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Abstract

Feature fusion has been proven effective [35, 36] in im-
age search. Typically, it is assumed that the to-be-fused het-
erogeneous features work well by themselves for the query.
However, in a more realistic situation, one does not know
in advance whether a feature is effective or not for a giv-
en query. As a result, it is of great importance to identify
feature effectiveness in a query-adaptive manner.

Towards this goal, this paper proposes a simple yet ef-
fective late fusion method at score level. Our motivation is
that the sorted score curve exhibits an “L” shape for a good
feature, but descends gradually for a bad one (Fig. 1). By
approximating score curve’s tail with a reference collect-
ed on irrelevant data, the effectiveness of a feature can be
estimated as negatively related to the area under the nor-
malized score curve.

Experiments are conducted on two image search dataset-
s and one person re-identification dataset. We show that our
method is robust to parameter changes, and outperforms t-
wo popular fusion schemes, especially on the resistance to
bad features. On the three datasets, our results are compet-
itive to the state-of-the-arts.

1. Introduction

This paper1 considers the task of similar image search,
with additional attempts in person re-identification. Given a
query (probe) image, we aim at searching for all the similar
images in a database (gallery).

Recently, the fusion of multiple features [35, 36, 40] has
been pushing the state-of-the-art forward. Ideally, for a giv-
en query, if a to-be-fused feature works well by itself and is
complementary (heterogeneous) to existing features, then it

1Codes are released at our website: www.liangzheng.com.cn
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Figure 1. Example of a multi-feature system. For a query in the
Holidays [10] dataset, the SIFT (upper) and GIST (bottom) fea-
tures are employed to obtain two score lists respectively. There
are four relevant images for this query, where SIFT produces good
performance (AP = 90.83%), but GIST fails (AP = 0.25%). We
plot the sorted scores for rank 1-99, and the corresponding 7 top-
ranked images. Relevant images are in marked in green, and irrel-
evant ones red. Note that the sorted score curve is L-shaped for
SIFT, but gradually descending for GIST.

is expected that a higher search accuracy can be achieved.
Nevertheless, in realistic settings, the problem is that one
does not necessarily know in advance if a heterogeneous
feature is good for a given query.

Failure in predicting feature effectiveness might result in
undesirable search quality. On one hand, the failure of iden-
tifying good features may under-utilize features’ discrimi-
native power. On the other hand, bad features that escape
unpunished may lead to worse consequences: accuracy gets
even lower after fusion. This problem is not trivial: some
state-of-the-art fusion methods [40, 35], as will be shown,
suffer from the fusion of black sheep features.

For this problem, our solution is two-fold. 1) Query-



adaptive. Given a query image, the effectiveness of a to-
be-fused feature should be automatically evaluated, so that
good features are used, while bad features are ignored. 2)
Unsupervised. Since we consider generic image search, in
which no prior knowledge on the topic of the query image is
provided, it is important that we estimate the effectiveness
of a feature through unlabeled data [31].

Another issue that should be paid attention to includes
the amenability of fusion method to database updating. It
requires that the fusion algorithm be independent on the test
database, so that its effectiveness can be preserved in an
updated database. Although offline calculations are neces-
sary for effective fusion, one should be aware that an image
database keeps growing, and it is desirable that the offline
steps are not dependent on it. For this issue, the recently
proposed methods [36, 35, 4] require expensive offline com-
putations, and the resulting systems are rigid to database
change.

In light of the above analysis, this paper proposes a
score-level fusion scheme based on a simple motivation
(Fig. 1): the score curve of a good feature is “L” shaped,
while that of a bad feature is gradually dropping. In a nut-
shell, the score curves are firstly normalized by reference
curves trained on irrelevant data, which are expected to ap-
proximate the tails of the initial score curves. Then, fea-
ture effectiveness is estimated as negatively related to the
area under the normalized score curve (see Fig. 2 for our
pipeline). In our method, the offline operation is indepen-
dent on the test database, making it well suited to dynamic
systems. More importantly, our method identifies “good”
and “bad” features on-the-fly, and the results are competi-
tive to the state-of-the-arts on three datasets.

The remainder of this paper is organized as follows.
First, we briefly review the related works in Section 2.
Then, Section 3 introduces the experimental datasets and
evaluation protocol. We describe the query-adaptive fusion
method in Section 4. The experimental results are presented
in Section 5 and conclusions are given in Section 6.

