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QueRIE: Collaborative Database Exploration  
Magdalini Eirinaki, Suju Abraham, Neoklis Polyzotis, Naushin Shaikh  

Abstract—Interactive database exploration is a key task in information mining. However, users who lack SQL expertise or 

familiarity with the database schema face great difficulties in performing this task. To aid these users, we developed the QueRIE 

system for personalized query recommendations. QueRIE continuously monitors the user’s querying behavior and finds matching 

patterns in the system’s query log, in an attempt to identify previous users with similar information needs. Subsequently, QueRIE 

uses these “similar” users and their queries to recommend queries that the current user may find interesting. In this work we 

describe an instantiation of the QueRIE framework, where the active user’s session is represented by a set of query fragments. 

The recorded fragments are used to identify similar query fragments in the previously recorded sessions, which are in turn 

assembled in potentially interesting queries for the active user. We show through experimentation that the proposed method 

generates meaningful recommendations on real-life traces from the SkyServer database and propose a scalable design that 

enables the incremental update of similarities, making real-time computations on large amounts of data feasible. Finally, we 

compare this fragment-based instantiation with our previously proposed tuple-based instantiation discussing the advantages and 

disadvantages of each approach. 

Index Terms—[H.2.8d] Data Mining; [H.2.8h] Interactive data exploration and discovery; [H.2.8k] Personalization; 

+ 

1 IN T RO D U CT I O N 

Database systems provide the critical infrastructure 
to access and analyze large volumes of data in a 
variety of applications. Prominent examples include 
large-scale data warehouses that support business-
intelligence tools, systems for ad-hoc analytics over 
big data, and services for scientific-data exploration, 
such as the Genome browser1 or SkyServer2, which 
allow scientists to query large databases of scientific 
data over a web-enabled interface. 

Despite the availability of querying tools over large 
databases, users often have difficulties in understand-
ing the underlying schema and formulating queries. 
For instance, the study on Hive3, the data warehouse 
platform used in Facebook, mentions the following 
[1]: “A result of heavy usage has also lead to a lot of 
tables generated in the warehouse and this has in turn 
tremendously increased the need for data discovery 
tools, especially for new users.” Similar issues appear 
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in other domains, particularly in the domain of scien-
tific data management (e.g., the Genome Browser and 
SkyServer services mentioned earlier), where users are 
not necessarily experts and the underlying schemas 
can be complicated. As a result, even when users 
have the ability to issue complex queries over large 
data sets, the task of knowledge discovery remains 
a big challenge: users may not be familiar with the 
database schema, may overlook queries that retrieve 
relevant data, or might not have the required exper-
tise to formulate such queries. Moreover, due to the 
continuously growing size of the data, an exhaustive 
exploration of such databases is practically infeasible. 

To address the important problem of assisting users 
in the interactive exploration of a large database, we 
designed the QueRIE4 system. QueRIE assists users of 
ad-hoc or form-based query environments by present-
ing them with personalized query recommendations. 
The recommended queries are relevant to the user ’s 
information needs and can be submitted directly or 
be further refined. In other words, the user can use 
them as “templates” for query formulation instead of 
having to compose new ones. 

QueRIE is built on a simple premise that is inspired 
by Web recommender systems: If users A and B 
have posed similar queries, then the other queries 
of B may be of interest to user A and vice versa. 
In other words, we can recommend the queries of 
user B in order to help user A in their exploration 
of the database. In particular, we propose to im-
plement this idea through Collaborative Filtering, a 
well known, mature technique that has been used 
in Web recommender systems. However, the transfer 
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of this approach to the database context introduces 
several technical challenges. First, SQL is a declarative 
language, and hence syntactically different queries 
may reflect the same information need. Consider for 
example, the two queries Q1: SELECT A FROM R 
WHERE B = 10; and Q2: SELECT R.A FROM R JOIN 
S ON (R.C = S.C) WHERE R.B = 10;. If relations R and 
S have a key/foreign key relationship on attribute C, 
then both queries retrieve the same results. This com-
plicates greatly the computation of similarity among 
users, since, contrary to the web paradigm where the 
similarity between two users can be expressed as the 
similarity between the items they visit/rate/purchase, 
we cannot simply compare SQL queries - we essen-
tially have to solve the notoriously difficult query-
equivalence problem. A second important challenge 
raises from the absence of an explicit rating system 
for the queries posed by the user - how do we 
know which queries are important in the computation 
of user similarity? Finally, the recommended queries 
need to be intuitive so that the user can understand 
and refine if necessary. Too “synthetic” queries might 
result being even more confusing for the user. 

QueRIE addresses these challenges by employing a 
closed-loop approach. Specifically, the QueRIE frame-
work decomposes each query into basic elements 
that capture the essence of the query’s logic. These 
elements are used to compute similarities between 
users, as well as a signature of the user ’s querying be-
havior (and, to some extent of the user ’s information 
needs). Recommendations are generated by mining 
queries from the system log that match well with the 
signature. Hence, the user is presented with queries 
that match her querying behavior, and are likely to be 
more intuitive than purely synthetic ones. 

In our previous work we outlined the QueRIE 
framework, and the application of user-based col-
laborative filtering using witness tuples to represent 
user queries [2], [3]. In this paper, we provide a 
comprehensive presentation of QueRIE, including an 
overview of our previous work (tuple-based instanti-
ation), and presenting the details of a different instan-
tiation (demonstrated in [4]) which includes an item-
based approach that uses query fragments to repre-
sent the user queries. The recorded fragments are used 
to identify similar query fragments in the previously 
recorded sessions, which are in turn assembled in 
potentially interesting queries for the active user. We 
propose a scalable design that enables the incremental 
update of similarities, making real-time computations 
on large amounts of data feasible. We then show, 
through experimentation, that the proposed method 
generates meaningful and more accurate recommen-
dations on real-life traces from the SkyServer database 
when compared to the scalable extension of the tuple-
based instantiation. 

The remaining of this paper is organized as follows: 
In Sections 2 and 3 we provide a brief overview of 

the abstract framework of the QueRIE system, and 
the tuple-based instantiation respectively. We then 
present the fragment-based instantiation in Section 4 
and discuss some implementation details in Section 
5. The experimental evaluation of the fragment-based 
approach, along with a comparison to the tuple-based 
approach is presented in Section 6. We discuss the 
related work in Section 7 and conclude the paper with 
our plans for future work in Section 8. 

