sets, the task of knowledge discovery remains
a big challenge: users may not be familiar with the
database schema, may overlook queries that retrieve
relevant data, or might not have the required exper-
tise to formulate such queries. Moreover, due to the
continuously growing size of the data, an exhaustive
exploration of such databases is practically infeasible.

To address the important problem of assisting users
in the interactive exploration of a large database, we
designed the QueRIE4 system. QueRIE assists users of
ad-hoc or form-based query environments by present-
ing them with personalized query recommendations.
The recommended queries are relevant to the user ’s
information needs and can be submitted directly or
be further refined. In other words, the user can use
them as “templates” for query formulation instead of
having to compose new ones.

QueRIE is built on a simple premise that is inspired
by Web recommender systems: If users A and B
have posed similar queries, then the other queries
of B may be of interest to user A and vice versa.
In other words, we can recommend the queries of
user B in order to help user A in their exploration
of the database. In particular, we propose to im-
plement this idea through Collaborative Filtering, a
well known, mature technique that has been used
in Web recommender systems. However, the transfer

4. standing for Query Recommendations for Interactive data
Exploration

http:http://hive.apache.org
http:http://cas.sdss.org
http:http://genome.ucsc.edu
http:Terms�[H.2.8d

2

of this approach to the database context introduces
several technical challenges. First, SQL is a declarative
language, and hence syntactically different queries
may reflect the same information need. Consider for
example, the two queries Q1: SELECT A FROM R
WHERE B = 10; and Q2: SELECT R.A FROM R JOIN
S ON (R.C = S.C) WHERE R.B = 10;. If relations R and
S have a key/foreign key relationship on attribute C,
then both queries retrieve the same results. This com-
plicates greatly the computation of similarity among
users, since, contrary to the web paradigm where the
similarity between two users can be expressed as the
similarity between the items they visit/rate/purchase,
we cannot simply compare SQL queries - we essen-
tially have to solve the notoriously difficult query-
equivalence problem. A second important challenge
raises from the absence of an explicit rating system
for the queries posed by the user - how do we
know which queries are important in the computation
of user similarity? Finally, the recommended queries
need to be intuitive so that the user can understand
and refine if necessary. Too “synthetic” queries might
result being even more confusing for the user.

QueRIE addresses these challenges by employing a
closed-loop approach. Specifically, the QueRIE frame-
work decomposes each query into basic elements
that capture the essence of the query’s logic. These
elements are used to compute similarities between
users, as well as a signature of the user ’s querying be-
havior (and, to some extent of the user ’s information
needs). Recommendations are generated by mining
queries from the system log that match well with the
signature. Hence, the user is presented with queries
that match her querying behavior, and are likely to be
more intuitive than purely synthetic ones.

In our previous work we outlined the QueRIE
framework, and the application of user-based col-
laborative filtering using witness tuples to represent
user queries [2], [3]. In this paper, we provide a
comprehensive presentation of QueRIE, including an
overview of our previous work (tuple-based instanti-
ation), and presenting the details of a different instan-
tiation (demonstrated in [4]) which includes an item-
based approach that uses query fragments to repre-
sent the user queries. The recorded fragments are used
to identify similar query fragments in the previously
recorded sessions, which are in turn assembled in
potentially interesting queries for the active user. We
propose a scalable design that enables the incremental
update of similarities, making real-time computations
on large amounts of data feasible. We then show,
through experimentation, that the proposed method
generates meaningful and more accurate recommen-
dations on real-life traces from the SkyServer database
when compared to the scalable extension of the tuple-
based instantiation.

The remaining of this paper is organized as follows:
In Sections 2 and 3 we provide a brief overview of

the abstract framework of the QueRIE system, and
the tuple-based instantiation respectively. We then
present the fragment-based instantiation in Section 4
and discuss some implementation details in Section
5. The experimental evaluation of the fragment-based
approach, along with a comparison to the tuple-based
approach is presented in Section 6. We discuss the
related work in Section 7 and conclude the paper with
our plans for future work in Section 8.

2 TH E QU E RIE F R A ME WO R K

This section discusses an abstract framework for gen-
erating query recommendations. The abstract frame-
work is essentially a workflow, as depicted in Figure
1. The active user ’s queries are forwarded to both the
DBMS and the Recommendation Engine. The DBMS
processes each query and returns a set of results.
At the same time, the query is stored in the Query
Log. The Recommendation Engine combines the cur-
rent user ’s input with information gathered from the
database interactions of past users, as recorded in the
Query Log, and generates a set of query recommen-
dations that are returned to the user.

We consider a setting where users explore a rela-
tional database through a sequence of SQL queries.
The goal of the exploration is to discover interesting
information or verify a particular hypothesis. The
queries are formulated based on this goal and reflect
the user ’s overall information need. As a consequence,
the queries posted by a user during one “visit” (com-
monly called session) to the database are typically
correlated, in that the user formulates the next query
in the sequence after having inspected the results of
previous queries. For example, a real user session,
belonging to the SkyServer query logs, is shown here:

Query 1:
SELECT count(*) FROM region WHERE
type like ’tiprimary’

Query 2:
SELECT count(distinct id) FROM region
WHERE type like ’tiprimary’
SELECT id, count(*) FROM region

Query 3: WHERE type like ’tiprimary’ GROUP BY
id
SELECT id, count(*) FROM region

Query 4: WHERE type like ’tiprimary’ GROUP BY
id HAVING count(*)> 1

This query pattern clearly corresponds to an interac-
tive exploration of the database: the user starts by
counting the number of tuples satisfying a predicate,
then counts the distinct objects corresponding to these
tuples, and eventually retrieves the objects that occur
more than once. The pattern also indicates that the
user is not familiar with the schema, e.g., the fact that
attribute id may have the same value in several tuples.
The user could save a lot of time if the system could
recommend the appropriate query (Query 4 in the
example above) right after their first attempt (Query
1). This is possible if a similar session already exists

3

Fig. 1. QueRIE Architecture

in the query logs and thus can be used to generate
recommendations for the active user. It is interesting
to note here that we do not exclude from the recom-
mendation set queries that have overlapping results
with the ones the user has already posted since the
system may miss good recommendations, as shown
in the example above.

To simplify our presentation, we assume that each
user has a single session with the database. This
assumption can be lifted in a straightforward manner
at the expense of more complicated notation. Given a
user i, let Qi denote the set of SQL queries that the
user has posed so far in a single session. We introduce
the notion of a session summary to summarize the
characteristics of the queries posed in the session.
This summary captures the parts of the database
accessed by the user and incorporates a metric of
importance for each part. Contrary to Web recom-
mender systems, where the users are represented by
the items they visit/rate/purchase, in the context of
relational databases, several ways to model the ses-
sion summaries exist. For instance, a crude summary
may contain the names of the relations that appear in
the queries of the user, and the importance of each
relation can be measured as the number of queries
that reference it. On the other extreme, a detailed
summary may contain the actual results inspected by
the user, along with an explicit rating of each result
tuple. The different possibilities represent trade-offs
between detail and conciseness, and as we will see
later, also affect the quality of the generated queries.
In what follows, we use Si to represent the session
summary for user i. User i = 0 will always represent
the current user (for whom recommendations are
generated), whereas i = 1, . . . , n represents past users
of the system. In a slight abuse of notation, we use Si

to represent both the session summary and user i.