2. Related Work

Basically, there exists two main streams for multiple fea-
ture fusion: early and late fusion. In early fusion, descrip-
tors are combined at feature level [15, 27, 2] or even sen-
sor level. Then, combined features are processed together
through the learning pipeline. On the other hand, late fusion
refers to fusion at score or decision levels [20, 8, 29, 9]. In
late fusion, good trade-off can be provided between the in-
formation content and the ease in fusion.

In late fusion, Nandakumar et al. [20] model the distri-
butions of genuine and impostor match scores as the finite
Gaussian mixture model. Jain et al. [8] propose to trans-
form the match scores to a common domain and the nor-
malization schemes are data-dependent. The classifier out-

puts can also be combined using a supervised non-Bayesian
method [29] which minimizes classification error under ℓ1
constraints. For each sample, these methods determine a
fixed weight for a specific classifier and does not adapt to
sample variations. In [9], user-specific weights are used,
but it requires laborious collection of training samples over
months. Our method, in essence, belongs to late fusion, and
is unsupervised due to the nature of image search.

Feature fusion has been demonstrated as effective in im-
age search. Based on the BoW structure, local features such
as color, can be combined with texture [30] or SIFT either
by a Bag of Colors (BoC) [33] or coupled Multi-Index (c-
MI) [40]. Both methods work on indexing level, using com-
plementary cues to filter out false positive SIFT matches.
Zhang et al. propose a co-indexing approach [36] to expand
the inverted index towards semantic consistency among in-
dexed images. Another good practise consists in propagat-
ing the rank list along nodes in a graph [17, 32, 35]. In [35],
through link analysis on a fused graph, local and global rank
lists are merged with equal weight. In [32], a graph-based
learning method is proposed to integrate multiple modali-
ties for visual reranking. These methods, as mentioned, are
flawed in either of two aspects. First, complementary fea-
tures are assumably employed, so there is no fall back if
an ineffective feature is integrated. Second, the reranking
methods such as [36, 35, 4] heavily rely on the offline steps:
all images in the database should be queried and the rank-
ing results are saved. This is potentially problematic if new
images are constantly added to the database, and the offline
works should be performed all over again.

3. Datasets and Features

3.1. Datasets

Ukbench [21] dataset contains 10,200 images composed of
2,550 groups. Each image is taken as query in turn, and
three groundtruth images with extensive variations are pro-
vided. We use N-S score as measurement. It counts the
number of relevant images in the top-4 ranked images.
Holidays [10] dataset is released with 1,491 personal holi-
day pictures. There are 500 queries in total. Mean Average
Precision (mAP) is used to evaluate search accuracy. It is
the mean value of Average Precision (AP), which encodes
the area under the precision-recall curve for each query.

3.2. Features

Bag-of-Words (BoW). We adopt the baseline in [10], and
the implementation setup in [40]. Namely, Hessian-Affine
detector and SIFT descriptor are coupled in feature ex-
traction. A 20k codebook is trained on Flickr60k dataset
[10]. We use 128-bit Hamming signature with the Ham-
ming threshold and weighting parameter set to 52 and 26,
respectively. We also employ rootSIFT [26], average IDF
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Figure 2. Pipeline of the proposed method. Given a query image, three features (SIFT, HSV, and GIST) are used to obtain initial rank lists.
(a) The sorted initial scores are shown for rank 1-99 in blue curve, and the selected reference is depicted in red. (b) The tails of the score
curves are eliminated by the reference, and the resulting scores are normalized by min-max normalization. (c) After calculating the feature
importance through (b), we obtain the final score curve by Eq. 1. Three features obtain APs of 0.9083, 0.6671, and 0.0025, respectively,
and the fusion result is AP = 1. The query-adaptive weights are 0.69, 0.30, and 0.01 for SIFT, HSV, and GIST, respectively.

Datasets BoW HS CNN GIST RAND
Holidays, mAP 80.16 61.32 69.33 33.81 13.49
Ukbench, N-S 3.582 3.195 3.397 1.856 1.422

Table 1. Image search accuracy with individual features.

