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Abstract. We study visibly pushdown automata (VPA) models for ex-
pressing and evaluating queries on words with a nesting structure. We
define a query VPA model, which is a 2-way deterministic VPA that can
mark in one run all positions in a document that satisfy a query, and
show that it is equi-expressive as unary monadic queries. This surprising
result parallels a classic result by Hopcroft and Ullman for queries on
regular word languages. We also compare our model to query models on
unranked trees, and show that our result is fundamentally different from
those known for automata on trees.

1 Introduction

A nested word is a word endowed with a nesting structure that captures hierar-
chically structured segments of the word. Applications of nested words abound
in computer science— terms and expressions are naturally nested (the brack-
eting capturing the nesting), XML/HTML/SGML documents are nested words
capturing hierarchically structured data elements (the open and close tags cap-
ture the nesting), and even runs of recursive sequential programs can be seen as
nested words capturing the nested calling structure (the call to and return from
procedures capture the nesting).

a c c a a a c cc c

Fig. 1. A nested word

Trees have been the traditional approach to model nested structures. The rich
results in the automata theory of trees is a robust theory that captures tractable
representations of nested structures. Nested words are an alternative way to
describe nested structures, where the linear arrangement of data is emphasized
(as is common in a document representing this data, like an XML document).
Automata on nested words process a document (word) along this linear order,
but also exploit the nesting edges.

The systematic study of nested word structures and finite automata working
on them was first done using visibly pushdown automata (where the automaton
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processes the word left to right, and uses a stack to relay information flow along
the nesting edges) [1]. An alternative and mathematically equivalent model is
that of nested word automata [2], which are finite state automata (no stack) and
process a nested word linearly, but where the automata are additionally allowed
to refer to nested-edge-predecessors in order to update the state.

Visibly pushdown automata and nested word automata were first introduced
in the context of formal verification (since runs of recursive programs are nested
words). Since its introduction in 2004, this model has become quite popular,
and a rich theory of visibly pushdown languages has been developed, ranging
from applications to model-checking, monitoring, temporal logics, programming
languages, security, XML, and complexity theory1.

In this paper, we study the power of visibly pushdown automata in expressing
and answering queries on nested words. We introduce an automaton model for
defining queries, called query visibly pushdown automata (query VPA). A query
VPA is a deterministic two-way (can move left and right) visibly pushdown
automaton that can mark positions of a word. When moving right, a query VPA
pushes onto the stack when reading open-tags and pops from the stack reading
close-tags, like a visibly pushdown automaton. However, when moving left it
does the opposite: it pushes onto the stack reading close-tags and pops from
the stack reading open-tags. Hence it preserves the invariant that the height of
the stack when at a particular position in the word is precisely the number of
unmatched calls before that position (which is the number of unmatched returns
after that position).

A query VPA runs (deterministically) on a word and marks a set of positions;
these positions are to be seen as the set of all answers to a query. Note that a
query VPA, when given a word, gives all answers to the query in a single run.

Our main result is that query VPAs have the right expressive power for defin-
ing queries: we show that a query is expressible as a unary formula in monadic
second-order logic (MSO) if and only if it is implemented by a query VPA. Both
directions are non-trivial, and the direction of implementing any MSO query
using query VPAs relies on a beautiful observation by Hopcroft and Ullman [4].

We find it remarkable that the simple definition of two-way VPAs exactly
captures all monadic queries. This result actually parallels a classic result in
the theory of automata on finite non-nested words, which equates the power of
unary monadic queries on (non-nested) words to that of two-way automata on
words [4,10].

A query VPA, when viewed as an algorithm working on a word, traverses the
word back and forth, and outputs all positions that answer the query, using only
space O(d), where d is the depth of the word (the depth of nesting in the word).
Our result hence implies that any unary MSO query can be answered on a word
of length n using only O(d) space (with no dependence on n) and in time O(n2).
As far as we know (and also based on discussions [11]), there is no such parallel
result using the theory of tree automata (it is however well-known that given a

1 See the VPL/Nested word languages page at http://www.cs.uiuc.edu/∼madhu/vpa

for a comprehensive list of papers and references.
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particular position, checking whether it is an answer to a query can be done in
O(d)-space; see also the related work below).

Related Work. Theoretical query models for XML have been studied using
tree models. While most tree automata models work by passing states along the
edges of the tree, there are tree automaton models that work in the linear order
corresponding to its word representation (see [3] and the more recent [6]).

