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Abstract

Most recent approaches use the sequence-

to-sequence model for paraphrase genera-

tion. The existing sequence-to-sequence

model tends to memorize the words and the

patterns in the training dataset instead of learn-

ing the meaning of the words. Therefore,

the generated sentences are often grammati-

cally correct but semantically improper. In this

work, we introduce a novel model based on

the encoder-decoder framework, called Word

Embedding Attention Network (WEAN). Our

proposed model generates the words by query-

ing distributed word representations (i.e. neu-

ral word embeddings), hoping to capturing the

meaning of the according words. Following

previous work, we evaluate our model on two

paraphrase-oriented tasks, namely text sim-

plification and short text abstractive summa-

rization. Experimental results show that our

model outperforms the sequence-to-sequence

baseline by the BLEU score of 6.3 and 5.5

on two English text simplification datasets,

and the ROUGE-2 F1 score of 5.7 on a Chi-

nese summarization dataset. Moreover, our

model achieves state-of-the-art performances

on these three benchmark datasets.1

1 Introduction

Paraphrase is a restatement of the meaning of a

text using other words. Many natural language

generation tasks are paraphrase-orientated, such

as text simplification and short text summariza-

tion. Text simplification is to make the text easier

to read and understand, especially for poor read-

ers, while short text summarization is to generate a

brief sentence to describe the short texts (e.g. posts

on the social media). Most recent approaches use

sequence-to-sequence model for paraphrase gen-

eration (Prakash et al., 2016; Cao et al., 2017). It

1The code is available at https://github.com/

lancopku/WEAN

compresses the source text information into dense

vectors with the neural encoder, and the neural

decoder generates the target text using the com-

pressed vectors.

Although neural network models achieve suc-

cess in paraphrase generation, there are still two

major problems. One of the problem is that the ex-

isting sequence-to-sequence model tends to mem-

orize the words and the patterns in the training

dataset instead of the meaning of the words. The

main reason is that the word generator (i.e. the

output layer of the decoder) does not model the

semantic information. The word generator, which

consists of a linear transformation and a softmax

operation, converts the Recurrent Neural Network

(RNN) output from a small dimension (e.g. 500)

to a much larger dimension (e.g. 50,000 words

in the vocabulary), where each dimension repre-

sents the score of each word. The latent assump-

tion of the word generator is that each word is in-

dependent and the score is irrelevant to each other.

Therefore, the scores of a word and its synonyms

may be of great difference, which means the word

generator learns the word itself rather than the re-

lationship between words.

The other problem is that the word generator

has a huge number of parameters. Suppose we

have a sequence-to-sequence model with a hid-

den size of 500 and a vocabulary size of 50,000.

The word generator has up to 25 million parame-

ters, which is even larger than other parts of the

encoder-decoder model in total. The huge size

of parameters will result in slow convergence, be-

cause there are a lot of parameters to be learned.

Moreover, under the distributed framework, the

more parameters a model has, the more bandwidth

and memory it consumes.

To tackle both of the problems, we propose a

novel model called Word Embedding Attention

Network (WEAN). The word generator of WEAN
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is attention based, instead of the simple linear soft-

max operation. In our attention based word gen-

erator, the RNN output is a query, the candidate

words are the values, and the corresponding word

representations are the keys. In order to predict

the word, the attention mechanism is used to se-

lect the value matching the query most, by means

of querying the keys. In this way, our model gen-

erates the words according to the distributed word

representations (i.e. neural word embeddings) in

a retrieval style rather than the traditional gener-

ative style. Our model is able to capture the se-

mantic meaning of a word by referring to its em-

bedding. Besides, the attention mechanism has

a much smaller number of parameters compared

with the linear transformation directly from the

RNN output space to the vocabulary space. The

reduction of the parameters can increase the con-

vergence rate and speed up the training process.

Moreover, the word embedding is updated from

three sources: the input of the encoder, the input

of the decoder, and the query of the output layer.