[39], and the burstiness weighting [11]. A standard inverted
index is leveraged, and the scores are ℓ2-normalized.
HSV Histogram. For each image, we compute an ℓ2-
normalized, 1,000-dim HSV histogram. The number of bins
for H, S, V are 20, 10, 5, respectively.
Convolutional Neural Network (CNN). We generate an
ℓ2-normalized, 4096-dim CNN descriptor for an input im-
age. Features are extracted from the 6th layer in the Caffe
framework [14].
GIST. We calculate an ℓ2-normalized, 512-dim GIST [22]
descriptor. The images are resized to 256×256. Four scales
are used, and the number of orientations for each scale is (8,
8, 8, 8).
Random Projection. To illustrate the robustness of our
method to “bad” features, we generate a random transfor-
m matrix 𝑃 ∈ ℝ

𝑑×𝑚 [34], where 𝑑 is the target feature
dimension (set to 1000 in our experiment), and 𝑚 is the
dimension of the input image (with all pixels concatenat-
ed by columns). Entries in 𝑃 are sampled independently
from a zero-mean normal distribution, and each row is ℓ2
normalized to unit length. In effect, the resulting 𝑑-dim fea-
ture vector 𝑦 is computed as 𝑦 = 𝑃𝑥 ∈ ℝ

𝑑, where 𝑥 is
the column-wise input image. Search accuracy of the five
features on two datasets is presented in Table 1.

4. Our Method

4.1. Similarity Function

In literature, several strategies are used to combine the
scores of multiple features in order to obtain a global con-
fidence measure [16, 1], e.g., the sum, product, maximum,

minimum rules. Among them, this paper employs the prod-
uct rule for two reasons. First, previous works in biometric
multi-modality fusion [16, 1] demonstrate that the product
rule has very similar, if not superior, performance to the sum
rule. Second, unlike other strategies, the product rule adapts
well to input data with various scales and does not require
heavily a proper normalization of the data. In fact, in image
search, considering the great variety of the query images,
one can hardly perform a supervised classifier learning as
the case in multi-modal biometrics. So in our work, we
choose to merge two score lists by product rule.

Specifically, when 𝐾 features are fused, given query 𝑞
and a database image 𝑑, the similarity score of 𝑑 to 𝑞 w.r.t
feature ℱ (𝑖), 𝑖 = 1, ...,𝐾 is denoted as 𝑠

(𝑖)
𝑑,𝑞. Let 𝑤(𝑖)

𝑞 , 𝑖 =

1, ...,𝐾 encode the weight of feature ℱ (𝑖) for query 𝑞, and
has a sum of 1. Then, under product rule, the similarity
between 𝑞 and 𝑑 is defined as,

𝑠𝑖𝑚(𝑞, 𝑑) =

𝐾∏
𝑖=1

(
𝑠
(𝑖)
𝑑,𝑞

)𝑤(𝑖)
𝑞

,where
𝐾∑
𝑖=1

𝑤(𝑖)
𝑞 = 1. (1)

Note that, Eq. 1 can be transformed into a sum form by
log(⋅) operator.

4.2. Best and Worst Features

We first describe the extreme cases, i.e., the most desir-
able and most undesirable features for a given query 𝑞. In an
image collection with 𝑁 images, for simplicity, we assume
that 1) there is only one relevant image 𝑗∗ to 𝑞 and that 2)
the image scores are normalized so that the maximum is 1.
Intuitively, the best feature satisfies the following criteria,

𝑠
(best)
𝑗,𝑞 =

{
1, if 𝑗 = 𝑗∗

0, otherwise
, 𝑗 = 1, 2, ..., 𝑁, (2)

where 𝑠(best)
𝑗,𝑞 is the score of image 𝑗 to query 𝑞 w.r.t the best

feature. Only the relevant image 𝑗∗ receives a score of 1,



Figure 3. Sample images in the Flickr343Places dataset for refer-
ence construction. Images in each row are obtained by the same
text query. The queries used to crawl these images are (from top
to bottom): “Alexandria”, “Canada”, “England”, and “Tokyo”.

and all the irrelevant images 0. To the opposite, the worst
feature for query 𝑞 identifies itself as assigning a score of 0
to image 𝑗∗ but 1 to the others, i.e.,

𝑠
(worst)
𝑗,𝑞 =

{
0, if 𝑗 = 𝑗∗

1, otherwise
, 𝑗 = 1, 2, ..., 𝑁. (3)

The score curves defined by Eq. 2 and Eq. 3, once sort-
ed, exhibit a perfect “L” and a horizontal line, respective-
ly. Ideally, in Eq. 1, weight of the best feature should

be 𝑤
(best)
𝑞 = 1 and that of the worst feature should be

𝑤
(worst)
𝑞 = 0. We find that the weight is negatively related

to the area under the sorted score curve.