The most closely related work to our result on query VPAs is that of the
query automaton model on unranked trees [10]. Query automata (more precisely,
S2DTAu) on unranked trees select positions in a tree and is exactly as powerful as
unary monadic queries on trees [10] (which is the same as that on nested words).
This model works like a two-way tree automaton on unranked trees, has parallel
copies of automata that go up and down the tree, with automata processing
children of a node synchronizing when going up to their parent. However, they are
complex due to a special class of transitions (called stay transitions) that rewrite,
using regular relations, the states labeling the children of a node. Further, there
is a semantic restriction that requires that that the children of any node be
processed by a stay transition at most once.

We believe that query VPA are significantly simpler and a different model
than S2DTAu, and it is not easy to convert between the two models (in either
direction). Note that we also do not have any semantic restriction of the kind
imposed on stay transitions in our setting, which is an important difference
between the two models.

In [5], selecting tree-automata are defined, which are simpler than query au-
tomata and can return positions that satisfy any MSO query. However, these
automata are nondeterministic in nature, and thus fundamentally different from
our model.

Another line of work that is related is the work of Neumann and Seidl: in [9]
(see also [8]), it was shown that a single-pass from left-to-right is sufficient to
answer all queries that pick an element by referring only to properties of the
document that occur before the element; these queries do not handle future
predicates and hence can work in one pass using only O(d) space.

Yet another work that is relevant is that reported in Neumann’s thesis ([8],
Chapter 7), where it is shown that for any query, there is a pushdown automaton
that does two passes on a document, the first pass left-to-right, and the second
pass right-to-left, such that any node being an answer to a query is determined
solely by the states of the automaton on the two passes. Note that this is quite
different from ours; an algorithm implementing this scheme would have to store
states of the automaton at all positions in the first pass, and hence will require
O(n)-space to output all answers to a query.

2 Preliminaries

For simplicity of exposition, we will assume that every letter in the word is the
source or target of a nested edge; extending our results to the general class of
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nested words is straightforward. Nested words will be modeled as words over an
alphabet where a single letter of the alphabet encodes an open/close tag.

Let Σ be a fixed finite alphabet of “open tags”, and let Σ = {c | c ∈ Σ} be
the corresponding alphabet of “close tags”. Let ̂Σ = Σ ∪ Σ. A well-matched
word is any word generated by the grammar: W → cWc, W → WW , W → ε,
where we have a rule W → cWc for every c ∈ Σ. The set of all well-matched
words over ̂Σ will be denoted by WM ( ̂Σ).

Nested Words, Monadic Second-Order Logic

A well-matched word w ∈ WM ( ̂Σ) can be seen as a nested structure: a linear
labeled structure with nesting edges. For example, the structure correspond-
ing to the word cacc̄aāācc̄c̄ is shown in Figure 1. The linear skeleton (de-
noted by solid edges) encodes the word and the nesting edges (denoted by
dotted edges) relate open-tags with their matching close-tags. We skip the for-
mal definition, but denote the nested structure associated with a word w as
nw(w) = ({1, . . . , |w|}, {Qa}a∈ ̂Σ,≤, ν), where the universe is the set of positions
in w, each Qa is a unary predicate that is true at the positions labeled a, the ≤
relation encodes the linear order of the word, and ν is a binary relation encoding
the nesting edges.

Monadic second-order logic (MSOν) over nested structures is defined in the
standard manner, with interpreted relations ≤ and ν: Formally, fix a countable
set of first-order variables FV and a countable set of monadic second-order (set)
variables SV . Then the syntax of MSO formulas over ̂Σ labeled nested structures
is defined as:

ϕ ::= x ∈ X | Qi(x) | x ≤ y | ν(x, y) | ϕ ∨ ϕ | ¬ϕ |
∃x(ϕ) | ∃X(ϕ)
where x, y ∈ FV,X ∈ SV.

Automata on Nested Words

There are two definitions of automata on nested words which are roughly equiv-
alent: nested word automata and visibly pushdown automata. In this paper, we
prefer the latter formalism. Intuitively, a visibly pushdown automaton is a push-
down automaton that reads a nested word left to right, and pushes a symbol
onto the stack when reading open-tags and pops a symbol from the stack when
reading a closed tag. Note that a symbol pushed at an open tag is popped at
the matching closed tag. Formally,

Definition 1 (VPA). A visibly pushdown automaton (Vpa) over (Σ,Σ) is
a tuple A = (Q, q0, Γ, δ, F ), where Q is a finite set of states, q0 ∈ Q is the
initial state, F ⊆ Q is the set of final states, Γ is a finite stack alphabet, and
δ = 〈δopen , δclose〉 is the transition relation, where:

– δopen ⊆ ((Q×Σ) × (Q× Γ ));
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– δclose ⊆ ((Q×Σ × Γ ) ×Q).