Following previous work (Cao et al., 2017), we

evaluate our model on two paraphrase-oriented

tasks, namely text simplification and short text

abstractive summarization. Experimental results

show that our model outperforms the sequence-to-

sequence baseline by the BLEU score of 6.3 and

5.5 on two English text simplification datasets, and

the ROUGE-2 F1 score of 5.7 on a Chinese sum-

marization dataset. Moreover, our model achieves

state-of-the-art performances on all of the bench-

mark datasets.

2 Proposed Model

We propose a novel model based on the encoder-

decoder framework, which generates the words

by querying distributed word representations with

the attention mechanism. In this section, we first

present the overview of the model architecture.

Then, we explain the details of the word gener-

ation, especially the way to query word embed-

dings.

2.1 Overview

Word Embedding Attention Network is based on

the encoder-decoder framework, which consists of

two components: a source text encoder, and a tar-

get text decoder. Figure 1 is an illustration of our

model. Given the source texts, the encoder com-

presses the source texts into dense representation

vectors, and the decoder generates the paraphrased

texts. To predict a word, the decoder uses the hid-

den output to query the word embeddings. The

word embeddings assess all the candidate words,

and return the word whose embedding matches the

query most. The selected word is emitted as the

predicted token, and its embedding is then used as

the input of the LSTM at the next time step. After

the back propagation, the word embedding is up-

dated from three sources: the input of the encoder,

the input of the decoder, and the query of the out-

put layer. We show the details of our WEAN in

the following subsection.

2.2 Encoder and Decoder

The goal of the source text encoder is to pro-

vide a series of dense representation of complex

source texts for the decoder. In our model, the

source text encoder is a Long Short-term Memory

Network (LSTM), which produces the dense rep-

resentation {h1, h2, ..., hN} from the source text

{x1, x2, ..., xN}:

The goal of the target text decoder is to generate

a series of paraphrased words from the dense rep-

resentation of source texts. Fisrt, the LSTM of the

decoder compute the dense representation of gen-

erated words st. Then, the dense representations

are fed into an attention layer (Bahdanau et al.,

2014) to generate the context vector ct, which cap-

tures context information of source texts. Atten-

tion vector ct is calculated by the weighted sum of

encoder hidden states:

ct =

N
∑

i=1

αtihi (1)

αti =
eg(st,hi)

∑N
j=1 e

g(st,hj)
(2)

where g(st, hi) is an attentive score between the

decoder hidden state st and the encoder hidden

state hi.

In this way, ct and st respectively represent the

context information of source texts and the target

texts at the tth time step.

2.3 Word Generation by Querying Word

Embedding

For the current sequence-to-sequence model, the

word generator computes the distribution of output

words yt in a generative style:

p(yt) = softmax(Wst) (3)
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Figure 1: An overview of Word Embedding Attention Network.

where W ∈ Rk×V is a trainable parameter matrix,

k is hidden size, and V is the number of words in

the vocabulary. When the vocabulary is large, the

number of parameters will be huge.

Our model generates the words in a retrieval

style rather than the traditional generative style,

by querying the word embeddings. We denote the

combination of the source context vector ct and

the target context vector st as the query qt:

qt = tanh(Wc[st; ct]) (4)

The candidate words wi and their corresponding

embeddings ei are paired as the key-value pairs

{wi, ei}(i = 1, 2, ..., n), where n is the number of

candidate words. We give the details of how to de-

termine the set of candidate words in Section 2.4.

Our model uses qt to query the key-value pairs

{wi, ei}(i = 1, 2, ..., n) by evaluating the rele-

vance between the query qt and each word vec-

tor ei with a score function f(qt, ei). The query

process can be regarded as the attentive selection

of the word embeddings. We borrow the attention

energy functions (Luong et al., 2015) as the rele-

vance score function f(qt, ei):

f(qt, ei) =











qTt ei dot

qTt Waei general

vT tanh(Wqqt +Weei) concat

(5)

where Wq and We are two trainable parameter

matrices, and vT is a trainable parameter vector.

In implementation, we select the general attention

function as the relevance score function, based on

the performance on the validation sets. The key-

value pair with the highest score {wt, et} is se-

lected. At the test stage, the decoder generates the

key wt as the tth predicted word, and inputs the

value et to the LSTM unit at the t+ 1th time step.