4.3. Reference Construction

In Fig. 2(a), from the profiles of the three initial score
curves, it is quite easy to tell SIFT is a good feature. But
the effectiveness of HSV and GIST is not so obvious: both
curves has a relatively “high” tail, and scores of the top-
ranked images are not remarkably higher than the tail. This
is expected, because color and GIST are global features, and
there would be more images that share a similar global ap-
pearance with the query. In other words, the intrinsic score
distribution of a feature is not considered.

In order to alleviate the impact of “high” tails, this pa-
per proposes to find a reference score curve for each query.
This reference can be viewed as an approximation to the
tail of the initial score curve, and if subtracted, would high-
light the protrusion of the top-ranked scores, if any. In prac-
tice, we use independent datasets for reference collection.
Specifically, for SIFT reference construction, we use the
Flickr1M dataset released in [10]. It contains only the SIFT
descriptors, which is compatible with the SIFT descriptors
used in the test datasets. For the other features, we crawled
1M high-resolution images using the names of 343 coun-
tries and regions across the world, called “Flickr343Places”
dataset. Images in this dataset vary from scenes to objects
and can be viewed as a good sampling of natural images.
Some sample images are shown in Fig. 3.

In reference construction, we randomly select 𝑄 images
as queries. Then, image search is performed in either the

Flickr343Places (for HSV, CNN, GIST, and random fea-
tures) or the Flickr1M (for SIFT) dataset. All the resulting
image scores are stored. Together, we have 𝑄 score lists for
feature ℱ (𝑖), denoted as ℛ(𝑖) = {𝑟(𝑖)ℎ }𝑄ℎ=1. Recall that the
reference score lists are obtained on a dataset where all im-
ages are assumed to be irrelevant to each other. Therefore,
the reference can represent the tail distribution of a score
curve.

Another consideration is that the collected references
should roughly be of the same length with the initial score
curve, so that the score distribution would be similar. To
this end, if the test database contains 𝑁 images, we should
use roughly 𝑁 irrelevant images for reference calculation.
For large-scale datasets where 𝑁 is large, both the initial
score list and the references are down-sampled before the
next step. In this manner, image search efficiency is guar-
anteed.

4.4. Query-Adaptive Feature Weighting

During online procedure, given query 𝑞, the only acces-
sible information we have w.r.t feature ℱ (𝑖) is the sorted
score curve 𝒔

(𝑖)
𝑞 . The profile of a good feature should take

on an “L” shape, while that of a bad feature a gradually de-
scending curve (see Fig. 1 and Fig. 2).

From this observation, we propose to calculate the area
under the image score curve, which is taken as the indica-
tor to feature effectiveness. As indicated above, we seek to
eliminate the high tail through the subtraction by a proper
reference curve. Specifically, given an initial sorted score
list 𝒔(𝑖)𝑞 obtained by feature ℱ (𝑖), we aim to find in ℛ(𝑖) a

reference which best matches the tail of 𝒔(𝑖)𝑞 . For this strat-
egy, the simplest method consists in finding the vector in
ℛ(𝑖) which has the smallest Euclidean distance to 𝒔

(𝑖)
𝑞 , i.e.,

𝑟(𝑖)𝑞

∗
= arg min

𝑟
(𝑖)
ℎ ∈ℛ(𝑖)

∥∥∥𝒔(𝑖)𝑞 (𝑢 : 𝑣)− 𝑟
(𝑖)
ℎ (𝑢 : 𝑣)

∥∥∥
2
, (4)

where ℎ = 1, 2, ..., 𝑄, and 𝑢, 𝑣 are parameters that restrict a
vector segment on which the nearest neighbor is searched.
Basically, it is required that 𝑢 not be too small, so that the
protrusion area is avoided in calculation, and that 𝑣 be rel-
atively large to capture the tail distribution. Sensitivity to
parameters 𝑢, 𝑣, and 𝑄 will be evaluated in Section 5.1.

Alternative to nearest neighbor search, the tail of a score
curve can also be approximated by 1) 𝑘-nearest neighbor
(𝑘NN) search followed by an averaged sum, 2) sparse cod-
ing using ℛ(𝑖) as the codebook. In Section 5.1, we will
compare the three methods, i.e., NN, 𝑘NN, and sparse cod-
ing.