2 TH E QU E RIE F R A ME WO R K 

This section discusses an abstract framework for gen-
erating query recommendations. The abstract frame-
work is essentially a workflow, as depicted in Figure 
1. The active user ’s queries are forwarded to both the 
DBMS and the Recommendation Engine. The DBMS 
processes each query and returns a set of results. 
At the same time, the query is stored in the Query 
Log. The Recommendation Engine combines the cur-
rent user ’s input with information gathered from the 
database interactions of past users, as recorded in the 
Query Log, and generates a set of query recommen-
dations that are returned to the user. 

We consider a setting where users explore a rela-
tional database through a sequence of SQL queries. 
The goal of the exploration is to discover interesting 
information or verify a particular hypothesis. The 
queries are formulated based on this goal and reflect 
the user ’s overall information need. As a consequence, 
the queries posted by a user during one “visit” (com-
monly called session) to the database are typically 
correlated, in that the user formulates the next query 
in the sequence after having inspected the results of 
previous queries. For example, a real user session, 
belonging to the SkyServer query logs, is shown here: 

Query 1: 
SELECT count(*) FROM region WHERE 
type like ’tiprimary’ 

Query 2: 
SELECT count(distinct id) FROM region 
WHERE type like ’tiprimary’ 
SELECT id, count(*) FROM region 

Query 3: WHERE type like ’tiprimary’ GROUP BY 
id 
SELECT id, count(*) FROM region 

Query 4: WHERE type like ’tiprimary’ GROUP BY 
id HAVING count(*)> 1 

This query pattern clearly corresponds to an interac-
tive exploration of the database: the user starts by 
counting the number of tuples satisfying a predicate, 
then counts the distinct objects corresponding to these 
tuples, and eventually retrieves the objects that occur 
more than once. The pattern also indicates that the 
user is not familiar with the schema, e.g., the fact that 
attribute id may have the same value in several tuples. 
The user could save a lot of time if the system could 
recommend the appropriate query (Query 4 in the 
example above) right after their first attempt (Query 
1). This is possible if a similar session already exists 
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Fig. 1. QueRIE Architecture 

in the query logs and thus can be used to generate 
recommendations for the active user. It is interesting 
to note here that we do not exclude from the recom-
mendation set queries that have overlapping results 
with the ones the user has already posted since the 
system may miss good recommendations, as shown 
in the example above. 

To simplify our presentation, we assume that each 
user has a single session with the database. This 
assumption can be lifted in a straightforward manner 
at the expense of more complicated notation. Given a 
user i, let Qi denote the set of SQL queries that the 
user has posed so far in a single session. We introduce 
the notion of a session summary to summarize the 
characteristics of the queries posed in the session. 
This summary captures the parts of the database 
accessed by the user and incorporates a metric of 
importance for each part. Contrary to Web recom-
mender systems, where the users are represented by 
the items they visit/rate/purchase, in the context of 
relational databases, several ways to model the ses-
sion summaries exist. For instance, a crude summary 
may contain the names of the relations that appear in 
the queries of the user, and the importance of each 
relation can be measured as the number of queries 
that reference it. On the other extreme, a detailed 
summary may contain the actual results inspected by 
the user, along with an explicit rating of each result 
tuple. The different possibilities represent trade-offs 
between detail and conciseness, and as we will see 
later, also affect the quality of the generated queries. 
In what follows, we use Si to represent the session 
summary for user i. User i = 0 will always represent 
the current user (for whom recommendations are 
generated), whereas i = 1, . . . , n represents past users 
of the system. In a slight abuse of notation, we use Si 

to represent both the session summary and user i. 

To generate recommendations for current user S0, 
the framework first computes a “predicted” summary 
Spred . This summary captures the predicted degree of 
interest of S0 with respect to different query character-
istics, including those that already appear in his/her 
queries, as well as new ones that have not been used 
yet. The summary Spred is then used as the “seed” 

for the generation of recommendations. This two-step 
process is detailed below. 

The predicted summary is defined as: 

Spred = f(α, S0, S1, ..., Sn). (1) 

f is a function that combines information from both 
the active user ’s summary S0 and the summaries 
S1, . . . , Sn of past users. The “mixing factor ” α ∈ [0, 1] 
determines the importance of the S0 (the current 
user ’s session) with respect to S1, . . . , Sn (the sessions 
of other users). When α = 1, Spred takes into account 
only the queries in S0, whereas α = 0 has the opposite 
effect and only the queries of other users affect the 
recommendations. Neither of these extremes might 
be a good setting for all possible cases. Thus, we 
introduce α as a parameter of the system that can be 
tuned depending on the type of the database and the 
users’ querying behaviors. It is interesting to contrast 
our approach to Web recommender systems, where 
the equivalent of Spred is computed using α = 0, 
i.e., based solely on information from other users 
(consider, for example, the case of recommending 
movies to users), or content-based recommender sys-
tems where α = 1 (consider, for example, the case of 
generating playlists that may include songs the user 
likes as well as similar ones in terms of genre, vocals, 
instrumentation etc.). 

Using the summary Spred , the framework generates 
queries that cover the subset of the database with the 
highest predicted importance. In turn, these queries 
are presented to the user as recommendations. This 
can be performed in several ways. One approach 
would be to synthesize queries using the character-
istics present in Spred . However, this approach is not 
optimal for several reasons. For instance, it is impor-
tant to recommend meaningful and intuitive queries. 
Thus the queries should have non-empty result sets, a 
property that needs to be verified before each recom-
mendation. Moreover, unless there is some semantic 
knowledge about the data and/or the schema, the 
automatic synthesis of several characteristics to form 
an intuitive query is very difficult. To address these 
issues, we follow a different approach: we re-use 
queries that are included in the Query Log of the 
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TABLE 1 

Notation Summary 

m number of users 
Qi set of queries in session Si 

Si Session summary for user i / User i 
Si[τ ] Importance of tuple τ in session Si 

(tuple-based instantiation) 
Si[φ] Importance of fragment φ in session Si 

(fragment-based instantiation) 
S0 Session summary for current user 

Spred Predicted summary for current user 
α Mixing factor 
SQ Single query vector of query Q 
k Number of top-ranked query fragments 
n Size of recommendations 

DBMS. Of course, the selected queries are a good 
match to the characteristics described in Spred , and 
this introduces a new challenge for our system. Such 
queries are expected to be intuitive, and easy to un-
derstand, since they correspond to queries formulated 
by other (human) users. Furthermore, we can verify 
easily that these queries return non-empty results, by 
examining the metadata in the system’s query log. 