At the training stage, the scores are normalized as

the word probability distribution:

p(yt) = softmax(f(qt, ei)) (6)

2.4 Selection of Candidate Key-value Pairs

As described in Section 2.3, the model generates

the words in a retrieval style, which selects a word

according to its embedding from a set of candidate

key-value pairs. We now give the details of how to

obtain the set of candidate key-value pairs. We

extract the vocabulary from the source text in the

training set, and select the n most frequent words

as the candidate words. We reuse the embeddings

of the decoder inputs as the values of the candi-

date words, which means that the decoder input

and the predicted output share the same vocabu-

lary and word embeddings. Besides, we do not use

any pretrained word embeddings in our model, so

that all of the parameters are learned from scratch.

2.5 Training

Although our generator is a retrieval style, WEAN

is as differentiable as the sequence-to-sequence

model. The objective of training is to minimize the
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cross entropy between the predicted word proba-

bility distribution and the golden one-hot distribu-

tion:

L = −
∑

i

ŷi log p(yi) (7)

We use Adam optimization method to train the

model, with the default hyper-parameters: the

learning rate α = 0.001, and β1 = 0.9, β2 =
0.999, ǫ = 1e− 8.

3 Experiments

Following the previous work (Cao et al., 2017),

we test our model on the following two paraphrase

orientated tasks: text simplification and short text

abstractive summarization.

3.1 Text Simplification

3.1.1 Datasets

The datasets are both from the alignments be-

tween English Wikipedia website2 and Simple En-

glish Wikipedia website.3 The Simple English

Wikipedia is built for “the children and adults who

are learning the English language”, and the arti-

cles are composed with “easy words and short sen-

tences”. Therefore, Simple English Wikipedia is a

natural public simplified text corpus.

• Parallel Wikipedia Simplification Corpus

(PWKP). PWKP (Zhu et al., 2010) is a

widely used benchmark for evaluating text

simplification systems. It consists of aligned

complex text from English WikiPedia (as of

Aug. 22nd, 2009) and simple text from Sim-

ple Wikipedia (as of Aug. 17th, 2009). The

dataset contains 108,016 sentence pairs, with

25.01 words on average per complex sen-

tence and 20.87 words per simple sentence.

Following the previous work (Zhang and La-

pata, 2017), we remove the duplicate sen-

tence pairs, and split the corpus with 89,042

pairs for training, 205 pairs for validation and

100 pairs for test.

• English Wikipedia and Simple English

Wikipedia (EW-SEW). EW-SEW is a pub-

licly available dataset provided by Hwang et

al. (2015). To build the corpus, they first align

the complex-simple sentence pairs, score the

semantic similarity between the complex sen-

tence and the simple sentence, and classify

2http://en.wikipedia.org
3http://simple.wikipedia.org

each sentence pair as a good, good partial,

partial, or bad match. Following the previous

work (Nisioi et al., 2017), we discard the un-

classified matches, and use the good matches

and partial matches with a scaled threshold

greater than 0.45. The corpus contains about

150K good matches and 130K good partial

matches. We use this corpus as the train-

ing set, and the dataset provided by Xu et

al. (Xu et al., 2016) as the validation set and

the test set. The validation set consists of

2,000 sentence pairs, and the test set contains

359 sentence pairs. Besides, each complex

sentence is paired with 8 reference simplified

sentences provided by Amazon Mechanical

Turk workers.

3.1.2 Evaluation Metrics

Following the previous work (Nisioi et al., 2017;

Hu et al., 2015), we evaluate our model with dif-

ferent metrics on two tasks.

• Automatic evaluation. We use the BLEU

score (Papineni et al., 2002) as the automatic

evaluation metric. BLEU is a widely used

metric for machine translation and text sim-

plification, which measures the agreement

between the model outputs and the gold ref-

erences. The references can be either single

or multiple. In our experiments, the refer-

ences are single on PWKP, and multiple on

EW-SEW.

• Human evaluation. Human evaluation is es-

sential to evaluate the quality of the model

outputs. Following Nisioi et al. (2017) and

Zhang et al. (2017), we ask the human raters

to rate the simplified text in three dimensions:

Fluency, Adequacy and Simplicity. Fluency

assesses whether the outputs are grammati-

cally right and well formed. Adequacy rep-

resents the meaning preservation of the sim-

plified text. Both the scores of fluency and

adequacy range from 1 to 5 (1 is very bad

and 5 is very good). Simplicity shows how

simpler the model outputs are than the source

text, which ranges from 1 to 5.