To generate recommendations for current user S0,
the framework first computes a “predicted” summary
Spred . This summary captures the predicted degree of
interest of S0 with respect to different query character-
istics, including those that already appear in his/her
queries, as well as new ones that have not been used
yet. The summary Spred is then used as the “seed”

for the generation of recommendations. This two-step
process is detailed below.

The predicted summary is defined as:

Spred = f(α, S0, S1, ..., Sn). (1)

f is a function that combines information from both
the active user ’s summary S0 and the summaries
S1, . . . , Sn of past users. The “mixing factor ” α ∈ [0, 1]
determines the importance of the S0 (the current
user ’s session) with respect to S1, . . . , Sn (the sessions
of other users). When α = 1, Spred takes into account
only the queries in S0, whereas α = 0 has the opposite
effect and only the queries of other users affect the
recommendations. Neither of these extremes might
be a good setting for all possible cases. Thus, we
introduce α as a parameter of the system that can be
tuned depending on the type of the database and the
users’ querying behaviors. It is interesting to contrast
our approach to Web recommender systems, where
the equivalent of Spred is computed using α = 0,
i.e., based solely on information from other users
(consider, for example, the case of recommending
movies to users), or content-based recommender sys-
tems where α = 1 (consider, for example, the case of
generating playlists that may include songs the user
likes as well as similar ones in terms of genre, vocals,
instrumentation etc.).

Using the summary Spred , the framework generates
queries that cover the subset of the database with the
highest predicted importance. In turn, these queries
are presented to the user as recommendations. This
can be performed in several ways. One approach
would be to synthesize queries using the character-
istics present in Spred . However, this approach is not
optimal for several reasons. For instance, it is impor-
tant to recommend meaningful and intuitive queries.
Thus the queries should have non-empty result sets, a
property that needs to be verified before each recom-
mendation. Moreover, unless there is some semantic
knowledge about the data and/or the schema, the
automatic synthesis of several characteristics to form
an intuitive query is very difficult. To address these
issues, we follow a different approach: we re-use
queries that are included in the Query Log of the

4

TABLE 1

Notation Summary

m number of users
Qi set of queries in session Si

Si Session summary for user i / User i
Si[τ] Importance of tuple τ in session Si

(tuple-based instantiation)
Si[φ] Importance of fragment φ in session Si

(fragment-based instantiation)
S0 Session summary for current user

Spred Predicted summary for current user
α Mixing factor
SQ Single query vector of query Q
k Number of top-ranked query fragments
n Size of recommendations

DBMS. Of course, the selected queries are a good
match to the characteristics described in Spred , and
this introduces a new challenge for our system. Such
queries are expected to be intuitive, and easy to un-
derstand, since they correspond to queries formulated
by other (human) users. Furthermore, we can verify
easily that these queries return non-empty results, by
examining the metadata in the system’s query log.

Overall, our framework consists of the following
components: (a) a model for session summaries, (b) a
method to compute the session summaries S0, . . . , Sn,
(c) a method to compute Spred , and (d) a method to

Spred select queries based on . An interesting point
is that the framework forms a closed loop, going
from SQL queries to session summaries and back.
Again, this design choice follows the fact that all user
interaction with a relational database occurs through
a declarative query language.

In what follows, we describe two instantiations of
the abstract recommendations framework, namely a
tuple-based recommendation engine and a fragment-
based recommendation engine. We discuss the advan-
tages and disadvantages of each approach in terms
of efficiency and quality of recommendations. We
also address the scalability problem of such systems,
presenting some design enhancements that enable
incremental updates and real-time computation for
large data sets. A summary of the notation used
throughout this paper is included in Table 1.

3 TU P LE -BA S E D QU E RY RE C O M M E N DA -
T I O N S

In this instantiation of the QueRIE framework, the
session summary Si is represented as a weighted
vector, where every coordinate corresponds to a dis-
tinct database tuple. We assume that the total number
of tuples in the database, and as a consequence the
length of the vector, is T . The weight Si[τ] represents
the importance of a given tuple τ ∈ T in session Si,
and is non-zero only if τ is a witness for at least
one query in the session. The intuition is that Si

captures the tuples in the base tables that are touched
by the queries in the user ’s session. Hence, sessions

that contain equivalent queries will map to the same
summary.

We assume that the vector SQ represents a single
query Q. The value of each element SQ[τ] signifies
the importance of the tuple τ as the witness for Q. We
consider two different weighting schemes for setting
Si[τ], a binary scheme and a result-based scheme:

Binary scheme.

1 if τ is a witness;
SQ[τ] = (2)

0 if τ is not a witness.

This is the most straightforward approach. There are
two options: either a tuple is a witness in Q, or not.
All participating tuples receive the same importance
weight.

Result-based scheme.

1/|ans(Q)| if τ is a witness;
SQ[τ] = (3)

0 if τ is not a witness.

Here ans(Q) is the result-set of Q. The idea behind this
scheme is similar to the IDF concept from information
retrieval: the importance of τ is diminished if Q
returns many results, as this is an indication that
the query is “unfocused”; on the other hand, a small
ans(Q) implies that the query is very specific, and
thus the witnesses have high importance.

Given the vectors SQ for each query Q posed by
user i, we define the session summary Si as:

Si = SQ. (4)
Q∈Qi

Using the session summaries of the past users, we can
construct the (n×T) session-tuple matrix which, as in
the case of the user-item matrix in web recommender
systems, will be used as input to our recommendation
algorithm.

We compute Spred as follows:

Spred = α · S0 + (1 − α) · sim(Si, S0) · Si, (5)
i=1,...,n

where sim(Si, S0) is a similarity metric between the
two vectors (e.g., cosine similarity). This approach is
inspired by Web recommender systems, where the
idea is to bias the recommendations based on users
who exhibit similar behavior to the current user. The
difference is that we use the mixing factor α to blend

Spred in the behavior of the current user. Overall,
yields a weight per tuple that corresponds to the
importance of the tuple to the user ’s exploration.

Having computed Spred , the algorithm recommends
queries that retrieve tuples of high predicted weights.
Specifically, for each candidate query Q5 , we com-
pute the similarity sim(SQ, S pred). The few candidate

5. We maintain a uniform random sample of past queries as our
candidate pool.

5

queries with the highest similarity are returned as rec-
ommendations to the user. (The number of returned
queries is a parameter of the framework.)