Overall, our framework consists of the following 
components: (a) a model for session summaries, (b) a 
method to compute the session summaries S0, . . . , Sn, 
(c) a method to compute Spred , and (d) a method to 

Spred select queries based on . An interesting point 
is that the framework forms a closed loop, going 
from SQL queries to session summaries and back. 
Again, this design choice follows the fact that all user 
interaction with a relational database occurs through 
a declarative query language. 

In what follows, we describe two instantiations of 
the abstract recommendations framework, namely a 
tuple-based recommendation engine and a fragment-
based recommendation engine. We discuss the advan-
tages and disadvantages of each approach in terms 
of efficiency and quality of recommendations. We 
also address the scalability problem of such systems, 
presenting some design enhancements that enable 
incremental updates and real-time computation for 
large data sets. A summary of the notation used 
throughout this paper is included in Table 1. 

3 TU P LE -BA S E D QU E RY RE C O M M E N DA -
T I O N S 

In this instantiation of the QueRIE framework, the 
session summary Si is represented as a weighted 
vector, where every coordinate corresponds to a dis-
tinct database tuple. We assume that the total number 
of tuples in the database, and as a consequence the 
length of the vector, is T . The weight Si[τ ] represents 
the importance of a given tuple τ ∈ T in session Si, 
and is non-zero only if τ is a witness for at least 
one query in the session. The intuition is that Si 

captures the tuples in the base tables that are touched 
by the queries in the user ’s session. Hence, sessions 

that contain equivalent queries will map to the same 
summary. 

We assume that the vector SQ represents a single 
query Q. The value of each element SQ[τ ] signifies 
the importance of the tuple τ as the witness for Q. We 
consider two different weighting schemes for setting 
Si[τ ], a binary scheme and a result-based scheme: 

Binary scheme. 
 

1 if τ is a witness; 
SQ[τ ] = (2)

0 if τ is not a witness. 

This is the most straightforward approach. There are 
two options: either a tuple is a witness in Q, or not. 
All participating tuples receive the same importance 
weight. 

Result-based scheme. 
 

1/|ans(Q)| if τ is a witness; 
SQ[τ ] = (3)

0 if τ is not a witness. 

Here ans(Q) is the result-set of Q. The idea behind this 
scheme is similar to the IDF concept from information 
retrieval: the importance of τ is diminished if Q 
returns many results, as this is an indication that 
the query is “unfocused”; on the other hand, a small 
ans(Q) implies that the query is very specific, and 
thus the witnesses have high importance. 

Given the vectors SQ for each query Q posed by 
user i, we define the session summary Si as: 

 

Si = SQ. (4) 
Q∈Qi 

Using the session summaries of the past users, we can 
construct the (n×T ) session-tuple matrix which, as in 
the case of the user-item matrix in web recommender 
systems, will be used as input to our recommendation 
algorithm. 

We compute Spred as follows: 
 

Spred = α · S0 + (1 − α) · sim(Si, S0) · Si, (5) 
i=1,...,n 

where sim(Si, S0) is a similarity metric between the 
two vectors (e.g., cosine similarity). This approach is 
inspired by Web recommender systems, where the 
idea is to bias the recommendations based on users 
who exhibit similar behavior to the current user. The 
difference is that we use the mixing factor α to blend 

Spred in the behavior of the current user. Overall, 
yields a weight per tuple that corresponds to the 
importance of the tuple to the user ’s exploration. 

Having computed Spred , the algorithm recommends 
queries that retrieve tuples of high predicted weights. 
Specifically, for each candidate query Q5 , we com-
pute the similarity sim(SQ, S pred ). The few candidate 

5. We maintain a uniform random sample of past queries as our 
candidate pool. 
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queries with the highest similarity are returned as rec-
ommendations to the user. (The number of returned 
queries is a parameter of the framework.) 

Overall, the tuple-based approach captures the 
user ’s querying behavior at a very fine level of de-
tail – the individual witnesses to the user ’s queries. 
Moreover, it handles readily the issue of equivalent 
declarative queries, since the underlying witness sets 
are exactly the same. The downside is the increased 
complexity, since, in principle, the session summaries 
grow linearly with the size of the database. What is 
more, the similarities between the current user ’s ses-
sion and those of previous users need to be calculated 
every time the active user submits a new query. 

Fortunately, it is possible to implement this method 
more efficiently by employing randomized sketch-
ing techniques (e.g., AMS sketches [5] or min-hash 
sketches [6]) to compress the summaries and compute 
the similarity metrics. In fact, in the QueRIE prototype 
[3], [4] we have employed the MinHash probabilistic 
clustering technique that maps each session summary 
Si to a “signature” h(Si) [6]. The Jaccard similarity be-
tween vectors is thus reduced to the similarity of their 
signatures: J accardSim(Si, S0) = sim(h(Si), h(S0)). 
However, as shown in Section 6.3, this improvement 
in computational efficiency comes at the cost of loss 
of precision of the generated recommendations. 

4 FR AG M E N T-BA S E D QUE RY RE C O M M EN -
DAT I O N S 

The fragment-based instantiation of the QueRIE 
framework works in a similar manner to the tuple-
based one. The two main differences lie in the repre-
sentation of the session summaries and the formula-
tion of similarities. More specifically, the coordinates 
of the session summaries correspond to fragments of 
queries instead of witnesses. We identify as fragments 
the following syntactical features of the queries in 
the session: attribute references, tables references, join 
and selection predicates. At a high level, the idea 
behind this approach is to recommend queries whose 
syntactical features match the queries of the current 
user. 

As discussed before, user-based collaborative fil-
tering’s main disadvantage is that it inherently re-
quires real-time similarity calculations, as the active 
user ’s profile gets updated. This significantly slows 
the real-time generation of recommendations, making 
such a choice inappropriate for large-scale systems. 
On the other hand, item-based collaborative filtering 
performs all similarity calculations during the training 
process, and thus has much smaller overhead during 
the recommendations’ generation phase. This is the 
reason why we decided to follow a methodology 
similar to the item-based collaborative filtering. Our 
objective is to identify fragments that co-appear in 
several queries posed by different users, and use them 

in the recommendation process. These fragments may, 
or may not include the ones in the user ’s active 
session S0 depending on the value of the mixing factor 
α. Thus, QueRIE first calculates (offline) the pair-wise 
similarities of all query fragments recorded in the 
query logs. These similarities are subsequently used 
to predict, in real time, the “rank” (i.e. importance) 
of each fragment with regards to the current user 
session. In turn, the highest ranked query fragments 
are the query characteristics used to mine the query 
logs and select the most relevant queries that are used 
as recommendations. 