3.1.3 Settings

Our proposed model is based on the encoder-

decoder framework. The encoder is implemented

on LSTM, and the decoder is based on LSTM with

Luong style attention (Luong et al., 2015). We
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PWKP BLEU

PBMT (Wubben et al., 2012) 46.31

Hybrid (Narayan and Gardent, 2014) 53.94

EncDecA (Zhang and Lapata, 2017) 47.93

DRESS (Zhang and Lapata, 2017) 34.53

DRESS-LS (Zhang and Lapata, 2017) 36.32

Seq2seq (our implementation) 48.26

WEAN (our proposal) 54.54

Table 1: Automatic evaluation of our model and other

related systems on PWKP datasets. The results are re-

ported on the test sets.

EW-SEW BLEU

PBMT-R (Wubben et al., 2012) 67.79

Hybrid (Narayan and Gardent, 2014) 48.97

SBMT-SARI (Xu et al., 2016) 73.62

NTS (Nisioi et al., 2017) 84.70

NTS-w2v (Nisioi et al., 2017) 87.50

EncDecA (Zhang and Lapata, 2017) 88.85

DRESS (Zhang and Lapata, 2017) 77.18

DRESS-LS (Zhang and Lapata, 2017) 80.12

Seq2seq (our implementation) 88.97

WEAN (our proposal) 94.45

Table 2: Automatic evaluation of our model and other

related systems on EW-SEW datasets. The results are

reported on the test sets.

tune our hyper-parameter on the development set.

The model has two LSTM layers. The hidden size

of LSTM is 256, and the embedding size is 256.

We use Adam optimizer (Kingma and Ba, 2014)

to learn the parameters, and the batch size is set to

be 64. We set the dropout rate (Srivastava et al.,

2014) to be 0.4. All of the gradients are clipped

when the norm exceeds 5.

3.1.4 Baselines

We compare our model with several neural text

simplification systems.

• Seq2seq is our implementation of the

sequence-to-sequence model with attention

mechanism, which is the most popular neu-

ral model for text generation.

• NTS and NTS-w2v (Nisioi et al., 2017) are

two sequence-to-sequence model with ex-

tra mechanism like prediction ranking, and

NTS-w2v uses a pretrain word2vec.

• DRESS and DRESS-LS (Zhang and Lapata,

2017) are two deep reinforcement learning

PWKP Fluency Adequacy Simplicity All

NTS-w2v 3.54 3.47 3.38 3.46

DRESS-LS 3.68 3.55 3.50 3.58

WEAN 3.77 3.66 3.58 3.67

Reference 3.76 3.60 3.44 3.60

EW-SEW Fluency Adequacy Simplicity All

PBMT-R 3.36 2.92 3.37 3.22

SBMT-SARI 3.41 3.63 3.25 3.43

NTS-w2v 3.56 3.52 3.42 3.50

DRESS-LS 3.59 3.43 3.65 3.56

WEAN 3.61 3.56 3.65 3.61

Reference 3.71 3.64 3.45 3.60

Table 3: Human evaluation of our model and other re-

lated systems on PWKP and EW-SEW datasets. The

results are reported on the test sets.

sentence simplification models.

• EncDecA is a model based on the encoder-

decoder with attention, implemented by

Zhang and Lapata (2017).

• PBMT-R (Wubben et al., 2012) is a phrase

based machine translation model which

reranks the outputs.

• Hybrid (Narayan and Gardent, 2014) is a hy-

brid approach which combines deep seman-

tics and mono-lingual machine translation.

• SBMT-SARI (Xu et al., 2016) is a syntax-

based machine translation model which is

trained on PPDB dataset (Ganitkevitch et al.,

2013) and tuned with SARI.