A transition (q, c, q′, γ) ∈ δopen (denoted q
c/γ−−→ q′) is a push-transition, where

the automaton reading c changes state from q to q′, pushing γ onto the stack.

Similarly, a transition (q, c, γ, q′) (denoted q
c/γ−−→ q′) is a pop-transition, allowing

the automaton, when in state q reading c with γ on the top of the stack, to pop
γ off the stack and change state to q′. A configuration of a Vpa A is a pair
(q, s) ∈ Q× Γ ∗. If a ∈ ̂Σ, we say that (q1, s1)

a−→A (q2, s2) if one of the following
conditions are true:

– a = c ∈ Σ, s2 = γ.s1 and (q1, c, q2, γ) ∈ δopen , or
– a = c ∈ Σ, s1 = γ.s2 and (q1, c, γ, q2) ∈ δclose .

Note that the height of the stack after reading a prefix u of a well-matched word
w is precisely the number of unmatched calls in u. We extend the definition of
a−→A to words over ̂Σ∗ in the natural manner. The language L(A) accepted by
Vpa A is the set of words w ∈ ̂Σ∗ such that (q0, ε)

w−→A (q, ε) for some q ∈ QF .
One important observation about VPAs, made in [1], is that deterministic VPAs
are as expressive as non-deterministic VPAs (defined above). Finally, a language
L of well-matched words is called a visibly pushdown language (Vpl) if there
some Vpa A such that L = L(A).

Monadic Queries and Automata

A (unary) query is a function f : WM ( ̂Σ) → 2N such that for everyw ∈ WM ( ̂Σ),
f(w) ⊆ [|w|]. In other words, a query is a function that maps any well-matched
word to a set of positions in the word.

A unary monadic query is a formula ϕ(x0) in MSOν that has precisely one
free variable, the first-order variable x0. Such a formula defines a query fϕ:
for any word w, fϕ(w) is the set of positions i such that the nested structure
corresponding to w satisfies ϕ(x0) when x0 is interpreted to be the i’th position.
We will say query f is expressible in MSOν if there is a unary monadic query
ϕ(x0) such that f = fϕ. We will consider unary monadic queries as the standard
way to specify queries on nested words in this paper.

Any query f over ̂Σ-labeled nested structures can be encoded as a language
of well-matched words over a modified alphabet. If ̂Σ = (Σ,Σ), then let ̂Σ′ =
(Σ′, Σ′) where Σ′ = Σ∪(Σ×{∗}). A starred-word is a well-matched word of the
form u(a, ∗)v where u, v ∈ ̂Σ∗, i.e. it is a well matched over ̂Σ where precisely
one letter has been annotated with a ∗.

A query f then corresponds to a set of starred-words:
L∗(f) = {a1a2 . . . ai−1(ai, ∗)ai+1. . .an | i ∈ f(a1 . . . ai−1aiai+1 . . . an) and each
aj ∈ ̂Σ}. Intuitively, L∗(f) contains the set of all words w where a single position
of w is marked with a ∗, and this position is an answer to the query f on w. We
refer to L∗(f) as the starred-language of f . It is easy to see that the above is a
1-1 correspondence between unary queries and starred-languages.
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From results on visibly pushdown automata, in particular the equivalence of
MSOν formulas and visibly pushdown automata [1], the following lemma follows:

Theorem 1. A query f is expressible in MSOν iff L∗(f) is a visibly pushdown
language.

Hence we can view unary monadic queries as simply visibly pushdown starred-
languages, which will help in many proofs in this paper.

The main result of this paper is as follows. We define the automaton model of
query VPA over nested words, which is a two-way visibly pushdown automaton
that answers unary queries by marking positions in an input word. We show that
a unary query is expressible in MSOν iff it is computed by some query VPA.
Notice that this result is very different from Theorem 1; the query VPA is a
machine that marks all positions that are answers to a query, as opposed to a
VPA that can check if a single marked position is an answer to a query.