In the next step, the reference is subtracted from the ini-
tial score curve of the query,

𝒔(𝑖)𝑞 = 𝒔(𝑖)𝑞 − 𝑟(𝑖)𝑞

∗
. (5)
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Figure 4. Impact of reference subtraction. We calculate the pro-
portion of good and bad score curves against the area under the
score curve. Without reference, for (a) SIFT and (c) HSV features,
good and bad curves cannot be distinguished. But when reference
is subtracted, for (b) SIFT and (d) HSV features, good and bad
curves are clearly separated.

Here, as shown in Fig. 2(b), the reference closely approxi-
mates the profile of the tail distribution, so that scores of the
top-ranked images can be highlighted in the resulting curve
𝒔
(𝑖)
𝑞 . Subsequently, 𝒔(𝑖)𝑞 undergoes min-max normalization,

𝒔(𝑖)𝑞 =
𝒔
(𝑖)
𝑞 −min 𝒔

(𝑖)
𝑞

max 𝒔
(𝑖)
𝑞 −min 𝒔

(𝑖)
𝑞

, (6)

where 𝒔
(𝑖)
𝑞 is the normalized score curve to estimate feature

effectiveness. To illustrate the working mechanism of refer-
ence subtraction, for SIFT and HSV features, we have col-
lected some good and bad score curves from Holidays and
Flickr343Places datasets, respectively. Good score curves
are those in which rank-1 image is a true match, and bad
curves are assured by the irrelevance assumption in Flick-
r343Places dataset. We calculate the proportion of good
and bad score curves against the area under the score curve
in Fig. 4. We find that after reference normalization, good
queries tend to have a small area under the score curve, and
vice versa. In this way, we can roughly tell the effectiveness
of a feature after reference subtraction.

For a given query 𝑞 with 𝐾 features {ℱ (𝑖)}𝐾𝑖=1, we have

𝐾 score lists {𝒔(𝑖)𝑞 }𝐾𝑖=1. After normalization to {𝒔(𝑖)𝑞 }𝐾𝑖=1,
the query-adaptive weight of feature ℱ (𝑖) to 𝑞 is determined
as,

𝑤(𝑖)
𝑞 =

1
𝐴𝑖∑𝐾

𝑘=1
1
𝐴𝑘

, (7)

where 𝐴𝑖, 𝑖 = 1, ...,𝐾 represents the area under the 𝑖𝑡ℎ

feature’s score curve. We substitute Eq. 7 for Eq. 1 and
obtain the desired query-adaptive similarity measurement.
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Figure 5. Sensitivity to 𝑢 and 𝑣 on Holidays dataset. Five features
are fused, i.e., BoW, HSV, CNN, GIST, and Random Projection.
mAP is plotted against the two parameters in Eq. 4. Four reference
selection methods are compared, i.e., nearest neighbor, 𝑘NN ( 𝑘 =
5 or 10), and sparse coding. We find that our method is robust to
parameter changes.
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Figure 6. Sensitivity to parameter 𝑄 on (a) Holidays and (b) Uk-
bench datasets. We test 𝑘NN = 5, 10, 20, and 50, as well as the
nearest neighbor methods. We set 𝑄 = 1000, and 𝑘NN = 10.

Discussion. The proposed method is featured in two aspect-
s. First, for a given query, we estimate a feature’s effective-
ness in a query-adaptive manner. While existing methods
[35, 36] assign fixed weight to all features, our system is
more robust to the impact of ineffective features. Second,
by constructing a reference codebook offline, the estima-
tion can be performed on-the-fly. Since our method does
not require updating the reference codebook, and the near-
est neighbor search is very fast, it can be well applied to
large-scale and dynamic systems.

5. Experiments

5.1. Image Search Results

Parameter selection. Three parameters are involved in this
work. We first evaluate the the matching parameters 𝑢, 𝑣
(Eq. 4), and results are demonstrated in Fig. 5. We can see
that, as 𝑢 and 𝑣 vary, mAP is relatively stable for “nearest
neighbor” and “𝑘NN” methods. Performance of sparse cod-
ing is inferior, because the sparse control item has negative
impact on the NN search item. Moreover, three NN-based
methods perform similarly, and it seems that “𝑘NN = 5” is
slightly better. When using 𝑘NN, the averaged reference is