Formally, session summary Si is a vector whose cell 
Si[φ] contains a non-zero weight if the fragment φ 
appears in at least one query of the session. For a 
given fragment φ, we define a single query vector cell 
SQ[φ] as a binary variable that represents the presence 
or absence of φ in a query Q. Then Si[φ] represents 
the importance of φ in session Si. Conceptually, the 
length of the vector is equal to the number of possible 
fragments, but we expect only few cells to have 
non-zero values. We consider two different weighting 
schemes, a binary scheme and a weighted scheme, 
both using the queries Q posed by user i: 

Binary scheme. 

 

Si = SQ. (6) 
Q∈Qi 

In this scheme all participating fragments receive the 
same importance weight, regardless of whether they 
appear in many queries in the session or only one. 

Weighted scheme. 

Si = SQ. (7) 
Q∈Qi 

In this approach fragments that appear more than 
once in a user session will receive higher weight than 
others. 

The recommendation seed, modeled by Spred , rep-
resents the estimated importance of each query frag-
ment with regard to the active user ’s behavior. Simi-
larly to the tuple-based instantiation, we again use the 
“mixing factor ” α that allows us to include or exclude 
the fragments of the active user session in the rec-
ommendation process. However, instead of the costly 
session-tuple approach (similar to the user-item col-
laborative filtering), we employ a fragment-fragment 
approach (reminiscent of the item-item paradigm) to 
calculate the similarities. More specifically, we first de-
fine a fragment-similarity metric sim(ρ, φ) that eval-
uates the similarity of two fragments ρ and φ in 
terms of their corresponding weights in the session 
summaries S1, . . . , Sn. The similarity metric employed 
depends on the weighting scheme that was chosen in 
the previous step, thus we employ Jaccard’s coefficient 
and cosine similarity for the binary and weighted 
schemes respectively (yet the framework can accom-
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modate any metric). Using this metric, each coordi-
nate Spred [φ] is computed as follows: 

E 
S0[ρ] ∗ sim(ρ, φ) 

Spred [φ] = 
ρ∈R
E , (8) 

ρ∈R sim(ρ, φ) 

where R represents the set of top-k similar query frag-
ments (k is a parameter of the framework). Intuitively, 
φ obtains a high weight if S0 contains fragments that 
co-occur frequently with φ in the queries of past users. 

The final step of generating recommendations is 
similar to that of the tuple-based approach: once the 
predicted summary Spred has been computed, its sim-
ilarity to each query summary SQ is calculated, and 
the queries having the highest similarity to the active 
user ’s summary are returned as recommendations. 

Another big advantage of item-to-item collaborative 
filtering is resilience to the cold start problem, since it 
is highly unlikely that a user ’s query will include only 
new fragments. In fact, this can happen only if none 
of the tables in the FROM clause have been referenced 
by any other query in the logs. Nonetheless, even 
in this rare case, QueRIE will be able to generate 
recommendations right after the second user query, 
as discussed in Section 5.2. 

5 DIS C US S I O N A N D I M P L E M EN TAT I O N D E -
TA IL S 

The fragment-based approach clearly captures infor-
mation at a coarser level of detail, and hence it 
is expected to miss interesting correlations between 
users. For instance, two distinct selection predicates 
will be mapped to different fragments even if they 
are satisfied by the same tuples in the base tables. 
It is therefore expected that the basic tuple-based ap-
proach yields better results in terms of precision. This, 
however, comes with a cost; the tuple-based approach 
constructs large (and relatively dense) summaries 
and, most importantly, requires real-time calculations 
of the similarities between the session summary S0 

of the current user and these of past users. On the 
other hand, the big advantage of the fragment-based 
approach is that it can be implemented very effi-
ciently; the space of fragments grows slowly allowing 
for a scalable system, the summaries are very sparse 
enabling faster similarity calculations and, most im-
portantly, the fragment-to-fragment similarities can be 
computed offline and stored for very fast retrieval 
when recommendations need to be generated, lever-
aging all the advantages of item-to-item collaborative 
filtering [7]. A comparable response time is achieved 
when the tuple-based instantiation employs MinHash 
synopses. However, as shown in Table 7 this comes 
at the cost of prediction accuracy. 

For the reasons above, we concentrated our ef-
forts in optimizing the design of the fragment-based 
engine. In what follows, we discuss a few design 

TABLE 2  

Parsing keywords  

Fragment name Start keyword End keyword 
Attribute string SELECT FROM 

Relation string FROM 
WHERE, GROUP BY, 
ORDER BY, end of 
query 

Where string WHERE 
GROUP BY, ORDER 
BY, end of query 

Group By string GROUP BY 
ORDER BY, HAVING, 
end of query 

Having string HAVING 
ORDER BY, end of 
query 

decisions that enabled the implementation of a fast 
yet accurate query recommendation system. 

5.1 Query Preprocessing 

Because of the plethora of slightly dissimilar queries 
existing in the query logs, we decided to relax them 
in order to increase their cardinality, and thus the 
probability of finding similarities between different 
user sessions. Our intuition is that if two users query 
the same table and attributes, using slightly different 
filtering conditions, the algorithm should consider 
them as similar. 

As part of this relaxation process, we follow a 
simplified version of the framework proposed in 
[8]. In essence, all the WHERE clauses are relaxed 
by converting the numerical data and string literals 
to generic string representations. For example, all 
strings are replaced by STR, all hexadecimal numbers 
by HEXNUM and all decimals by NUM. A similar 
generalization is also followed for lists or ranges 
of numbers and strings. The mathematical and set 
comparators are also replaced by string equivalents, 
for example “=” is replaced by EQU and “≤” by 
COMPARE. In the current implementation of QueRIE 
we do not treat different numeric intervals as separate. 
The trade-off of this relaxation process is increased 
recall vs. lower precision. We expect that the precision 
of the system would improve if a stricter represen-
tation of queries was followed. While this decision 
is orthogonal to the remainder of the framework, 
exploring its effect on the recommendation process is 
part of our future work plans. 