3 Query VPA

The goal of this section is to define an automaton model for nested words called
a query VPA. A query VPA is a pushdown automaton that can move both
left and right over the input string and store information in a stack. The cru-
cial property that ensures tractability of this model is that the stack height
of such a machine is pre-determined at any position in the word. More pre-
cisely, any query VPA P working over a well-matched input w has the property
that, for any partition of w into two strings u and v (i.e., w = uv), the stack
height of P at the interface of u and v is the same as the number of unmatched
open-tags in u (which is the same as the number of unmatched close-tag in
v). In order to ensure this invariant, we define the two-way VPA as one that
pushes on open-tags and pops on close-tags while moving right, but pushes on
close-tags and pops on open-tags while moving left. Finally, in addition to the
ability to move both left and right over the input, the query VPA can mark
some positions by entering special marking states ; intuitively, the positions in a
word that are marked will be answers to the unary query that the automaton
computes.

We will now define query VPA formally. We will assume that there is a left-
end-marker � and a right-end-marker � for the input to ensure that the au-
tomaton doesn’t fall off its ends; clearly, �,� �∈ ̂Σ.

Definition 2 (Query VPA). A query VPA (QVPA) over (Σ,Σ) is a tuple
P = (Q, q0, Γ, δ,Q∗, S, C), where Q is a finite set of states, q0 ∈ Q is the initial
state, Q∗ ⊆ Q is a set of marking states, Γ is a finite stack alphabet, (S,C) is a
partition of Q× ̂Σ, and δ = 〈δopen , δclose , δchng〉 is the transition relation, where:

– δopenright : S ∩ (Q×Σ) → (Q× Γ )

– δopenleft : (S ∩ (Q×Σ)) × Γ → Q
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– δcloseright : (S ∩ (Q×Σ)) × Γ ) → Q

– δcloseleft : S ∩ (Q×Σ) → (Q× Γ )

– δchng : C ∪ (Q× {�,�}) → Q

The δopenright and δcloseleft functions encode push-transitions of the automaton reading
an open-tag and moving right, and reading a close-tag and moving left, respec-
tively. The δopenleft and δcloseright functions encode pop-transitions when the automa-
ton reads an open-tag and moves left, and reads a close-tag and moves right,
respectively. On the other hand, the δchng function encodes transitions where
the automaton changes the direction of its head movement. Observe that we
force the automaton to change direction whenever it reads either � or �. Note
that the query VPA has no final states. Finally, the definition above describes a
deterministic model, which we will focus on in this paper. The non-deterministic
version of the above automaton can also be defined, but they do not increase
the expressive power.

We will now define the execution of a query VPA on a word x = �w�.
A configuration of the query VPA is a tuple 〈p, d, q, s〉, where p ∈ [|x|] is the
position in the input currently being scanned, d ∈ {left , right} is the direction
in which the head moving currently, q ∈ Q is the current state, and s ∈ Γ ∗

is the current stack contents. The initial configuration is 〈1, right , q0, ε〉, i.e.,
initially the automaton is reading the leftmost symbol of w (not �), it is moving
right, in the initial state, with an empty stack. A run is a sequence c0, c1, . . . cn,
where c0 is the initial configuration, and for each i, if ci = 〈pi, di, qi, si〉 and
ci+1 = 〈pi+1, di+1, qi+1, si+1〉, then one of the following holds

– If (qi, x[pi]) ∈ S ∩ (Q × Σ), and di = right then di+1 = di, pi+1 = pi + 1,
qi+1 = q and si+1 = γsi, where δopenright (qi, x[pi]) = (q, γ)

– If (qi, x[pi]) ∈ S ∩ (Q × Σ), and di = right then di+1 = di, pi+1 = pi + 1,
qi+1 = q and si = γsi+1, where δcloseright (qi, x[pi], γ) = q

– If (qi, x[pi]) ∈ S ∩ (Q × Σ), and di = left then di+1 = di, pi+1 = pi − 1,
qi+1 = q and si = γsi+1, where δopenleft (qi, x[pi], γ) = q

– If (qi, x[pi]) ∈ S ∩ (Q × Σ), and di = left then di+1 = di, pi+1 = pi − 1,
qi+1 = q and si+1 = γsi, where δcloseleft (qi, x[pi]) = (q, γ)

– If (qi, x[pi]) ∈ C then si = si+1, and qi+1 = δchng(qi, x[pi]). To define the
new position and direction, there are two cases to consider. If di = right
then di+1 = left and pi+1 = pi − 1. On the other hand, if di = left then
di+1 = right and pi+1 = pi + 1.