3.1.5 Results

We compare WEAN with state-of-the-art mod-

els for text simplification. Table 1 and Table 2

summarize the results of the automatic evalua-

tion. On PWKP dataset, we compare WEAN with

PBMT, Hybrid, EncDecA, DRESS and DRESS-

LS. WEAN achieves a BLEU score of 54.54, out-

performing all of the previous systems. On EW-

SEW dataset, we compare WEAN with PBMT-R,

Hybrid, SBMT-SARI, and the neural models de-

scribed above. We do not find any public release

code of PBMT-R and SBMT-SARI. Fortunately,

Xu et al. (2016) provides the predictions of PBMT-

R and SBMT-SARI on EW-SEW test set, so that

we can compare our model with these systems.
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LCSTS R-1 R-2 R-L

RNN-W(Hu et al., 2015) 17.7 8.5 15.8

RNN(Hu et al., 2015) 21.5 8.9 18.6

RNN-cont-W(Hu et al., 2015) 26.8 16.1 24.1

RNN-cont(Hu et al., 2015) 29.9 17.4 27.2

SRB(Ma et al., 2017) 33.3 20.0 30.1

CopyNet-W(Gu et al., 2016) 35.0 22.3 32.0

CopyNet(Gu et al., 2016) 34.4 21.6 31.3

RNN-dist(Chen et al., 2016) 35.2 22.6 32.5

DRGD(Li et al., 2017) 37.0 24.2 34.2

Seq2seq 32.1 19.9 29.2

WEAN 37.8 25.6 35.2

Table 4: ROUGE F1 score on the LCSTS test set. R-

1, R-2, and R-L denote ROUGE-1, ROUGE-2, and

ROUGE-L, respectively. The models with a suffix of

‘W’ in the table are word-based, while the rest of mod-

els are character-based.

It shows that the neural models have better per-

formance in BLEU, and WEAN achieves the best

BLEU score with 94.45.

We perform the human evaluation of WEAN

and other related systems, and the results are

shown in Table 3. DRESS-LS is based on the rein-

forcement learning, and it encourages the fluency,

simplicity and relevance of the outputs. There-

fore, it achieves a high score in our human eval-

uation. WEAN gains a even better score than

DRESS-LS. Besides, WEAN generates more ad-

equate and simpler outputs than the reference on

PWKP. The predictions of SBMT-SARI are the

most adequate among the compared systems on

EW-SEW. In general, WEAN outperforms all of

the other systems, considering the balance of flu-

ency, adequate and simplicity. We conduct sig-

nificance tests based on t-test. The significance

tests suggest that WEAN has a very significant

improvement over baseline, with p ≤ 0.001 over

DRESS-LS in all of the dimension on PWKP,

p ≤ 0.05 over DRESS-LS in the dimension of flu-

ency, p ≤ 0.005 over NTS-w2v in the dimension

of simplicity and p ≤ 0.005 over DRESS-LS in

the dimension of all.

3.2 Large Scale Text Summarization

3.2.1 Dataset

Large Scale Chinese Social Media Short Text

Summarization Dataset (LCSTS): LCSTS is

constructed by Hu et al. (2015). The dataset con-

sists of more than 2,400,000 text-summary pairs,

constructed from a famous Chinese social media

website called Sina Weibo.4 It is split into three

parts, with 2,400,591 pairs in PART I, 10,666 pairs

in PART II and 1,106 pairs in PART III. All the

text-summary pairs in PART II and PART III are

manually annotated with relevant scores ranged

from 1 to 5. We only reserve pairs with scores

no less than 3, leaving 8,685 pairs in PART II

and 725 pairs in PART III. Following the previous

work (Hu et al., 2015), we use PART I as training

set, PART II as validation set, and PART III as test

set.

3.2.2 Evaluation Metrics

Our evaluation metric is ROUGE score (Lin and

Hovy, 2003), which is popular for summariza-

tion evaluation. The metrics compare an auto-

matically produced summary against the refer-

ence summaries, by computing overlapping lex-

ical units, including unigram, bigram, trigram,

and longest common subsequence (LCS). Follow-

ing previous work (Rush et al., 2015; Hu et al.,

2015), we use ROUGE-1 (unigram), ROUGE-2

(bi-gram) and ROUGE-L (LCS) as the evaluation

metrics in the reported experimental results.