Feature Combinations
Holidays Holidays+1M Ukbench

Graph Global Ours Ours Co-IDX* Global* Ours* Ours

BoW + GIST 76.39 81.54 80.88 67.65 2.766 3.205 3.177 3.590
BoW + RAND 76.57 81.18 80.91 67.92 2.701 3.254 3.210 3.596
BoW + GIST + RAND 70.59 81.65 81.47 68.33 2.829 3.308 3.263 3.590
BoW + HS 81.58 84.18 84.47 72.83 3.504 3.572 3.541 3.755
BoW + CNN 83.36 86.60 86.27 73.70 3.562 3.611 3.624 3.802
BoW + HS + CNN 83.75 87.23 87.95 74.96 3.661 3.677 3.750 3.840
BoW + GIST + RAND + HS + CNN 81.04 87.34 87.98 75.03 3.608 3.690 3.752 3.841

Table 2. Results on benchmarks with different fusion methods. We compare our method with Graph Fusion [35], Co-Indexing (Co-IDX)
[36], and global weight tuning (Global), respectively. * indicates the case where classic BoW without Hamming Embedding [10] is used.

3.583 3.586

3.643

3.726

3.590 3.590

3.760

3.841

3.582

3.5

3.55

3.6

3.65

3.7

3.75

3.8

3.85

N-
S 

sc
or

e

No Ref. Ref. BoW

(b) Ukbench - Ref. vs No Ref.

80.59 80.85

82.42

84.61

80.88 81.47

84.79

87.98

80.16

76

78

80

82

84

86

88

90

m
AP

 (%
)

No Ref. Ref. BoW

(a) Holidays - Ref. vs No Ref.

Figure 7. The impact of reference. We compare our method with
the case where reference is not used. Four feature combinations
are presented, i.e., “BoW + GIST”, “BoW + GIST + Random”,
“BoW + GIST + Random + HS”, and “BoW + GIST + Random +
HS + CNN”. The green bar represents the BoW results, while blue
and red bars show results by “No Reference” and “Reference”,
respectively.

more resistant to noise; but when 𝑘 increases, more “bad”
references can be introduced especially under small 𝑄. We
set 𝑢 = 10 and 𝑣 = 400 in our experiments.

When evaluating parameter 𝑄, i.e., the number of col-
lected references, we present the results in Fig. 6. We find
that the fusion accuracy increases steadily with 𝑄. In fac-
t, when we collect a large number of references (large 𝑄),
it is more likely to find among them a good approximation
to the tail. Nevertheless, computational complexity also in-
creases with 𝑄. Considering this, we choose 𝑄 = 1000 in
our experiments as a trade-off between speed and accuracy.

Impact of using reference. To demonstrate the effective-
ness of reference selection, we compare with the case in
which no reference is used (No Ref.). In other words, the
score curve directly undergoes min-max normalization, and
the resulting area is employed for feature weight estimation.
The results are shown in Fig. 7. It is clear that, the usage
of reference brings benefit for various feature combinations.
On Holidays and Ukbench datasets, when all five features
are fused, the usage of references brings improvement of
+3.37% in mAP, and by +0.115 in N-S, respectively.
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Figure 8. Impact of bad features on Holidays dataset. We plot mAP
against a increasing number of random features. Top: random
features are fused with BoW. Bottom: BoW + GIST + HS + CNN
is used as baseline. We compare with Rank Aggregation [13].

Comparison with global parameter tuning. For each fea-
ture, we assign to it a global weight 𝑤(𝑖). Then, we manual-
ly tune 𝑤(𝑖), 𝑖 = 1, ...,𝐾 for two datasets. When fusing five
features, we use a step of 0.1 for manual tuning. The results
are shown in Table 2. We can see that global tuning exceed-
s our results when two features are fused. But when using
five features, our method is superior. In fact, we find in our
experiment that global weighting tuning is very sensitive
to weight change: a small change in feature weight would
cause intensive accuracy change. Our method determines
feature weights automatically, and produces competitive re-
sults compared with global tuning.
How about MANY bad features? When a large number
of bad features are present, it is desirable that fusion result
not be influenced too much. In our experiment, 20 random
projection matrices are generated, so that we are provided
with 20 random projection features.