Observe that the way the run is defined, the stack height in any configuration
is determined by the word w. More precisely, in any configuration c = 〈p, d, q, s〉
of the run with p ∈ {1, . . . |w|}, if d = right then |s| is equal to the number
of unmatched open-tags in the word x[1] · · ·x[p − 1] (which is the same as the
number of unmatched close-tags in x[p] · · ·x[|w|]). On the other hand, if d = left
then |s| is equal to the number of unmatched open-tags in the word x[1] · · ·x[p].
When scanning the left-end-marker (p = 0) or the right-end-marker (p = |x|+1),
the stack height is always 0.
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Finally, the query VPA P is said to mark a position j in a well-matched word
w, where 1 ≤ j ≤ |w|, if the unique run c0 . . . cn of P on the input �w� is such
that for some i, ci = (j, d, q, s) where q ∈ Q∗. The query implemented by the
query VPA P is the function fP , where fP (w) is the set of all positions marked
by P when executed on �w�.

We now state the main result of this paper: the set of queries implemented
by query VPA is precisely the set of unary monadic queries.

Theorem 2. A query f is expressible in MSOν if and only if there is query VPA
P such that fP = f .

The proof of Theorem 2 follows from Lemmas 1 and 2 that are proved in the
next two sections.

3.1 Implementing Monadic Queries on Query VPA

In this section we prove one direction of Theorem 2, namely, that every monadic
query can be implemented on a query VPA.

Lemma 1. For any monadic query f , there is a query VPA P such that f = fP .

Proof. Let f be a monadic unary query. From Theorem 1, we know that there
is a deterministic VPA A such that L∗(f) = L(A). This suggests a very simple
algorithm that will mark all the answers to query f by repeatedly simulating
A on the word w. First the algorithm will simulate the VPA A on the word w,
assuming that the starred position is the rightmost symbol of w; the algorithm
marks position |w| of �w� only if A accepts. Then the algorithm simulates A
assuming that the starred position is |w| − 2, and so on, each time marking a
position if the run of A on the appropriate starred word is accepting. A näıve
implementation of this algorithm will require maintaining the starred position, as
well as the current position in the word that the simulation of A is reading, and
the ability to update these things. It is unclear how this additional information
can be maintained by a query VPA that is constrained to update its stack
according to whether it is reading an open-tag or a close-tag. The crux of the
proof of this direction is demonstrating that this can indeed be accomplished.
While we draw on ideas used in a similar proof for queries on regular word
languages (see [10] for a recent exposition), the construction is more involved
due to the presence of a stack.

Before giving more details about the construction, we will give two technical
constructions involving VPAs. First given any VPA B = (Q, q0, Γ, δ, F ) there is a
VPA B′ with a canonical stack alphabet that recognizes the same language; the
VPA B′ = (Q, q0, Q×Σ, δ′, F ) which pushes (q, c) whenever it reads an open-tag
c in state q. Details of this construction can be found in [1]. Next, given any VPA
B = (Q, q0, Γ, δ, F ), there is a VPA Bpop recognizing the same language, which
remembers the symbol last popped since the last unmatched open-tag in its control
state. We can construct this: Bpop = (Q×(Γ ∪{⊥}), (q0,⊥), Γ, δ′, F×(Γ ∪{⊥})),



Query Automata for Nested Words 569

where the new transitions are as follows. If q
c/γ1−−−→B q′ then (q, γ)

c/γ1−−−→Bpop

(q′,⊥). If q
c/γ1−−−→B q′ then (q, γ)

c/γ1−−−→ (q′, γ1).
For the rest of this proof, let us fix A to be the deterministic VPA with a

canonical stack alphabet recognizing L∗(f), and Apop to be the (deterministic)
version of A that remembers the last popped symbol in the control state. We
will now describe the query VPA P for f . Let us fix the input to be �w�, where
w = a1a2 · · · an.
P will proceed by checking for each i, i starting from n and decremented in

each phase till it becomes 1, whether position i is an answer to the query. To do
this, it must check if A accepts the starred word where the star is in position i.
P will achieve this by maintaining an invariant, which we describe below.

The Invariant. Let w = a1 . . . an, and consider a position i in w. Let w = uaiv
where u = a1 . . . ai−1 and v = ai+1 . . . an.