3.2.3 Settings

The vocabularies are extracted from the training

sets, and the source contents and the summaries

share the same vocabularies. We tune the hyper-

parameters based on the ROUGE scores on the

validation sets. In order to alleviate the risk of

word segmentation mistakes, we split the Chi-

nese sentences into characters. We prune the vo-

cabulary size to 4,000, which covers most of the

common characters. We set the word embedding

size and the hidden size to 512, the number of

LSTM layers of the encoder is 2, and the num-

ber of LSTM layers of the decoder is 1. The batch

size is 64, and we do not use dropout (Srivastava

et al., 2014) on this dataset. Following the previ-

ous work (Li et al., 2017), we implement a beam

search optimization, and set the beam size to 5.

3.2.4 Baselines

We compare our model with the state-of-the-art

baselines.

• RNN and RNN-cont are two sequence-to-

sequence baseline with GRU encoder and de-

coder, provided by Hu et al. (2015).

4http://weibo.com
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#Param PWKP EWSEW LCSTS

Seq2seq 12.80M 12.80M 2.05M

WEAN 0.13M 0.13M 0.52M

Table 5: The number of the parameters in the out-

put layer. The numbers of rest parameters between

Seq2seq and WEAN are the same.

• RNN-dist (Chen et al., 2016) is a distraction-

based neural model, which the attention

mechanism focuses on the different parts of

the source content.

• CopyNet (Gu et al., 2016) incorporates a

copy mechanism to allow part of the gener-

ated summary is copied from the source con-

tent.

• SRB (Ma et al., 2017) is a sequence-to-

sequence based neural model with improving

the semantic relevance between the input text

and the output summary.

• DRGD (Li et al., 2017) is a deep recurrent

generative decoder model, combining the de-

coder with a variational autoencoder.

• Seq2seq is our implementation of the

sequence-to-sequence model with the atten-

tion mechanism.

3.2.5 Results

We report the ROUGE F1 score of our model

and the baseline models on the test sets. Ta-

ble 4 summarizes the comparison between our

model and the baselines. Our model achieves

the score of 37.8 ROUGE-1, 25.6 ROUGE-2, and

35.2 ROUGE-L, outperforming all of the previ-

ous models. First, we compare our model with

the sequence-to-sequence model. It shows that

our model significant outperforms the sequence-

to-sequence baseline with a large margin of 5.7

ROUGE-1, 5.7 ROUGE-2, and 6.0 ROUGE-L.

Then, we compare our model with other related

models. The state-of-the-art model is DRGD (Li

et al., 2017), which obtains the score of 37.0

ROUGE-1, 24.2 ROUGE-2, and 34.2 ROUGE-L.

Our model has a relative gain of 0.8 ROUGE-1,

1.4 ROUGE-2 and 1.0 ROUGE-L over the state-

of-the-art models.
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Figure 2: The training curve of WEAN and Seq2seq on

the PWKP validation set.

4 Analysis and Discussion

4.1 Reducing Parameters

Our WEAN reduces a large number of the param-

eters in the output layer. To analyze the parame-

ter reduction, we compare our WEAN model with

the sequence-to-sequence model. Table 5 lists the

number of the parameters in the output layers of

two models. Both PWKP and EWSEWhave the

vocabulary size of 50000 words and the hidden

size of 256, resulting 50000× 256 = 12, 800, 000
parameters. LCSTS has a vocabulary size of 4000

and the hidden size of 512, so the seq2seq has

4000 × 512 = 2, 048, 000 parameters in the out-

put layers. WEAN only has two parameter ma-

trices and one parameter vector at most in Equa-

tion 5, without regard to the vocabulary size. It

has 256 × 256 × 2 + 256 = 131, 328 parameters

on PWKP and EWSEW, and 512×512×2+512 =
524, 800 parameters on LCSTS. Besides, WEAN

does not have any extra parameters in the other

part of the model.

4.2 Speeding up Convergence

Figure 2 shows the training curve of WEAN and

Seq2seq on the PWKP validation set. WEAN

achieve near the optimal score in only 2-3 epochs,

while Seq2seq takes more than 15 epochs to

achieve the optimal score. Therefore, WEAN

has much faster convergence rate, compared with

Seq2seq. With the much faster training speed,

WEAN does not suffer loss in BLEU, and even

improve the BLEU score.
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Source Yoghurt or yogurt is a dairy product produced by bacterial fermentation of milk .