Overall, the tuple-based approach captures the
user ’s querying behavior at a very fine level of de-
tail – the individual witnesses to the user ’s queries.
Moreover, it handles readily the issue of equivalent
declarative queries, since the underlying witness sets
are exactly the same. The downside is the increased
complexity, since, in principle, the session summaries
grow linearly with the size of the database. What is
more, the similarities between the current user ’s ses-
sion and those of previous users need to be calculated
every time the active user submits a new query.

Fortunately, it is possible to implement this method
more efficiently by employing randomized sketch-
ing techniques (e.g., AMS sketches [5] or min-hash
sketches [6]) to compress the summaries and compute
the similarity metrics. In fact, in the QueRIE prototype
[3], [4] we have employed the MinHash probabilistic
clustering technique that maps each session summary
Si to a “signature” h(Si) [6]. The Jaccard similarity be-
tween vectors is thus reduced to the similarity of their
signatures: J accardSim(Si, S0) = sim(h(Si), h(S0)).
However, as shown in Section 6.3, this improvement
in computational efficiency comes at the cost of loss
of precision of the generated recommendations.

4 FR AG M E N T-BA S E D QUE RY RE C O M M EN -
DAT I O N S

The fragment-based instantiation of the QueRIE
framework works in a similar manner to the tuple-
based one. The two main differences lie in the repre-
sentation of the session summaries and the formula-
tion of similarities. More specifically, the coordinates
of the session summaries correspond to fragments of
queries instead of witnesses. We identify as fragments
the following syntactical features of the queries in
the session: attribute references, tables references, join
and selection predicates. At a high level, the idea
behind this approach is to recommend queries whose
syntactical features match the queries of the current
user.

As discussed before, user-based collaborative fil-
tering’s main disadvantage is that it inherently re-
quires real-time similarity calculations, as the active
user ’s profile gets updated. This significantly slows
the real-time generation of recommendations, making
such a choice inappropriate for large-scale systems.
On the other hand, item-based collaborative filtering
performs all similarity calculations during the training
process, and thus has much smaller overhead during
the recommendations’ generation phase. This is the
reason why we decided to follow a methodology
similar to the item-based collaborative filtering. Our
objective is to identify fragments that co-appear in
several queries posed by different users, and use them

in the recommendation process. These fragments may,
or may not include the ones in the user ’s active
session S0 depending on the value of the mixing factor
α. Thus, QueRIE first calculates (offline) the pair-wise
similarities of all query fragments recorded in the
query logs. These similarities are subsequently used
to predict, in real time, the “rank” (i.e. importance)
of each fragment with regards to the current user
session. In turn, the highest ranked query fragments
are the query characteristics used to mine the query
logs and select the most relevant queries that are used
as recommendations.

Formally, session summary Si is a vector whose cell
Si[φ] contains a non-zero weight if the fragment φ
appears in at least one query of the session. For a
given fragment φ, we define a single query vector cell
SQ[φ] as a binary variable that represents the presence
or absence of φ in a query Q. Then Si[φ] represents
the importance of φ in session Si. Conceptually, the
length of the vector is equal to the number of possible
fragments, but we expect only few cells to have
non-zero values. We consider two different weighting
schemes, a binary scheme and a weighted scheme,
both using the queries Q posed by user i:

Binary scheme.

Si = SQ. (6)
Q∈Qi

In this scheme all participating fragments receive the
same importance weight, regardless of whether they
appear in many queries in the session or only one.

Weighted scheme.

Si = SQ. (7)
Q∈Qi

In this approach fragments that appear more than
once in a user session will receive higher weight than
others.

The recommendation seed, modeled by Spred , rep-
resents the estimated importance of each query frag-
ment with regard to the active user ’s behavior. Simi-
larly to the tuple-based instantiation, we again use the
“mixing factor ” α that allows us to include or exclude
the fragments of the active user session in the rec-
ommendation process. However, instead of the costly
session-tuple approach (similar to the user-item col-
laborative filtering), we employ a fragment-fragment
approach (reminiscent of the item-item paradigm) to
calculate the similarities. More specifically, we first de-
fine a fragment-similarity metric sim(ρ, φ) that eval-
uates the similarity of two fragments ρ and φ in
terms of their corresponding weights in the session
summaries S1, . . . , Sn. The similarity metric employed
depends on the weighting scheme that was chosen in
the previous step, thus we employ Jaccard’s coefficient
and cosine similarity for the binary and weighted
schemes respectively (yet the framework can accom-

6

modate any metric). Using this metric, each coordi-
nate Spred [φ] is computed as follows:

E
S0[ρ] ∗ sim(ρ, φ)

Spred [φ] =
ρ∈R
E , (8)

ρ∈R sim(ρ, φ)

where R represents the set of top-k similar query frag-
ments (k is a parameter of the framework). Intuitively,
φ obtains a high weight if S0 contains fragments that
co-occur frequently with φ in the queries of past users.

The final step of generating recommendations is
similar to that of the tuple-based approach: once the
predicted summary Spred has been computed, its sim-
ilarity to each query summary SQ is calculated, and
the queries having the highest similarity to the active
user ’s summary are returned as recommendations.

Another big advantage of item-to-item collaborative
filtering is resilience to the cold start problem, since it
is highly unlikely that a user ’s query will include only
new fragments. In fact, this can happen only if none
of the tables in the FROM clause have been referenced
by any other query in the logs. Nonetheless, even
in this rare case, QueRIE will be able to generate
recommendations right after the second user query,
as discussed in Section 5.2.

5 DIS C US S I O N A N D I M P L E M EN TAT I O N D E -
TA IL S

The fragment-based approach clearly captures infor-
mation at a coarser level of detail, and hence it
is expected to miss interesting correlations between
users. For instance, two distinct selection predicates
will be mapped to different fragments even if they
are satisfied by the same tuples in the base tables.
It is therefore expected that the basic tuple-based ap-
proach yields better results in terms of precision. This,
however, comes with a cost; the tuple-based approach
constructs large (and relatively dense) summaries
and, most importantly, requires real-time calculations
of the similarities between the session summary S0

of the current user and these of past users. On the
other hand, the big advantage of the fragment-based
approach is that it can be implemented very effi-
ciently; the space of fragments grows slowly allowing
for a scalable system, the summaries are very sparse
enabling faster similarity calculations and, most im-
portantly, the fragment-to-fragment similarities can be
computed offline and stored for very fast retrieval
when recommendations need to be generated, lever-
aging all the advantages of item-to-item collaborative
filtering [7]. A comparable response time is achieved
when the tuple-based instantiation employs MinHash
synopses. However, as shown in Table 7 this comes
at the cost of prediction accuracy.