Once the queries are generalized, they are con-
verted into fragments. The current implementation of 
QueRIE only supports SPJ (SELECT, PROJECT, JOIN) 
queries, whereas if a query includes sub-queries, these 
are dropped. However, this is an implementation 
detail orthogonal to the overall framework, which 
can be easily extended to support subqueries. Each 
of the SPJ fragments are separated using regular 
expressions. The Start and End designated keywords 
used to identify fragments are shown in Table 2. For 
example, the fragments of Query 4 in Section 2 are: 
COUNT(*), REGION, REGION.TYPE PATMATCH, 
COUNT(*) COMPARE NUM. 
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Each distinct fragment is assigned a numerical iden-
tifier, used in the query and session vector representa-
tion. For each new fragment not previously recorded 
in the query log, QueRIE generates a new identifier. 
Such updates occur in real-time, as the current user 
posts a query including new fragments. In the case of 
the WHERE clause, only the joins and the filter con-
ditions are stored. Because of the generalization, the 
fragments in the WHERE clause are not differentiated 
based on their actual values, but rather based on the 
attributes used for filtering. For example, s.x ≥ 0.2 
and s.x ≥ 0.8 will be represented by the same 
fragments (s.x COMPARE NUM). In addition we do 
not differentiate (i.e. handle differently) between joins 
and filters, as we anticipate the similarity calculation 
would generate proper results regardless of the type 
of WHERE condition. 

5.2 Scalable similarity calculations 

As discussed earlier, the fragment-based approach is 
much more efficient than the tuple-based one, since 
no online calculations are required. However, even 
the training of the model, that involves calculating 
all the fragment-to-fragment similarities, requires a 
significant amount of I/O and memory allocation, 
when the session summaries are stored in a database. 
To address this issue, we instead stored all the ses-
sion summaries in a noSQL database. Such databases 
consist of hash tables that enable fast retrieval and 
calculations. The database includes the base hash 
table including the session summaries (fragments and 
counts indexed by the session id), and two derived 
ones: the inverted index of the base table (indexed 
by the fragment id), and the item similarity table 
(indexed by the fragment pair). 

This design decision has clear advantages com-
pared to storing the same information in a relational 
database. The key-value storage structure enables effi-
cient calculation of the fragment-to-fragment similar-
ities, without the I/O overhead or unnecessary scans 
of unrelated records. Moreover, this data structure 
is incrementally updated every time a new session 
summary needs to be added to the system: for each 
fragment in the session summary hash table, only the 
related records in the fragment hash table and the 
similarities of the related fragments are updated. If a 
fragment does not exist, the fragment and similarity 
hash tables are accordingly updated with new records. 
This real-time update of fragment similarities also 
addresses the cold start problem of recommender 
systems, as new fragments will be considered imme-
diately for the subsequent recommendations (when 
the system is set to include the active user ’s fragments 
in the process). 

This approach enables the real-time update of 
the query logs and fragment-to-fragment similarities, 
even on a stand-alone system. Of course, the above 

issue could also be addressed by parallelizing the 
process on a cloud. We leave this for future work. 

5.3 The QueRIE system prototype 

We implemented a prototype of our system that 
supports the two recommendation engines described 
previously. The prototype is implemented in Java and 
runs on top of a standard relational DBMS to store the 
query logs and a noSQL database to store the similar-
ities (for the fragment-based engine)6 . The database 
query interface module is built using HTML, JSP and 
JavaScript. The recommendation engine module is 
built using Java. The two modules interact through 
the JNI framework. 

Once a user logs in the system, she is able to select 
one of the two recommendation engines. The user can 
author and submit a SQL query to SkyServer. QueRIE 
sends the request to the database, and presents the 
user with the results. At the same time, the system 
records the active user ’s queries, creating an implicit 
user profile. This user profile is used as input to the al-
gorithm, along with the predictive model to generate 
real-time, personalized query recommendations. For 
each recommended query, the user is able to examine 
a sample of the results that will be retrieved, in order 
to decide whether it addresses her needs, prior to 
actually submitting it to the DBMS. 

At all times, the active user is able to: (a) formulate a 
query from scratch, (b) select a recommended query 
and submit it as it is, or (c) select a recommended 
query and edit it before submitting it to the database. 
Moreover, the interface allows the user to browse the 
database schema, review and re-submit queries that 
were posed during her recent history, see more details 
on how the recommendations were generated, and 
change the various parameters of the framework. A 
snapshot of the QueRIE prototype is shown in Figure 
2. The details of our system are described in [3], [4]. 

6 EX P E R I M E N TA L EVA L UAT I O N 

We evaluated our framework using traces of the Sky 
Server database7. The traces contain queries posed to 
the database between the years 2006 and 2008. We 
used the methods described in [9] to clean and sep-
arate the query logs in sessions8 . The characteristics 
of the data set and the queries are summarized in 
Table 3. All the experiments were run on a 2.3 GHz 
Intel Core i5 processor with 2 cores and 4GB of RAM 
running OSX. 

6. The QueRIE prototype is using the MySQL and Voldemort 
databases respectively. 

7. We used version BestDR6. 
8. It should be noted that the proposed methods are not very 

reliable in classifying bots vs. mortals. Due to this fact, we expect 
that the reported results are slightly worse than what they would be 
if only human sessions were included in the training set. However, 
devising techniques for cleaning the SkyServer logs from bots is 
orthogonal to, and beyond the scope of this work. 
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TABLE 4 

Fig. 2. QueRIE interface after a query has been submitted 

TABLE 3 

SkyServer Query Logs - Data Set Statistics 

Database size 2.6TB 
# Sessions (training set) 412 
# Sessions (test set) 45 
# Queries 6713 
# Distinct queries 4037 
# Distinct witnesses 13,602,430 
Avg # distinct query fragments 3212 
Avg # non-zero pair-wise fragment similarities 60126 
Avg. # queries per session 9.3 
Min. # queries per session 4 

In what follows we first present an evaluation of the 
various parameters of the fragment-based approach. 
This small-scale experimental evaluation, using a sub-
set of the above dataset (as described in Table 4) 
helped us choose the default values of the system’s 
parameters. Using these, we then proceeded with 
more extensive experiments on the entire data set 
(described in Table 3). We present these results, along 
with an overview of the results of the tuple-based 
approach, in order to compare and discuss the trade-
offs of the two instantiations. A detailed discussion 
of the results of the tuple-based instantiation can 
be found in [2]. We also present a comparison of 
the fragment-based approach with the MinHash ex-
tension of the tuple-based instantiation [3], briefly 
discussed in Section 3. Our results demonstrate that 
the fragment-based instantiation generates real-time 
recommendations with comparable accuracy to that 
of the baseline tuple-based instantiation (which is 

SkyServer Query Logs - Subset Statistics 

# Sessions (training set) 140 
# Sessions (test set) 20 
# Distinct queries 1401 
#Distinct witnesses 212,693 
# Distinct query fragments 755 
# Non-zero pair-wise fragment similarities 30436 
Avg. # queries per session 8.8 
Min. # queries per session 4 

not fast enough to maintain an interactive user ex-
perience), and significantly outperforms its MinHash 
extension. 