Reference Yoghurt or yogurt is a dairy product made by bacterial fermentation of milk .

NTS . or yoghurt is a dairy product produced by bacterial fermentation of milk .

NTS-w2v It is made by bacterial fermentation of milk .

PBMT-R Yoghurt or yogurt is a dairy product produced by bacterial fermentation of .

SBMT-SARI Yogurt or yogurt is a dairy product drawn up by bacterial fermentation of milk .

WEAN Yoghurt or yogurt is a dairy product made by bacterial fermentation of milk .

Source Depending on the context, another closely-related meaning of constituent is that of a

citizen residing in the area governed, represented, or otherwise served by a politician;

sometimes this is restricted to citizens who elected the politician.

Reference The word constituent can also be used to refer to a citizen who lives in the area that

is governed, represented, or otherwise served by a politician; sometimes the word is

restricted to citizens who elected the politician.

NTS Depending on the context, another closely-related meaning of constituent is that of a

citizen living in the area governed, represented, or otherwise served by a politician;

sometimes this is restricted to citizens who elected the politician.

NTS-w2v This is restricted to citizens who elected the politician.

PBMT-R Depending on the context and meaning of closely-related siemens-martin -rrb- is a

citizen living in the area, or otherwise, was governed by a 1924-1930 shurba; this is

restricted to people who elected it.

SBMT-SARI In terms of the context, another closely-related sense of the component is that of a

citizen living in the area covered, make up, or if not, served by a policy; sometimes

this is limited to the people who elected the policy.

WEAN Depending on the context, another closely-related meaning of constituent is that of a

citizen who lives in the area governed, represented, or otherwise served by a politician;

sometimes the word is restricted to citizens who elected the politician.

Table 6: Two examples of different text simplification system outputs in EW-SEW dataset. Differences from the

source texts are shown in bold.

4.3 Case Study

Table 6 shows two examples of different text sim-

plification system outputs on EW-SEW. For the

first example, NTS, NTS-w2v and PBMT-R miss

some essential constituents, so that the sentences

are incomplete and not fluent. SBMT-SARI gen-

erates a fluent sentence, but the output does not

preserve the original meaning. The predicted sen-

tence of WEAN is fluent, simple, and the same

as the reference. For the second example, NTS-

w2v omits so many words that it lacks a lot

of information. PBMT-R generates some irrele-

vant words, like ’siemens-martin’, ’-rrb-’, and ’-

shurba’, which hurts the fluency and adequacy of

the generated sentence. SBMT-SARI is able to

generate a fluent sentence, but the meaning is dif-

ferent from the source text, and even more diffi-

cult to understand. Compared with the statistic

model, WEAN generates a more fluent sentence.

Besides, WEAN can capture the semantic mean-

ing of the word by querying the word embeddings,

so the generated sentence is semantically correct,

and very close to the original meaning.

5 Related Work

Our work is related to the encoder-decoder

framework (Cho et al., 2014) and the attention

mechanism (Bahdanau et al., 2014). Encoder-

decoder framework, like sequence-to-sequence

model, has achieved success in machine transla-

tion (Sutskever et al., 2014; Jean et al., 2015; Lu-

ong et al., 2015; Lin et al., 2018), text summa-

rization (Rush et al., 2015; Chopra et al., 2016;

Nallapati et al., 2016; Wang et al., 2017; Ma and

Sun, 2017), and other natural language process-

ing tasks (Liu et al., 2017). There are many other

methods to improve neural attention model (Jean

et al., 2015; Luong et al., 2015).

Zhu et al. (2010) constructs a wikipedia dataset,

and proposes a tree-based simplification model.

Woodsend and Lapata (2011) introduces a data-

driven model based on quasi-synchronous gram-

mar, which captures structural mismatches and

complex rewrite operations. Wubben et al. (2012)
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presents a method for text simplification using

phrase based machine translation with re-ranking

the outputs. Kauchak (2013) proposes a text sim-

plification corpus, and evaluates language model-

ing for text simplification on the proposed corpus.