For the reasons above, we concentrated our ef-
forts in optimizing the design of the fragment-based
engine. In what follows, we discuss a few design

TABLE 2

Parsing keywords

Fragment name Start keyword End keyword
Attribute string SELECT FROM

Relation string FROM
WHERE, GROUP BY,
ORDER BY, end of
query

Where string WHERE
GROUP BY, ORDER
BY, end of query

Group By string GROUP BY
ORDER BY, HAVING,
end of query

Having string HAVING
ORDER BY, end of
query

decisions that enabled the implementation of a fast
yet accurate query recommendation system.

5.1 Query Preprocessing

Because of the plethora of slightly dissimilar queries
existing in the query logs, we decided to relax them
in order to increase their cardinality, and thus the
probability of finding similarities between different
user sessions. Our intuition is that if two users query
the same table and attributes, using slightly different
filtering conditions, the algorithm should consider
them as similar.

As part of this relaxation process, we follow a
simplified version of the framework proposed in
[8]. In essence, all the WHERE clauses are relaxed
by converting the numerical data and string literals
to generic string representations. For example, all
strings are replaced by STR, all hexadecimal numbers
by HEXNUM and all decimals by NUM. A similar
generalization is also followed for lists or ranges
of numbers and strings. The mathematical and set
comparators are also replaced by string equivalents,
for example “=” is replaced by EQU and “≤” by
COMPARE. In the current implementation of QueRIE
we do not treat different numeric intervals as separate.
The trade-off of this relaxation process is increased
recall vs. lower precision. We expect that the precision
of the system would improve if a stricter represen-
tation of queries was followed. While this decision
is orthogonal to the remainder of the framework,
exploring its effect on the recommendation process is
part of our future work plans.

Once the queries are generalized, they are con-
verted into fragments. The current implementation of
QueRIE only supports SPJ (SELECT, PROJECT, JOIN)
queries, whereas if a query includes sub-queries, these
are dropped. However, this is an implementation
detail orthogonal to the overall framework, which
can be easily extended to support subqueries. Each
of the SPJ fragments are separated using regular
expressions. The Start and End designated keywords
used to identify fragments are shown in Table 2. For
example, the fragments of Query 4 in Section 2 are:
COUNT(*), REGION, REGION.TYPE PATMATCH,
COUNT(*) COMPARE NUM.

7

Each distinct fragment is assigned a numerical iden-
tifier, used in the query and session vector representa-
tion. For each new fragment not previously recorded
in the query log, QueRIE generates a new identifier.
Such updates occur in real-time, as the current user
posts a query including new fragments. In the case of
the WHERE clause, only the joins and the filter con-
ditions are stored. Because of the generalization, the
fragments in the WHERE clause are not differentiated
based on their actual values, but rather based on the
attributes used for filtering. For example, s.x ≥ 0.2
and s.x ≥ 0.8 will be represented by the same
fragments (s.x COMPARE NUM). In addition we do
not differentiate (i.e. handle differently) between joins
and filters, as we anticipate the similarity calculation
would generate proper results regardless of the type
of WHERE condition.

5.2 Scalable similarity calculations

As discussed earlier, the fragment-based approach is
much more efficient than the tuple-based one, since
no online calculations are required. However, even
the training of the model, that involves calculating
all the fragment-to-fragment similarities, requires a
significant amount of I/O and memory allocation,
when the session summaries are stored in a database.
To address this issue, we instead stored all the ses-
sion summaries in a noSQL database. Such databases
consist of hash tables that enable fast retrieval and
calculations. The database includes the base hash
table including the session summaries (fragments and
counts indexed by the session id), and two derived
ones: the inverted index of the base table (indexed
by the fragment id), and the item similarity table
(indexed by the fragment pair).

This design decision has clear advantages com-
pared to storing the same information in a relational
database. The key-value storage structure enables effi-
cient calculation of the fragment-to-fragment similar-
ities, without the I/O overhead or unnecessary scans
of unrelated records. Moreover, this data structure
is incrementally updated every time a new session
summary needs to be added to the system: for each
fragment in the session summary hash table, only the
related records in the fragment hash table and the
similarities of the related fragments are updated. If a
fragment does not exist, the fragment and similarity
hash tables are accordingly updated with new records.
This real-time update of fragment similarities also
addresses the cold start problem of recommender
systems, as new fragments will be considered imme-
diately for the subsequent recommendations (when
the system is set to include the active user ’s fragments
in the process).

This approach enables the real-time update of
the query logs and fragment-to-fragment similarities,
even on a stand-alone system. Of course, the above

issue could also be addressed by parallelizing the
process on a cloud. We leave this for future work.

5.3 The QueRIE system prototype

We implemented a prototype of our system that
supports the two recommendation engines described
previously. The prototype is implemented in Java and
runs on top of a standard relational DBMS to store the
query logs and a noSQL database to store the similar-
ities (for the fragment-based engine)6 . The database
query interface module is built using HTML, JSP and
JavaScript. The recommendation engine module is
built using Java. The two modules interact through
the JNI framework.

Once a user logs in the system, she is able to select
one of the two recommendation engines. The user can
author and submit a SQL query to SkyServer. QueRIE
sends the request to the database, and presents the
user with the results. At the same time, the system
records the active user ’s queries, creating an implicit
user profile. This user profile is used as input to the al-
gorithm, along with the predictive model to generate
real-time, personalized query recommendations. For
each recommended query, the user is able to examine
a sample of the results that will be retrieved, in order
to decide whether it addresses her needs, prior to
actually submitting it to the DBMS.

At all times, the active user is able to: (a) formulate a
query from scratch, (b) select a recommended query
and submit it as it is, or (c) select a recommended
query and edit it before submitting it to the database.
Moreover, the interface allows the user to browse the
database schema, review and re-submit queries that
were posed during her recent history, see more details
on how the recommendations were generated, and
change the various parameters of the framework. A
snapshot of the QueRIE prototype is shown in Figure
2. The details of our system are described in [3], [4].

6 EX P E R I M E N TA L EVA L UAT I O N

We evaluated our framework using traces of the Sky
Server database7. The traces contain queries posed to
the database between the years 2006 and 2008. We
used the methods described in [9] to clean and sep-
arate the query logs in sessions8 . The characteristics
of the data set and the queries are summarized in
Table 3. All the experiments were run on a 2.3 GHz
Intel Core i5 processor with 2 cores and 4GB of RAM
running OSX.

6. The QueRIE prototype is using the MySQL and Voldemort
databases respectively.

7. We used version BestDR6.
8. It should be noted that the proposed methods are not very

reliable in classifying bots vs. mortals. Due to this fact, we expect
that the reported results are slightly worse than what they would be
if only human sessions were included in the training set. However,
devising techniques for cleaning the SkyServer logs from bots is
orthogonal to, and beyond the scope of this work.