6.1 Evaluation of the system’s parameters. 

For this first set of experiments, we used a subset of 
the SkyServer data set. The characteristics of that data 
set and the queries are summarized in Table 4. 

We performed several experiments evaluating the 
performance of the framework, and the effect of the 
various parameters of the algorithm. In this Section 
we present the most important findings in terms of 
the number of top-k fragments selected to calculate 
Spred , and the weighting scheme. We omit the results 
for top-m and the mixing factor α since the results 
are in accordance to the ones we discuss in the 
following Section (where the entire dataset is used). 
Table 5 shows the default values kept constant for the 
remaining parameters in each case. 

Methodology. In order to evaluate the various param-
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TABLE 5 

Default parameter values 

Top-k fragments 5 
Top-m recommendations 5 
α 0.5 
weighting scheme weighted (cosine) 

eters of QueRIE, we used the holdout set methodol-
ogy [10]. The data is divided into two disjoint sets, the 
training set and the test set. The pair-wise fragment 
similarity is computed against the training set. Each 
user session in the test set is divided in two parts. One 
part is treated as the active user ’s queries, while the 
second part is treated as unseen (i.e. future) queries. 
Subsequently, using the active user ’s queries from 
the test set and the pre-calculated fragment-based 
similarities, QueRIE generates a set of query recom-
mendations. We compare the recommended queries 
with the unseen queries from the test set and calculate 
the precision, recall and F-score for each session as 
shown in Equations 9 - 11. We keep the precision 
of the recommendation that had the maximum recall 
value, assuming that the end user will also select only 
one recommended query each time. 

P recision = 
|Fr ∩ F

|Fr| 
u| 

(9) 

Recall = 
|Fr ∩ Fu|

|Fu| 
(10) 

F − Score = 
2 ∗ P recision ∗ Recall 

(11)
P recision + Recall 

In the formulas above, Fr and Fu represent the 
fragments of the recommended and unseen queries 
respectively. In the experiments that follow, we report 
the average precision and f-score over the 160 sessions 
of the data set. 

Evaluation of the top-k parameter. QUERIE employs 
the top-k fragments of previous queries in order to 
generate recommendations, as discussed in Section 4. 
Figures 3 and 4 show the effect of the choice of k 
on the average precision and F-score for the recom-
mendations. We notice that the accuracy of the rec-
ommendations increases, as expected, with the value 
of k. However, for very large values of k (k > 10), the 
accuracy starts decreasing again. This is completely 
justifiable, since when k is a very large number, the 
notion of “most similar ” fragments does no longer 
hold and barely similar items are included in the rec-
ommendation process. QueRIE achieves higher pre-
cisions for k ∈ [5, 10] (0.75 and 0.8 for the two end 
points), whereas F-score is the same for both end 
points (0.75 and 0.76 respectively). Given the small 
difference in terms of accuracy and the fact that the 
lower the number of fragments k, the faster the real-
time calculations, we adopt k = 5 as the default value 
for the framework. 

Evaluation of the weighting scheme. The represen-
tation of the query and session vectors, and conse-
quently the metrics used to calculate the similarities 
between fragments, differ depending on the weight-
ing scheme. In our work we have introduced the 
binary and the weighted schemes and employ the 
Jaccard coefficient and the cosine similarity metric 
respectively. In this set of experiments, we evalu-
ate the effect of the representation. Intuitively, the 
binary representation is much more simplistic and 
is expected to provide less accurate results, since 
valuable information with regards to the importance 
of each fragment in a session is missing. The results, 
shown in Figures 5 and 6 verify this intuition, with 
a precision (for max recall) of 0.74 and 0.84 for the 
binary and weighted schemes respectively, and an F-
score of 0.72 and 0.82 respectively. For the specific 
dataset both schemes performed similarly in terms of 
execution time (needed 6 sec on average to generate 
recommendations). We adopt the weighted scheme as 
the default value, since it resulted in better prediction 
accuracy. 

6.2 Prediction accuracy. 

After determining the default values for k and the 
weighting scheme, as shown above, we proceeded 
to evaluate the performance of QueRIE in terms of 
accuracy for different values of the α parameter and 
the number of recommendations m. For this set of ex-
periments, we employed the entire dataset, as shown 
in Table 3 and, when not stated otherwise, we set the 
parameters of the system to the ones shown in Table 
5. We follow the same methodology that was used for 
evaluating the tuple-based approach (discussed in [2]) 
so that we can compare the two approaches. 

Methodology. We employ 10-fold cross validation to 
evaluate the performance of the QueRIE framework. 
More concretely, we partition the set of user sessions 
in 10 equally sized subsets, and in each run we use 9 
subsets as the training set and we generate recommen-
dations for the sessions in the remaining subset. The 
effectiveness of each recommended query is measured 
against the L-th query of the test session, using the 
precision and recall metrics as defined in Equations 
9 and 10. Following the practice of previous studies 
in recommender systems [11], we report for each user 
session the maximum recall over all the recommended 
queries, and compute the precision for the query that 
achieved maximum recall. We also report the average 
precision and recall for each set of recommendations. 