We evaluate this property on Holidays dataset in Fig.
8. We compare our method with Rank Aggregation (RA)
[13]. In RA, we compute the median rank of each can-
didate image over all rank lists obtained by different fea-
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Figure 9. Comparison with graph fusion. On (a) Holidays and (b)
Ukbench datasets, three feature combinations are tested. Abbre-
viations “B”, “G”, “R”, “H”, and “C” represent BoW, GIST, Ran-
dom, HSV, and CNN, respectively. Dashed lines are the results of
our method. “kNN” refers to the key parameter in graph fusion.

tures. We can see that when the number of random features
increases, mAP of our method drops very slowly, but that
of RA decreases dramatically. When as many as 20 “bad”
features are used, mAP of our method drops from 80.16%
to 76.58%, and from 87.98% to 82.91% for the two base-
feature settings, respectively. In comparison, RA yields an
mAP of 13.85% and 14.29%, respectively. Therefore, our
method is very robust to “bad” features.
Comparison with other fusion schemes. In order to fur-
ther verify the strength of our method, results of two state-
of-the-art fusion schemes, i.e., Graph Fusion [35] and Co-
Indexing [36] are presented in Table 2, Fig. 9, and Fig. 10.

For graph fusion, we use the code released by [35]. Ex-
cept for the 𝑘NN value (different from the 𝑘NN in our
method), we use the default parameters. Results in Fig. 9
indicate that graph fusion is sensitive to parameter 𝑘NN,
which, in order to obtain fine accuracy, should be consis-
tent with the average number of groundtruth images in the
dataset. For comparison convenience, we plot the corre-
sponding results of our method as the dashed lines.

On Holidays dataset, for each feature combination, our
method outperforms graph fusion. On Ukbench, our result
is lower than graph fusion only when 𝑘NN = 4, which is the
ideal parameter setting on Ukbench. Nevertheless, when
𝑘NN is set to other values, the performance of graph fusion
drops. Moreover, when “bad” features, such as GIST and
Random are used, graph fusion does not have a “fall back”
mechanism (in fact, it treats all the features as equally im-
portant), and the resulting performance could be worse than
BoW. Considering that our method is robust to parameters
(see Fig. 5 and Fig. 6), we speculate that our method yields
more stable and accurate performance than graph fusion.

We also compare our method with co-indexing [36] in
Fig. 10. This method is similar to graph fusion in that both
require to query all the database images in an offline man-
ner. In our implementation, we choose the optimal parame-
ters, 𝑘NN = 3 and 4 for Holidays and Ukbench respectively,
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Figure 10. Comparison with co-indexing [36]. Four feature com-
binations are presented as specified in Fig. 7. The green bar rep-
resents the BoW results, while blue and red bars show results by
co-indexing and our method, respectively.

Stage BoW Glob. Feat. Ref. Selection
Avg. Time (s) 1.95 0.96 0.01

Table 3. Average query time of different steps on Holidays + 1M,
feature extraction and quantization time excluded.

and the weighting parameter is set to 0.2 as in [36]. For fair
comparison, we use the classic BoW model without Ham-
ming Embedding as the baseline.

In Fig. 10, it is clear that on both datasets, our method
outperforms co-indexing. Specifically, when bad features
such as GIST and Random are fused, our method still yields
stable improvement while co-indexing fails.

These results reveals the robustness of our method to the
inclusion of bad features. Moreover, since both graph fu-
sion and co-indexing require extensive offline computation,
they are not tailored for database updating. In contrast, our
method only needs to collect a number of references, which
is independent on the test data. As a result, our method suits
well to database updating.
Large-scale experiments. We perform large-scale experi-
ment by combining the MirFlickr1M dataset [18] with Hol-
idays dataset. As noted in Section 4.3, we down-sample the
initial score lists and references to a length of 1000. More-
over, dimension of all four global features are reduced to
128-D by PCA. The results are shown in Table 2. When five
features are combined, we achieve the best mAP of 75.03%
on Holidays + 1M dataset. Our experiments are performed
on a server with 3.46 GHz CPU and 128 GB memory. CNN
features are extracted with a GTX 780 Ti GPU. As shown
in Table 3, our method adds little extra time in reference s-
election. Moreover, the storage of the reference codebook
costs only 7.63MB extra memory. Therefore, our method is
efficient in terms of memory and time cost.
Comparison with the state-of-the-arts. In Table 4, we
compare our results with the state-of-the-art methods. It is
shown that our method yields competitive results. Specifi-
cally, we achieve mAP = 88.0%, mAP = 75.0%, and N-S
= 3.84 on Holidays, Holidays + 1M, and Ukbench datasets,