8

TABLE 4

Fig. 2. QueRIE interface after a query has been submitted

TABLE 3

SkyServer Query Logs - Data Set Statistics

Database size 2.6TB
Sessions (training set) 412
Sessions (test set) 45
Queries 6713
Distinct queries 4037
Distinct witnesses 13,602,430
Avg # distinct query fragments 3212
Avg # non-zero pair-wise fragment similarities 60126
Avg. # queries per session 9.3
Min. # queries per session 4

In what follows we first present an evaluation of the
various parameters of the fragment-based approach.
This small-scale experimental evaluation, using a sub-
set of the above dataset (as described in Table 4)
helped us choose the default values of the system’s
parameters. Using these, we then proceeded with
more extensive experiments on the entire data set
(described in Table 3). We present these results, along
with an overview of the results of the tuple-based
approach, in order to compare and discuss the trade-
offs of the two instantiations. A detailed discussion
of the results of the tuple-based instantiation can
be found in [2]. We also present a comparison of
the fragment-based approach with the MinHash ex-
tension of the tuple-based instantiation [3], briefly
discussed in Section 3. Our results demonstrate that
the fragment-based instantiation generates real-time
recommendations with comparable accuracy to that
of the baseline tuple-based instantiation (which is

SkyServer Query Logs - Subset Statistics

Sessions (training set) 140
Sessions (test set) 20
Distinct queries 1401
#Distinct witnesses 212,693
Distinct query fragments 755
Non-zero pair-wise fragment similarities 30436
Avg. # queries per session 8.8
Min. # queries per session 4

not fast enough to maintain an interactive user ex-
perience), and significantly outperforms its MinHash
extension.

6.1 Evaluation of the system’s parameters.

For this first set of experiments, we used a subset of
the SkyServer data set. The characteristics of that data
set and the queries are summarized in Table 4.

We performed several experiments evaluating the
performance of the framework, and the effect of the
various parameters of the algorithm. In this Section
we present the most important findings in terms of
the number of top-k fragments selected to calculate
Spred , and the weighting scheme. We omit the results
for top-m and the mixing factor α since the results
are in accordance to the ones we discuss in the
following Section (where the entire dataset is used).
Table 5 shows the default values kept constant for the
remaining parameters in each case.

Methodology. In order to evaluate the various param-

9

TABLE 5

Default parameter values

Top-k fragments 5
Top-m recommendations 5
α 0.5
weighting scheme weighted (cosine)

eters of QueRIE, we used the holdout set methodol-
ogy [10]. The data is divided into two disjoint sets, the
training set and the test set. The pair-wise fragment
similarity is computed against the training set. Each
user session in the test set is divided in two parts. One
part is treated as the active user ’s queries, while the
second part is treated as unseen (i.e. future) queries.
Subsequently, using the active user ’s queries from
the test set and the pre-calculated fragment-based
similarities, QueRIE generates a set of query recom-
mendations. We compare the recommended queries
with the unseen queries from the test set and calculate
the precision, recall and F-score for each session as
shown in Equations 9 - 11. We keep the precision
of the recommendation that had the maximum recall
value, assuming that the end user will also select only
one recommended query each time.

P recision =
|Fr ∩ F

|Fr|
u|

(9)

Recall =
|Fr ∩ Fu|

|Fu|
(10)

F − Score =
2 ∗ P recision ∗ Recall

(11)
P recision + Recall

In the formulas above, Fr and Fu represent the
fragments of the recommended and unseen queries
respectively. In the experiments that follow, we report
the average precision and f-score over the 160 sessions
of the data set.

Evaluation of the top-k parameter. QUERIE employs
the top-k fragments of previous queries in order to
generate recommendations, as discussed in Section 4.
Figures 3 and 4 show the effect of the choice of k
on the average precision and F-score for the recom-
mendations. We notice that the accuracy of the rec-
ommendations increases, as expected, with the value
of k. However, for very large values of k (k > 10), the
accuracy starts decreasing again. This is completely
justifiable, since when k is a very large number, the
notion of “most similar ” fragments does no longer
hold and barely similar items are included in the rec-
ommendation process. QueRIE achieves higher pre-
cisions for k ∈ [5, 10] (0.75 and 0.8 for the two end
points), whereas F-score is the same for both end
points (0.75 and 0.76 respectively). Given the small
difference in terms of accuracy and the fact that the
lower the number of fragments k, the faster the real-
time calculations, we adopt k = 5 as the default value
for the framework.

Evaluation of the weighting scheme. The represen-
tation of the query and session vectors, and conse-
quently the metrics used to calculate the similarities
between fragments, differ depending on the weight-
ing scheme. In our work we have introduced the
binary and the weighted schemes and employ the
Jaccard coefficient and the cosine similarity metric
respectively. In this set of experiments, we evalu-
ate the effect of the representation. Intuitively, the
binary representation is much more simplistic and
is expected to provide less accurate results, since
valuable information with regards to the importance
of each fragment in a session is missing. The results,
shown in Figures 5 and 6 verify this intuition, with
a precision (for max recall) of 0.74 and 0.84 for the
binary and weighted schemes respectively, and an F-
score of 0.72 and 0.82 respectively. For the specific
dataset both schemes performed similarly in terms of
execution time (needed 6 sec on average to generate
recommendations). We adopt the weighted scheme as
the default value, since it resulted in better prediction
accuracy.

6.2 Prediction accuracy.

After determining the default values for k and the
weighting scheme, as shown above, we proceeded
to evaluate the performance of QueRIE in terms of
accuracy for different values of the α parameter and
the number of recommendations m. For this set of ex-
periments, we employed the entire dataset, as shown
in Table 3 and, when not stated otherwise, we set the
parameters of the system to the ones shown in Table
5. We follow the same methodology that was used for
evaluating the tuple-based approach (discussed in [2])
so that we can compare the two approaches.

Methodology. We employ 10-fold cross validation to
evaluate the performance of the QueRIE framework.
More concretely, we partition the set of user sessions
in 10 equally sized subsets, and in each run we use 9
subsets as the training set and we generate recommen-
dations for the sessions in the remaining subset. The
effectiveness of each recommended query is measured
against the L-th query of the test session, using the
precision and recall metrics as defined in Equations
9 and 10. Following the practice of previous studies
in recommender systems [11], we report for each user
session the maximum recall over all the recommended
queries, and compute the precision for the query that
achieved maximum recall. We also report the average
precision and recall for each set of recommendations.

Results. Figures 7 - 10 show the inverse cumulative
frequency distribution (inverse CFD) of the recorded
precision and recall for the test sessions. (Recall that
all sessions are used as test sessions, using the 10-
fold cross validation methodology described earlier.)
A point (x, y) in this graph signifies that x% of user
sessions had precision/recall ≥ y.