Recall that the suffix from position i + 1, v, can be uniquely written as
wkckwk−1ck−1 · · ·w1c1w0, where for each j, wj is a well-matched word, and
ck, . . . c1 are the unmatched close-tags in v.

In phase i, the query VPA will navigate to position i with stack σ such that
(a) its control has information of a pair (q, γ) such that this state with stack σ
is the configuration reached by Apop on reading the prefix u, and (b) its control
has the set B of states of A that is the precise set of states q′ such that A
accepts v from the configuration (q′, σ). Hence the automaton has a summary of
the way A would have processed the unstarred prefix up to (but not including)
position i and a summary of how the unstarred suffix from position i+ 1 would
be processed. Under these circumstances, the query VPA can very easily decide
whether position i is an answer to the query — if A on reading (ai, ∗) can go
from state q to some state in B, then position i must be marked.

Technically, in order to ensure that this invariant can be maintained, the query
VPA needs to maintain more information: a set of pairs of states of A, S, that
summarizes how A would behave on the first well-matched word in v (i.e. wk),
a stack symbol StackSym that accounts for the difference in stack heights, and
several components of these in the stack to maintain the computation. We skip
these technical details here.

Marking position i. If ai ∈ Σ then the query VPA P will mark position i iff

q
(ai,∗)/(q,(ai,∗))−−−−−−−−−−→A q′ where q′ ∈ B. Similarly, if ai ∈ Σ then P marks i iff

q
(ai,∗)/γ′
−−−−−−→A q′ with q′ ∈ B.

Maintaining the Invariant. Initially the query VPA P will simulate the VPA
Apop on the word w from left to right. Doing this will allow it to obtain the
invariant for position n. So what is left is to describe how the invariant for
position i − 1 can be obtained from the invariant for position i. Determining
the components of the invariant, except for the new control state of Apop , are
easy and follow from the definitions; the details are deferred to the appendix.
Computing the new state of Apop at position i−1 is interesting, and we describe
this below.
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Determining the state of Apop. Recall that we know the state of Apop af-
ter reading a1 · · ·ai−1, which is (q, γ). We need to compute the state (q′, γ′)
of Apop after reading a1 · · · ai−2. The general idea is as follows. The query
VPA P will simulate Apop backwards on symbol ai−1, i.e., it will compute
Prev = {p | p

ai−1−−−→Apop (q, γ). If |Prev | = 1 then we are done. On the other
hand, suppose |Prev | = k > 1. In this case, P will continue simulating Apop

backwards on symbols ai−2, ai−3 and so on, while maintaining for each state
p ∈ Prev the set of states of Apop that reach p. If at some position j the sets
associated with all states p ∈ Prev become empty except one, or j = 1 (we
reach the beginning of the word), then we know which state p ∈ Prev is state
of Apop after reading a1 · · · ai−2 — it is either the unique state whose set is
non-empty or it is state whose set includes the initial state. However P now
needs to get back to position i− 1. This is done by observing the following. We
know at position j + 1 at least two different threads of the backward simula-
tion are still alive. Position i− 1 is the unique position where these two threads
converge if we now simulate Apop forwards. The idea just outlined works for
queries on regular word languages, but does not work for query VPA due to one
problem. If we go too far back in the backwards simulation (like the beginning
of the word), we will lose all the information stored in the stack. Therefore, we
must ensure that the backward simulation does not result in the stack height
being lower than what it is supposed after reading a1 · · · ai−2. To do this we
use the special properties of the VPA Apop . Observe that if we go backwards
on an unmatched open-tag (in a1 · · · ai−1), the state of the VPA A at the time
the open-tag was read is on the stack. Thus, the state of Apop after reading
the open-tag is uniquely known. Next if ai−1 ∈ Σ is a matched close-tag, then
since we keep track of the last symbol popped after reading ai−1, we know the
symbol that was popped when ai−1 was read, which allows us to know the
state of A, when it read the open-tag that matches ai−1. These two observa-
tions ensure that we never pop symbols out of the stack. The details are as
follows.

ai−1 ∈ Σ: Simulate backwards until (in the worst case) the rightmost unmatched
open-tag symbol in the word a1 . . . ai−2, and then simulate forward to de-
termine the state (q′, γ′) as described above.

ai−1 ∈ Σ: γ is symbol that is popped by Apop when it reads ai−1. So γ encodes
the state of A when the matching open-tag aj to ai−1 was read. So simulate
backwards until aj is encountered and then simulate forwards.