Narayan and Gardent (2014) propose a hybrid ap-

proach to sentence simplification which combines

deep semantics and monolingual machine trans-

lation. Hwang et al. (2015) introduces a paral-

lel simplification corpus by evaluating the simi-

larity between the source text and the simplified

text based on WordNet. Glavaš and Štajner (2015)

propose an unsupervised approach to lexical sim-

plification that makes use of word vectors and re-

quire only regular corpora. Xu et al. (2016) de-

sign automatic metrics for text simplification. Re-

cently, most works focus on the neural sequence-

to-sequence model. Nisioi et al. (2017) present

a sequence-to-sequence model, and re-ranks the

predictions with BLEU and SARI. Zhang and La-

pata (2017) propose a deep reinforcement learning

model to improve the simplicity, fluency and ade-

quacy of the simplified texts. Cao et al. (2017)

introduce a novel sequence-to-sequence model to

join copying and restricted generation for text sim-

plification.

Rush et al. (2015) first used an attention-based

encoder to compress texts and a neural network

language decoder to generate summaries. Follow-

ing this work, recurrent encoder was introduced

to text summarization, and gained better perfor-

mance (Lopyrev, 2015; Chopra et al., 2016). To-

wards Chinese texts, Hu et al. (2015) built a large

corpus of Chinese short text summarization. To

deal with unknown word problem, Nallapati et al.

(2016) proposed a generator-pointer model so that

the decoder is able to generate words in source

texts. Gu et al. (2016) also solved this issue by

incorporating copying mechanism.

6 Conclusion

We propose a novel model based on the encoder-

decoder framework, which generates the words by

querying distributed word representations. Exper-

imental results show that our model outperforms

the sequence-to-sequence baseline by the BLEU

score of 6.3 and 5.5 on two English text simplifi-

cation datasets, and the ROUGE-2 F1 score of 5.7

on a Chinese summarization dataset. Moreover,

our model achieves state-of-the-art performances

on these three benchmark datasets.
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Sébastien Jean, KyungHyun Cho, Roland Memisevic,
and Yoshua Bengio. 2015. On using very large tar-
get vocabulary for neural machine translation. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2015.
pages 1–10.

David Kauchak. 2013. Improving text simplification
language modeling using unsimplified text data. In
Proceedings of the 51st Annual Meeting of the Asso-
ciation for Computational Linguistics, ACL. pages
1537–1546.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR
abs/1412.6980.

Piji Li, Wai Lam, Lidong Bing, and Zihao Wang.
2017. Deep recurrent generative decoder for ab-
stractive text summarization. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2017, Copenhagen,
Denmark, September 9-11, 2017. pages 2091–2100.

Chin-Yew Lin and Eduard H. Hovy. 2003. Auto-
matic evaluation of summaries using n-gram co-
occurrence statistics. In Human Language Technol-
ogy Conference of the North American Chapter of
the Association for Computational Linguistics, HLT-
NAACL 2003.

Junyang Lin, Shuming Ma, Qi Su, and Xu Sun.
2018. Decoding-history-based adaptive control of
attention for neural machine translation. CoRR
abs/1802.01812.

Tianyu Liu, Kexiang Wang, Lei Sha, Baobao Chang,
and Zhifang Sui. 2017. Table-to-text genera-
tion by structure-aware seq2seq learning. CoRR
abs/1711.09724.

Konstantin Lopyrev. 2015. Generating news head-
lines with recurrent neural networks. CoRR
abs/1512.01712.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2015. pages 1412–
1421.

Shuming Ma and Xu Sun. 2017. A semantic rele-
vance based neural network for text summarization
and text simplification. CoRR abs/1710.02318.

Shuming Ma, Xu Sun, Jingjing Xu, Houfeng Wang,
Wenjie Li, and Qi Su. 2017. Improving semantic
relevance for sequence-to-sequence learning of chi-
nese social media text summarization. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics, ACL 2017, Vancou-
ver, Canada, July 30 - August 4, Volume 2: Short
Papers. pages 635–640.

Ramesh Nallapati, Bowen Zhou, Cı́cero Nogueira dos
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