Results. Figures 7 - 10 show the inverse cumulative 
frequency distribution (inverse CFD) of the recorded 
precision and recall for the test sessions. (Recall that 
all sessions are used as test sessions, using the 10-
fold cross validation methodology described earlier.) 
A point (x, y) in this graph signifies that x% of user 
sessions had precision/recall ≥ y. 
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Fig. 3. Average precision for various top-k values 
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Fig. 5. Average precision for different weighting 

schemes 

We evaluate the results in terms of the mixing factor 
α, as well as the size of the recommendation set (top-
m). Our first observation is that when the active user ’s 
session fragments are included (α = 0.5), the precision 
and recall increase significantly independent of the 
size of the recommendation set. More specifically, we 
observe that, when α = 0.5 the recommendations 
match exactly the next user query for more than 
20% of the sessions, and the precision is acceptable 
(≥ 0.5) for more than half of the sessions. On the 
other hand, when we follow the pure collaborative 
filtering approach (α = 0), precision and recall are 
overall lower for both sizes of the recommendation 
set. The findings verify our initial claim that database 
recommender systems are very different in nature 
from their web counterparts. As pointed out previ-
ously, one significant difference is that, in the case 
of SQL queries we want to expand or enhance the 
queries that were previously submitted by the user. 
The user benefits from this addition, since most users 
are interested in posting queries similar to the ones 
they have already posted during the same session. 

Looking at the effect of the size m of the recom-
mendation set, we cannot draw conclusions in favor 
of any of the two choices in the case of α = 0.5. On the 
contrary, the system performs much better (in terms 
of precision for max recall) for m = 5 when α = 0. 
We thus set the default parameters to our system as 
shown in Table 5. 

Figures 11 and 12 show the average recall and 
precision among all top-3 and top-5 recommended 
queries respectively for α = 0.5. In this case we 
achieve high precision and recall for more than 1/3 
of the test sessions and acceptable precision for over 
45% of the test sessions. The lower average precision 

Fig. 4. Average f-score for various top-k values 
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and recall for the remaining sessions means that some 
recommended queries might not reflect the user ’s 
intentions at all, dragging the overall average down. 
Since the active user will be provided with a set of 
recommendations to choose from, we expect that she 
will instead opt for the ones closest to her interests. 

6.3 Comparison and discussion 

As a final step, we compare the fragment-based ap-
proach with the tuple-based one presented in [2] and 
its extension using MinHash synopses presented in 
[3]. As discussed previously, the tuple-based approach 
represents information at a very fine level of detail 
and thus yields much more accurate results. More 
specifically, as shown in Figure 13, the tuple-based 
approach achieves perfect precision for 45% of the 
sessions (as compared to 21% for the fragment-based 
approach, as shown in Figures 7 and 9). It is inter-
esting, however, that overall more recommendations 
achieved acceptable precision (≥ 0.5) in the fragment-
based approach (52% and 48% of sessions for the 
fragment- and tuple-based approaches respectively). 
A similar pattern is being observed when we evaluate 
the average precision and recall of the two instantia-
tions. As shown in Figures 12 and 14, while a few 
more recommendations achieve perfect precision and 
recall in the tuple-based instantiation (8% and 10% 
respectively), the overall number of recommendations 
that achieve average precision ≥ 0.5 drops to 25% for 
the tuple-based instantiation whereas remains around 
40% for the fragment-based one. 

Even though the tuple-based approach captures the 
user ’s information needs at a finer level of detail, this 
comes at the cost of real-time computational efficiency, 
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Fig. 7. Inverse CFD of Precision at Maximum 

Recall (top-3 recommendations) 

Fig. 8. Inverse CFD of Maximum Recall (top-3 

recommendations) 

Fig. 9. Inverse CFD of Precision at Maximum 

Recall (top-5 recommendations) 

Fig. 10. Inverse CFD of Maximum Recall (top-3 

recommendations) 

Fig. 11. Average Precision and Recall (m = 3, 

α = 0.5) 

Fig. 12. Average Precision and Recall (m = 5, 

α = 0.5) 

as shown in Table 6; using the base tuple-based im-
plementation in a real-time recommender system is 
prohibitive due to the time needed to generate each 
recommendation (several minutes). This was our mo-
tivation to extend the tuple-based approach by using 
the MinHash synopses. MinHash synopses reduce the 
time of recommendations from several minutes to 6 
seconds (same as the fragment-based approach), but 
we expect a significant drop in the accuracy of the 
system due to the fact that the similarities between 
sessions are reduced to similarities between their 
hashes. We used the dataset of Table 4 to measure 
the prediction accuracy of the two instantiations. We 

present some results (for top-5 recommendations and 
α = 0.5) in Table 7. We observe that the fragment-
based engine outperforms the tuple-based/MinHash 
engine in terms of prediction accuracy and, given that 
the real-time response of the system is the same (6 
sec), it is the optimal choice for the particular problem, 
as our initial intuition suggested. 

7 RE L AT E D WO R K 

Even though the problem of generating personalized 
recommendations has been broadly addressed in the 
Web context [7], [12], only a few related works exist 
in the database context. A relevant line of research 
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TABLE 6  

Trade-offs between the three framework instantiations  

Fragment-based Tuple-based 
Tuple-based using Min-
Hash synopses 

Information representation coarse detailed coarse 

Phase 1: Session summaries’ formation Offline Offline Offline 

Phase 2: Similarities - Spred calculation Offline (sim(ρ, φ)) - Online Online (sim(Si, S0)) - On-
line 

Online (sim(h(Si), h(S0))) 
- Online 

Phase 3: Retrieval of similar queries Online Online Online 
Time to generate recommendations after 
query is posted 

< 6 sec > 5 min < 6 sec 

TABLE 7  

Comparison of tuple-based/MinHash and fragment-based instantiations  

Fragment-based Tuple-based with MinHash synopses 
% of sessions with precision = 1 50% 35% 
% of sessions with recall = 1 55% 40% 

% of sessions with precision ≥ 0.5 85% 60% 
% of sessions with recall ≥ 0.5 75% 65% 

% of sessions with average precision ≥ 0.5 65% 40% 
% of sessions with average recall ≥ 0.5 45% 50% 

has to do with preference-aware query answering 
[13], an important problem in the context of web 
databases. Web databases provide a keyword-based 
query interface, and suffer from the “empty-answer ” 
and “too-many-answers” problems. In that context, 
it’s critical to provide the correct (personalized) an-
swer to each user rather than the exact one to ev-
eryone for the same query [14]. Preferences may be 
expressed qualitatively, by embedding into relational 
query languages a special operator [15], [16], [17], 
[18], or quantitatively, by re-ranking or filtering the 
results (tuples) of the original query [19]. Lately con-
text has also been added in such systems, as an 
additional personalization parameter [20], [21]. The 
common denominator of these works with ours is that 
all can be categorized under the “query personaliza-
tion” area. However, our research mainly focuses on 
databases that serve a very specific purpose and have 
an SQL-based interface. In this context, rather than 
restructuring/enhancing the submitted query, or by 
re-ranking the retrieved relevant tuples (i.e. person-
alize the results), our objective is to assist the user 
exploring different parts of the database by providing 

new queries as recommendations and let the user 
decide on whether these are useful/relevant or not. 