This completes the description of the query VPA.

3.2 Translating Query VPA to Monadic Queries

We now complete the proof of Theorem 2, by showing that any query imple-
mented on a query VPA can be described as a unary monadic query.
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Lemma 2. For any query VPA A, there is an MSOν formula ϕ(x) such that
fϕ = fA.

Proof. Let A be a query VPA. The query defined by A will be translated into
an MSOν formula through several intermediate stages.

Let f be the query defined by the query VPA A. We first construct a two-
way (non-marking) VPA B that accepts the starred-language of f . B accepts a
word w with a ∗ in position i if and only if i ∈ f(w). Constructing B is easy. B
simulates A on a word w with a ∗ in position i and accepts the word if A reaches
position i in a marking state. B also ensures in a first run over the word that
the word has a unique position that is marked with a ∗. The language accepted
by B is L∗(f), the starred-language of f .

Any nested word w can be represented as a tree called a stack tree. A stack
tree is a Σ̂ binary tree that has one node for every position in w, and the node
corresponding to position i is labeled by w[i]. The stack tree corresponding to a
word w is defined inductively as follows: (a) if w = ε, then the stack tree of w is
the empty tree, and (b) if w = cw1cw2, then the stack tree corresponding to w
has its root labeled c, has the stack-tree corresponding to w1 rooted at its left
child, the right child is labeled c which has no left child, but has a right child
which has the stack-tree corresponding to w2 rooted at it.

We now show that the set of stack-trees corresponding the starred words
accepted by B can be accepted using a pushdown tree-walking automaton [7]. A
pushdown tree-walking automaton works on a tree by starting at the root and
walking up and down the tree, and has access to a stack onto which it always
pushes a symbol when going down the tree and pops the stack when coming
up an edge. Note that the height of the stack when at a node of the tree is
hence always the depth of the node from the root. From B, we can build a tree-
walking automaton C that reads the tree corresponding to a starred word, and
simulates B on it. C can navigate the tree and effectively simulate moving left
or right on the word. When B moves right reading a call symbol, C moves to
the left child of the call and pushes the symbol B pushes onto its stack. When
B moves right to read the corresponding return, C would go up from the left
subtree to this call and pop the symbol from the stack and use it to simulate
the move on the return. The backward moves on the word that B makes can
also be simulated: for example, when B reads a return and moves left, C would
go to the corresponding node on the left-subtree of the call node corresponding
to the return, and when doing so push the appropriate symbol that B pushed
onto the stack. When C moves down from an internal or return node, or from a
call node to the right, it pushes in a dummy symbol onto the stack.In summary,
whenever B is in a position i with stack γ1 . . . γk, C would be reading the node
corresponding to i in the tree, and the stack would have γ1 . . . γk when restricted
to non-dummy symbols.

It is known that pushdown tree-walking automata precisely accept regular tree
languages. Hence we can construct an MSO formula on trees that precisely is true
on all trees that correspond to starred words accepted by B. This MSO formula
can be translated to MSOν ψ on nested words, which is true on precisely the set
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of starred nested words that B accepts. Assuming x is not a variable in ψ, we
replace every atomic formula of the form Q(a,∗)(y) (the atomic formula checking
whether position y is labeled a and is starred) by the formula x = y ∧ Qa(y),
to get a formula ϕ(x), with a free variable x. Intuitively, we replace every check
the formula does for a starred label by a check as to whether that position is x.
It is easy to see then that the formula ϕ(x) is an MSOν formula on ̂Σ-labeled
(unstarred) nested words, which precisely defines the query defined by B, and
hence the original query VPA A. This concludes the proof.

4 Conclusions

The query automaton model we have defined on nested words is an elegant model
that answers queries using the least space possible. While our result is theoretical
in nature, it may have implications on applications: our model shows that unary
queries on XML (like logical XPath queries) can be answered using only O(d)-
space; we also believe that our model could have applications in verification
where, given a run of a sequential program, we can build efficient algorithms
that answer queries such as “which positions x of the run satisfy a temporal
formula ϕ(x)?”, with applications to debugging error traces.

Finally, our query automaton model can be adapted to an analogous MSO-
complete unary query automata on unranked trees as well: we can define a 2-way
pushdown automaton tree-walking automaton that processes it by traversing it
according to the linear order (determined by its serialization as a word), pushing
onto the stack when going down a tree and popping the stack when coming up;
this will essentially be an encoding of the query VPA on the tree.
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