10

Fig. 3. Average precision for various top-k values

0	

0.2	

0.4	

0.6	

0.8	

1	

Binary	 Scheme	 Weighted	 Scheme	

Average	 Precision	

Fig. 5. Average precision for different weighting

schemes

We evaluate the results in terms of the mixing factor
α, as well as the size of the recommendation set (top-
m). Our first observation is that when the active user ’s
session fragments are included (α = 0.5), the precision
and recall increase significantly independent of the
size of the recommendation set. More specifically, we
observe that, when α = 0.5 the recommendations
match exactly the next user query for more than
20% of the sessions, and the precision is acceptable
(≥ 0.5) for more than half of the sessions. On the
other hand, when we follow the pure collaborative
filtering approach (α = 0), precision and recall are
overall lower for both sizes of the recommendation
set. The findings verify our initial claim that database
recommender systems are very different in nature
from their web counterparts. As pointed out previ-
ously, one significant difference is that, in the case
of SQL queries we want to expand or enhance the
queries that were previously submitted by the user.
The user benefits from this addition, since most users
are interested in posting queries similar to the ones
they have already posted during the same session.

Looking at the effect of the size m of the recom-
mendation set, we cannot draw conclusions in favor
of any of the two choices in the case of α = 0.5. On the
contrary, the system performs much better (in terms
of precision for max recall) for m = 5 when α = 0.
We thus set the default parameters to our system as
shown in Table 5.

Figures 11 and 12 show the average recall and
precision among all top-3 and top-5 recommended
queries respectively for α = 0.5. In this case we
achieve high precision and recall for more than 1/3
of the test sessions and acceptable precision for over
45% of the test sessions. The lower average precision

Fig. 4. Average f-score for various top-k values

0	

0.2	

0.4	

0.6	

0.8	

1	

Binary	 Scheme	 Weighted	 Scheme	

Average	 F-‐score	

Fig. 6. Average f-score for different weighting

schemes

and recall for the remaining sessions means that some
recommended queries might not reflect the user ’s
intentions at all, dragging the overall average down.
Since the active user will be provided with a set of
recommendations to choose from, we expect that she
will instead opt for the ones closest to her interests.

6.3 Comparison and discussion

As a final step, we compare the fragment-based ap-
proach with the tuple-based one presented in [2] and
its extension using MinHash synopses presented in
[3]. As discussed previously, the tuple-based approach
represents information at a very fine level of detail
and thus yields much more accurate results. More
specifically, as shown in Figure 13, the tuple-based
approach achieves perfect precision for 45% of the
sessions (as compared to 21% for the fragment-based
approach, as shown in Figures 7 and 9). It is inter-
esting, however, that overall more recommendations
achieved acceptable precision (≥ 0.5) in the fragment-
based approach (52% and 48% of sessions for the
fragment- and tuple-based approaches respectively).
A similar pattern is being observed when we evaluate
the average precision and recall of the two instantia-
tions. As shown in Figures 12 and 14, while a few
more recommendations achieve perfect precision and
recall in the tuple-based instantiation (8% and 10%
respectively), the overall number of recommendations
that achieve average precision ≥ 0.5 drops to 25% for
the tuple-based instantiation whereas remains around
40% for the fragment-based one.

Even though the tuple-based approach captures the
user ’s information needs at a finer level of detail, this
comes at the cost of real-time computational efficiency,

11

Fig. 7. Inverse CFD of Precision at Maximum

Recall (top-3 recommendations)

Fig. 8. Inverse CFD of Maximum Recall (top-3

recommendations)

Fig. 9. Inverse CFD of Precision at Maximum

Recall (top-5 recommendations)

Fig. 10. Inverse CFD of Maximum Recall (top-3

recommendations)

Fig. 11. Average Precision and Recall (m = 3,

α = 0.5)

Fig. 12. Average Precision and Recall (m = 5,

α = 0.5)

as shown in Table 6; using the base tuple-based im-
plementation in a real-time recommender system is
prohibitive due to the time needed to generate each
recommendation (several minutes). This was our mo-
tivation to extend the tuple-based approach by using
the MinHash synopses. MinHash synopses reduce the
time of recommendations from several minutes to 6
seconds (same as the fragment-based approach), but
we expect a significant drop in the accuracy of the
system due to the fact that the similarities between
sessions are reduced to similarities between their
hashes. We used the dataset of Table 4 to measure
the prediction accuracy of the two instantiations. We

present some results (for top-5 recommendations and
α = 0.5) in Table 7. We observe that the fragment-
based engine outperforms the tuple-based/MinHash
engine in terms of prediction accuracy and, given that
the real-time response of the system is the same (6
sec), it is the optimal choice for the particular problem,
as our initial intuition suggested.

7 RE L AT E D WO R K

Even though the problem of generating personalized
recommendations has been broadly addressed in the
Web context [7], [12], only a few related works exist
in the database context. A relevant line of research

12

0 10 20 30 40 50 60 70 80 90 100

Percentage of sessions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
re

c
is

io
n

top5-result

top5-binary

Fig. 13. Inverse CFD of Precision at Maximum

Recall (m = 5, α = 0.5) [2]

10 20 30 40 50 60 70 80 90 100

Percentage of sessions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

precision

Fig. 14. Average Precision and Recall (m = 5,

α = 0.5) [2]

TABLE 6

Trade-offs between the three framework instantiations

Fragment-based Tuple-based
Tuple-based using Min-
Hash synopses

Information representation coarse detailed coarse

Phase 1: Session summaries’ formation Offline Offline Offline

Phase 2: Similarities - Spred calculation Offline (sim(ρ, φ)) - Online Online (sim(Si, S0)) - On-
line

Online (sim(h(Si), h(S0)))
- Online

Phase 3: Retrieval of similar queries Online Online Online
Time to generate recommendations after
query is posted

< 6 sec > 5 min < 6 sec

TABLE 7

Comparison of tuple-based/MinHash and fragment-based instantiations

Fragment-based Tuple-based with MinHash synopses
% of sessions with precision = 1 50% 35%
% of sessions with recall = 1 55% 40%

% of sessions with precision ≥ 0.5 85% 60%
% of sessions with recall ≥ 0.5 75% 65%

% of sessions with average precision ≥ 0.5 65% 40%
% of sessions with average recall ≥ 0.5 45% 50%

has to do with preference-aware query answering
[13], an important problem in the context of web
databases. Web databases provide a keyword-based
query interface, and suffer from the “empty-answer ”
and “too-many-answers” problems. In that context,
it’s critical to provide the correct (personalized) an-
swer to each user rather than the exact one to ev-
eryone for the same query [14]. Preferences may be
expressed qualitatively, by embedding into relational
query languages a special operator [15], [16], [17],
[18], or quantitatively, by re-ranking or filtering the
results (tuples) of the original query [19]. Lately con-
text has also been added in such systems, as an
additional personalization parameter [20], [21]. The
common denominator of these works with ours is that
all can be categorized under the “query personaliza-
tion” area. However, our research mainly focuses on
databases that serve a very specific purpose and have
an SQL-based interface. In this context, rather than
restructuring/enhancing the submitted query, or by
re-ranking the retrieved relevant tuples (i.e. person-
alize the results), our objective is to assist the user
exploring different parts of the database by providing

new queries as recommendations and let the user
decide on whether these are useful/relevant or not.