A multidimensional query recommendation system 
is proposed in [22], [23]. In this work, the authors 
propose a framework for generating OLAP query 
recommendations for the users of a data warehouse. 
Although this work has some similarities to ours (for 
example, the challenges that need to be addressed 
because of the database context), the techniques and 
the algorithms employed in the multidimensional 
scenario (for example, the similarity metrics and the 
ranking algorithms) are very different to the ones we 
propose. 

The necessity of a query recommendation frame-
work is emphasized in [24], where the authors outline 
the architecture of a collaborative query management 
system targeted at large-scale, shared-data environ-
ments. As part of this architecture, the authors suggest 
that data mining techniques can be applied to the 
query logs in order to generate query suggestions, 
without providing any technical details on how such 
a recommendation system could be implemented. 

A few recent works propose frameworks for query 
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recommendations over relational databases [25], [26], 
[27], [28], [29]. In [25], the authors propose a frame-
work that recommends join queries. They use the data 
recorded in the query logs and reconstruct queries, 
however they assume that the end user should pro-
vide the system with some tables to be used as input 
and other tables to be used as output, along with 
the respective selection conditions. This approach 
clearly differs from ours in that they do not take 
the current user ’s session into consideration, neither 
do they perform recommendations in the traditional 
“personalized” form (i.e. finding similarities among 
users or items). 

In [26], the authors propose a query recommender 
system that represents the past queries using the 
most frequently appearing tuple values. Then, after 
predicting which new tuples might be of interest 
to the end user, they reconstruct the query that re-
trieves them. The ideas presented in this position 
paper are extended in [28], where the authors present 
the ReDRIVE framework. The authors introduce the 
notion of interestingness of (attribute, value) pairs 
called faSets, appearing in the result of the original 
user query. In this work, the authors present efficient 
ways of calculating the interestingness of each pair by 
maintaining statistics of the database allowing them 
to estimate the frequencies related to it. While the 
ReDRIVE framework has some common characteris-
tics with the tuple-based instantiation of QueRIE in 
that both consider the results (tuples) of the active 
user ’s query they differ in terms of the approach 
employed; the authors find interesting faSets (and 
subsequently use them to expand the user ’s queries 
to retrieve additional items as recommendations) con-
sidering the content of the database and the user ’s 
query results. Thus, contrary to our hybrid approach 
that employs query fragments and uses the past users’ 
queries, ReDRIVE is following a content-based ap-
proach. 

In [29] the authors propose SnipSuggest, a system 
meant to assist users when formulating SQL queries. 
Using the information in query logs, the system 
generates a DAG representing the relationships be-
tween different clauses in the queries. Based on the 
current user ’s query, the system ranks the outgoing 
edges and recommends the nodes/clauses of the most 
similar ones. This work differs in ours in several 
ways. SnipSuggest recommends possible additions to 
various clauses in the current user ’s query, and not 
complete queries. Moreover each query is treated in-
dependently of any previous one, even if they belong 
to the same user session. 

Finally in [27] the authors propose the FlexRecs 
framework that enables the execution of various 
workflows that allow a user to customize the rec-
ommendation process and results by selecting the 
type of recommendation and the basis of similarity 
calculations on various aspects. The focus of this work 

is to create a framework that will assist users with 
highly diverse information needs - e.g. University 
students whose needs span from selecting their major 
to deciding which course to take next semester. How-
ever, FlexRecs is built on the premise that multiple 
recommender systems will exist that can be selected 
as part of each workflow. Thus, all aforementioned 
works including ours, are complementary in that they 
can serve as underlying recommendation engines for 
this type of framework. 

Overall, these previous studies indicate the impor-
tance of the emerging problem of generating query 
recommendations. They also corroborate our previ-
ous observations on the challenges that need to be 
addressed in order to develop an effective solution. 

8 CON CL U S I O N S 

In this paper we present the QueRIE framework that 
aims to generate useful SQL query recommendations 
to users of relational databases. Taking into consid-
eration the findings of our previous work, where we 
developed a tuple-based instantiation of the frame-
work using user-based similarities to generate rec-
ommendations, we decided to follow an item-based 
approach using query fragments to represent user 
sessions. As expected, representing information at 
a coarser level of detail, resulted in some loss of 
accuracy in our predictions. On the other hand, the 
fragment-based approach can be implemented very 
efficiently; the space of fragments grows slowly, the 
summaries are very sparse and, most importantly, the 
fragment-to-fragment similarities can be computed 
offline and stored for very fast retrieval when recom-
mendations need to be generated. The experimental 
results showed that this trade-off between compu-
tational efficiency and accuracy is worth pursuing, 
since we are able to have a scalable implementation 
running with real, “big” data, with an acceptable loss 
in precision. In fact, when the tuple-based instanti-
ation employs approximation techniques (MinHash 
synopses) to enable real-time calculations, the loss in 
precision is much greater than that of the fragment-
based one. 

This concludes the first part of our work in this 
research area. There are many interesting directions 
we would like to explore in the future. We would 
like to measure the impact the query relaxation pro-
cess has in the quality of recommendations. Explor-
ing a sequence-based approach is another interesting 
direction for future work, but it requires a careful 
reconsideration of several aspects of our framework. 
For instance, pure sequence information may not be 
sufficient to discover user similarities. Instead, we 
may have to consider the relative changes between 
queries in the sequence, e.g., that selection predicates 
becomes more selective as queries progress, in order 
to properly detect similarities. We also plan to fo-
cus on relational databases that have a form-based 
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interface. While the fragment-based approach seems 
as a straightforward selection for such environments, 
new challenges related to the formulation of session 
similarity, the synthesis of recommendations and their 
presentation arise. Finally, as we aim at developing 
a more generic and scalable system, we are currently 
working on integrating alternative techniques for gen-
erating recommendations, such as matrix factorization 
methods. 
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