Methods Ours [40] [4] [35] [13] [24] [28] [12] [25] [11]

Ukbench, N-S score 3.84 3.85 3.75 3.77 3.68 3.67 3.56 3.55 - 3.64
Holidays, mAP(%) 88.0 85.8 0.847 84.6 - - - 84.8 80.1 84.8
Holidays + 1M, mAP(%) 75.0 69 79.4 - - - 76 42.3 - 77

Table 4. Performance comparison with the state-of-the-art methods. Note that we use the same 1M dataset as [40].
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Figure 11. Performance on VIPeR dataset. Results by single fea-
tures and feature combinations are drawn in dashed and solid lines,
respectively. Rank-1 matching rate is shown before the name of
each method.

respectively. On Holidays, our result compares favorably
with the state-of-the-arts. On Holidays + 1M, we outperfor-
m [40] which uses the same 1M dataset. We also find that,
on Ukbench, our result is slightly lower than [40] by 0.01
in N-S score. This is because [40] is built on a much higher
BoW result (N-S = 3.72 in [40], N-S = 3.58 in this paper).
Nevertheless, when combining our method and [40] using
the provided code, we achieve N-S = 3.88 on Ukbench.

5.2. Person Re-identification Results

Person re-identification can be viewed as a special case
of image search. In this section, we apply the proposed
fusion method on this task.
Dataset and evaluation protocol. We use the VIPeR
dataset [6] to evaluate our method on person re-
identification. This dataset is composed of 632 persons and
each has two images captured from two cameras. Persons
in this dataset undergo extensive variances in viewpoint,
pose, illumination, etc and are normalized to 128×48 pix-
els. VIPeR is randomly divided into two equal halves, one
for training, and the other for testing. Each half contains
316 persons. For each person, one image is taken as query,
and search is performed in the cross-camera gallery. We
use the Cumulative Match Characteristic (CMC) curve
as measurement, records the accumulated expectation of
correct match at rank-𝑘. Evaluation is repeated for 10 times.

Features. We employ the Bag-of-Words representation
[38]. The codebook size is set to 350. Local features are

Methods 𝑟 = 1 𝑟 = 5 𝑟 = 10 𝑟 = 20
PRDC [41] 15.66 38.42 53.86 70.09
ELF [7] 12.00 31.00 41.00 58.00
PCCA [19] 19.27 48.89 64.91 80.28
SDALF [5] 19.87 38.89 49.37 65.73
eSDC svm [37] 23.78 45.70 57.48 71.08
Ours 30.17 51.60 62.44 73.81

Table 5. Comparison with the state-of-the-arts on VIPeR dataset.
Rank-1, 5, 10, 20 matching rates (%) are presented.

extracted by dense sampling: 4×4 image patches with step
of 4. The final descriptor is 5600-dim for each image. We
refer the readers to our project page for more details.

In the BoW model, four types of features are separately
used for each image patch, i.e., 1) 20-dim H-S histogram
(HS), 2) 11-dim Color Names (CN), 3) LBP, and 4) HOG.
Moreover, we employ the 5) eSDC [37] similarity.

Results. We fuse the aforementioned five features on
VIPeR, and results are presented in Table 5 and Fig. 11.
We observe consistent improvement multiple features are
combined. Specifically, although LBP and HOG yield low
matching rate, the fusion of both features still improves
recognition accuracy. When eSDC [37] is fused, we obtain
rank-1 accuracy of 30.17%. We speculate that when other
state-of-the-art systems are integrated [3, 23], our system
is capable of achieving even higher results. One issue that
should be paid attention to is that since VIPeR has only one
relevant image for each query, our method is more effective
in improving search accuracy at small 𝑟.

6. Conclusion

This paper proposes a score-level fusion scheme featured
by two advantages. First, our method estimates the ef-
fectiveness of each to-be-fused feature in an unsupervised,
query-adaptive manner. This enables “safe” fusion in that
ineffective features are unlikely to exert negative impact on
the overall accuracy. Second, the offline steps associated
with our method are independent on the test database. This
makes the fusion scheme compatible to dynamic databases.
Experiments on three benchmark datasets demonstrate the
strength of our method, and we report competitive results
compared with the state-of-the-arts.

Our work highlights the feasibility of score-level fusion
with an unsupervised training. In the future, we will further
explore the probabilistic nature of score distributions.
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