A multidimensional query recommendation system
is proposed in [22], [23]. In this work, the authors
propose a framework for generating OLAP query
recommendations for the users of a data warehouse.
Although this work has some similarities to ours (for
example, the challenges that need to be addressed
because of the database context), the techniques and
the algorithms employed in the multidimensional
scenario (for example, the similarity metrics and the
ranking algorithms) are very different to the ones we
propose.

The necessity of a query recommendation frame-
work is emphasized in [24], where the authors outline
the architecture of a collaborative query management
system targeted at large-scale, shared-data environ-
ments. As part of this architecture, the authors suggest
that data mining techniques can be applied to the
query logs in order to generate query suggestions,
without providing any technical details on how such
a recommendation system could be implemented.

A few recent works propose frameworks for query

13

recommendations over relational databases [25], [26],
[27], [28], [29]. In [25], the authors propose a frame-
work that recommends join queries. They use the data
recorded in the query logs and reconstruct queries,
however they assume that the end user should pro-
vide the system with some tables to be used as input
and other tables to be used as output, along with
the respective selection conditions. This approach
clearly differs from ours in that they do not take
the current user ’s session into consideration, neither
do they perform recommendations in the traditional
“personalized” form (i.e. finding similarities among
users or items).

In [26], the authors propose a query recommender
system that represents the past queries using the
most frequently appearing tuple values. Then, after
predicting which new tuples might be of interest
to the end user, they reconstruct the query that re-
trieves them. The ideas presented in this position
paper are extended in [28], where the authors present
the ReDRIVE framework. The authors introduce the
notion of interestingness of (attribute, value) pairs
called faSets, appearing in the result of the original
user query. In this work, the authors present efficient
ways of calculating the interestingness of each pair by
maintaining statistics of the database allowing them
to estimate the frequencies related to it. While the
ReDRIVE framework has some common characteris-
tics with the tuple-based instantiation of QueRIE in
that both consider the results (tuples) of the active
user ’s query they differ in terms of the approach
employed; the authors find interesting faSets (and
subsequently use them to expand the user ’s queries
to retrieve additional items as recommendations) con-
sidering the content of the database and the user ’s
query results. Thus, contrary to our hybrid approach
that employs query fragments and uses the past users’
queries, ReDRIVE is following a content-based ap-
proach.

In [29] the authors propose SnipSuggest, a system
meant to assist users when formulating SQL queries.
Using the information in query logs, the system
generates a DAG representing the relationships be-
tween different clauses in the queries. Based on the
current user ’s query, the system ranks the outgoing
edges and recommends the nodes/clauses of the most
similar ones. This work differs in ours in several
ways. SnipSuggest recommends possible additions to
various clauses in the current user ’s query, and not
complete queries. Moreover each query is treated in-
dependently of any previous one, even if they belong
to the same user session.

Finally in [27] the authors propose the FlexRecs
framework that enables the execution of various
workflows that allow a user to customize the rec-
ommendation process and results by selecting the
type of recommendation and the basis of similarity
calculations on various aspects. The focus of this work

is to create a framework that will assist users with
highly diverse information needs - e.g. University
students whose needs span from selecting their major
to deciding which course to take next semester. How-
ever, FlexRecs is built on the premise that multiple
recommender systems will exist that can be selected
as part of each workflow. Thus, all aforementioned
works including ours, are complementary in that they
can serve as underlying recommendation engines for
this type of framework.

Overall, these previous studies indicate the impor-
tance of the emerging problem of generating query
recommendations. They also corroborate our previ-
ous observations on the challenges that need to be
addressed in order to develop an effective solution.

8 CON CL U S I O N S

In this paper we present the QueRIE framework that
aims to generate useful SQL query recommendations
to users of relational databases. Taking into consid-
eration the findings of our previous work, where we
developed a tuple-based instantiation of the frame-
work using user-based similarities to generate rec-
ommendations, we decided to follow an item-based
approach using query fragments to represent user
sessions. As expected, representing information at
a coarser level of detail, resulted in some loss of
accuracy in our predictions. On the other hand, the
fragment-based approach can be implemented very
efficiently; the space of fragments grows slowly, the
summaries are very sparse and, most importantly, the
fragment-to-fragment similarities can be computed
offline and stored for very fast retrieval when recom-
mendations need to be generated. The experimental
results showed that this trade-off between compu-
tational efficiency and accuracy is worth pursuing,
since we are able to have a scalable implementation
running with real, “big” data, with an acceptable loss
in precision. In fact, when the tuple-based instanti-
ation employs approximation techniques (MinHash
synopses) to enable real-time calculations, the loss in
precision is much greater than that of the fragment-
based one.

This concludes the first part of our work in this
research area. There are many interesting directions
we would like to explore in the future. We would
like to measure the impact the query relaxation pro-
cess has in the quality of recommendations. Explor-
ing a sequence-based approach is another interesting
direction for future work, but it requires a careful
reconsideration of several aspects of our framework.
For instance, pure sequence information may not be
sufficient to discover user similarities. Instead, we
may have to consider the relative changes between
queries in the sequence, e.g., that selection predicates
becomes more selective as queries progress, in order
to properly detect similarities. We also plan to fo-
cus on relational databases that have a form-based

14

interface. While the fragment-based approach seems
as a straightforward selection for such environments,
new challenges related to the formulation of session
similarity, the synthesis of recommendations and their
presentation arise. Finally, as we aim at developing
a more generic and scalable system, we are currently
working on integrating alternative techniques for gen-
erating recommendations, such as matrix factorization
methods.

RE F E R E N C E S

[1] A. Thusoo, J. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang,
S. Antony, H. Liu, and R. Murthy, “Hive - a petabyte scale data
warehouse using hadoop,” in Data Engineering (ICDE), 2010
IEEE 26th International Conference on, March, pp. 996–1005.

[2] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis, “Collabora-
tive filtering for interactive database exploration,” in Proc. of
the 21st Intl. Conf. on Scientific and Statistical Database Manage-
ment (SSDBM ’09), 2009.

[3] S. Mittal, J. S. V. Varman, G. Chatzopoulou, M. Eirinaki, and
N. Polyzotis, “QueRIE: A Recommender System supporting
Interactive Database Exploration,” in IEEE Intl. Conf. on Data
Mining series (ICDM’09) - in ICDM’10 proceedings because of
editor’s error, 2009.

[4] J. Akbarnejad, G. Chatzopoulou, M. Eirinaki, S. Koshy, S. Mit-
tal, D. On, N. Polyzotis, and J. S. V. Varman, “SQL QueRIE
Recommendations,” in Proc. of the 36th Intl. Conf. on Very Large
DataBases (VLDB 2010), 2010.

[5] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of
approximating the frequency moments,” in STOC ’96: Proc. of
the 28th annual ACM symposium on Theory of computing, 1996.

[6] E. Cohen, “Size-estimation framework with applications to
transitive closure and reachability,” Journal of Computer and
System Sciences, vol. 55, pp. 441–453, 1997.

[7] G. Linden, B. Smith, and J. York, “Amazon.com recommenda-
tions: item-to-item collaborative filtering,” IEEE Internet Com-
puting, vol. 7, no. 1, pp. 76–80, Jan/Feb 2003.

[8] N. Koudas, C. Li, A. K. H. Tung, and R. Vernica, “Relaxing
join and selection queries,” in Proc. of the 33nd Intl. Conf. on
Very Large DataBases (VLDB ’06), 2006, pp. 199–210.

[9] V. Singh, J. Gray, A. Thakar, A. S. Szalay, J. Raddick, B. Boroski,
S. Lebedeva, and B. Yanny, “Skyserver traffic report - the first
five years,” Microsoft Research, Technical Report MSR TR-2006-
190, 2006.

[10] B. Liu, Web Data Mining: Exploring Hyperlinks, Contents and
Usage Data, 2nd ed. Springer, 2007.

[11] B. M. X. Jin, Y. Zhou, “Task-oriented web user modeling for
recommendation,” in Proc. of User Modeling ’05, 2005.

[12] B. Mobasher, The Adaptive Web: Methods and Strategies of Web
Personalization, ser. LNCS. Springer, Berlin-Heidelberg, 2007,
vol. 4321, ch. Data Mining for Personalization, pp. 90–135.

[13] K. Stefanidis, G. Koutrika, and E. Pitoura, “A survey on
representation, composition and application of preferences in
database systems,” ACM Trans. Database Syst., vol. 36, no. 4,
2011.

[14] G. Koutrika, “Personalized dbms: an elephant in disguise or
a chameleon?” IEEE Data Engineering Bulletin, vol. 34, no. 2,
June 2011.

[15] S. Borzonyi, D. Kossmann, and K. Stocker, “The skyline oper-
ator,” in IEEE Intl. Conf. on Data Engineering (ICDE), 2001.

[16] J. Chomicki, “Preference formulas in relational queries,” ACM
Trans. Database Syst., vol. 28, no. 4, pp. 427–466, 2003.

[17] W. Kiessling, “Foundations of preferences in database sys-
tems,” in Intl. Conf. on Very Large DataBases (VLDB), 2002.

[18] W. Kiessling, M. Endres, and F. Wenzel, “The Preference SQL
System - An Overview,” IEEE Data Engineering Bulletin, vol. 34,
no. 2, June 2011.

[19] G. Koutrika and Y. Ioannidis, “Personalized queries under a
generalized preference model,” in Proc. of the 21st Intl. Conf.
on Data Engineering (ICDE 2005), 2005.

[20] J. Levandoski, M. Mokbel, and M. E. Khalefa, “FlexPref: A
Framework for Extensible Preference Evaluation in Database
Systems,” in IEEE Intl. Conf. on Data Engineering (ICDE), 2010.

[21] E. Pitoura, K. Stefanidis, and P. Vassiliadis, “Contextual
database preferences,” IEEE Data Engineering Bulletin, vol. 34,
no. 2, June 2011.

[22] A. Giacometti, P. Marcel, and E. Negre, “Recommending Mul-
tidimensional Queries,” in Proc. of the 11th Intl. Conf. on Data
Warehousing and Knowledge Discovery (DaWaK’09), 2009.

[23] A. Giacometti, P. Marcel, E. Negre, and A. Soulet, “Query
recommendations for olap discovery driven analysis,” Intl.
Journal on Data Warehousing and Mining, vol. 7, no. 2, 2011.

[24] N. Khoussainova, M. Balazinska, W. Gatterbauer, Y. Kwon,
and D. Suciu, “A case for a collaborative query management
system,” in Proc. of the 4th Biennal Conf. on Innovative Data
Systems Research (CIDR 2009), 2009.

[25] X. Yang, C. M. Procopiuc, and D. Srivastava, “Recommending
join queries via query log analysis,” in 25th Intl. Conf. on Data
Engineering (ICDE 2009), 2009, pp. 964–975.

[26] K. Stefanidis, M. Drosou, and E. Pitoura, “”You May Also
Like” Results in Relational Databases,” in 3rd Intl. Workshop on
Personalized Access, Profile Management, and Context Awareness
in Databases (PersDB 2009), 2009.

[27] G. Koutrika, B. Bercovitz, and H. Garcia-Molina, “Flexrecs:
Expressing and combining flexible recommendations,” in SIG-
MOD Conference, June 2009, pp. 745–757.

[28] M. Drosou and E. Pitoura, “Redrive: result-driven database
exploration through recommendations,” in CIKM, 2011, pp.
1547–1552.

[29] N. Khoussainova, Y. Kwon, M. Balazinska, and D. Su-
ciu, “SnipSuggest: Context-Aware Autocompletion for SQL,”
PVLDB, vol. 4, no. 1, 2011.

Magdalini Eirinaki is an Assistant Professor
at the Computer Engineering Department,
San Jose State University, California. Her
research interests cover the areas of web
mining and recommendation systems and,
in particular, on personalization, interactive
database exploration and mining of social
networks. She has published several pa-
pers in refereed journals and international
conference proceedings in the above areas.
She received her Ph.D. degree in Informatics

(Computer Science) from Athens University of Economics and Busi-
ness in 2006.

Suju Abraham received the B.Tech degree
in Electronics and Communication Engineer-
ing from TKM College of Engineering, Kol-
lam, India, in 1993, and the MS degree in
Software Engineering from San Jose State
University, California, in 2010. While pursu-
ing her MS degree, she co-authored papers
in the area of interactive database explo-
ration (under the name Suju Koshy). She is
currently an Applications Developer at Lucille
Packard’s Children’s Hospital. Her interests

are developing mobile and other software applications with a spe-
cialization in the medical field.

Neoklis Polyzotis is an Associate Profes-
sor at UC Santa Cruz. His research focuses
on on-line database tuning, scaling machine
learning to large data, and declarative crowd-
sourcing. He is the recipient of an NSF CA-
REER award in 2004 and of an IBM Faculty
Award in 2005 and 2006. He has also re-
ceived the runner-up for best paper in VLDB
2007 and the best newcomer paper award in
PODS 2008. He received his PhD from the
University of Wisconsin at Madison in 2003.

Naushin Shaikh received the B. Eng. Degree in Computer Science
from University of Pune, India, and the MS in Sofware Engineering
from San Jose State University, California, in 2011. She is currently a
Senior QA Engineer at Data Domain, EMC, Santa Clara, California.

http:Amazon.com

	San Jose State University
	From the SelectedWorks of Magdalini Eirinaki
	July, 2014

	QueRIE: Collaborative Database Exploration
	tmp4AsopI.pdf

